

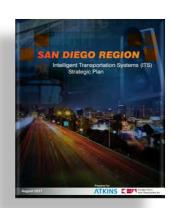
SAN DIEGO I-15 TEST BED FOR INTEGRATED CORRIDOR MANAGEMENT

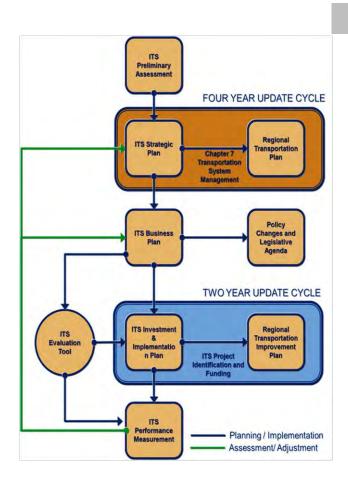
Rule 940: Methodology, Madness, and Measures Materialize

January 27th, 2015

8:30am - 12:00pm

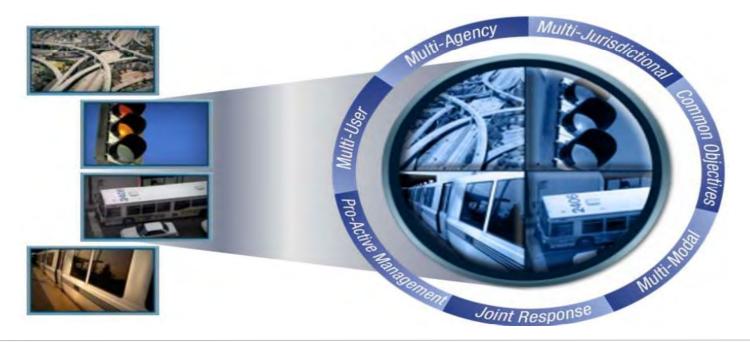
Overview of SANDAG's Regional Work




- Population growth
- Transportation
- Transit construction
- Habitat planning
- Housing
- Census

- Energy
- Economic prosperity
- Public safety
- Binational planning
- Shoreline preservation
- Interregional planning

Planning for Transportation Technology Adoption


- Multimodal Integration and Performance Based Management
- Traveler Information
- Arterial Management
- Freeway Management
- Transit Management
- Electronic Payment System

USDOT ICM Vision Background

- Utilize technology and partnerships
- Manage corridor as system
- Provide travelers decision quality information
- Maximize corridor capacity

Experience Using Systems Engineering

Institutional Integration

 Coordination to collaboration between various agencies, modes, and jurisdictions that transcends institutional boundaries

Operational **Integration**

 Joint operational objectives and strategies to manage and balance the total capacity and demand of the corridor

Technical Integration

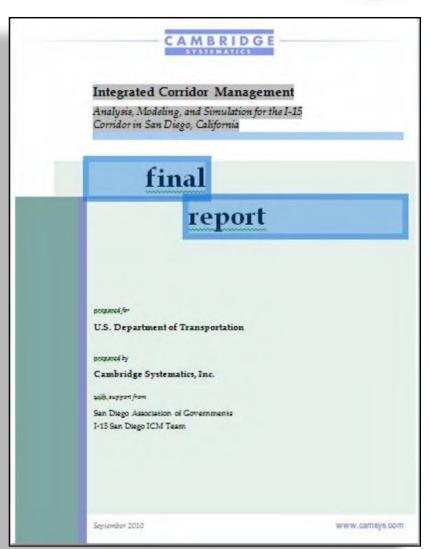
 Sharing and distribution of information and system operations control functions to support the analysis and immediate response

