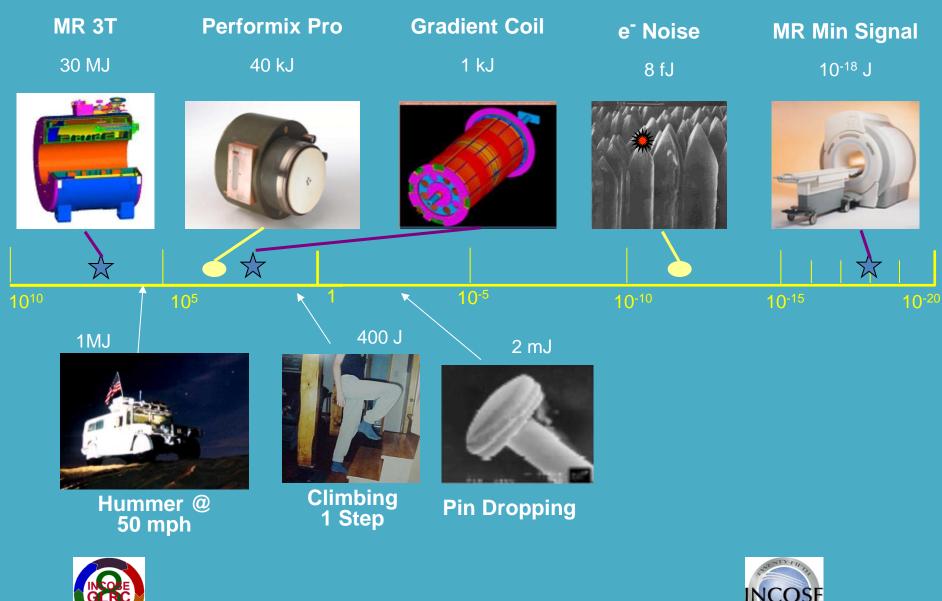
Innovations in Model-Based Systems Engineering (MBSE)

Chris Unger, Chief Systems Engineer, GE Healthcare Irv Badr , Industry Solutions Architect, IBM Rational Software



Great Lakes Regional Conference 2014

Copyright © 2014 by Chris Unger Published and used by INCOSE with permission

The Challenge... Energy Conversion & Detection

©2014 by GEHC. Published and used by INCOSE with permission

GEHC Approach to New Product Introduction

Tradition NPI process

Program Kickoff	System Req'ts Freeze	Hardware Freeze	Verification Complete	Pilot Release	Full Production	Customer Satisfaction
Traditional artifacts Requirements = DOORs/Trace (text based) Systems diagrams in "Visio" (FBD, state machines, activity diagrams,) "Quantitative" performance simulations		Challenges • Lack of customer focus • Scope creep • Late integration issues • Lack of model integration • Poor requirements leveling (capturing design as reqts)				

Systems

Physics (IQ)

Systems

- Behavioral
- Customer FoM model

HW: Performance Models

- EE: Cadence/Mentor (Chip->Board)
- ME: Thermal, Structural, Acoustic/Vibration, Life
- Reliability allocations and models
- Should cost modelling
- SW: UML models

MFG: Capacity/Cost Models

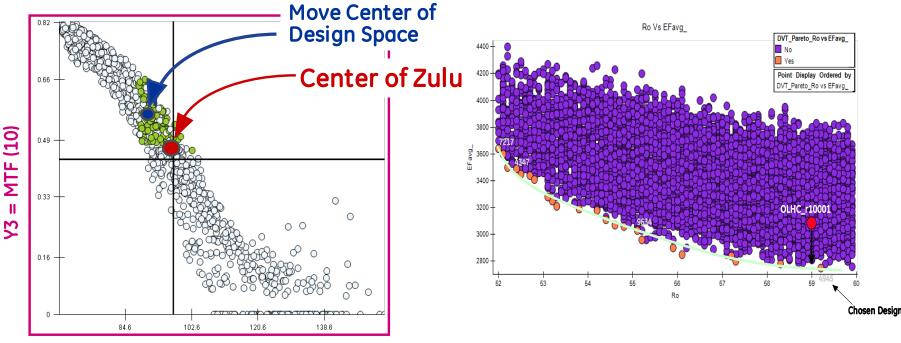
- Scrap/Cost models
- Capacity/workflow models

