UNMANNED AND AUTONOMOUS SYSTEM TEST ROADMAP

Bio Background

- Thomas Tenorio is a Subject Matter Expert supporting the Roadmap effort ۲ for Unmanned and Autonomous Systems Test. He is the currently President of the INCOSE Enchantment Chapter. He has over 25 years experience in Test and Evaluation at White Sands Missile Range and the High Energy Systems Test Facility. He is currently employed by NCI as a Principal Systems Analyst supporting the Systems Engineering Directorate. Technical support areas include Unmanned and Autonomous Systems, real-time target control systems, decision architecture development, and enterprise software. His work with Department of Defense contractors also includes ICE Inc., Rhino, Northrop, ATA, Lockheed, and BDM. He has a MS in Computer Science from NMSU and a BBA in Information Technology and Accounting from ENMU.
- Contact Info: thomas.tenorio@us.army.mil

Caution Work In Progress

Confidence in Unmanned & Autonomous Systems

DISCLAIMER: This presentation provides an overview of a Work In Progress initiative to create a Unmanned and Autonomous Systems Test (UAST) Roadmap. The research attempts to build on the forecasts and conclusions of the FY09 DoD Unmanned Systems Integrated Roadmap (USIR) to create an investment framework for Science & Technology investments in UAST. It is a collection of knowledge claims and findings gathered over the past year. It does not represent the official position of the Test Resource Management Center (TRMC), NCI, any other corporation, or any agency of the U.S. Government. A UAST Roadmap will only be released once it goes through a formal vetting process by TRMC that has yet to be determined.

Unmanned & Autonomous Systems Test

> Science & Technology

The Autonomy Challenge Latest Defense Science Board Study

Confidence in Unmanned & Autonomous Systems

THE UNDER SECRETARY OF DEFENSE

3010 DEFENSE PENTAGON WASHINGTON, DC 20301-3010

MAR 2 9 2010

ACQUISITION, TECHNOLOGY AND LOGISTICS

MEMORANDUM FOR CHAIRMAN, DEFENSE SCIENCE BOARD

SUBJECT: Terms of Reference - Defense Science Board Task Force on the Role of Autonomy in Department of Defense (DoD) Systems

Dramatic progress in supporting technologies suggests that unprecedented, perhaps unimagined, degrees of autonomy can be introduced into current and future military systems. This could presage dramatic changes in military capability and force composition comparable to the introduction of "Net-Centricity." It is important that DoD understand and prepare to take maximum practical advantage of advances in this area. The timing is especially important as we introduce significant numbers of unmanned systems into the force and perhaps limit their capability by imposing restraints associated with manned concepts upon the capabilities of new systems.

A reference document for an emergent challenge

Vision

T&E to increase confidence in the use of UAS that are effective, suitable, survivable, and safe

Definition

UAST RM 1 isn't:

- a comprehensive multi-year study of a slowly evolving problem
- a set of predictions based on clearly understood autonomy test methodologies

UAST RM 1 is:

- a discovery framework leveraging emerging use cases and predictions for UAS driving autonomy
- a description of key enabling technologies

UAST Roadmap 1 Drivers of T&E for UAS

Warfighter Need

- Effectiveness of UAS in chosen mission
- Suitability of UAS for mission success
- Survivability of UAS in mission
- Safety criterion of UAS in mission

Test and Evaluation Need

- Science & Technology to support UAST technology development
- UASTs that address increasing levels of automation and appropriate levels of autonomy
- UASTs that expedite transition of UAS to Warfighter
- Agile UAST deployment

Goal 5. Foster the development and practice of policies, standards, and procedures that enable safe and effective operations between manned and unmanned systems.

Goal 6. Implement standardized and protected positive control measures for unmanned systems and their associated armament.

Goal 7. Ensure test capabilities support the fielding of unmanned systems that are effective, suitable, and survivable. $$7\!$

A challenging exercise

The actors

- T&E Capability Developers requiring
- risk mitigation solutions for advanced tech development
- challenged by need for safe, suitable, survi effective UAS for Warfighter thru DoD Acqu

Schedule

- From January 2010 to September 2010
- Draft presentation: April 2010

The process

 Revisit FY2009 Unmanned System Integrated Roadmap for UAS performance and technology forecasts driving autonomy and safety

Confidence in Unmanned & Autonomous Systems

UAS Test Capability needs for Safe, Suitable, Survivable. Effective UAS driven by **Rapid Acquisition** Enabling technologies complexity level **USIR UAS Test Drivers: Joint Capability Areas** Systems, Mission, Environment **Performance Drivers (KPPs) Technology Drivers (KSAs)**

UAST Domains

Unmanned and Autonomous Systems Test

- 5 Physical Domains: Space, Air, Ground, Maritime Surface, Maritime Underwater
- Moving beyond tele-operations to increased automation and autonomy
- From single to team to collaborative

Mission and Environment Test

- Mission Complexity drivers for autonomy
- Environment Complexity drivers for autonomy

Test Driven by Joint Capability Areas

 T&E will assess whether new or modified systems deliver their intended capability within the applicable functional capabilities area supporting realistic test environments, including joint mission and joint test environments, to assess an individual system's contribution to joint mission capability.²

Confidence in Unmanned & Autonomous Systems

1 http://www.isd.mel.nist.gov/projects/autonomy_levels/

Why a UAST Roadmap?

- A CONSENSUS ON UAST PROBLEM
- A CONSENSUS ON UAST FORECAST
- A CONSENSUS ON UAST INVESTMENT FRAMEWORK

UAST Roadmap 1 <u>A CONSENSUS ON UAST PROBLEM</u>

- 1) EXECUTIVE SUMMARY
- 2) The Challenge Ahead: The Testing of Autonomy
- 3) T&E Alignment with USIR
- 4) The USIR Programs of Record
- 5) The USIR Non-Programs of Record
- 6) The USIR Technology Forecasts
- 7) The UAST Investment Framework
- 8) USIR Performance Envelope & Technology Category Forecasts
- 9) USIR and UAST Technology Group Use Cases

UAST Roadmap 1 CH 1 - EXECUTIVE SUMMARY

UAST Goal 1. ANSWER THE CALL: UAST for Effective, Suitable, and Survivable UAS

UAST Goal 2. Support UAST challenges of automation and autonomy, Expanding autonomous behavior

UAST Goal 3. Improve UAST for Effectiveness, leveraging of Universal Joint Task List (UJTL) & Joint Urgent Operational Need Statements (JUONS) for T&E implications

UAST Goal 4. Expedite UAST relevance for rapid pace and tempo of UAS deployment, Level of investment in UAST as risk reduction mechanism, R&D dove-tailing into UAST

UAST Goal 5. Address Interoperability challenge of increasing autonomy at all component and subsystem levels, UAST based on common interfaces

UAST Goal 6. Foster UAST for Safety, Sense and Avoid challenge, T&E role in Safety Verification and Range Safety

UAST Goal 7. Exploit Evolving UAS Standards and Architecture for Early-Onset and Model-based T&E and E-Stops for Safety and positive control assessment

CH 2 - The Challenge Ahead: The Testing of Autonomy, the Contrast between Manned and Unmanned

- The T&E of Manned Systems is Different from Unmanned
- Collaborative Command and Control – Remote cockpits and teaming
- Autonomy for Mission Complexity
- Autonomy for Environmental Complexity
- Human Independent Operations

On-board Intelligence

ETT 4

- On-board Mission & Environment Decision Dynamics
- Onboard Assessment of Mission and Effects

Unmanned Systems:

- Shift to Off-board Operations and Programmed On-Board Behavior Creating Unprecedented Autonomous Capabilities and Effects
- Collaborative Command & Control Pre-programmed Autonomy Collaborative Command & Control Decision-Based Mission Behavior
 - Identify systemic barriers to fully realizing the potential of autonomous systems including failures of imagination and constraints of current doctrine, self-imposed handicaps imposed by applying manned concepts to new systems, lack of an informed, motivated industrial base, and DoD's current acquisition processes.¹

UAST Roadmap 1 CH 3 - T&E Alignment with USIR Goals

FY2010-2015 Unmanned and Autonomous Systems Test	FY2009-2034 Unmanned System Integrated Roadmap
Roadmap	(USIR)
Goal 1. ANSWER THE CALL: UAST for Effective, Suitable, and Survivable UAS	USIR Goal 7. Ensure test capabilities support the fielding of unmanned systems that are effective, suitable, and survivable
Goal 2. Support UAST challenges of automation and autonomy, Expanding autonomous behavior	USIR Goal 2. Support research and development activities to increase the level of automation in unmanned systems leading to appropriate levels of autonomy, as determined by the Warfighter for each specific platform
Goal 3. Improve UAST for Effectiveness, leveraging of Joint Capability Areas, Universal Joint Task List (UJTL), & Joint Urgent Operational Need Statements (JUONS) for T&E implications	USIR Goal 1. Improve the effectiveness of COCOM and partner nations through improved integration and Joint Services collaboration of unmanned systems
Goal 4. Expedite UAST relevance for rapid pace and tempo of UAS deployment, Level of investment in UAST as risk reduction mechanism, R&D dove-tailing into UAST	USIR Goal 3. Expedite the transition of unmanned systems technologies from research and development activities into the hands of the Warfighter
Goal 5. Address Interoperability challenge of increasing autonomy at all component and subsystem levels, UAST based on common interfaces	USIR Goal 4. Achieve greater interoperability among system controls, communications, data products, data links, and payloads/mission equipment packages on unmanned systems, including TPED (Tasking, Processing, Exploitation, and Dissemination)
Goal 6. Foster UAST for Safety, Sense and Avoid challenge, T&E role in Safety Verification and Range Safety	USIR Goal 5. Foster the development and practice of policies, standards, and procedures that enable safe and effective operations between manned and unmanned systems
Goal 7. Exploit Evolving UAS Standards and Architecture for Early-Onset and Model-based T&E and E-Stops for Safety and positive control assessment measures for unmanned systems and their associated armament. Adopt a standard unmanned systems architecture and associated standards for unmanned systems capable of weapons carriage	USIR Goal 6. Implement standardized and protected positive control for unmanned systems and their associated armament.
Goal 8. Enhance UAST to evaluate the achievement of supportability goals, the adequacy of the support package for the system, logistics supportability	USIR Goal 8. Enhance the current logistical support process for unmanned systems 14

UAST Roadmap 1 CH 3 - T&E Alignment with USIR Findings and Forecasts

USIR FRAMEWORK	UAST LEVERAGING OF FINDINGS AND FORECAST
9 Joint Capability Areas	 The JCAs driving Mission requiring UAS autonomy for 311 named systems
27 Programs of Record	 Test and Evaluation for Safe, Effective, Suitable, Survivable UAS
111 Non-Programs of Record	 Future Challenges for Next Generation UAS and Rapid Acquisition T&E
68 Technologies	 Technology Forecasts of UAS Key System Attributes (KSAs) affecting Autonomy
29 Performance Envelopes	 3 Epoch Forecasts of UAS Key Performance Parameters (KPPs) driving Autonomy
17 Technology Categories	 3 Epoch Forecasts of UAS Key System Attributes (KSAs) driving Autonomy
UAST Use Cases for 3 EPOCHS	 Test Scenarios of UAS across spectrum of single system, teamed, and collaborative Autonomy
S&T for T&E of UAS for 3 Epochs	• S&T for UAST across spectrum of single system, teamed, and collaborative Autonomy 15

UAST Roadmap 1 CH 4 - The USIR Programs of Record (POR)

1.

2.

3.

4. 5.

6.

7.

8.

9.

UAST COGNITIVE HAZARD

UAST Roadmap 1 CH 4 - The USIR Programs of Record - 11 Air Systems

Confidence in Unmanned & Autonomous Systems

System Name	Nbou Nbou Building Partnerships Building Partnerships Corporate Management & Support Description Description Description	Opportunity	Epoch I 2009-2017	Epoch II 2018-2025	Epoch III 2026-2034
-------------	---	-------------	----------------------	-----------------------	------------------------

Windows of T&E Opportunity: RDT&E Epoch I (6), RDT&E Epoch II (1)*

Broad Area Maritime Surveillance Unmanned UAS (BAMS	POR	X		Х	X	X	Navy variant of the Block 20 RQ-4B Global Hawk with specific capabilities developed for the persistent maritime	Current				21				
UAS)							and littoral ISR mission.		Ш							
MQ-1C Extended Range/Multi-purpose (ER/MP)	POR	X	ХХ				The MQ-1C ER/MP UAS will provide Division Commanders with a much improved real-time responsive capability to	Current			.			1111		И
							conduct long-dwell, wide-area reconnaissance, surveillance, target acquisition, communications relay, and attack									N
Micro Air Vehicle (MAV), Battlefield Air Targeting Micro Air	POR	X	Х			Π	Provides the ground Soldier with Reconnaissance and Surveillance and Target acquisition (RSTA). Uses autonomous	Current				Ш	Т	ПП		Π
Vehicle (BATMAV) – WASP III							and manual flight to provide dedicated reconnaissance support and early warning to the platoon and company			<u> </u>	.			1111		
Vertical Take-off and Landing Tactical Unmanned Air Vehicle	POR	X	ХХ	Х	X		Used afloat and ashore by United States Navy (USN) units to provide local commanders real-time imagery and data	Near	\square	Π				ПП		П
(VTUAV MQ-8 Fire Scout)							to support Intelligence, Surveillance, and Reconnaissance (ISR) requirements.							1111		
RQ-4 Global Hawk	POR	Х		Х	X	Х	High-altitude, long-endurance unmanned aircraft designed to provide wide area coverage of up to 40,000 nm2 per	Near	T	Π		Π	TT			Π
							day.			117						
MQ-1 Predator	POR	X	XX			Π	Provide Division Commanders with a much improved real-time responsive capability to conduct long-dwell, wide-	Near	T	Π	П	Π	T	PTT		П
							area reconnaissance, surveillance, target acquisition, communications relay, and attack missions.							6.0		
WARRIOR A/I-GNAT	POR	X	XX			Π	Slightly larger than the Gnat 750, has external hard points, an unencrypted air-to-air data link ability and updated	Near		\square		\square	\square	\square		Π
							avionics.									
MQ-9 Reaper	POR	X	Х			Х	Medium- to high-altitude, long-endurance UAS. Primary mission is to act as a persistent hunter-killer for critical	Near	T	Π	П	17	TT			Π
							timesensitive targets and secondarily to act as an intelligence collection asset.			\square						
Class I UAS XM-156	POR	Х			Х	Π	Provides the ground Soldier with Reconnaissance and Surveillance and Target acquisition (RSTA). Uses autonomous	Near	\square	\square	П		-11			П
							flight and navigation, laser designation, and operates on the FCS network.			\square			41			
Small Unmanned Aircraft System (SUAS) (Raven)	POR	Х		Х		Π	Develop a digital data link with swappable modules to change frequencies (16 channels (L-Band)/15 channels (S-	Near	\square	\square			T			Π
							Band)) with 15 Km+ range. Provide air-to-air relay capability between SUAS with adaptive transmit power			\square						
RQ-11 Pathfinder Raven	POR					Π	The Raven was developed in 2002 from the Flashlight SUAS and Pathfinder ACTD. In 2004, the Army introduced the	Near	ПТ	П		Ш	Т	ПП		Л
							RQ-11A Pathfinder Raven as an interim solution to an urgent need for unprecedented situational awareness and									N
]					Te	est	t I		
			Joir	nt			T&E Support Windows									
			Can	ahi	1:+		T&E Technology Development Window				V\	vin	lac	DW	4 7	
			Caμ	au	iity		T&E Support Windown Unspecified in USIR			1		_		_	1/	
			Are	as			System in Production			-						
									-							