http://www.its.dot.gov/icms/

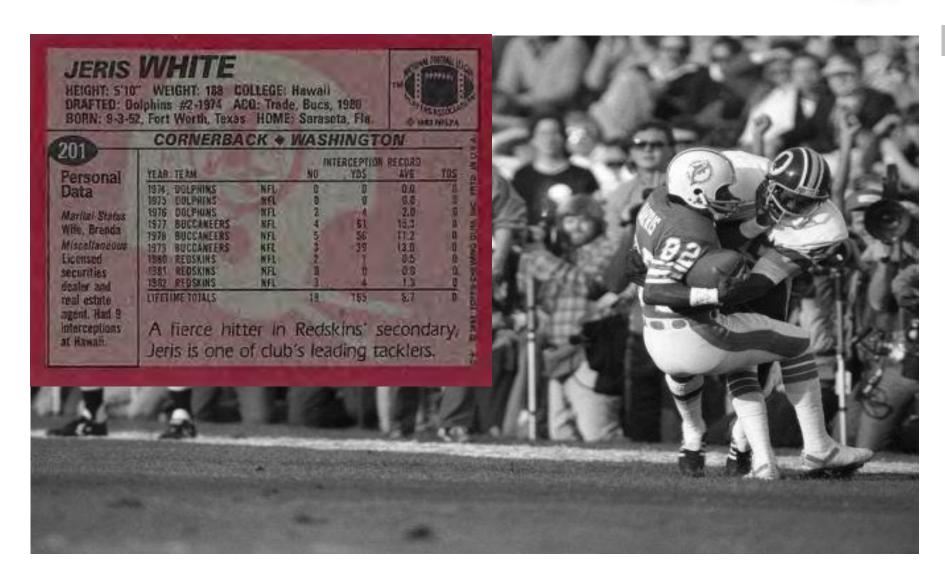
Strategic Assessment

	Level 1 Silo	Level 2 Centralized	Level 3 Integrated	Level 4 Multimodal Integrated	Level 5 Multimodal Optimized
Planning	Functional Area Planning (single mode)	Project-based Planning (single mode)	Integrated agency wide planning (single mode)	Integrated corridor- based multimodal planning	Integrated regional multimodal planning
Data Collection (vehicle tracking)	Limited or Manual Input	Near real-time for major routes	Real-time for major routes using multiple inputs	System-wide Real- time data collection (single mode)	System-wide Real- time data collection across all modes
Data Integration	Limited	Networked	Common user interface	2-way system integration	Extended integration
Network Operations	Ad-Hoc, Single Mode	Centralized, Single Mode	Automated, Single Mode	Automated, Multimodal	Multimodal Real-time Optimized
Incident Management	Manual detection, response and recovery	Ma rual detection, coordinated response, ma rual recovery	Automatic detection, coordinated response and manual recovery	Automated pre- planned multimodal recovery plans	Dynamic multimodal recovery plans based on real-time data
Analytics	Ad-hoc analysis	Periodic, Systematic analysis	High-level analysis in near real-time	Detailed analysis in real-time	Multi-modal analysis in real-time
Demand Management	Individual static measures	Individual measures, with long term variability	Coordinated measures, with term variability	Dynamic pricing	Multimodal dynamic pricing
Payment Methods	Manual Cash Collection	Automatic Cash Machines	Electronic Fayments	Multimodal integrated fare card	Multimodal, multi- channel (fare cards, cell phones, etc)
User Information Services	Static Information	Real-time information by mode	Multimodal Real-time trip planning.	Location-based, on- journey multimodal information	Location-based, multimodal proactive re-routing
Performance Measurement	Minimal	Defined me rics by mode	Limited mul imodal metrics	System-wide multimodal system- wide metrics	Continuous system- wide performance measurement

Phase I: Concept Development

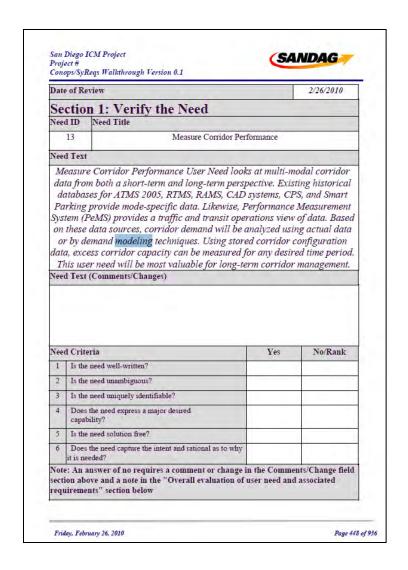


Phase II: Was it Feasible



- Overall, significant benefits
- Reduced travel time and improved travel time reliability are two largest expected benefits, followed by fuel consumption and emissions benefits.
- \$13.7 million in user benefits per year
- 10-year life cycle total benefit of \$115.9 million.
- Costs are estimated at \$1.42 million per year. 10-year life-cycle cost at \$12.0 million.
- Benefit/cost ratio over the 10 life cycle is 9.7:1.