Examples of Modelling

INCOSE 2014 Great Lakes Regional Conference

Page 4

©2014 by GEHC. Published and used by INCOSE with permission


Design Space Exploration

Method	Latin Hypercube Sampling	Monte Carlo	Factorial DOE Full/Fractional	
Example	Variable A Auriaple B X X X X X X X X	Variable A Variable A X	Variable A X X X X X X X X X X	
Cost	Lowest	Variable / Higher	Highest (per space explored)	
Where used	Sparsely filling a large design space	Exploring a broad design space	Optimizing response near a design point	
Why used	Finds response function	Finding unexpected design optima	Finds local response function	
When usedMedium priorsSemi-expensive sims		Low prior knowledge Inexpensive simulation	High prior knowledge Expensive simulation	

Robust Design using "Space Filling" computer experiments

Y5 = Power

Robustness: move design to center of feasible range

Optimality: move design along Pareto Optimal Edge to maximize a third Figure of Merit

Needs: Efficient Simulation, Automated Parameterization, <u>Great</u> Visualization tools

©2014 by GEHC. Published and used by INCOSE with permission

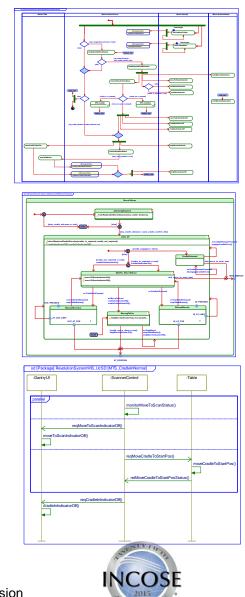
Computed Tomography

Moderately complex system with complex behavior

- ~5,000 parts
- ~5M lines of code
- Triple nested control loops
 - Axial, Cradle, mA/kV

First GEHC project using MBSE

- <10 engineers using the tool
- 3 year process
- Principal engineer leads the effort
- Used several consultants to review and optimize the process
- Focused on a few applications and a few critical components



Computed Tomography

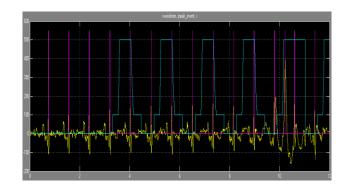
MBSE techniques are used to perform behavioral analysis of key system features and functions.

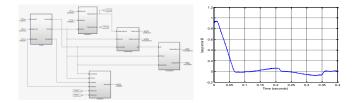
- discover and verify system requirements
- identify and detail subsystem functions and interfaces
- seed FMEA analysis
- develop system test scenarios

Computed Tomography

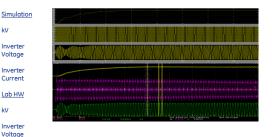
CT Systems is deploying several model based designs directly to software and hardware.

Cardiac Acquisition and Emission Modulation


- Feature analysis and simulation performed in SIMULINK
- Auto-generating C++ code



- Control/Plant models designed/analyzed in SIMULINK.
- Auto-generating C++ code

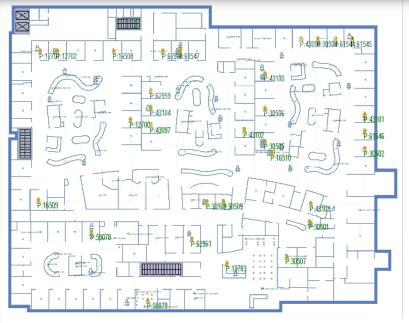

x-Ray Generator KV Control Loop

- Control/Plant models designed/analyzed in SIMULINK.
- Auto-generated vhdl

Inverter Current

©2014 by GEHC. Published and used by INCOSE with permission

Customer Workflow Modeling


Client Scenario

Simulation Results

Current ED old and over-crowded, client planning to dramatically expand / replace existing capacity in 3 phases while continuing to provide 24/7 emergency care services.