UAST Roadmap 1 CH 4 - The USIR Programs of Record - 11 Ground Systems

Confidence in Unmanned & Autonomous Systems

System Name	ad ad ad ad battlespace Awareness Force Application Protection Protection Command and Control Net-Centric Net-Centric Net-Centric Building Partnerships Force Support Building Partnerships	Description	Opportunity	Epoch I 2009-2017	Epoch II 2018-2025	Epoch III 2026-2034	
-------------	---	-------------	-------------	----------------------	-----------------------	------------------------	--

Windows of T&E Opportunity: RDT&E Epoch I (5)

Small Unmanned Ground Vehicle (SUGV)	POR	X	X		X X		Т	Small robotic vehicle that assists the Soldier with reconnaissance while aiding the understanding and visualization	Current							Ш		Т		
								of the tactical picture.												
MK 3 MOD 0 RONS	POR	Х	Х		Т		X	Complements/augment the EOD technician when performing reconnaissance, access, render safe, pick-up and	Current	П	\square	П	Π	Т	\square	Π	Ш	Π		
								carry away, and disposal during extremely hazardous missions involving UXOs and IEDs.												
MK 1 MOD 0 Robot, EOD	POR	X	Х		Т		Т	Complement/augment the military EOD technician performing reconnaissance, disruption, and disposal during	Current		\square	П	П		Π		П	Π		
								extremely hazardous EOD missions involving UXOs and IEDs.												
MK 2 MOD 0 Robot, EOD	POR	X	X			П		Complement/augment the military EOD technician performing reconnaissance, disruption, and disposal during	Current			Т	П		\square	Π	Ш		Ш	
								extremely hazardous EOD missions involving UXOs and IEDs.												
Multi-function Utility/Logistics and Equipment (MULE) ARV	POR	Х	X	Х	x x	Х	Т	Provide unmanned reconnaissance and firepower to destroy armor targets and is equipped with a Medium Range	Near	Π	Π	П	Π	Л	Т	Π	Π	Т		
Assault Light (ARV-A(L))								EO/IR sensor and Aided Target recognition capability to identify targets.		117										
Multi-function Utility/Logistics and Equipment (MULE)	POR	Х	X	Х	x x	Х	Т	The MULE-Countermine will move out front of the Force with the capability to detect, mark and neutralize anti-tank	Near	Π	Π	П	Π		Т	Π	Π	Т		
Countermine (MULE-C)								mines.												
Multi-function Utility/Logistics and Equipment (MULE)	POR	Х	X	Х	x x	Х	Т	Workhorse designed to carry the equipment of two squads (1900 lbs) during dismounted operations. The platform	Near	Π	Π	П	Π		Т	Π	Π	Т		
Transport (MULE-T)								fulfills several other roles: recharge batteries used by the dismounted soldiers, communications relay and												
MK 4 MOD 0 Robot, EOD	POR	Х	Х				x	Consists of six UGV's and two operator control stations (OCS). The UGV is teleoperated via an RF link from the OCS	Near			П	Π	П	П	П	П	Τ	Ш	
								and is designed to deliver an explosive counter-charge or other EOD explosive tool to the target area.												
Mobile Detection Assessment Response System (MDARS)	POR	Х	Х		X			Provides installation commanders an electro-mechanical capability to conduct semi-autonomous random patrols	Near	Π	\square	V	7	П	Π		Ш	Τ	Ш	
								and surveillance activities to include barrier assessment and theft detection functions.					11							
Anti-Personnel Mine Clearing System, Remote Control (MV-	POR	Х	Х					Provides a standoff tele-operated AP landmine and obstacle clearing and neutralization force protection capability	Near			П	П		П	П	П	Τ	Ш	
4B)								to support assured mobility, force protection, maneuver and maneuver enhancement objectives.												
CBRN Unmanned Ground Vehicle Advanced	POR	X	Х					Integration of chemical and radiological sensors onto an unmanned ground vehicle.	Near	Π	\square	ł	1	T	T		Π	TT	П	ТП
										Π'							111			

&E Support Windows	
&E Technology Development Window	
&E Support Windown Unspecified in USIR	
ystem in Production	

UAST Roadmap 1 CH 4 - The USIR Programs of Record - 5 Maritime Systems

Confidence in Unmanned & Autonomous Systems

System Name Battle Space Awareness Logistics Dommand and Control Nbouc Logistics Command and Control Net-Centric Battlespace Logistics Command and Control Net-Centric Net-Centric Name System Management & Support	Description	Opportunity	Epoch I 2009-2017	Epoch II 2018-2025	Epoch III 2026-2034
---	-------------	-------------	----------------------	-----------------------	------------------------

Windows of T&E Opportunity: RDT&E Epoch I (4)

Battlespace Preparation Autonomous Undersea Vehicle	POR					Allow for autonomous localization, identification and neutralization of undersea mines. The craft will be launched					
(BPAUV)						from a host ship, pier or small boat, transit to the minefield, conduct its pre-assigned mission, and return to the					
Surface Mine Countermeasure (SMCM) Unmanned Undersea	POR	Х	Х		Х	The SMCM UUV Increment 1 is a user-operational evaluation system (UOES) employed by the Naval Oceanography	Near			ΠΠ	
Vehicle (UUV) Increment 1						Mine Warfare Center (NOMWC) UUV Platoon from MCMs and crafts of opportunity.					
Surface Mine Countermeasure (SMCM) Unmanned Undersea	POR	Х	Х		Х	The SMCM UUV Increment 2 is a UOES employed by the Commander, Naval Meteorology and Oceanography	Near			ΠΠ	
Vehicle (UUV) Increment 2						(CNMOC) UUV Platoon from MCMs and crafts of opportunity.					
Littoral Battlespace Sensing - AUV (LBS-AUV)	POR	Х				Provide the ability to collect strategic oceanographic data that is required to characterize sound propagation	Near				
						conditions and performance capability of active and passive acoustic sensors and weapon systems in shallow-					
Littoral Battlespace Sensing – Glider (LBS-Glider)	POR	Х			ΙT	The LBS-Glider will enhance the Joint Force Maritime Component Commander's (JFMCC's) awareness of the ocean	Near		\prod	$ \top$	
						environment through a wide-area, long-endurance sensing capability that replaces the need for employment of					

T&E Support Windows	Pre-test
T&E Technology Development Window	Development
T&E Support Windown Unspecified in USIR	Opportunity
System in Production	

UAST Roadmap 1 CH 5 - The USIR NPORs - 37 Air Systems

Confidence in Unmanned & Autonomous Systems

28 Windows of T&E Opportunity: RDT&E Epoch I (14), RDT&E Epoch II (5), RDT&E Epoch III (9)

MQ-5B Hunter	NPOR	x		x					Equipped with heavy fuel engines (HFE), state of the art	Current							Π		
									avionics, and the capability to carry munitions has proven t	b									
Special Operations Forces Long Endurance Demonstration	NPOR	×							The SLED ACTD will demonstrate military utility and	Current		<u> </u>	i						
(SLED)									affordability of the A-160 Hummingbird UAS and its ability	0			Ш						
A160 Hummingbird	NPOR								A160 Hummingbird is a long endurance VTOL UAS using a	Current		(1)	i						
									revolutionary Optimum Speed Rotor (OSR), low drag			\square'	Ш						
Aerosonde	NPOR								Aerosonde is a long-endurance (38-hour) SUAS. Aerosonde	Current	\square	P	iΠ		П	Т			
									can carry a family of compact payloads including television			\square'	Ш						
Aqua/Terra Puma	NPOR								The Puma is an evolution of AeroVironment's earlier Pointe	Current		\square	i						
									hand-launched design and comes in two variants: Aqua Pur	na		\square'	Ш						
Buster	NPOR								BUSTER is a SUAS on contract with the Army Night Vision	Current		\square	i						
									Laboratories, Fort Belvoir, Virginia, which is using BUSTER	s		\square'	Ш						
FINDER	NPOR								A Predator can carry two FINDERS simultaneously, one on	Current		\square	iΠ						
									each of the two outboard hard points on the Predator's win			\square'	Ш						
Maverick	NPOR								Maverick is an unmanned version of the Robinson R22	Current		\square	iΠ						
									helicopter. Frontier modified it in 1999 to serve as a testbe			$\Box \Box'$							
Onyx Autonomously Guided Parafoil System	NPOR								Onyx is an autonomously guided parafoil system developed	Current	\square	P	iΠ	TT			П		
									by the Army Natick Soldier Center. Onyx systems are air-			(\downarrow)							
Combat Medic UAS for Resupply & Evacuation	NPOR	×	X	X	×		×	X	Purpose is to design, develop and demonstrate enabling	Near	\square						П		
									technologies for delivery of medical supplies and Life Supp	ort									
STUAS/Tier II	NPOR	×	×	X	x x	< X			Provide persistent Intelligence, Surveillance, and	Near		T							
									Reconnaissance (ISR) support for tactical level maneuver			(1)							
Unmanned Combat Aircraft System - Demonstration (UCAS-D)	NPOR	×	X	X	×	<			Demonstration of critical technologies for a carrier suitable	Near	\square			TT			П		
									low observable (LO) air vehicle in a relevant environment.										
High Altitude Persistent/Endurance UAS	NPOR	×	X		×	< X			Ability to remain on station for a period of months at a time	Near		\square	\square	П					
									unrefueled. This system with provide the Combatant			(1)							
EOD UAS	NPOR	×	X	X					Small (potentially VTOL) UAS for EOD reconnaissance and	Near									
									possible comms relay for EOD UGVs.										
Communications Relay UAS	NPOR	×			×	< X			Provide relay for BLOS comm when satellite relay capability	Near		\square	\square	T					
									is either unavailable or impractical. Remain airborne and o			(1)							
Floating Mine Neutralization UAS	NPOR	×	×						Allow for autonomous detection and neutralization of	Near									
									surface, Currentsurface, and floating sea mines. The craft			(1)							
Off Board Sensing UAS	NPOR	×	×						Provide fire support for under the weather and threat	Near								\square	
									standoff target positive identification (PID) to increase										
Precision Acquisition and Weaponized System (PAWS)	NPOR	×	×						Provide tactical UAV with limited collateral damage weapo	. Near	F			\square				\square	
Weaponborne Bomb Damage Information UAS	NPOR	x	X						Deployed from the MOP tail-kit during weapon flight.	Near				++					
									Preprogrammed via the MOP to fly to specific coordinates			(1)	i						

T&E Support Windows T&E Technology Development Window T&E Support Windown Unspecified in USIR System in Production

UAST Roadmap 1 CH 5 - The USIR NPORs - 37 Air Systems

Confidence in Unmanned & Autonomous Systems

System Name	POR / NPOR	Battlespace Awareness Force Application Protection Logistics Command and Control Met-Centric Force Support Building Partnerships orate Management & Support	Ajium Epoch I 100 2009-2017 60	Epoch II 2018-2025	Epoch III 2026-2034	
-------------	---------------	---	--------------------------------------	-----------------------	------------------------	--

28 Windows of T&E Opportunity: RDT&E Epoch I (14), RDT&E Epoch II (5), RDT&E Epoch III (9)

WMD Aerial Collection System (WACS)	NPOR	×	×					Will investigate the integration of chemical and radiological	Near	Π	R	Π	Π	\square				\square	
BO-7 Shadow	NPOR	×		x	+			Bail-launched via catanult system. Operated via the Army's	Near	++	++								
				^				One System GCS and lands via an automated takeoff and											
Class IV UAS	NPOR	×			+	x		Brigade level Vertical Take-off and Landing (VTOL) UAV.	Near		++								
	in on					~		designed for launch and recovery from unprenared and											
Global Observer	NPOR	×			+			Addresses the capability gaps identified above with a	Near										
								hydrogen powered high altitude long endurance (HALE) UAS.											
Vehicle Craft Launched Unmanned Aircraft System (VCUAS)	NPOR	x			-			Carried in a $72'' \times 30'' \times 20''$ case that transforms into a	Near			+++	++-			++		+++	\square
								pneumatic launcher, it can be launched from small vessels											
Zephyr High Altitude Long Endurance (HALE) UAS	NPOR	x						A Zephyr HALE UAS with a communications relay payload,	Near					+++		+++		++++	
								orbiting for weeks at a time at 40,000ft+ provides a comms											
Small Armed UAS	NPOR		×					Small <100 lbs attack UAS with precision strike capability	Near			21							
								that can be employed at LOS/BLOS ranges. Either											
Air Refueling UAS	NPOR			×			×	Tanker UAS system capable of automatically air-refueling Air	Mid	T									
								Force, other Service and coalition aircraft with compatible air											
Next Generation Bomber UAS	NPOR		×					Medium to heavy attack bomber capable of penetrating	Mid	П	П		TT	\square		T			
								heavily defended targets and deliver a broad spectrum of											
Automated Combat SAR Decoys	NPOR	×	×	×			×	The unmanned systems will be ground mobile and produce a	Far	П									1
								physical and acoustic signatures similar to a human target in							Ш				
Automated Combat SAR Recovery	NPOR	×	×	×			×	Employ silent drive technologies, stealthy maneuvering, and	Far										
								high resolution sensors for personnel detection. Carry basic											
High Speed UAS	NPOR	×	×					System capable of rapid deployment at extreme Mach with	Far										
								trans-continental range to reach world-wide within 2-3 hours		\square			44				\square		
Air-to-Air UAS	NPOR		×					UAS to conduct air-to-air combat operations. UAS can fly into	Far										
								areas the US does not have aerial dominance and engage in		\square			44						
SEAD/DEAD UAS	NPOR		×					UAS capable of recognizing enemy IADS and missle systems,	Far										
								locating, targeting, attacking and destroying them. Perform		\square			44						
Airborne Tele-surgery	NPOR						×	Provide the capability to conduct tele-surgery during airborne	Far										
								transport operations using rear area surgeons.		\downarrow	\square	\rightarrow	++				\square	444	
Precision Air Drop/Firefighting UAS	NPOR			×				Tactical airlift aircraft with autonomous airdrop capability	Far										
								that, if required, can recognize a visual target and self-		\downarrow	\square	\rightarrow	\downarrow		44		\square	+++	
Strategic Airlift UAS	NPOR			×	:			Extreme heavy-lift Inter/Intra theater airlift able to land and	Far										
								deliver equipment to friendly forces or remove equipment		++	\square	$\downarrow\downarrow\downarrow$	++					411	
Tactical Airlift UAS	NPOR			×				Inter/Intra theater airlift able to land and deliver equipment	Far										
								to friendly forces or remove equipment and personnel from											

T&E Support Windows T&E Technology Development Window T&E Support Windown Unspecified in USIR System in Production