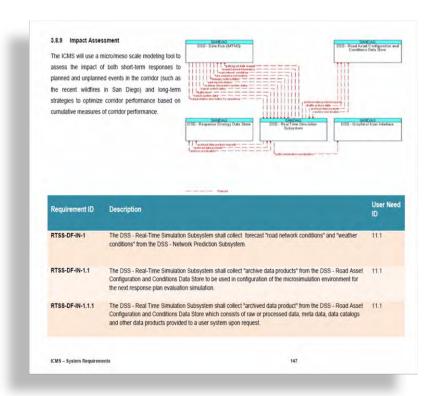
Phase III: Design



Phase III: Design Confirmation

- Federal INCOSE consulting support consultant NOBLIS recommend IEEE 1028 Requirements Walkthrough be conducted.
- 1098 page workbook
- 5 day workshop
- Partner specific scheduling

Phase III: Re-Write....


- After "Requirements Walkthrough"
- 1007 consultant written requirements distill to 127 unique requirements
- Re-write takes 3 months
- Use Regional Architecture, and National Architecture to address NOBLIS comments
- Addition of "Performance Requirements" found to be most challenging for consultant to deliver
- New requirements require second walkthrough with stakeholders.
- Outcome:

Better definition

Expectations setting more robust

Test approach better understood

More easily phased for implementation

Phase III: Design DSS "Solution Clusters"

Data Integration / Fusion Engine

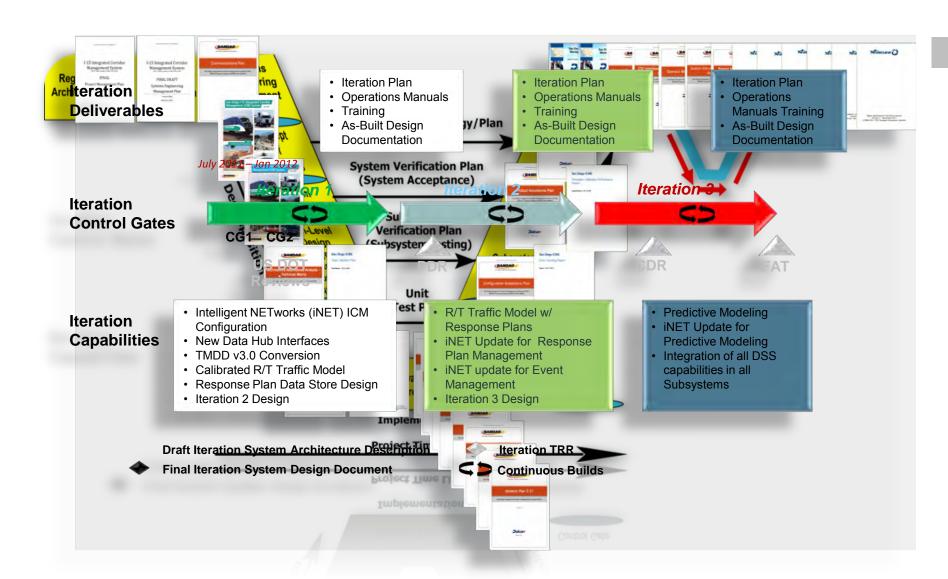
Business Rules Engine

Corridor Visualization

Real-Time Network
Prediction Algorithm

Response Plan Evaluation Engine

Performance Data Warehouse



Automation Workflow Engine

Expert System

Decision Support

Phase III: Delivery (with a twist)

Three Challenges

In-House

- Submissions from Regional Stakeholders can be ad-hoc & time dependent (in-house task at present)
- Tools designed to "display" information, not produce usable artifacts (i.e. Statement of Work <u>baseline</u>)

Out-House

 Federal determination of "high risk" requirement to use full Systems Engineering methodology only made after a "risk" has triggered.

Under- House

 Federal documents or case studies where "SE+" or "SE-Lite" have been used. Difficulty getting approval to change "V" methodology.

Three Benefits

- Maintenance
 - Staff turnover happens
 - Corporate memory retained in document set. [now somebody just needs to read them again]
- Repeatability
 - From concept exploration to project execution.
- Choice
 - Reduced vendor "lock-in" risk

What can you do?

- Turn up the volume on the "Benefits"
- Certify (organization & individual)
- Get ready....V2I coming!