- Gather the requirements: observational research, data mining from records
- Proprietary GE Tool (capacity vs. staffing, equipment, layout...)
- Review conclusions and recommendations

Simulation enabled client to "shell" one pod and redesign staffing

Construction Cost \$1.3M

Staffing Costs \$2M

Reduced Waiting & LoS +25% vol

GEHC Modelling Maturity Levels

Highly Mature

- Quantitative Modelling
 - Field Strength
 - Air flow
 - Noise

• ...

- Resolution
- Structure / vibration
- Electronics

Developing

- Process map/Utilization
 - Factory utilization simulations
 - Customer workflow
 productivity
- Customer Task QoS
 - Tumor Visualization
 - Artifacts
- Cost
 - Integrated should cost simulations
- Integrated System Models
 - Image quality from customer to components
 - Architecture model

Needs

- Customer Work Systems
 - Disease state models
 - Interoperability
 - Outcomes (health, economic)

Future Challenges

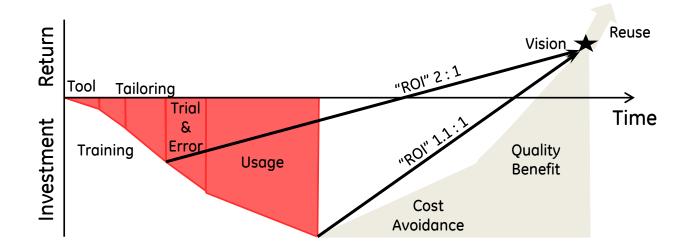
Page 12

The industry faces many challenges

The medical industry product developers face problems with

- Extreme time to market pressures
 - 1st to market usually gains 80% of that market
- Compliance with regulations
 - FDA, IEC, ISO, HIPAA, ICD-10, ACA, etc.
- Defects are VERY costly to handle
 - Want to avoid audit, decrees, warning letters, recalls, etc...
- Most products are developed in a geographically distributed way
 - Need to communicate and define tasks
- Technology is impacting development and delivery
 - IoT, product variants, Mobile Medical Apps, complex deployment models, cloud

Key Industry Challenges for MBSE adoption


- What are the most critical barriers to faster adoption of MBSE? High barrier to entry with uncertain payback
 - ROI Assured cost, Unquantified return
 - Fear of the unknown no clear success stories with a business case
 - Many best practices...you pay for the tools and then need to pay for a consultant to tailor a process
 - Difficulty to understand how to introduce on an existing product how to start? (not going to throw out the existing DOORS requirements database)
 - Many things don't scale...need an incredible investment...hard to justify
 - Concerns about FDA acceptance
 - The tools are not validated archival mechanisms, so the archive has to be done in a document storage tool (in textual requirements)
 - If we have to capture everything in textual requirements anyway (for audits), what is the advantage of the model?

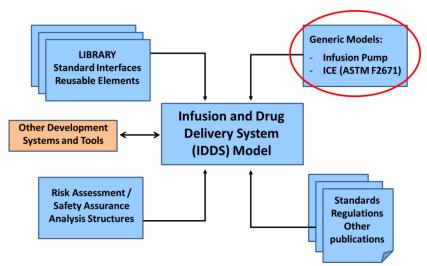
Lowering the barrier to entry

Management is confronted with many competing priorities for investment

Biggest cost is not the tool...need a way to make 'the pill easier to swallow'

- Big bang: full in on one project, with a complete strategy...needs business case for upper management to justify the investment
- Get your feet wet: partial implementation (one feature, one subsystem)...needs cookbook on how best to integrate a partial MBSE implementation with prior processes and tools

Recommendation: Develop an implementation use case/cookbook, with a library of testimonials/businesses cases for upper management



MBSE Challenge INCOSE product

INCOSE (International Council on Systems Engineering) has working groups on Biomedical Healthcare and Model Based Systems Engineering