UAST Roadmap 1 CH 5 - The USIR NPORs – 55 Ground Systems

Confidence in Unmanned & Autonomous Systems

|--|

39 Windows of T&E Opportunity: RDT&E Epoch I (21), RDT&E Epoch II (10), RDT&E Epoch III (8)

										an arm with a camera as the head.												
PackBot Explorer	NPOR	×	×	<	×	×	×	×	c 🛛	Configured for remote reconnaissance and detection, detection of nuclear, biological and chemical weapons	Current		T	\square				П	П	П	\square	
PackBot FIDO	NPOR	×	×	<	×	×	×	×	c 🛛	Robotic bomb dog, used for IED detection of vehicle and personnel borne explosives.	Current								\square	\square	\square	
PackBot Scout	NPOR	×	×	<	×	×	×	×	٢	Configured for remote reconnaissance and detection, detection of nuclear, biological and chemical weapons	Current		Æ	Π				T		T	H	
xBot (PackBot Fastac)	NPOR	×	×	<	×	×	×	×	<	Designed to fill an operational need for a man-portable, small (less than 50 lbs.), stable reconnaissance platform	Current							\square		T	H	
Route Runner	NPOR	×	×	<	×	×	×			Tele-operated control system to remotely operate a High Mobility Multipurpose Wheeled Vehicle (HMMWV or	Current		T	Π	-				\square	\square	Ш	
Small Armed UGV Advanced	NPOR		××	<			×			Remote maneuverable unmanned armed vehicle operating on all-terrain, such as mud, sand, rubble-type	Current					F				T	H	
Talon Eng/3B	NPOR	×	×	< ×						Provides soldiers the ability to visually identify IED from standoff range safe enough so that the operator has a	Current							Π	T			
Tunnel Reconnaissance UGV	NPOR	×								and short-range reconnaissance missions.	Current							\square	\square	\square	Ш	
Assault Breacher Vehicle (ABV)	NPOR									The Marine Corps program Assault Breacher Vehicle (ABV) is a tracked, combat engineer vehicle designed to	Current											
Crusher Unmanned Ground Combat Vehicle	NPOR									The Crusher vehicle was designed and built within the DARPA Tactical Technology Office's (TTO) UPI program	Current		ſ									
Omni-Directional Inspection System (ODIS)	NPOR									The Omni-Directional Inspection System (ODIS) is a prototype under-vehicle inspection platform that weighs	Current		ſ					\square	T	\square	\square	
Robotic Combat Casualty Extraction and Evacuation	NPOR									Prototype robotic patient extraction and evacuation system with teleoperation, semi-autonomous, and	Current		ſ									
Robo-Trencher	NPOR									The Air Force Robo-Trencher is a fielded, converted Ditch Witch 7610 trencher used by engineering	Current		ſ									
Throwbot	NPOR									Throwbot is a small, throwable robot designed for building clearing and short-range reconnaissance missions. It has	Current		ſ					\square	\square	\square	\square	
Toughbot	NPOR									Toughbot is a small, throwable robot designed for building clearing and short-range reconnaissance	Current							П	П	П		
Gladiator Tactical Unmanned Ground Vehicle (TUGV)	NPOR									The Marine Corps program Gladiator is an armed, armored combat robot to reduce risk and neutralize	Current							П		П	\square	
Contaminated Remains/Casualty Evacuation & Recovery	NPOR	×	××	××			×	×	c 🛛	Design, develop and demonstrate a working prototype of a combined UGS/UAS for the recovery of incapacitated,	Near								T	\square	\square	
Battlefield Casualty ExtractionRobot (BCER)	NPOR	×	×	< ×	×		×			Robotic casualty extraction system that can negotiate varied terrain with infantry soldiers and ride on other	Near											
Battlefield Extraction-Assist Robot (BEAR)	NPOR	×	×	××	×		×			This highly agile and powerful mobile robot is capable of lifting and carrying a combat casualty from hazardous	Near			K						П	\square	
Defender	NPOR	×	××	< ×				×	¢	Augment the base defense force providing patrol, sentry, and alarm response duties as needed within the	Near									\square	\square	
Nuclear Forensics Next Generation UGV	NPOR	×	××	<			×	×	٢	Purpose of this project is to seek advancements in our ability to perform rapid and safe ground sample collection	Near			\square			i TT	П	П	П		
Autonomous CASEVAC & Enroute Care System (ACES)	NPOR		>	××			×	×	٢	Robotic patient extraction evacuation and enroute care system with tele-operation, semi-autonomous, and	Near									П	\square	
Advanced EOD Robot System (AEODRS)	NPOR	×	×	<			Γ	×	٢	Robots in the AEODRS family will be capable of autonomous tactical behaviors that will significantly	Near			\square					П	П		
Autonomous Expeditionary Support Platform (AESP)	NPOR		××	×						Hybrid diesel electric, self recovery equipped, 48" fording, 120 & 240 VAC & 0-60 VDC power generating UGV	Near						i TT	П	Π	Π	\square	
Combat Engineering & Support Robotic System	NPOR		*	××				×	c 🛛	Provide the capability to conduct airfield construction and repair tasks in a combat environment while minimizing the	Near									П	\square	
F6A - ANDROS	NPOR	×	×	<				×	۲	Small-sized (350lbs) EOD robot capable of remotely performing reconnaissance and delivering EOD tools to	Near							\square				
HD-1	NPOR	×	×	<				×	(Incorporates emerging radio technology; extends stand- off range; increased handling capability and ability to	Near											
																				2	2	
										T&E Support Windows T&E Technology Development Window	1									2	3	

T&E Support Windown Unspecified in USIR

System in Production

UAST Roadmap 1 CH 5 - The USIR NPORs – 55 Ground Systems

Confidence in Unmanned & Autonomous Systems

System Name	POR / NPOR	sspace Awareness	Protection	Logistics wand and Control	Net-Centric	orce Support ling Partnershins	Management & Support	Description	Opportunity		E1 200	9-2	1 017		2	Epc :018	och (1-20)	II 25	E 20	poch)26-2	1 III 034
39 Windows of T&E Opp	ortur	nity	/:	R	ЭΤ	&E	EE	poch I (21), RDT&E Epoch II (1	0), F	RD	Т	ξE	E	Ξp	0	ch		(8)		
Talon IV	NPOR	×	×	×				Provides soldiers the ability to visually identify IED from standoff range safe enough so that the operator has a	Near												
All Purpose Remote Transport System (ARTS)	NPOR		×)	×		Remotely employ an array of tools and attachments to	Near		\square	Π	T								
Autonomous Targets	NPOR				,	×	×	Provide a more realistic and effective training and OT&E	Near			H	Ħ			t.					
CBRN Unmanned Ground Vehicle Advanced Concept	NPOR	×	×					Integrated Chemical and radiological sensors onto an	Near		Ħ						T				
Intelligent Mobile Mine System	NPOR	××						Mobile Robotic platform that will support Infantry, Armor	Near		Ħ	T				2					+++
Martitime Interdiction Operations UGV	NPOR	×	×					Develop and demonstrate a marinized, small UGV to	Near	+	+	\square	+			H	\mathbb{H}				+++-
Mine Area Clearance Equipment (MACE)	NPOR		×	×				The system can clear a mine path 11.5 ft wide. The flail	Near				H	\square	+	H	+++				+++
Automated Aircraft Refueling	NPOR			×				assembly consists of a rotating axle with 72 chains Increase the efficiency of ground support operations	Near	++				+	۲		H				+++-
Automated Cargo Handling/Aircraft Loading	NPOR		-	×	+			through automation of Automated Aircraft Refueling the Provide the capability for automated unmanned cargo	Near					4	₽	H	\vdash		-+	$\left \right $	+++-
Covert Tracking/Sensor Robot	NPOR	×	+-		+		+	handling and aircraft loading to improve the efficiency of Small UGVs and sensors used to attach and track	Near	++	++	+	+				┼┼		++	$\left \right $	+++
Riverine Operations UGV	NPOR	×			+		+	vehicles covertly. UGVs will be remotely driven (without Develop and demonstrate a UGV capable of inspecting	Near	++	++	╆╋	++	++		\vdash					+++
SOF Beach Reconnaissance LIGV	NIROR	×	_				+	river bottoms for possible caches of weapons or other	Noar		++	++	++			++	4+				+++
	NFOR	^						the surf zone to the beach, and provide an initial view of	ivear					Δ,							
Talon EOD	NPOR	×	×					Provides soldiers the ability to visually identify IED from standoff range safe enough so that the operator has a	Near												
Dragon Runner	NPOR							Dragon Runner is a joint development effort between the Marine Corps Warfighting Laboratory (MCWL) and	Near					П							
Crowd Control System (Non-lethal Gladiator Follow-on)	NPOR	×	×		2	×		Several uses to include combat missions involving direct fire, scouting missions, crowd control, cordon and search	Mid		П	Π	Π	Π	Т	K					
Next Advanced EOD Robot	NPOR	×	×			×		Develop and transition specific technologies to SDD for AEODRS replacement in 2023.	Mid		Π	Π	Π			Π	Π				
Automated Aircraft Decontamination	NPOR		×	×				Provide the capability to conduct equipment and aircraft decontamination in a highly contaminated environment	Mid				Π	T							
Next Generation Maritime Interdiction Operations UGV	NPOR	×	×					Next gen that will continue to develop and demonstrate a marinized, small UGV to support at-sea maritime	Mid		Π	\square	Π	T	T		П				
Automated Aircraft Inspection	NPOR			×				Provide the capability to conduct automated aircraft inspections of both exterior and interior components.	Mid		Π	T	T	T	T		T				
Automated Munitions Handling/Loading	NPOR			×				Provide the capability for automated unmanned munitions handling and aircraft loading to improve the efficiency of	Mid		Π		Π	T	T		\square				
Autonomous Convoy	NPOR			×					Mid		\square		T	\square							
Next Generation Tunnel Reconnaissance UGV	NPOR	×						Next gen tunnel reconnaissance UGV to develop technologies for exploring and mapping tunnel complexes.	Mid		\square		\square	\square							
UAS-UGV Teaming	NPOR	××	×	×				Identifying and designing cross-domain teams (i.e., use of a LIAS to quickly transport a LIGV into bostile/difficult	Far		\square						Π				
Next Generation Small Armed UGV	NPOR	×	×)	×		Next gen small armed UGV with remote maneuverable	Far		$\uparrow \uparrow$	$\uparrow \uparrow$	$\uparrow\uparrow$	+							
Automated Bare Base/Shelter Construction UGV	NPOR		×	×				Provide the capability for automated bare base and shelter construction to minimize the time and personnel	Far		\ddagger	$\uparrow \uparrow$	\ddagger	+			\square				
Automated Facilities Services	NPOR		×	×				Provide the capability to conduct routine facilities	Far		\ddagger	$\uparrow \uparrow$	$\uparrow\uparrow$			H					
Automated Aircraft Maintenance	NPOR			×				Provide the capability to conduct automated aircraft maintenance. Capability to perform scripted routine and	Far		$\uparrow \uparrow$	\ddagger	\ddagger	++		\square	\square				
<u></u>							ц Т	TPE Support M/indows											2	1	
								T&E Technology Development Window											/	+	

T&E Support Windown Unspecified in USIR

System in Production

UAST Roadmap 1 CH 5 - The USIR NPORs – 19 Maritime Systems

Confidence in Unmanned & Autonomous Systems

		eness	ы		ntrol			hins	t & Support					
System Name	POR / NPOR	tlespace Awar	Force Applicati	Protection	consignation mmand and Co	Net-Centric	Force Suppor	ilding Partners	e Managemen	Description	Opportunity	Epoch I 2009-2017	Epoch II 2018-2025	Epoch III 2026-2034

15 Windows of T&E Opportunity: RDT&E Epoch I (9), RDT&E Epoch II (6), RDT&E Epoch III (?)

SEAFOX USV	NPOR		×				USV designed to support remote, unmanned Intelligence, Surveillance, and Reconnaissance (ISR).	Current				\square	\square	\square	\square			Π
Defense Acquisition Challenge Program (DACP) – Very Shallow Water (VSW) Neutralization 1st Generation –	NPOR						This effort is intended to field unmanned systems to support the MCM mission at NSCT ONE in order to get	Current										
MK 18 MOD 1 (SWORDFISH) Search-Classify-Map (S-C M) Unmanned Undersea Vehicle (UUV)	NPOR						This effort is intended to field unmanned systems to support the MCM mission at NSCT ONE in order to get	Current										
Reacquisition-Identification (R-I) Unmanned Undersea Vehicle (UUV)	NPOR						Potentially a variant of the MK 18 MOD 1 (SWORDFISH), the Reacquisition-Identification (R-I) UUV will be modified	Current										
Bottom UUV Localization System (BULS)	NPOR	××	×		×	×	Allow for autonomous localization, identification and neutralization of undersea mines. The craft will be	Near										
Hull UUV Localization System (HULS)	NPOR	××	×		×	×	Allow for autonomous localization, identification and neutralization of limpet mines. The craft will be launched	Near		Π		1			\square			
Mine Counter Measures USV with Unmanned Surface Influence Sweep System (USV w/US3)	NPOR	××	×		×	×	The MK 18 MOD 1 SWORDFISH is part of the "toolbox approach" to equipping Naval Special Clearance Team	Near			K				\square			
Next Generation USV with Unmanned Surface Influence	NPOR	××	×		×	×	Allows for semi-autonomous magnetic and acoustic influence sweeping of mines in the shallow and deep	Near				\square		K				
VSW UUV Search, Classify, Map, Identify, Neutralize (SCMI-N)	NPOR	××	×		×	×	Allow for autonomous localization, identification and neutralization of undersea mines. The craft will be	Near							\square			
Harbor Security USV	NPOR	××	×				Medium sized, high speed USV (7m) with thermal/optical/CBRN (Chemical, Biological,	Near				\square			1			
Next Generation Surface-launched Mine Counter- Measures Unmanned Undersea Vehicle (SMCM UUV)	NPOR	×	×		×	×	Allows for semi-autonomous undersea mine hunting in the shallow and deep water regime. The system will be able	Near						K				
Remote Minehunting System (RMS)	NPOR	××	×	×			Determines the presence or absence of naval mines to an acceptable level of confidence to enable ships to	Near				1			Ш	Т	Ш	
Surface-launched Mine Counter-Measures Unmanned Undersea Vehicle (SMCM UUV)	NPOR	×	×		×	×	Allows for semi-autonomous undersea mine hunting in the shallow and deep water regime. The system will be able	Near										
Airborne Mine Neutralization System	NPOR	×	×				Ability to rapidly neutralize in-volume, close-tethered and proud bottom mines. Also, the ability for positive	Near	K						\square			
Amphibious UGV/USV	NPOR	××					Development of an amphibious platform to enable water- borne delivery of ground systems, ground delivery of	Near										
Anti-Submarine Warfare USV	NPOR	×					Designed as an common unmmaned surface platform capable of carrying and operating different ASW	Near	K									
Large Displacement UUV	NPOR	×					Provide the Joint Forces Commander (JFC) with the ability to perform missions beyond the volume and	Near										
Autonomous Undersea Mine Layer	NPOR	××			×	×	Allow for autonomous deployment of undersea mines. The craft will be launched from a host ship (the Littoral	Mid		T								
Autonomous Undersea Mine Neutralization	NPOR	×	×		×	×	Allow for autonomous neutralization of undersea mines. The craft will be launched from a host ship (the Littoral	Mid										

T&E Support Windows	
T&E Technology Development Window	
T&E Support Windown Unspecified in USIR	
System in Production	

CH 6 - Technology Forecasts of UAS Key System Attributes (KSAs) affecting Autonomy

Key System Attributes (KSAs)

The Capability Development Document (CDD) provides the Key Performance Parameters and Key System Attributes that provide a focus for the T&E program.

