Why Do Systems Engineering in Healthcare?

Identify risks early (not just hazards)

- Concepts and risks explored simultaneously
- Requirements, functions, designs respond directly to risks

Ensure interfaces are understood and implemented correctly

- Operational and Functional interfaces capture your concept ...
- ... And drive the design of physical interfaces

Build the understanding of the system of systems

- Never lose track of the big picture
- Ensure the details match the big picture

High Barriers to Acceptance

Basic SE Tools from NAE/IOM Report: Building a Better Delivery System – A New Engineering/Health Care Partnership 2005

TABLE ES-1 Systems Engineering Tools and Research for Health Care Delivery

•	-				
		System Levels of Application			
Tool/Research Area		Patient	Team	Organization	Environment
SYSTEMS-DESIGN TOOLS Concurrent engineering and q Human-factors tools	uality function deployment		Х	Х	
Tools for failure analysis	Systems-Design Tools				
Modeling and Simulation Queuing methods Discrete-event simulation	Modeling and Simulation				
Enterprise-Management Tool Supply-chain management Game theory and contracts Systems-dynamics models Productivity measuring and Financial Engineering and Ris Stochastic analysis Value-at-risk Optimization tools for indiva Distributed decision making Knowledge Discovery in Datal Data mining Predictive modeling	Enterprise-Management Tools				
	Financial Engineering/Risk Analysis				
	Knowledge Discovery in Databases				
	Systems-Control Tools				
Neural networks			X	X	X
SYSTEMS-CONTROL TOOLS Statistical process control Scheduling		X	X X	X X	

Basic SE Tools from SEBoK

- Most hospitals have trouble accepting 'investing in documentation/models'. Need to lower the barrier to entry... especially in terminology and "theory".
- "Defining the problem" and "Launch and Assess" are key areas...that can be tailored to healthcare delivery applications

Barriers to Acceptance: Example

Dr. E. Goldlust, a medical researcher at Kaiser Permanente attempted to create a model of an emergency department (with senior administration support).

It was rejected by medical professionals as too time consuming and complex.

What is a use case?

A use case is a story about how a set of behaviors achieves a goal (or meets a need) of a user of the system (actor)

Simple content

- Persona (User or stakeholder)
- Preconditions:
- Postconditions:
- Steps:

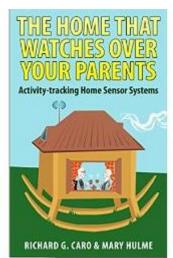
Even simpler content is just a picture and the steps

More advanced Content

- Primary Actor:
- Scope:
- Level:
- Stakeholders and Interests:
- Precondition:.
- Minimal guarantee:
- Success guarantee:
- Main success scenario:
- Extensions:

From Writing Effective Use Cases, by <u>Alistair Cockburn</u>, Addison-Wesley Professional; 1st edition (2000)

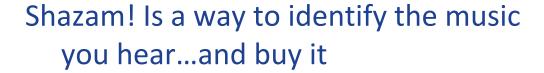
The VA SERC uses the term "Patient Journey"...well accepted by physicians and executives



Personas: Capturing the "Story" behind the Stakeholders

- The need: Ability to 'monitor' the health of elderly remotely
- Enabled by: new sensors, connectivity, algorithms...
- The Challenge: 'the elderly' and their caretakers are all different
- Reference: "The Home that Watches Over Your Parents"
 - Richard Caro and Mary Hulme, Commonwealth Club, Jan 8, 2015, http://www.commonwealthclub.org/events/2015-01-08/home-watches-over-your-parents
 - Defined five "personas"...talk focused on "Go-go" and "No-Go"
 - "Go-Go" is healthy, asymptomatic, and maybe a bit worried about privacy
 - "No-Go" is infirm, and may not 'remember' their concerns
 - Book studies 15 different devices
 - Surprisingly, 'visual appeal' turned out to be critical to Go-Go acceptance
 - Actually, care-takers and loved ones had personas also!

Personas help you "Know" your Stakeholders



What might be other examples?

The Microsoft Zune was an MP3 player...but iXxxx + iTunes is a system

 you can get and play any music anywhere on any device...\$0.99 per track, cloud storage,

The kick activated rear door is a way to store your groceries in your SUV

A use case is a complete story in how a user captures value in their context