Those WGs have sponsored a Healthcare MBSE challenge group developing a medical pump model

- Demonstrate the value and utility of MBSE for biomedical-healthcare related applications
- Develop frameworks and templates that can be used to accelerate the development and approval of biomedical devices.
- Demonstrate integration of risk management, safety assurance, and other regulatory concerns.
- Capture learnings on how to make the shift from a document-centric to a model-centric systems engineering environment

Recommendation: INCOSE publish a reference model

Concern: Regulatory Acceptance

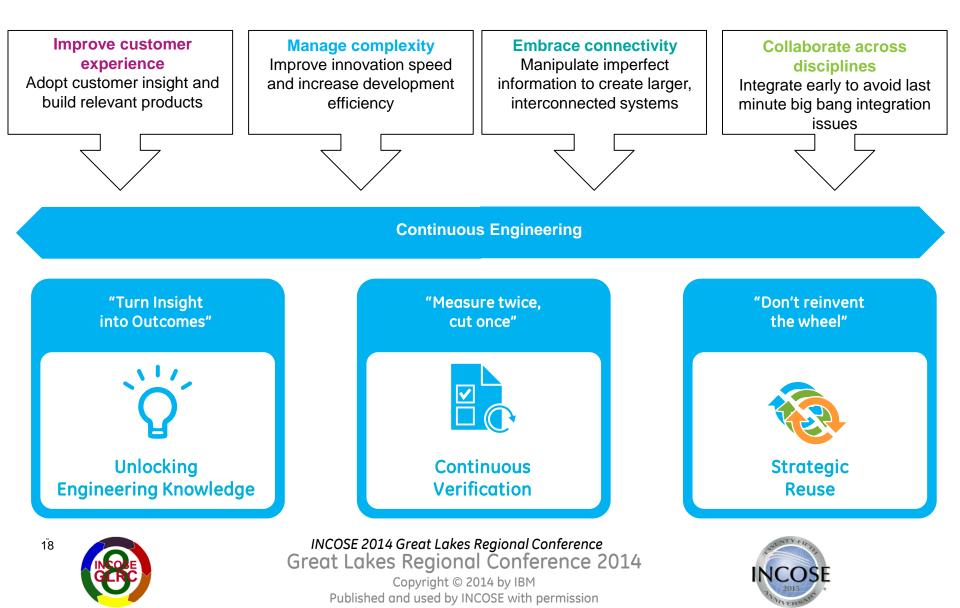
One concern is that regulations can impede progress toward higher quality processes

- Auditors can be unclear on what is acceptable in a model, and where to poke for quality gaps
- FDA has published a draft guidance on computational (quantitative) modelling for industry and
- Gives guidance on what to include...in general, and for four types of models
- Does not address behavioral/architecture (SysML) models

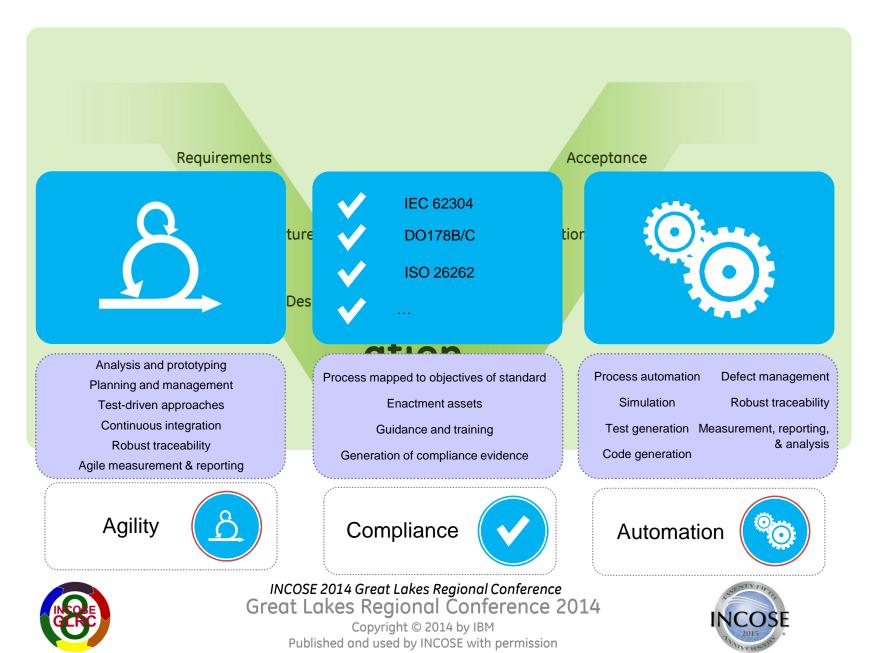
A consistent approach on how to summarize, review, and document models would ease acceptance