Technology Readiness Level (TRL)

Technology Readiness Level (TRL) is a measure used by some United States government agencies and many of the world's major companies (and agencies) to assess the maturity of evolving technologies (materials, components, devices, etc.) prior to incorporating that technology into a system or subsystem.

The USIR provided TRL forecasts of key UAS technologies that serve as windows into when new test and evaluation will be required .

UAST Roadmap 1 CH 6 - Technology Forecasts of UAS Key System Attributes (KSAs) affecting Autonomy

UAST Investment Areas	POR Technology Drivers
Predicting Unmanned and Autonomous System Behavior	6, 4, 45, 10, 19, 32, 15, 14, 61, 12, 25, 28, 38, 39, 43, 44, 51, 68, 41, 11,30
Emulating Mission and Environmental Complexity	42, 40, 13, 8, 55, 56, 23, 24, 20, 47. 65
Assessing UAS Effects and Capabilities	ALL
Protocols and Design	3, 16, 60, 35, 48, 5, 18, 26, 31, 34, 52, 49, 2
Test Bed and Environment	21, 58, 17, 33
Reference Data and Data Sets (Ground Truth, Decision, & Behavior)	54, 27, IA, IB
Tools and Techniques	46, 9, 29, 36, 37, 62, 63, 64, 7, 22, 53, 67, 59, 66, 50, 57 27

UAST Roadmap 1 CH 6 - Technology Forecasts of UAS KSAs affecting Autonomy – Assess & Predict

Confidence in Unmanned & Autonomous Systems

Technology Enablers	Battlespace Awareness	Force Application	Protection	Logistics	Command and Control	Net-Centric	Force Support	Building Partnerships	Corporate Management & Support	Description	Performance Attributes	UAST Capability Framework Area	Opportunity	2	Ep 2009	ioch 9-20	1 I 117	·	Ерс 2018	och 3-202	II 25	E 20	pocł 26-2	n III 034	
D 4 Artificial Muscle Systems	×		×					×	Ľ	Develop actuation technologies based	High actuation forces and speeds:	Predict	Current			6-1-1		ĨТ,		-	-				
D.4 Antholar Muscle Oysterns	<u>^</u>		^					^		conceptually on human muscle that	integrated force and strain sensing:	riedict	Current		61	417	117								
D.6 Autonomous Robotic Capability			×		×		х			The Autonomous Robotic Capability	Collaborative unmanned systems	Predict	Current												
Suite (ARCS)										Suite (ARCS) program addresses a	behaviors; ability to search for, detect				LL.										
D.45 Navigation			×		×		x			The Autonomous Robotic Capability	Mission complexity; maneuverability;	Predict	Current		(L.	417									
										Suite (ARCS) program addresses a	architecture unlimited; autonomous				\vdash	44	\square		++	++			\square		
D.10 Biomimetic Human Detection	×	×								Human detection based on emulation of	Detection of humans as well as a dog	Predict	Current		11	117									
D 19 Cooperative Multi Vehicle Bood	V				+					This system consists of multiple	Can.	Bradiat	Current	+	H-	++-'	++		++	++	$\left \right $	++-	+++		
Network Search	^									autonomous LIAS that modify their	rearing within Domain	Fieuloi	Current		11	117									
D.32 Intelligent Mobile Grenade			×			-				The Intelligent Mobile Grenade system	TBD	Predict	Current		d -	H	HH		++		+++				
										will be a Mobile Throwable Robotic					(L.	417									
D.15 Collaborative Networked	×	X			x	×				The Collaborative Networked	Mission Endurance in Weeks;	Predict	Near			T	H				Н				
Autonomous Vehicles (CNAV)										Autonomous Vehicles (CNAV) program	Operational Control 1:# within Domain				(L.	$4 L^{\prime}$									
D.14 Chemical Robots (ChemBots)	×	×	×							The Chemical Robots (ChemBots)	Adaptive Tactical Behaviors, Expanded	Predict	Near		(L)	417									
										program is developing soft, flexible,	Environmental Difficulty, Mission				\vdash	44	\square		++	++		++	\square		
D.61 Sense and Avoid (S&A)	×	×	×							Developing technologies that would	Maintain safe separation from obstacles	Predict	Near		(L)	417	117								
D 12 Dird Deg (Marfighter's Associate				-	-					support the UAS ability to maintain safe	both in flight and on the ground	Dup ali at	Naar		+	++-'	$\left \right $		++	++	$\left \right $	++	+++		
D. 12 Bird Dog/Wanighter's Associate	~	 ^								human operator, and will be able to take	detection and tracking	Predict	Near			417	117								
										high-level commands from the operator	detection and tracking					417	117								
D 35 Hierarchical Callaborative	×				-					The human commander will be able to	Autonomous mission planning: Natural	Bradiat	Neor		H	++-'		-++	++						
Behaviors	^	1								control a group of beterogeneous robots	language interface: Robotic empathy	Fieuloi	INEAL		(L.	417									
D.28 Human Detection on the Move	x	x								More advanced human detection based	Detection from a platform moving at	Predict	Near		d T	TT -	PP								
										on a number of emerging technologies,	application-appropriate speed.				LL.										
D.38 Man-Portable ISR Robot	×		×							This project will develop enhanced UGV capabilities that specifically support persistent surveillance and reconnaissance applications. Enhancements will include, at a	Long-range communications.; extended mission endurance; cross-country mobility	Predict	Near												
										minimum: Power duration of up to 72					(L)	417	117								
D.39 Micro Air Vehicle (MAV)	×		×							The Micro Air Vehicle (MAV) Advanced Concept Technology Demonstration	Individual system; Spectrum Constrained RF; Mission endurance in	Predict	Near		Т	\square	\square	П	П	П					
D.43 Multi-modal Human Detection	×	×								Human detection based on the integration and fusion of a number of	Classification of human vs. other anomalies with certain detection and	Predict	Near			\square	\square								
D.44 Nano-Flapping Air Vehicle	×	×								The Nano-Flapping Air Vehicles program will develop flapping air vehicle	Teleoperation; Individual system; Mission endurance in hours; Obstacle	Predict	Near			\square									
D.51 Organic Air Vehicle – II (OAV-II)	×	×								The Organic Air Vehicle – II (OAV II) program developed lift augmented	Individual system; Spectrum Constrained RF; Mission endurance in	Predict	Near		T	\square	\square	П							
D.68 Vulture	×				×					The goal of the Vulture program is to develop a high altitude, long endurance	Individual System; Spectrum Independent – Hopping; Mission	Predict	Near		T	Π	\square			П					
D.41 Multi Dimensional Mobility Robot (MDMR)	×									The Multi Dimensional Mobility Robot (MDMR) program will investigate using	Individual System; Spectrum Independent – Hopping; Mission	Predict	Near		T										
D.11 BioRobotics										The BioRobotics (formerly Biodynotics)	Performance Attributes: Individual	Predict	Near		T										L
						-				program will increase the capabilities of	System; Spectrum Independent –				4	44	\square								L
D.30 Hybrid Bio-mechanical Systems	×	×	×	×			×	×	×	Develop technologies to support hybrid bio-mechanical actuators, manipulators,	OPSEC – Signature Low	Predict	Far												
											TRL < 3 (EPOCH I)				1									1	

Joint Capability Areas

FRL < 3 (EPOCH I TRL < 3 (EPOCH lil) TRL >= 3 (EPOCH I) TRL >= 3 (EPOCH II) TRL >= 3 (EPOCH III) TRL independent (EPOCH I) TRL independent (EPOCH II) TRL independent (EPOCH III)

UAST Roadmap 1 CH 6 - Technology Forecasts of UAS KSAs affecting Autonomy – Assess & Emulate

Technology Enablers	Battlespace Awareness	Force Application	Protection	Logistics	Command and Control	Net-Centric	Force Support	Building Partnerships	Corporate Management & Support	Description	Performance Attributes	UAST Capability Framework Area	Opportunity	2	Epo 009	och -201	I 17	E 2	Epo 018	ch II 202	5	E 20	poch 26-20	III 034
D.65 Tactical Amphibious Ground	Х	x	X	х						TAGS-CX was developed as a MULE	Applies to survivability, limited	Emulate	Current											
Support System (TAGS)										surrogate robotic platform to	environmental difficulty, and mission													
D.42 Multi-mission Modular Unmanned	Х									The Multi-mission Modular Unmanned	C. Performance Enabled: Mission	Emulate	Current											
Aircraft System (UAS) Chemical,										Aircraft Systems (UAS) Payloads	Package Product Line Independent;													
D.40 Modeling and Simulation	x	x	x	x	x	х	х	x	х	Robotics have rapidly become a disruptive technology within the United	Accurate reflection of specific system	Emulate	Near											
D 13 CENTAUR Ground Mobility	x	x	x	x		x	x		_	CENTAUR Ground Mobility System is a	Initially teleoperation (wireless) but the	Emulate	Near	+		++		H	Ħ			H		
System										concept and technology feasibility effort	object systems should be autonomous:	Lindiato												
D 47 Nightingale II – Integrated	x	x	x	x			x	х	-	The objective of this research effort is to	MeMedical Resupply: Casualty	Emulate	Near	+		++		H	Ħ			H		
UAS/UGV System										develop and integrate the requisite	Extraction and short-range Evacuation													
D.8 Battlefield Extraction – Assist Robot	х		x	x	X		х			A highly agile and powerful mobile robot	Lift and carry 300 – 500 lbs.; Safely lift	Emulate	Near			++		H	Ħ					TT
(BEAR)										capable of lifting and carrying an injured	carry and extract a casualty: Scale stairs													
D.55 Robotic Extraction. Evacuation			х	x			х	х		This program involves building a	Casualty Extraction and short-range	Emulate	Near					H	tt			H		
and Enroute Combat Casualty Care										prototype robotic patient extraction and	Evacuation, Logistics/Cargo Delivery,													
D.56 Robotic Force Health Protection	Х		Х				х	Х		The objective is to develop modular	CBRN standoff detection; neutralization;	Emulate	Near											
Payloads for Unmanned Ground										payload units that can be easily	remediation													
D.23 Front End Robotics Enabling Near-	Х				Х	Х				The goal of the Front End Robotics	Teaming within domain; Mission	Emulate	Near		\square	\square		\square		T				
Term Demonstration (FREND)										Enabling Near-Term Demonstration	Endurance in days; Route Planning;													
D.24 Heterogeneous Airborne	Х									The Heterogeneous Airborne	Operational Control 1:# within Domain	Emulate	Near		IT	IT	IT							
Reconnaissance Team (HART)										Reconnaissance Team (HART)														
D.20 Covert & Self-concealing	х	Х	X							Develop technologies to enable robotic	Autonomous Adaptive Tactical	Emulate	Mid											
Behaviors										systems to autonomously enact covert	Behaviors, All-Weather Environmental													

TRL < 3 (EPOCH I)	Т
TRL < 3 (EPOCH II)	
TRL < 3 (EPOCH lil)	
TRL >= 3 (EPOCH I)	
TRL >= 3 (EPOCH II)	
TRL >= 3 (EPOCH III)	
TRL independent (EPOCH I)	
TRL independent (EPOCH II)	
TRL independent (EPOCH III)	

UAST Roadmap 1 CH 6 - Technology Forecasts of UAS KSAs affecting Autonomy – Assess & Protocols

Technology Enablers	 Battlespace Awareness 	Force Application	Protection	Logistics	Command and Control	Net-Centric	Force Support	 Building Partnerships 	 Corporate Management & Support 	Description	Performance Attributes	UAST Capability Framework Area	Opportunity	2	Epc :009	och)-20	1 17		Ep 201)oct 8-2	n II 025		Epc 2020	och 6-20	III 34
D.16 Communications/Navigation	x					х				Unmanned undersea vehicles (UUVs)	Bandwidth; Teaming Within Domain	Protocol	Current						Т	Π					TÌ
D.60 Self-Forming Unmanned Aircraft System (UAS) Communications	х		\square			x				This system consists of a system of UAS that provide the Warfighter(s) in the	Bandwidth; Teaming Within Domain	Protocol	Current				\square						T		Ħ
D.17 Complex Terrain Mobility	х	х	x	x						Develop technologies that would	Enhanced maneuverability; efficient	Protocol	Near				Π		Г				Π		Π
D.35 Ku MiniTCDL for STUAS/Tier II	x	x	x	x						This effort provides additional United	Lightweight Transceiver; directional	Protocol	Near												††
D.48 Non-Radio Frequency (RF)	x	x	x	x			1			Develop a robust wireless	Robust performance in environments	Protocol	Near												\ddagger
D.5 Automatically Deployed	x	x				x				RF relay "bricks" are automatically	Bandwidth capable of carrying two real-	Protocol	Near				H		H	H					$^{++}$
D.18 Constrained Radio Frequency		x		x	F				x	For UGVs, develop robust RF system	Robust performance in environments	Protocol	Near			╡┤	H		H				+	$\left \right $	+
D.26 High Speed Intelligent Networked	х	x	-			x				that is resistant to EMI and provide very Unmanned systems will be networked	With EMI. Robust Line of Sight (LOS) Flexible frequency hopping; Energy	Protocol	Near			+	H		H	H			+	\mathbb{H}	+
Communications D.31 Intelligent Frequency Selecting	x	-	x	\vdash	\vdash		-	х		using the Global Information Grid (GIG). Develop and field frequency agile radio	aware/efficient routing Robust performance in environments	Protocol	Near		+	+	H		+			+	+	$\left \right $	+
Radio Frequency (RF) D.34 Joint Tactical Radio System	x	x		-	-	X	-			systems for UGVs that utilize next Communication networks will be based	with EMI; robust LOS and Non Line of Secure communications.	Protocol	Near		++		+	-	H			╢	++	$\left \right $	++
(JTRS) Networked Communications										on the Joint Tactical Radio System							Ш	Ш						Ш	
D.52 Passive Signature Management	х	x	x							Develop technologies that would support a passive RF signature	Ingress and egress undetected or if detected have a very low probability of	Protocol	Near												
D.49 Opportunistic Communications	х	x	x			х				Develop technologies to support	Natural Language Understanding; Multi-	Protocol	Far												
D.2 Active Signature Management	x	x	x							Develop technologies that would	Ingress and egress undetected from	Protocol	Far										t		
D.3 Architecture Proprietary	х	x	x	x	х	x	x	x	х	Continue to develop and refine interface architectures and standards defining the	As a message standard, JAUS does not have a measurable performance.	Protocol	Current												

