A Systems Approach to Protecting the U.S. Air Traffic Control System Against Cyber-Terrorism

Arthur Pyster
Deputy Assistant Administrator for Information Services and Deputy Chief Information Officer
arthur.pyster@faa.gov
The FAA’s Job

Each day, manage 30,000 commercial flights to safely move 2,000,000 passengers and 60,000 tons of cargo

- ~ 500 FAA Managed Air Traffic Control Towers
- ~ 180 Terminal Radar Control Centers (low altitude)
- 20 Enroute Centers (high altitude)
- ~ 60 Flight Service Stations (general aviation)
- ~ 40,000 Radars, Navigational Aids, Radios, …
The Threat

“It is important to concentrate on the destruction of the American economy…”

Osama bin Laden

“If there had been a cyber-attack at the same time [September 11] that prevented them [air traffic controllers] from doing that [bringing down the aircraft], the magnitude of the event could have been much greater.”

Ron Ross, Director of the National Information Assurance Partnership

“The event I fear most is a physical attack in conjunction with a successful cyber-attack on the responders’ 911 system or on the power grid.”

Ron Dick, Director of FBI National Infrastructure Protection Center
FAA’s Systems Approach

• Establish strategy, policy, and guidance
• Systematically and continually examine threats and vulnerabilities
• Create an information systems security architecture that responds to those threats and vulnerabilities
• Implement information systems and networks consistent with the architecture
• Establish, institutionalize, and continuously improve processes
• Deploy security measures incrementally
• Monitor compliance and measure progress
• Manage risks proactively at each major decision point
FAA’s Cyber Defense Strategy

• Harden individual system and network elements
 – Make it difficult to knock out individual elements, but recognize that successful attacks may occur

• Isolate elements to avoid “viral” spread
 – Build on the FAA infrastructure that is already designed to tolerate independent failure of system and network elements
 – Recognize that cyber attacks can be “viral” in nature, impacting a swath of elements
 – Create firebreaks within the network to minimize viral spread
 – Monitor networks to detect attacks and impose additional containment

• Back up key elements to avoid service disruption
 – Build on the fact that redundancy is already integral to achieving safety and performance with the FAA infrastructure
 – Develop recovery and restoration procedures that include cyber events
FAA’s 5 Layer Enterprise Security Model

- Personnel Security
- Physical Security
- Cyber Hardening of System and Network Elements
- Compartmentalization
- Redundancy
Awareness and Execution Perspective

- Policy
- Education
- Procedures
- Boundary Protection
- Certification & Authorization
- Incident Response Capability
- Awareness & Execution

- Personnel Security
- Physical Security
- Cyber Hardening of System and Network Elements
- Compartmentalization
- Redundancy
Awareness and Execution Actions

- Check background; identify key positions; train all for awareness; train security personnel with specialized skills; …
- “Lock up” key systems assets; …
- Certify and authorize all new systems and on a prioritized basis legacy systems; take into account personnel and physical security practices and status; …
- Tightly manage internet access points; operate 24x7 cyber response center; run operational and administrative systems on separate networks; deploy anti-viral software enterprise-wide; periodically test for policy compliance; …
- Apply same techniques traditionally used to accommodate occasional component failure

Personnel Security
Physical Security
Cyber Hardening of System and Network Elements
Compartmentalization
Redundancy
Architecture & Engineering Perspective

- Personnel Security
- Physical Security
- Cyber Hardening Elements
- Compartmentalization
- Redundancy

ISS Architecture
Smart Cards
Biometrics
Encryption
Analytical Tool Sets
Public Key Infrastructure

Authentication
Access Control
Confidentiality
Integrity
Availability
Create specialized FAA training; …

Define smart card architecture and deployment strategy; …

Allocate ISS requirements to each element; develop Common Criteria templates; tailor NIACAP; infuse security engineers into projects; define enterprise-wide PKI architecture; integrate safety and security techniques; …

Define multiple domains with different security policies; define standards for VPNs, firewalls, etc.; research how to reduce data volume from intrusion detection; find ways to non-intrusively, continuously test network for policy compliance; develop analytic tools; operate test lab for new technologies; …

Rely on fact that system is already engineered to accommodate occasional component failure.
Conclusion

• Because of the size and complexity of the Air Traffic Control System, only a systems approach can provide adequate defense

• The fundamental strategy guiding cyber defense is:
 – Harden individual system and network elements
 – Isolate elements to avoid “viral” spread
 – Back up elements to avoid service disruption

• Our systems approach implements this strategy