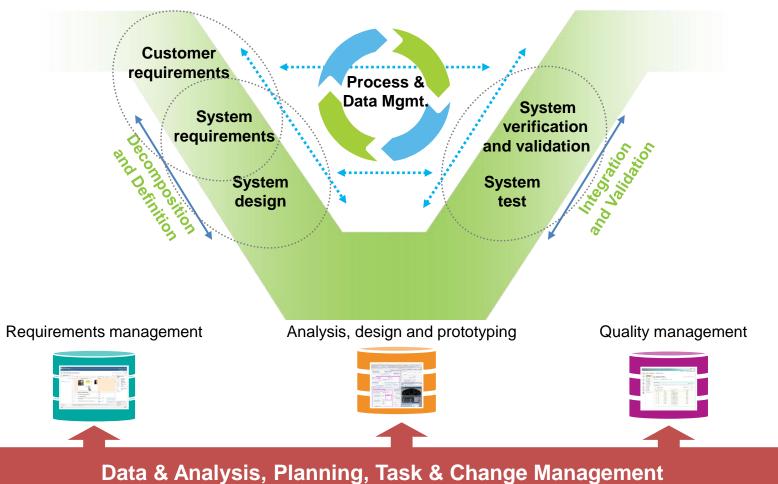
Example CDRH Modelling Paper

Reporting of computational modeling studies in medical device submissions Draft Guidance for Industry and FDA Staff Owner: Tina M. Morrison, Ph.D., tina.morrison@fda.hhs.gov.


Scope		1
Outline	of the Report	2
I.	Executive Report Summary	2
II.	Background/Introduction	
III.	System Configuration	
IV.	Governing Equations/Constitutive Laws	4
V.	System Properties	4
VI.	System Conditions	4
VII.	System Discretization	5
VIII.	Numerical Implementation	5
IX.	Validation	5
Χ.	Results	6
XI.	Discussion	6
XII.	Limitations	6
XIII.	Conclusions	6
Glossar	y	7
Subject	Matter Appendix I – Computational Fluid Dynamics and Mass Transport	9
Subject	Matter Appendix II – Computational Solid Mechanics	18
Subject	Matter Appendix III – Computational Electromagnetics and Optics	
Subject	Matter Appendix IV – Computational Ultrasound	35
Subject	Matter Appendix V – Computational Heat Transfer	40