TRL < 3 (EPOCH I)		
TRL < 3 (EPOCH II)		
TRL < 3 (EPOCH lil)		
TRL >= 3 (EPOCH I)		
TRL >= 3 (EPOCH II)		
TRL >= 3 (EPOCH III)		
TRL independent (EPOCH I)		
TRL independent (EPOCH II)		
TRL independent (EPOCH III)		

UAST Roadmap 1 CH 6 - Technology Forecasts of UAS KSAs affecting Autonomy – Assess, Test Beds, & Reference Data

Confidence in Unmanned & Autonomous Systems

Technology Enablers	Battlespace Awareness	Force Application	Protection	Lonistics	Command and Control	Net-Centric	Force Support	Building Partnerships	Corporate Management & Support	Description	Performance Attributes	UAST Capability Framework Area	Opportunity	 20	Epo 009-	ch I 2017	,	E 20	5poc 118-2	h II 2025	:	Epoc 2026-	h III 2034
D.21 Electromechanical / Hydraulic	X	X	Х	Х	X	X	X	Х	X	Develop technologies that would	Increased lift weight; safe operation of	Test Bed	Current					Π	Π				ΠĽ
										provide ground robotic vehicles with an	heavy doors at side and front slopes.						Ш						
D.58 Safety Response	X	X	X	X	Х	X	Х	Х	Х	In March 2006, the Defense Safety	Weaponization safety; software safety;	Test Bed	Near										
										Oversight Council Acquisition and	power system safety			\parallel	44	\square	i H	$\downarrow \downarrow$		+++			μ
D.33 Joint Convoy Active Safety System	n		X							The Joint Convoy Active Safety System	Operator interventions (day & night) 1	Test Bed	Near										
(JCASS)				_		_	-			(JCASS) plans to leverage current S&I	per 100 hours; System Operations	-		++	+++	+++-		++					
D.54 Real-time High Fidelity World	X	X								3D world modeling for	Real-time modeling; 1 cm resolution;	Reference	Current										
			-	+	_		-		<u> </u>	navigation/mission planning or	Accurate color representation	Data	N 1	++	₩	╋╋	┝╋╋	++	+++	+++			
UAS World Wodeling - UAS	X	X								3D world modeling for either	Enough resolution and accuracy to	Reference	ivear										
D 1 2D World Madeling LIOV	V	V	-	+			-			navigation/mission planning or	Enable autonomous robot navigation of	Data	Neer		++	+++		++	++	+++			
	X	×								3D world modeling for either	Enough resolution and accuracy to	Data	near										
D 27 Highly Poprocontative World	v	v	v	v		v	v	v	v	Develop technologies to apple robotic	Natural Language Understanding:	Data	For	++	++	╋				+++			AHH I
Model	^		^	^		^x		^	~	systems to perceive store and	Autonomous Adaptive Tactical	Data	ı aı										
INIOUEI										ayaienta io percerve, siore, and	Autonomous Auaplive Tablical	Dala											

TRL < 3 (EPOCH I)		
TRL < 3 (EPOCH II)		
TRL < 3 (EPOCH lil)		
TRL >= 3 (EPOCH I)		
TRL >= 3 (EPOCH II)		
TRL >= 3 (EPOCH III)		
TRL independent (EPOCH I)		
TRL independent (EPOCH II)		
TRL independent (EPOCH III)		

31

CH 6 - Technology Forecasts of UAS KSAs affecting Autonomy – Assess & Systemic Tools

Technology Enablers	Battlespace Awareness	Force Application	Protection	Loaistics	Command and Control	Net-Centric	Force Support	Building Partnerships	Corporate Management & Support	Description	Performance Attributes	UAST Capability Framework Area	Opportunity		E 200	рос)9-2	h I 017		Ej 201	00C	n II 025		Epc 2026	och I 3-20:	II ;4
D 46 Novt Concration Rower Resources									▼ ▼		Environmental Difficulty OBSEC	Svetomia	Near	-				÷.	ТТ	П		-			
D.46 Next Generation Power Resources	^	^	^	^	^	^	^	^	^	provide upmapped with the enhanced	Signature Mission Endurance	Tools	inear												
D 9 Bio-mass Reactor Power	×	×	×				×	×		Develop technologies to support bio-	Mission endurance in months	Svetemic	Near												H
D.3 Dio-mass reactor r ower	^						^	<u> </u> ^		mass reactors to provide electrical		Tools	INCAI												
D 29 Human-Like Dexterity	x		×		-	+		x		Current EOD LIGVs have demonstrated	Manipulator/end effector dexterity and	Systemic	Near		++										
										their usefulness in providing remote	tactility equal to or greater than that of a	Tools													
D.36 Local Visualization	x		X				1	x		Performed as part of JGRE Tactical	Increased overall situational awareness	Systemic	Near				++			Ħ			H		
										Behaviors effort. Local Visualization is a	and visualization capabilities of one or	Tools													
D.37 Manipulator Dexterity	x		X				1	x		Development of a manipulator and end	Commonality across a family of	Systemic	Near		+			++		++					
										effectors that are modular in nature and	manipulators: modularity within each	Tools													
D.62 Sensors to Enable Robust Harsh-	x	x			x					Develop technologies that enable	The ability to see and sense in all	Systemic	Near							Ħ					
Weather Operations										unmanned systems to operate in all	weather conditions without limiting or	Tools													
D.63 Stealthy, Persistent, Perch and	x	x			x					DARPA's Stealthy, Persistent, Perch	Teaming within Domain: RF-based:	Systemic	Near							Ħ					
Stare (SP2S)										and Stare (SP2S) program is	Mission endurance: hours to days ;	Tools													
D.64 Super Dexterity	x		×					х		Manipulator and end effectors based on	Manipulator/end effector dexterity and	Systemic	Near					T		T					
										polymer muscle technology.	tactility much greater than that of a	Tools													
D.7 Battery Powered - Long Endurance		х							х	Develop technologies to advance power	The Performance attributes include	Systemic	Near		П	Л	TT	Π	П			ТТ			\mathbf{T}
Power Source for Small UGVs										and energy densities and integrate	limited, expanded, and all weather	Tools													
D.22 Extreme Weather Capable	х	х								UUV and USV systems must be able to	Sensor accuracy, mechanical quieting	Systemic	Near		П	П	TT	П							
(Sensors, Electro-mechanical)										adapt to foul weather, under tropical or	(minimal acoustic signature), advanced	Tools													
D.53 Rapid Eye	x							х		The goal of the Rapid Eye program is to	Individual System; Spectrum	Systemic	Near												
										develop a high altitude, long endurance	Constrained RF; Mission Endurance in	Tools													
D.67 Voice Control	x	x								Voice control teleoperation of a mobile	Speech recognition in noisy or windy	Systemic	Near												
										robot, supplementing traditional control	environments; teleoperation	Tools					\square								41
D.57 Safety Response (Anti-tampering)			×							Develop technologies that would	Man Dependent Situational Awareness,	Systemic	Near												
										provide scaleable anti-tampering	Military Asset Protection and Robotic	Tools					44								41
D.59 Safety Response (CBRN)			x			1				Develop technologies that would enable	Characterization of atmospheres;	Systemic	Near												
										unmanned systems to conduct survey	collection of samples; provide sensor	Tools					4	41							41
D.66 Vision of the Trauma Pod						1	x			The vision of the Trauma Pod program	Autonomous mobility; mission	Systemic	Near												
						1				is to develop a rapidly deployable	endurance in hours; expanded	Tools			\square	44	44	11							41
D.50 Opportunistic Power Grazing	x	X	X	X			x	X		Develop technologies to enable robotic	Autonomous Adaptive Tactical	Systemic	Far												
						1				systems to autonomously find and	Behaviors; All-Weather Environmental	Tools													

TRL < 3 (EPOCH I)		
TRL < 3 (EPOCH II)		
TRL < 3 (EPOCH lil)		
TRL >= 3 (EPOCH I)		
TRL >= 3 (EPOCH II)		
TRL >= 3 (EPOCH III)		
TRL independent (EPOCH I)		
TRL independent (EPOCH II)		
FRL independent (EPOCH III)		

UAST Roadmap 1 CH 7 - The UAST Investment Framework

UAST Roadmap 1 CH 8 - USIR Performance Envelope & Technology Category Forecasts

T&E for Future Autonomy KPPs

Over time a set of metric classes will be developed that (a) contain the key performance parameters (KPPs) of a UAS, (b) identify the limits of the UAS in the team, and (c) have predictive power.

Confidence in Unmanned & Autonomous Systems

Defense Science Board Task Force 2010-03-29 Role of Autonomy in Department of Defense (DOD) Systems

You are requested to form a Task Force that will inform the Department's plans in this area; specifically, the Task Force should:

- Review relevant technologies and ongoing research and development (R&D) of autonomous systems to evaluate the readiness of autonomous systems, or autonomy improvements, for introduction into DoD.
- Identify and review current plans of the Military Departments for the integration of autonomy in current or near-term systems and employment of next-generation autonomous systems and analyze missed opportunities.
- Assess the personnel training and force structure impacts of various improvements to autonomy, including opportunities, to reduce weapon system and associated personal forward footprint.
- Identify new opportunities for more aggressive application of autonomy to U.S. military materiel and the benefits this might provide to our military posture and the accomplishment of military missions.
- Comment upon the potential value of autonomy to both symmetric and asymmetric adversaries and, where possible, review available intelligence, and provide the basis for net assessment.

CH 8 - USIR Performance Envelope & Technology Category Forecasts – Prediction Needs

USIR Performance Technology Drivers	Performance (p)	Domain	UAST Capabilities Reference Framework (T&E Capabilities)	S&T Technology Areas (Epoch I) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch II) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch III) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges
Collaboration	р	1. All	s	Single-agent collaboration/cooperation strategies	Teaming w/in Domain, Collaboration Across Domains Multi-agent collaboration/cooperation strategies	Teamed Collaboration
Awareness	р	1. All	Behavior	Sensor Data. Perception Loops. UAS has to coordinate sensing and motion under the constraints imposed by the task. To	Situational Awareness. multi-agent collaboration/cooperation strategies	Actionable Information
Dependency	р	2. Air	is System	Man Dependent Sense and Avoid / Off Board SA	Sense and Avoid	Fully Autonomous / On Board SA
Maneuverability	р	3. Ground	itonomou	Simplest Task / Man Dependent SA / Off Board SA	Limited adaptation, Real-time, and Planning Sense and Avoid	Fully Real-Time Planning, Team of Teams Collaboration, Fully Auto / On Board SA
Environment	р	3. Ground	ed and Au	Basic Tasks / Teleoperated. Human in the loop acts as complete supervisor	Human Approves Decisions. UAS can perform some task independent of the human	Fully Autonomous, Approaching Zero Human Interaction
Obstacle Avoidance	р	4. Maritime	Unmanne	Fixed Obstacle Avoidance	Dynamic Obstacle / Threat Avoidance	Target Motion Analysis (TMA) Adaptive Re-planning
Recognition	р	4. Maritime	redicting	Object Recognition. High-level object modeling, detection, and recognition, in improved scene understanding, and in	Target Classification	Intelligent Identification
Human Detection	t	1. All	<u>c</u>	Multi-Modal. multi-modal sensory information (e.g., proprioceptive, tactile, vision); structured spatio-temporal	On The Move	Biomimetic 35

CH 8 - USIR Performance Envelope & Technology Category Forecasts – Emulation Needs

USIR Performance Technology Drivers	Performance (p) Technology (t)	Domain	UAST Capabilities Reference Framework (T&E Capabilities)	S&T Technology Areas (Epoch I) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch II) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch III) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges
Mission Complexity	р	1. All		Operator Controlled		Autonomous Adaptive Tactical Behaviors
Environmental Capability	р	1. All		Limited Environmental Difficulty	Expanded Environmental Difficulty	All-Weather Environmental Difficulty
Sensor Ranges	р	2. Air		Current. Dynamic range limits on sensor range in perception loops and data fusion	25% Extended	50% Extended
Icing	р	2. Air	Safety	Visual Meteorological Conditions - Light, Environmental representation of icing conditions	Moderate	Severe
Turbulence	р	2. Air	g Mission onmental Assured	Light	Moderate	Severe
Precipitation	р	2. Air	Emulating and Envirc xity with	Light	Moderate	Severe
Speed	р	3. Ground	Comple	20 mph. UGV will be able to travel up to 20 mph and expected to traverse all types of roads and mild terrain. The	UGV will be able to travel up to 45 mph and expected to traverse all types of roads and moderatly complex terrain.	90 mph
Environmental Capability	t	1. All			Sensors to Enable Robust Weather Flexibility	Extreme Weather Capable
Navigation	t	2. Air		Waypoint Navigation - GPS / INS Dependent	Waypoint Navigation - GPS Independent	Intelligent, Adaptive Navigation - GPS Independent
Obstacle Avoidance	t	2. Air		Sense and Avoid	Dynamic	36
CH 8 - USIR Performance Envelope & Technology Category Forecasts – Assessment Needs

USIR Performance Technology Drivers	Performance (p) Technology (t)	Domain	UAST Capabilities Reference Framework (T&E Capabilities)	S&T Technology Areas (Epoch I) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch II) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch III) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges
Mission Endurance	р	1. All		Hours	Days Months	Years
Speed	р	2. Air		Subsonic	Transonic	Super / Hypersonic
Stealth	р	2. Air	litties	Signature High		Signature Low
Maneuverability	р	2. Air	nd Capab	1 "G"	9 "G"	40 "G"
Self Protection	р	2. Air	Effects a	Threat Detection	Threat Jamming and Expendables	
Survivability	р	3. Ground	ising UAS	Basic Teleoperations		Fully Auto w Real Time, Urban Combat, On-Off Road Operations,
Human Robot Interaction	t	1. All	Assee	Voice Control	Bird Dog/Warfighter's Associate	Hierarchical Collaborative Behaviors
Obstacle Avoidance	t	1. All		Sense and Avoid	Dynamic Obstacle Avoidance	
Navigation	t	3. Ground		Tele-Op and Limited Waypoint	Waypoint w/ Obstacle Detection, Limited Visual Odometry	Intelligent Visual Navigation

CH 8 - USIR Performance Envelope & Technology Category Forecasts – Protocol and Test Bed Needs

USIR Performance Technology Drivers	Performance (p) Technology (t)	Domain	UAST Capabilities Reference Framework (T&E Capabilities)	S&T Technology Areas (Epoch I) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch II) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch III) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges
Commands	р	1. All	E	Physical Human Machine Interfaces	Scripted Voice Command / Hand Signals	Natural Language Understanding
Product Line	р	1. All	and Desig	Mission Package Product Line Dependent		Product Line Independent Dependent
OPSEC	р	1. All	rotocols a	Signature High		Signature Low
OPSEC	р	4. Maritime	ous Test P	Minimize Detectability (Acoustic / Electromagnetic / Radar / IR)		Stealth Technology
Navigation	р	4. Maritime	lutonomo	GPS / Inertial Navigation		Independent Navigation
Frequency	t	3. Ground	1	Constrained RF	Frequency Hopping Non-RF Comms	Opportunistic Comms
Frequency	р	1. All	nd r UAST	Constrained RF	Frequency Hopping	Multi-Frequency Communications
Power	t	1. All	est Bed an ments foi	Battery Powered	Next Gen Power Resource	Bio Mass Reactor Powered/ Opportunistic Power Grazing
Signature Management	t	1. All	Tc	Passive	Active	Covert and Self Concealing Behaviors