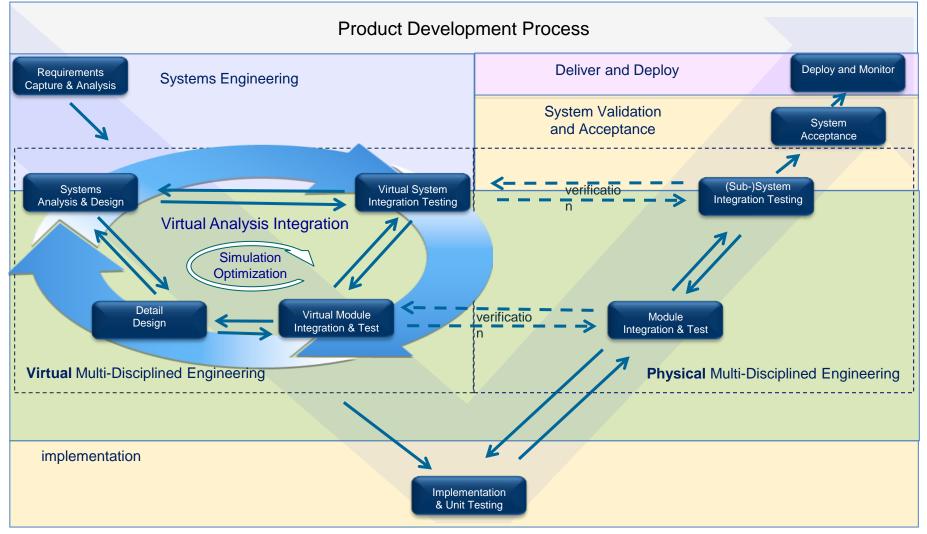
Recommendation: FDA (and industry) publish a guidance on submitting behavioral simulation results




Continuous engineering is about game-changing practices that convert innovation challenges into opportunities

Improving software development

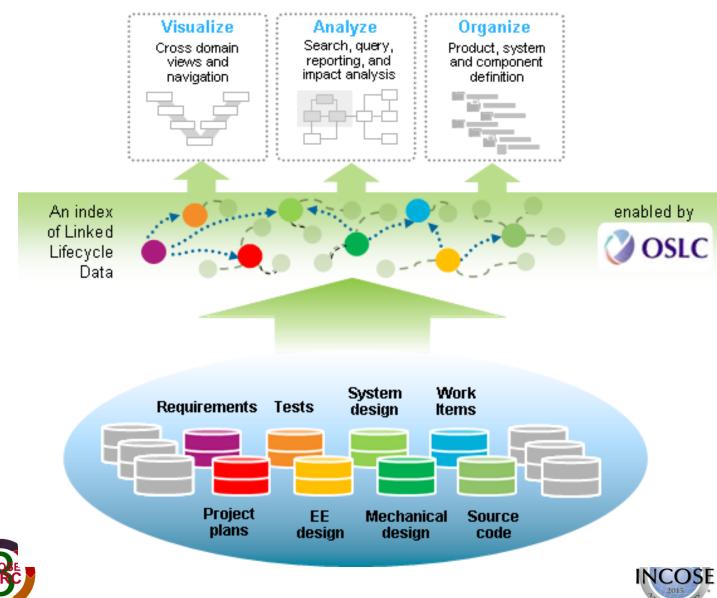
Systems engineering



INCOSE 2014 Great Lakes Regional Conference

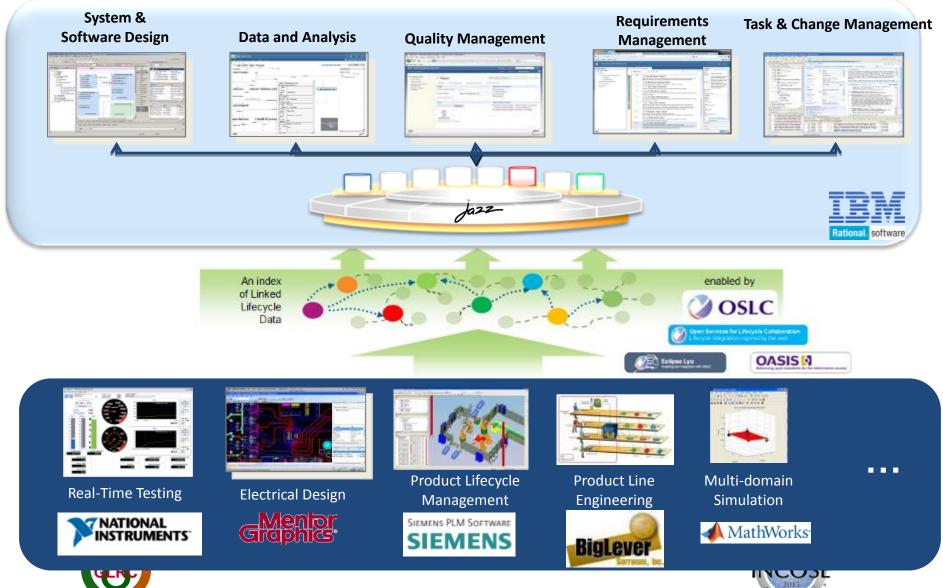
Great Lakes Regional Conference 2014 Copyright © 2014 by IBM Published and used by INCOSE with permission