CH 8 - USIR Performance Envelope & Technology Category Forecasts – Reference Data and Tool Needs

USIR Performance Technology Drivers	Performance (p)	Domain	UAST Capabilities Reference Framework (T&E Capabilities)	S&T Technology Areas (Epoch I) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch II) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch III) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges
Operational Control	р	1. All	l Truth,	1 Operator / Platform	1 Operator / Domain	1 Operator / Team
Architecture	t	1. All	s (Grounc avior)	Proprietary	Standard	Standard Unlimited
World Model	t	1. All	Data Sett on, & Beh	Simple. Current UAS's can navigate safely and robustly in unstructured 2D environments and perform simple pick	Artificial	High representative
Visualization	t	3. Ground	teference Decisi	Local		
Mobility	t	3. Ground	UAST R	Complex Terrain		
Bandwidth	р	1. All		Limited	Advanced Bandwidth Management	Autonomous Bandwidth
Maintenance	р	1. All	chniques	Operator		Automated
Communication	t	1. All	ols and Te	Relays Automatically Deployed. Increased mobility and improved perception, intelligence, and	Seamless cooperation interfaces using gesture, voice, and communication-through-the-task.	High Speed Intelligent Network Comms
Mechanical Systems	t	3. Ground	UAST Too	Electro-Mechanical / Hydraulic Systems	Artificial Muscle Systems	Hybrid Bio-Mechanical Systems
Dexterity	t	3. Ground		Manipulator	Human-Like. biological analogs (e.g., human muscles) are far superior to engineered systems in terms of	Super 39

UAST Roadmap 1 USIR and UAST Technology Group Use Cases

Confidence in Unmanned & Autonomous Systems

Mapping T&E technologies to test scenarios

The fielding of 138 systems identified in the USIR has resulted in a growing pool of test scenarios critical to the fielding of any system. The goal of the UAST technology group is to capture and consolidate test cases into a set of cases that facilitates high value investment for increased confidence in UAS use.

UAST Roadmap 1 USIR and UAST Technology Group Use Cases – Leveraging USIR findings

UAST Roadmap 1 USIR and UAST Technology Group Use Cases – Use Cases from T&E Practitioners

Use Case	Туре	Domain	UAST Capability	ity Use Case Label USIR Pe		Performance
ID			Framework		Technology Driver	/ Technology
	•		×	×	*	
1	POR	ALL		Monitor Autonomous Processing States	Top Level Use Case	N/A
1		All	Systemic Tools	Self test acuity	Maintenance	Performance
1		Ground	Reference Data	Perception assessment reference data sets	Visualization	Technology
2		ALL		Real time monitoring of the SUT	Top Level Use Case	N/A
2		Air	Predict	Sensory and Communications Resourcing and Management Schema	Dependency	Performance
2		Air	Assess	Maneuver Behavior Context	Maneuverability	Performance
2		Ground	Emulate	Real-time monitoring	Speed	Performance
3		ALL		UAS Collaboraion Evaluation	Top Level Use Case	N/A
3		All	Systemic Tools	Cooperative communication clusters in ad-hoc networks for better connectivity power utilization etc. Integration o	Communication	Technology
4	NPOR	UUV		Underwater communications systems to verify Autonomus status	Top Level Use Case	N/A
5	POR	UGV		Mission Means Framework	Top Level Use Case	N/A
5		All	Emulate	Mission based design of experiments for test development	Mission Complexity	Performance
,		Ground	Assess	Mission means framework and mission based T&E	Survivability	Performance
6	BOTH	ALL		Real time verification of autonomous status/behavior	Top Level Use Case	N/A
6	i	All	Predict	Autonomous status behavior sensors	Awareness	Performance
7	POR	UUV		Assesment of UAS behavior given the environment and external stimuli	Top Level Use Case	N/A
8		UUS/USV		Autonomous behavior assesment of a UUV inavigation, collaboration and sensing required in order to complete	Top Level Use Case	N/A
	,	All	Protocolc	Une mission.	Navigation	Borformanco
	·	Air	Fmulate	High Order Data Representation	leing	Performance
	·	Air	Emulate	High Order Data Representation	Turbulence	Performance
	·	Air	Emulate	High Order Data Representation	Precipitation	Performance
		Maritime	Predict	Assessment of LILIS / LISV	Obstacle Avoidance	Performance
		Maritime	Predict	Hish Order Data Representation	Recognition	Performance
		All	Predict	ligh Order Data Representation		Technology
9		411	Tredice	Data monitored from the LIAS computation status to determine the behavior states of the system	Ton Level Lise Case	N/A
, 				bala monitorea nom and ono computation status to determine are benarior states of the system.	Top Level ose case	10/15
9		All	Systemic Tools	Communications would more effectively monitor UAS performance.	Communication	Technology
10	POR	UUV		Lack of data transmission capability in the received data	Top Level Use Case	N/A
10	·	All	Systemic Tools	Test applications benefit from advances in sensor networks perception software and communications networks.	Communication	Technology
10		All	Systemic Tools	Protocols for sparse highly volatile multi-hop ad-hoc networks with high bandwidth and low latency.	Communication	Technology
11	POR	UAV		Real-time monitoring of the UAS status in a minimally invasive fashion	Top Level Use Case	N/A
11		Air	Assess	Real-time Monitoring of Status	Stealth	Performance
11		Air	Assess	TSPI for sense and avoid compututation	Maneuverability	Performance
11		Ground	Predict	Environmental Models	Environment	Performance
11		Ground	Predict	Target Representation	Environment	Performance
11		Ground	Predict	Monitoring in Environment	Environment	Performance
11		Ground	Predict	Stimulus	Environment	Performance
12	BOTH	ALL		Monitoring the systems behavior under a variety of stimuli including known targets that mimic the given threat.	Top Level Use Case	N/A
12		All	Emulate	Destructable targets	Environmental Capability	Performance
12		Air	Assess	Sensing and signature measurements	Stealth	Performance
12		All	Test Bed	Signature limit testing	Signature Management	Technology
12		Maritime	Protocols	OPSEC signature vulnerability maritime	OPSEC	Performance
12		Air	Assess	UAS countermeasures	Self Protection	Performance
13		ALL		Targets and stimuli in some cases the test environment itself used to drive specific behavrioal outcomes	Top Level Use Case	N/A
13		All	Emulate	Simulated targets	Environmental Capability	Performance
14	POR	UUV		Evaluation of the UAS behavior	Top Level Use Case	N/A
15		ALL		Determination of whether UAS was successful in completing its mission given known (and unknown) stimuli such	Top Level Use Case	N/A
				as the targets presented to the area		
15		All	Protocols	TSPI for human controlled maritime single and multi-system UAS	Navigation	Performance
15		All	Assess	Dynamic limit assessment of Sense and Avoidance	Obstacle Avoidance	Technology
15		Maritime	Predict	Static obstacle sensing	Obstacle Avoidance	Performance
15		Maritime	Predict	World model representation of static objects	Obstacle Avoidance	Performance
15		Maritime	Predict	Ground truth representation comparison assessment	Obstacle Avoidance	Performance
15	1	Maritimo	Dradict	Internalized world model	Obstacle Avoidance	Derformance

Use Case	Туре	Domain	UAST Capability	y Use Case Label USIR Performance		Performance
ID			Framework	Technolog		/ Technology
				-		
				The second	To the shift of the	
16		ALL	Decidiet	Auto Traffic Deconfliction (Auto collision Avoidance Algorithm)	Top Level Use Case	N/A Desformente
10		Ground	Predict	Multi Javal Maps and Modeling	Manouworability	Performance
10		Giouna	Arcorr	Auto traffic decenfliction	Obstacle Aveidance	Tochnology
10		Maritimo	Brodict	Kato name decommentarian crashilition such as TSDI Kinomatic Onticol Imagon atc. Multi Javal Maps and Modeling	Obstacle Avoidance	Porformanco
16		All	Assoss	FAA certification	Obstacle Avoidance	Technology
16		Air	Emulate	Air space deconfliction	Navigation	Technology
17	POR	UAV		Certification of LIASs for EAA Certification standards	Top Level Lise Case	N/A
18		ALL		Monition LIAS cognitive status	Top Level Lise Case	N/A
19		ALL		Communication Link(s) Certification	Top Level Lise Case	N/A
19		A11	Δεερεε	Long term communication and sensor systems test canability	Mission Endurance	Performance
19		All	Test Bed	Effective spectrum use and allocation ground	Frequency	Performance
19		All	Systemic Tools	Bandwidth measurement and allocation certification	Bandwidth	Performance
19		All	Protocols	Effective spectrum use and allocation ground	Erequency	Technology
20	POR	UAV		Small Lightweight TSPL unit with transmit canability	Top Level Lise Case	N/A
21		ALL		Certification of LIASs for EAA Certification	Top Level Lise Case	N/A
22		ALL		Monitor and test a team of LIAS conducting the mission in a difficult littoral environment.	Top Level Lise Case	N/A
23	BOTH	ALL		Integrating Cognition and Autonomy Effects	Top Level Lise Case	N/A
24	POR	UAV		Autonomous and sometimes being externally controlled handoff testing	Top Level Lise Case	N/A
24		All	Predict	Small lightweight TSPI	Awareness	Performance
24		Air	Assess	Tracking technologies	Stealth	Performance
24		Ground	Emulate	Ground based TSPI Small lightweight TSPI	Sneed	Performance
25	BOTH	ALL		Kinematic data acquisition system for two- or three-dimensional motion analysis	Top Level Lise Case	N/A
25		Air	Δεερεε	Kinematics	Maneuverability	Performance
25		Ground	Systemic Tools	Kinematics data for actuator motion	Mechanical Systems	Technology
25		Ground	Systemic Tools	Kinematics data for actuator motion	Dexterity	Technology
26	POR	LIAV		Resource aware systems (sensors and communications	Top Level Lise Case	N/A
26	1 OK	All	Assess	Data mining and management of long duration tests	Mission Endurance	Performance
26		All	Predict	Communications Standards	Collaboration	Performance
26		Air	Assess	Resource Awareness	Sneed	Performance
26		All	Systemic Tools	Source American Strategy and State		Technology
26		Ground	Assess	proteinens meteratelearations and single and militissister place and distribution.		Technology
27	POR	LUV	105005	The manufacture of Constant LAV Systems Tool Even Units and the system of State Stat		N/A
27		All	Reference Data	Model representation of cognitive agents	World Model	Technology
28	POR	UAV		RCC 319 Compliant Encoded ETS System	Top Level Lise Case	N/A
28	1 OK	All	Test Bed	Effective spectrum use and allocation ground	Erequency	Performance
28		All	Protocols	Effective spectrum use and allocation ground	Erequency	Technology
29	POR	LIAV		A High Altitude Long Endurance (HALE) ISB LIAVV downloads gathered sector data to GIG-enabled server as part of	Top Level Lise Case	N/A
-		U.V.		its daily operations	Top Level ose case	1,74
30	POR	LIAV/LISV		Maritime Reconnaissance and Patrol Aircraft cantures additional information for part of the HALE sector and	Top Level Lise Case	Ν/Δ
50		0,00,000		unloads to GIG-enabled server.	Top Level ose case	1,74
31	POR	UAV/USV		Common Ground Station (CGS) operators task a Navy ULIV team to monitor a suspicious cargo ship identified by	Top Level Lise Case	N/A
-				correlating GIG-enabled server data		
31		All	Protocols	Common ground station for JAUS SAE-AS/4 unmanned manned systems compliance	Commands	Performance
31		All	Reference Data	Common ground station tester robotics and targets	Operational Control	Performance
31		All	Protocols	Common ground station for JAUS SAE-AS/4 unmanned manned systems compliance	Product Line	Performance
31		All	Systemic Tools	Integration of wide-area local-area and personal-area petworks for more seamless local-to global coverage beteros	Communication	Technology
32	POR	UAV/USV			Top Level Use Case	N/A
				The UUV team executes its mission without communication and re-establishes communications with the CGS		,
				upon completion.		
33	POR	UAV/USV		A Small Tactical UAS (STUAS) is launched from a Navy surface vessel to monitor the suspicious cargo ship form the	Top Level Use Case	N/A
				air. The STUAS periodically uploads its data to the GIG.		
34	POR	UAV/USV		A command activity is alerted to the presence of an identified vessel of a rogue nation about to delivered illegal	Top Level Use Case	N/A
				cargo into the port of another nation.		
35	POR	UAV/USV		A US navy surface vessel attempts to stop and search the rogue vessel, but is fired upon.	Top Level Use Case	N/A
36	POR	UAV/USV		A Navy strike aircraft is commanded to engage and destroy the target. The strike asset receives supporting data	Top Level Use Case	N/A
				from the GIG.		
37	POR	UAV/USV		UAV autonomous onboard collision avoidance capability	Top Level Use Case	N/A
38	BOTH	ALL		Ground truth assessment compared to UAS world model	Top Level Use Case	N/A
38		All	Predict	Ability to collect/compare situational awareness to ground truth	Collaboration	Performance
38		All	Emulate	Mapping localization and navigation systems rely on two-dimensional representations.	Environmental Capability	Performance
38		All	Predict	Ability to collect/compare situational awareness to ground truth	Awareness	Performance
38		Air	Predict	Ability to collect/compare situational awareness to ground truth	Dependency	Performance
38		Air	Assess	Ability to collect/compare situational awareness to ground truth	Maneuverability	Performance
38		Ground	Reference Data	Representation of ground truth for elementary behavior and decision assessment on ground mobility	Mobility	Technology
38		Ground	Predict	Ability to collect/compare situational awareness to ground truth	Environment	Performance
38		Air	Emulate	Truth data to verify dynamic limits of navigation	Navigation /	Technology
38		Maritime	Predict	Ability to collect/compare situational awareness to ground truth	Recognition	Performance
38		Air	Emulate	Dynamic limits of obstacle avoidance for the whole system involving manned and unmanned vehicles	Obstacle Avoidance	Technology
38		All	Predict	Ability to collect/compare situational awareness to ground truth	Human Detection	Technology

UAST Roadmap 1 USIR and UAST Technology Group Use Cases – Use Cases from T&E Practitioners

Use	Case	Туре	Domain UAST Capabilit		Use Case Label	USIR Performance	Performance
	ID			Framework		Technology Driver	/ Technology
							×
20	_	NDOD	1101		Mabile rebat equivation internal and outpreal accomment. Common components with elapsing and electricia	Top Lovel Use Case	N/A
39		NPUK	UGV		woone robot navigation internai and external assesment. Common components path planning and obstacle	Top Level Use Case	N/A
	20		Ground	Prodict	avoluance (nay) play a key lone. Mabila Robatic Navigation	Manouvorability	Porformanco
40	35	роти		Fieulu	Nublic Nobolic Navigation	Top Lovel Use Case	N/A
40	40	bonn	All	Accord	Human system interaction and detection of induances	Human Pohot Interaction	Dorformanco
41	40	DOD		703033	The interaction of the ground or surface based human energiate responsive to the user on a time scale the user mit	Ton Lovel Use Case	N/A
41		ron	044/034		component must be tested within the context of Concents of Operation (CONODS) development for a particular	Top Level use case	ny A
					unmanned		
	/11		All	Predict	Remote control deconfliction	Collaboration	Performance
	41		All	Predict	Human-markine Interaction	Collaboration	Performance
	41		All		Human system assessment HRI will only be accented if they are responsive to the user on a time-scale the user fin	Human Robot Interaction	Technology
42	41	BOTH	LIGV	753533	Frankin Steen assessment in a win only be accepted in drey are responsive to the user on a time scale the user mit	Ton Level Lise Case	N/A
-	42		All	Reference Data	Command and Control of UAS - single team collaborating	Operational Control	Performance
	42		All	Test Red	Control and control of all single control of all single control and management	Signature Management	Technology
	42		Ground	Reference Data	Command and Control of UAS - single team collaborating	Mohility	Technology
	42		Maritime	Predict	Human system interaction and detection	Human Detection	Technology
43		BOTH	All	Tredict	Towards a Taxonomy of Performance Metrics. Bounds and Tests for Tracking and SI AM Algorithms	Ton Level Lise Case	N/A
	43		All	Reference Data	IAUS compliance	Architecture	Technology
	43		All	Reference Data	STANAG compliance	Architecture	Technology
	43		All	Reference Data	Emergent standards compliance	Architecture	Technology
	43		All	Reference Data	Taxonomy of Performance Metrics	Architecture	Technology
	43		All	Reference Data	Representation of ground truth for elementary behavior and decision assessment	World Model	Technology
	43		All	Reference Data	Higher Order Data Representations	World Model	Technology
44		POR	UGV		Modelling Team Coordination in Multi-agent Planning	Top Level Use Case	N/A
	44	-	Air	Emulate	Path planning and obstacle avoidance	Obstacle Avoidance	Technology
45		POR	UAV		The Challenges of Commanding and Controlling Systems Consisting of Autonomous Entities	Top Level Use Case	N/A
46		BOTH	ALL		Human Interaction with Increasingly Autonomous Systems	Top Level Use Case	N/A
	46		All	Assess	Human Models for Increasing Autonomous Effects	Human Robot Interaction	Technology
	46		All	Assess	Human Models for Increasing Autonomous Effects	Obstacle Avoidance	Technology
47		POR	UGV		Uncertain Terrain Geometry Estimates	Top Level Use Case	N/A
	47		All	Assess	Uncertain terrain assessment	Obstacle Avoidance	Technology
48		BOTH	ALL		Higher Order Data Representation	Top Level Use Case	N/A
	48		All	Reference Data	Reactive ground truth representation	Operational Control	Performance
	48		All	Protocols	High order data representation	Navigation	Performance
	48		Ground	Reference Data	Reactive ground truth representation	Mobility	Technology
	48		All	Assess	High order data representation	Obstacle Avoidance	Technology
49		BOTH	ALL		Reactive Data Gathering	Top Level Use Case	N/A
	49		Air	Predict	Reactive Data Gathering	Dependency	Performance
	49		Ground	Predict	Reactive Data Gathering	Maneuverability	Performance
	49		All	Predict	Reactive Data Gathering	Human Detection	Technology
50		BOTH	ALL		Measuring Emergence in Cooperative Autonomy	Top Level Use Case	N/A
51		BOTH	ALL		Decision Maker Evaluation Framework	Top Level Use Case	N/A
	51		All	Systemic Tools	Impacts of communication on decision making and behavior.	Communication	Technology
52		BOTH	ALL		Modular Assessment Framework for Autonomous Systems	Top Level Use Case	N/A
	52		All	Protocols	Test frameworks for componentized testing of autonomous functions	Product Line	Performance
	52		All	Assess	ALFUS, NASA, FLOOT Assessment Frameworks	Human Robot Interaction	Technology
53		BOTH	ALL		Deriving Safety Requirements for Autonomous Systems	Top Level Use Case	N/A
	53		All	Test Bed	System safety interupts in physical ground environments	Frequency	Performance
	53		All	Predict	Model based analysis for planning and safety assessment	Awareness	Performance
	53		Air	Predict	Fail-safes	Dependency	Performance
	53		All	Protocols	System safety interupts in physical ground environments	Frequency	Technology
	54		Air	Emulate	Integrated Sensor Support Teams	Sensor Ranges	Performance
1	54		Air	Emulate	High Altitude HAVs	Iring	Performance

Use Case	Туре	Domain	UAST Capability	y Use Case Label USIR Performance		Performance
ID			Framework		Technology Driver	/ Technology
57	роти	AU		Mircian Data A Tast and Evaluation of LIAS	Top Lovel Like Care	N/A
57	bom	ALL	Emulato	Mission based rest and Evaluation of GAS	Mission Complexity	Porformanco
57		All	Emulate	Milti Jouol Mans and Modeling	Environmental Canability	Performance
57		All	Protocols	Multi-level Maps and Modeling	Navigation	Performance
57	,	All	Emulato	Multi level Maps and Modeling	Environmental Canability	Tochnology
57	,	Air	Emulate	Multi-level Maps and Modeling	Navigation	Technology
57		Ground	Δετροτο	Multi-Level Mans and Modeling	Navigation	Technology
57	,	Ground	Assess	Snatio-Temporally consistent Scene Classification in Linhan Environments	Navigation	Technology
58	BOTH	All	100000	Human Sensor Integration - Cognitive Overload	Ton Level Lise Case	N/A
50		Air	Fmulate	Human Sensor Integration	Sensor Ranges	Performance
59	BOTH	ALL		Environmental Effects Addressable by Unmanned Autonomous Systems	Top Level Use Case	N/A
59		Air	Fmulate	Environment Effects of Icing at High Altitudes	lcing	Performance
59		Air	Emulate	Severe Environment Flight	Iring	Performance
59		Air	Emulate	Severe Environment Flight	Turbulence	Performance
59		Air	Emulate	Severe Environment Elipht	Precipitation	Performance
59		All	Emulate	Environmental Effects	Environmental Capability	Technology
61	BOTH	ALL		Safety in the Battlespace for Unmanned Autonomous Systems	Top Level Use Case	N/A
61		Air	Fmulate	Flight Dynamics Effects and Characterization	Turbulence	Performance
61		Air	Emulate	Flight Dynamics Effects and Characterization	Precipitation	Performance
61		Ground	Emulate	Flight Dynamics Effects and Characterization	Speed	Performance
61		Ground	Emulate	Ground Safety and Fail Safes	Sneed	Performance
62	BOTH	ALL	Lindidic	Unmanned Autonomous Navigation	Top Level Use Case	N/A
62		Air	Fmulate	Truth data for navigational accuracy in geospatial environments	Navigation	Technology
62		Ground	Assess	Verification of navigation techniques of controller system interaction	Navigation	Technology
63	BOTH	ALL	100000	Unmanned Autonomous Tracking of High-Velocity Systems	Top Level Use Case	N/A
63		Air	Assess	High velocity TSPI	Speed	Performance
64	BOTH	ALL		Unmanned Autonomous System E-stops	Top Level Use Case	N/A
64		Air	Assess	Autonomous E-stops	Speed	Performance
65	BOTH	ALL		Unmanned Autonomous System Stealth Testing	Top Level Use Case	N/A
65		Air	Assess	Stealth Effects	Stealth	Performance
66	BOTH	ALL		Unmanned Autonomous System Stealth Testing	Top Level Use Case	N/A
66		Ground	Assess	Measurement analysis and prediction of behavior for survivability	Survivability	Performance
68	BOTH	ALL		Unmanned Autonomous System Stealth Testing	Top Level Use Case	N/A
68		All	Protocols	Testing of unmanned with manned systems for NATO STANAG 4586 compliance	Commands	Performance
69	BOTH	ALL		Autonomous Payload Sensors - Independent Navigation	Top Level Use Case	N/A
69	1	All	Protocols	Autonomous payload control	Product Line	Performance
70	BOTH	ALL		OPSEC Testing Unmanned and Autonomous Systems	Top Level Use Case	N/A
70		All	Protocols	OPSEC signature network effects	OPSEC	Performance
71	BOTH	ALL		Beyond RF communications for Unmanned and Autonomous Systems	Top Level Use Case	N/A
71		All	Protocols	Non-RF comms	Frequency	Technology
72	BOTH	ALL		Automated and Autonomous Testing for Comm Disrupts	Top Level Use Case	N/A
72		All	Test Bed	Assessment of autonomy limits and responses due to disruptive communications	Frequency	Performance
72		All	Protocols	Assessment of autonomy limits and responses due to disruptive communications	Frequency	Technology
73	BOTH	ALL		Alternative Energy for Test Technologies on Unmanned and Autonomous Systems	Top Level Use Case	N/A
73		All	Test Bed	Alternative power sources	Power	Technology
75	BOTH	ALL		Representation of Knowledge for Unmanned and Autonomous Systems	Top Level Use Case	N/A
75		Maritime	Predict	Effective representation of multiview data	Recognition	Performance
76	BOTH	ALL		Resilient Behavior of Supervised Autonomy for Unmanned and Autonomous Systems	Top Level Use Case	N/A
76		All	Protocols	Resilient networks	Frequency	Technology
77	BOTH	ALL		Autonomous Collaboration Test and Evaluation for Unmanned and Autonomous Systems	Top Level Use Case	N/A
77		All	Reference Data	Collaborative mission planning for hand-off operations and relay support	Operational Antrol	Performance
77		Ground	Reference Data	Data Collaborative mission planning for hand-off operations and relay support Mobility		Technology

USIR Performance Technology Drivers	Performance (p) Technology (t)	Domain	UAST Capabilities Reference Framework (T&E Capabilities)	T&E Use Cases	
Collaboration	р	1. All		Remote control deconfliction (41)	
				Ability to collect/compare situational awareness to ground truth (38) Human-machine Interaction (41)	
				Communications Standards (26)	
Awareness	р	1. All	ors	Small lightweight TSPI (24)	
			<u>vic</u>	Autonomous status behavior sensors (6)	
			ha	Ability to collect/compare situational awareness to ground truth (38) Model based analysis for planning and safety assessment (53)	
Dependency	n	2 Air	Be -	Auto traffic deconfliction (16)	
Dependency		2. All	E	Ability to collect/compare situational awareness to ground truth (38)	
			ste	Sensory and Communications Resourcing and Management Schema (2)	
			Sy	Reactive Data Gathering (49)	
Maneuverability	p	3. Ground	Sn	Multi-level Maps and Modeling (16)	
			l De	Reactive Data Gathering (49)	
			Ō	Mobile Robotic Navigation (39)	
Environment	р	3. Ground	to	Environmental Models (11)	
			Au	Monitoring in Environment (11)	
			р	Stimulus (11)	
			ai	Ability to collect/compare situational awareness to ground truth (38)	
Obstacle Avoidance	р	4. Maritime	Jec	Static obstacle sensing (15) World model representation of static objects (15)	
			l le	Ground truth representation of static objects (15) Ground truth representation, comparison, assessment (15)	
			Ĕ	Internalized world model (15)	
			5	Assessment of UUS / USV (8)	
			ല്		
Recognition	р	4. Maritime	ctii	Ability to collect/compare situational awareness to ground truth (38) High Order Data Representation (8)	
			edi	Effective representation of multiview data (75)	
Human Detection	+	1 All	Pré	Human system interaction and detection (/2)	
Trainan Detection		1. 60		Ability to collect/compare situational awareness to ground truth (38)	
				High Order Data Representation (8)	44
				Reactive Data Gathering (49)	

USIR Performance Technology Drivers	Performance (p) Technology (t)	Domain	UAST Capabilities Reference Framework (T&E Capabilities)	T&E Use Cases
Mission Complexity	р	1. All		Mission based design of experiments for test development (5) Mission Based T&E Multi-level Maps and Modeling (57)
Environmental Capability	р	1. All		Destructable targets (12) Simulated targets (13) Mapping, localization, and navigation systems rely on two-dimensional representations. (38) Multi-level Maps and Modeling (57)
Sensor Ranges	р	2. Air		Human Sensor Integration (58) Integrated Sensor Support Teams (54)
lcing	р	2. Air	i and plexity ety	Environment Effects of Icing at High Altitudes (59) High Altitude UAVs (54) Severe Environment Flight (59) High Order Data Representation (8)
Turbulence	р	2. Air	Mission al Com red Saf	Severe Environment Flight (59) High Order Data Representation (8) Flight Dynamics Effects and Characterization (61)
Precipitation	р	2. Air	llating l nmenta th Assu	Severe Environment Flight (59) High Order Data Representation (8) Flight Dynamics Effects and Characterization (61)
Speed	р	3. Ground	Emu Enviro wi	Ground based TSPI Small lightweight TSPI (24) Real-time monitoring (2) Flight Dynamics Effects and Characterization (61) Ground Safety and Fail Safes (61)
Environmental Capability	t	1. All		Multi-level Maps and Modeling (57) Environmental Effects (59)
Navigation	t	2. Air		Truth data to verify dynamic limits of navigation (38) Multi-level Maps and Modeling (57) Air space deconfliction (16) Truth data for navigational accuracy in geospatial environments (62)
Obstacle Avoidance	t	2. Air		Dynamic limits of obstacle avoidance for the whole system involving manned and unmanned vehicles (38) Path planning and obstacle avoidance (44)

USIR Performance Technology Drivers	Performance (p) Technology (t)	Domain	UAST Capabilities Reference Framework (T&E Capabilities)	T&E Use Cases	
Mission Endurance	р	1. All		Long term communication and sensor systems test capability (19) Data mining and management of long duration tests (26)	
Speed	р	2. Air		High velocity TSPI (63) Autonomous E-stops (64) Resource Awareness (26)	
Stealth	р	2. Air	ities	Sensing and signature measurements(12) Tracking technologies (24) Stealth Effects (65) Real-time Monitoring of Status (11)	
Maneuverability	р	2. Air	d Capabil	Kinematics (25) TSPI for sense and avoid compututation (11) Maneuver Behavior Context (2) Ability to collect/compare situational awareness to ground truth (38)	
Self Protection	р	2. Air	ts an	UAS countermeasures (12)	
Survivability	р	3. Ground	Effec	Measurement, analysis and prediction of behavior for survivability (66) Mission means framework and mission based T&E (5)	
Human Robot Interaction	t	1. All	ssing UAS	Human system assessment HRI will only be accepted if they are responsive to the user on a time-scale the user finds reasonable (i.e., the sys cannot take too long to respond nor can it respond incorrectly too often) (40, 41) ALFUS, NASA, FLOOT Assessment Frameworks (52) Human Models for Increasing Autonomous Effects (46)	stem
Obstacle Avoidance	t	1. All	Asse	Dynamic limit assessment of Sense and Avoidance (15) Human Models for Increasing Autonomous Effects (46) High order data representation (48) Uncertain terrain assessment (47) Auto traffic deconfliction (16) FAA certification (16)	
Navigation	t	3. Ground		TSPI for human controlled ground single and multi-system UAS (26) Verification of navigation techniques of controller system interaction (62) Multi-level Maps and Modeling (57) 46 Spatio-Temporally consistent Scene Classification in Urban Environments (57)	