The new "V in V" process - Continuous Verification means early and continuous feedback in early systems design phases

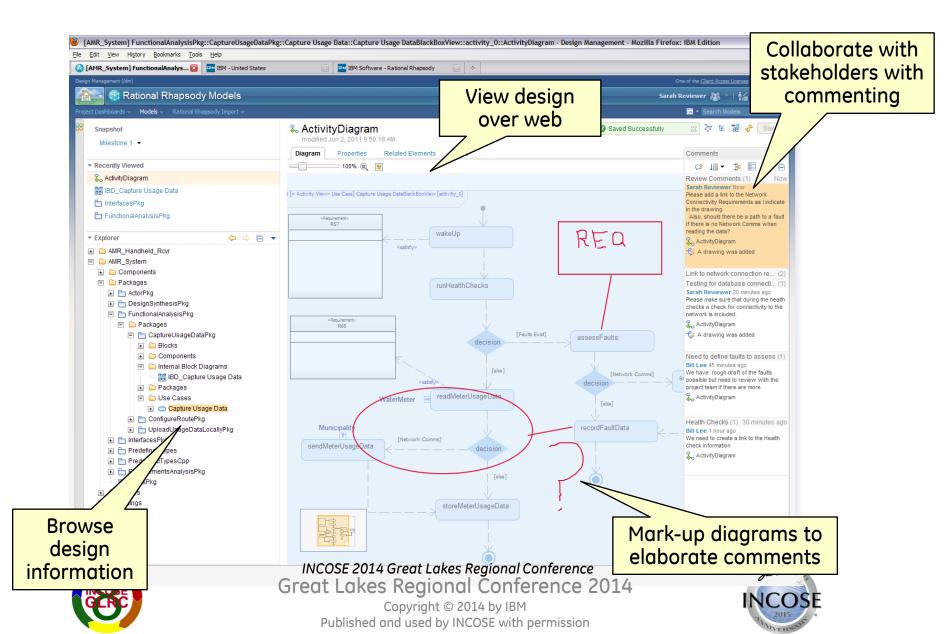


INCOSE 2014 Great Lakes Regional Conference

Great Lakes Regional Conference 2014 Copyright © 2014 by IBM Published and used by INCOSE with permission

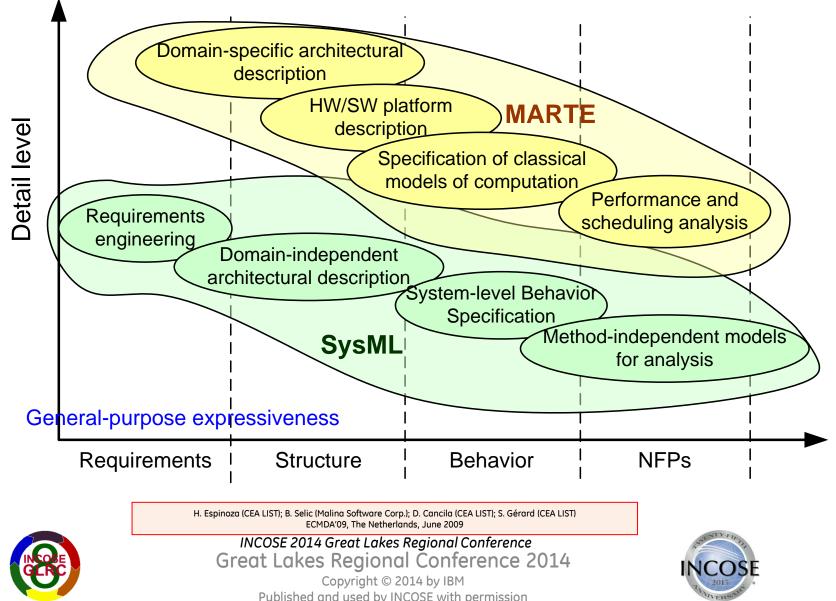


More informed engineering decisions with an open approach



Broaden the solution with an ecosystem of industry integrations

Design Management Web Client


Collaborative development in Rhapsody client

BM Rational Rhapsody SysML - [Reviews]		
Sile Edit View Code Layout Tools Window Help		
Ů & ⊡ ⊀ M A ∠ ≥ i ♦ ♥ 🖋 = ₩ × [◧▬▯▯▯▯▯▯▯▯	8801年1888年141
	Reviews X V UCD Automated MeterRead	
Entire Model View 👻 😌 🗘	Server URL: https://amrdmserver:9445/m + Apply Project Area; Automated Meter Reade	- Sve -
AMR_System Breach Components	The second s	
🖯 😂 Packages	Reviews >>	Create Review
B-, RequirementsAnalysisPkg B-, ActorPkg	🖹 Get leak diagnostic data review Jun 1, 2011 🞜	
🖩 😓 FunctionalAnalysisPkg	Pete 1 hour boo Report Meter Data Review May 20, 2011 &	
InterfacesPkg InterfacesPkg View design		e or view
B ryperkg	CentralControl Block Review Apr 26, 2011 10	
B- Profiles Comments	S Pete Apr 25, 2011 C C C C C C C C C C C C C C C C C C	views
	Pete Apr 26, 2011	
Upload Usage De cocally Save 🛷 🐕	 Disardial di Disardi Disardi Con 20, 2014 	
Comments Link Connection	Pote Apr 25, 2011 H. Previous Page 1 of 2 Next H	
Comments (1 of 1)	E Pevilus Page 1 or 2 Next P	
	Reviews >	
Upload leak data (1)	Get leak diagnostic data review	🕱 🔗 Save
Pete 1 hour ago	Overview My Work Participants Resources Links	Review Comments
Should this use case also include the uploading of leak?		Comments (Loading)
	Name: Get leak diagnostic data review Snapshot:	Currer
	+ Due: Jun 1, 2011	
	Instructions	
Server URL; https://amdmserver.944 - Apply Project Area;		
Server URL: https://amrdinserver.944 Apply Project Area: Automated Meter Reade		
get leak data Q	Participants	
1	Name Role Review results Completed Ac	tions
Matching Model Elements for 'get leak 🛛 🖽 🦑	Resources	
data' in All Model	View de	tails of
Search across	design projects design	review
	INCOSE 2014 Great Lakes Regional Conference	1500 STYFICTO
Gr	reat Lakes Regional Conference 2014	INICOSE
	Copyright © 2014 by IBM	2015
	Published and used by INCOSE with permission	WWITERSAL

Using best-in-class modeling solutions

MARTE-SysML Expressive Power

Domain-specific expressiveness

Summary – Benefits to Industry of MBSE

Improved Systems Thinking

- Use Case/Performance/Interface Analysis critical for a complete design specification.
- Logical model to provide high level of abstraction for ease of understanding, improved reuse or design sharing

Improved Communication

- Visual vs. Textual leads to Clearer, more precise communication & better reviews
- Visual designs & models are easier for global teams (less language barrier)

Improved Quality

- Verify correctness and completeness of requirements/design robustness / stress testing of design rather than simply reviewing in quality
- Improved design of test cases, derived from weaknesses exposed in the model

Improved Predictability and Efficiency (Time to Market)

- Verify correctness and completeness of requirements/design robustness / stress testing of design rather than simply reviewing in quality
- Improved leveling of requirements (efficiency in verification and documentation)
- Auto code generation (no translation errors in implementation)

Questions?