USIR Performance Technology Drivers	Performance (p) Technology (t)	Domain	UAST Capabilities Reference Framework (T&E Capabilities)	T&E Use Cases
Commands	р	1. All	ign	Testing of unmanned with manned systems for NATO STANAG 4586 compliance (68) Common ground station for JAUS (SAE-AS/4) unmanned manned systems compliance (31)
Product Line	р	1. All	and Des	Test frameworks for componentized testing of autonomous functions (52) Common ground station for JAUS (SAE-AS/4) unmanned manned systems compliance (31) Autonomous payload control (69)
OPSEC	р	1. All	cols	OPSEC signature network effects (70)
OPSEC	р	4. Maritime	Proto	OPSEC signature vulnerability maritime (12)
Navigation	p	4. Maritime	nous Test	TSPI for human controlled maritime single and multi-system UAS (15) Verification of maritime navigation techniques of controller system interaction (8) Multi-level Maps and Modeling (57) High order data representation (48)
Frequency	t	3. Ground	Autonon	Effective spectrum use and allocation ground (19, 28) System safety interupts in physical ground environments (53) Non-RF comms (71) Assessment of autonomy limits and responses due to disruptive communications (72) Resilient networks (76)
Frequency	р	1. All	l and nents ST	Effective spectrum use and allocation ground (19, 28) System safety interupts in physical ground environments (53) Assessment of autonomy limits and responses due to disruptive communications (72)
Power	t	1. All	it Bed ironn or UA	Alternative power sources (73)
Signature Management	t	1. All	Tes Env fa	Signature limit testing (12) Control and management of autonomous comms in test environment (42) 47

USIR Performance Technology Drivers	Performance (p) Technology (t)	Domain	UAST Capabilities Reference Framework (T&E Capabilities)	T&E Use Cases
Operational Control	р	1. All	vior)	Reactive ground truth representation (48) Command and Control of UAS - single, team, collaborating (42) Common ground station tester robotics and targets (31) Collaborative mission planning for hand-off operations and relay support (77)
Architecture	t	1. All	Data Sets on, & Behar	JAUS compliance (43) STANAG compliance (43) Emergent standards compliance (43) Taxonomy of Performance Metrics (43)
World Model	t	1. All	Reference 	Representation of ground truth for elementary behavior and decision assessment (43) Model representation of cognitive agents (27) Higher Order Data Representations (43)
Visualization	t	3. Ground	JAST Ind Tru	Perception assessment reference data sets (1)
Mobility	t	3. Ground	(Groun	Representation of ground truth for elementary behavior and decision assessment on ground mobility (38) Reactive ground truth representation (48) Command and Control of UAS - single, team, collaborating (42) Collaborative mission planning for hand-off operations and relay support (77)
Bandwidth	р	1. All		Bandwidth measurement and allocation certification (19)
Maintenance	р	1. All	dues	Self test acuity (1)
Communication	t	1. All	Tools and Techni	Impacts of communication on decision making and behavior. (51) Communications would more effectively monitor UAS performance. (9) Test applications benefit from advances in sensor networks, perception software, and communications networks. (10) Protocols for sparse, highly volatile multi-hop, ad-hoc networks with high bandwidth and low latency. (10) Improvements in localization in UWB networks and better spectrum utilization. (26) Integration of wide-area, local-area, and personal-area networks for more seamless local-to global coverage(heterogeneity). (31) Cooperative communication clusters in ad-hoc networks for better connectivity, power utilization, etc. Integration of the cellular and satellite phone networks to augment other networks. (3)
Mechanical Systems	t	3. Ground	UAST	Kinematics data for actuator motion (25)
Dexterity	t	3. Ground		Kinematics data for actuator motion (25) 48

UAST Roadmap 1 A CONSENSUS ON UAST FORECAST A UAST S&T investment framework for unfolding UAS

- 10) The UAST Exemplars of Future UAS
 - .) The UAST Capabilities Reference Framework
 -) The Usage Case: Predicting Unmanned and Autonomous System Behavior
 -) The Usage Case: Emulating Mission and Environmental Complexity
- 14) The Usage Case: Assessing UAS Effects and Capabilities
- 15) The Usage Case: Protocols and Design
 - i) The Usage Case: UAS Test Bed and Environment
 - The Usage Case: Reference Data Sets (Ground Truth, Decision & Behavior)
- 18) The Usage Case: Tools and Techniques
- 19) S&T Implications: Predicting Unmanned and Autonomous System Intelligence
- 20) S&T Implications: Emulating Mission and Environmental Complexity
- 21) S&T Implications: Assessing UAS Effects and Capabilities
- 22) S&T Implications: Protocols and Design
- 23) S&T Implications: UAS Test Bed and Environment
- 24) S&T Implications: Reference Data Sets (Ground Truth, Decision & Behavior)
- 25) S&T Implications: Tools and Techniques

UAST Roadmap 1 CH 10 The UAST Exemplars of Future UAS

"Exemplar (n.) A model, original, or pattern, to be copied or imitated; a specimen; sometimes; an ideal model or type, as that which an artist conceives."

Confidence in Unmanned & Autonomous Systems

Figure 2-10. Surprise Management Cycle 50 http://www.acq.osd.mil/dsb/reports/ADA513074.pdf

UAST Roadmap 1 CH 11 The UAST Capabilities Reference Framework

Confidence in Unmanned & Autonomous Systems

UAST Categories applied to UAST Systems Engineering Capabilities Reference Framework

- Predicting Unmanned and Autonomous System Behaviors (T&E/Assessment)
- Emulating Mission and Environmental Complexity with Assured Safety (T&E/Assessment)
- Assessing UAS Effects and Capabilities (Evaluation and Assessment)
- 4. Autonomous Test Protocols and Design (T&E)
- 5. Test Bed and Environments for UAST (T&E)
- UAST World Models (Ground Truth, Decision, & Behavior) (T&E)
- Tools and Techniques for Systemic UAST (T&E/Assessment)

CH 12 The Usage Case: Predicting Unmanned and Autonomous System Behavior

Confidence in Unmanned & Autonomous Systems

S&T to perform calculations which predict performance of UAS and test/validate these predictions

- standards and guidelines for transfer of knowledge regarding system under test
- predict behavior using appropriate visualization/computational techniques
- distinguish critical aspects/variables of problem from noncritical aspects/variables
- identify when a model or calculation returns valid or invalid results by:
- comparing results to known concepts, facts, data
- validating the model
- performing sensitivity analysis
- performing dimensional analysis

UAST Roadmap 1 CH 13 The Usage Case: Emulating Mission and Environmental Complexity

Emulating Mission and Environmental Complexity: S&T to support the physical T&E of UAS in complex mission and environmental scenarios

- unpredictable behavior handling
- sense-and-avoid
- emergent phenomena
- reliable fail-safes
- test frameworks/test harnesses
- terrain and ground truth representation
- behavior stimulation

UAST Roadmap 1 CH 14 The Usage Case: Assessing UAS Effects and Capabilities

S&T to support the analysis of UAS to support the fielding of unmanned systems that are effective, suitable, and survivable

- Autonomy metrics
- Measures of Performance
- Measures of Effectiveness
- ilities: adaptability, flexibility, interoperability
- Collaborative control
- Knowledge and decision-making from data to information to valued information and the right time
- UAS self monitoring and reporting built into vehicles complementing external monitoring and reporting capabilities of test infrastructure

Confidence in Unmanned & Autonomous Systems

Prioritized capability needs of the warfighter that include:

- Reconnaissance and Surveillance Target Identification and Designation Counter-Mine and Explosive Ordnance Disposal Chemical, Biological, Radiological, Nuclear, Explosive (CBRNE)
- Reconnaissance

UAST Roadmap 1 CH 15 The Usage Case: Protocols and Design

Confidence in Unmanned & Autonomous Systems

S&T for conceiving, planning and confirming testing capability

- Ontology of UAST
 - Classes of UAS
 - Autonomy of UAS
 - Types of Testing (individual to swarms)
- Methodology of UAST
 - Stimulus and Measures
 - UAS limits
 - Analysis of Alternatives
- Test Scenario synthesis
 - System to Capability Testing
 - UAST interfaces to Test Construct
- Test analysis, interpretation, knowledge claims, and reporting
- UAST(I) configuration Model Generation
- Cross-UAS Usage Case Repository

UAST Roadmap 1 CH 16 The Usage Case: UAS Test Bed and Environment

S&T for physical test capabilities associated with Test Bed and Environment

- Stimulus selection or generation
- Sensors
- Data Acquisition and Management
- Data compression and characterization (signatures)
- Data reduction/analysis/interpret ation
- Power Technologies: providing increased mission time and capability without increasing the logistics footprint.
- Test conducting including situation awareness
- Test operations safety

Confidence in Unmanned & Autonomous Systems

UAST Roadmap 1 CH 17 The Usage Case: Reference Data Sets (Ground Truth, Decision & Behavior)

S&T for testing Decision & Behavior as it relates to Ground Truth Data and Referenced Data Sets

- Repository of Geo, Environmental, Modeling & Simulation results, etc.
- Acquisition/Generation
 - Contrived Data Sets
 - Surveyed/measured data sets
- Surveying/measuring situations contemporaneous with test operations (over-the-shoulder verification of what the UAS experienced)
- Tools, metrics and algorithms for assessing mismatches between robot understanding of an environment or situation and provided ground truth

UAST Roadmap 1 CH 18 The Usage Case: Tools and Techniques

Confidence in Unmanned & Autonomous Systems

S&T for UAST responsiveness, productivity and innovation

- Analysis of Test Requirements
- Architecture/Design of test episodes
- Test Planning/Timeline
- Evaluating UAS Effectiveness
- Discovering UAS capability limits
- Evaluating likelihood of fratricide.
- Evaluating likelihood of cyber security intrusion.
- Assessing the risk of errors and omissions in test findings and conclusions
- Quantifying the cost-effectiveness of the UAST configuration and operation used in the test episode.
- Systematizing UAST(s). UAST as a composable infrastructure that supports test-specific, plug-in modules.

The Tester Evolution Loop

Must get inside the Capability Evolution Loop
 Must endure throughout the Capability operational life cycle

UAST Roadmap 1 UAST CH 19 S&T Implications: Predicting Unmanned and COGNITIVE **Autonomous System Intelligence** HAZARD **Confidence in Unmanned & Autonomous Systems** S&T Technology Areas (Epoch I) S&T Technology Areas (Epoch II) S&T Technology Areas (Epoch III) UAST Performance (p) Technology (t) **Modeling and Simulation Centers Modeling and Simulation Centers Modeling and Simulation Centers** Capabilities System Integration Labs System Integration Labs System Integration Labs **USIR** Performance Reference Technology Hardware in-the-loop Test Hardware in-the-loop Test Hardware in-the-loop Test Domain Framework Drivers Facilities Facilities Facilities (T&E **Installed System Test Facilities** Installed System Test Facilities Installed System Test Facilities **Capabilities**) **Open Air Ranges Open Air Ranges Open Air Ranges** Predicting Collaboration ALFUS 1-3 **Predicting Collaboration ALFUS 4-6** Predicting Collaboration ALFUS 7-10 Collaboration 1. All р Realistic modeling of collaboration for **Realistic modeling of teamed** Realistic modeling of collaboration for mission planners - Single-agent collaboration for mission planners mission planners - Teamed collaboration/cooperation strategies Teaming w/in Domain, Collaboration Collaboration Decision analysis tool for collaboration Across Domains Multi-agent Decision analysis tool for collaboration for hardware in the loop test facilities collaboration/cooperation strategies for hardware in the loop test facilities -Single-agent collaboration/cooperation Decision analysis tool for teamed **Teamed Collaboration** strategies collaboration for hardware in the loop test facilities - Teaming w/in Domain, Collaboration Across Domains Multiagent collaboration/cooperation strategies 1. All Predicting perception limits based on Predicting perception limits based on Predicting perception limits based on Awareness р single-agent collaboration - sensor single-agent collaboration - Situational single-agent collaboration - Actionable data Awareness. Information Predicting behavior based on UAS Predicting behavior based on UAS Predicting behavior based on sensor awareness for mission planners awareness for mission planners inputs for mission plannerssensor data Situational Awareness. Actionable Information aviors Predicting situational awareness and Predicting situational awareness and Predicting situational awareness and comprehension for mission planners comprehension for mission planners comprehension for mission planners Actionable Information 59 sensor data Situational Awareness. Prediction sense and avoid for design Prediction sense and avoid for design Prediction sense and avoid for design Dependency 2 ∆ir n

UAST Roadmap 1 CH 20 S&T Implications: Emulating Mission and Environmental Complexity

USIR Performance Technology Drivers	Performance (p) Technology (t)	Domain	UAST Capabilities Reference Framework (T&E Capabilities)	S&T Technology Areas (Epoch I) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch II) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch III) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges
Mission Complexity	p	1. All	fety	Emulating system behavior in a mission complexity framework for complete life cycle - operator controlled engagement of mission complexity epoch I Measuring system behavior with a variety of simulity in context of mission means framework - operator controlled engagement of mission complexity epoch I	Emulating system behavior in a mission complexity framework for complete life cycle - operator controlled engagement of mission complexity epoch II Measuring system behavior with a variety of simulity in context of mission means framework - operator controlled engagement of mission complexity epoch II	Emulating system behavior in a mission complexity framework for complete life cycle - Autonomous Adaptive Tactical Behaviors engagement of mission complexity epoch III Measuring system behavior with a variety of simulity in context of mission means framework - Autonomous Adaptive Tactical Behaviors engagement of mission complexity epoch III
Environmental Capability	р	1. All	ty with Assured Sa	Development of technologies for behavior representation in advanced geospatial environments - Limited Environmental Difficulty Emulating environmental features for behavior assessment - Limited Environmental Difficulty Emulating environmental features that involve surrogate agents for behavior assessment - Limited Environmental Difficulty	Development of technologies for behavior representation in advanced geospatial environments - Expanded Environmental Difficulty Emulating environmental features for behavior assessment - Expanded Environmental Difficulty Emulating environmental features that involve surrogate agents for behavior assessment - Expanded Environmental Difficulty	Development of technologies for behavior representation in advanced geospatial environments - All-Weather Environmental Difficulty Emulating environmental features for behavior assessment - All-Weather Environmental Difficulty Emulating environmental features that involve surrogate agents for behavior assessment - All-Weather

UAST Roadmap 1 CH 21 S&T Implications: Assessing UAS Effects and Capabilities

USIR Performance Technology Drivers	Performance (p) Technology (t)	Domain	UAST Capabilities Reference Framework (T&E Capabilities)	S&T Technology Areas (Epoch I) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch II) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch III) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges
Mission Endurance	p	1. All		Assessing UAS effects and capabilities with increasing mission endurance - hours Frameworks for persistent information requiring new approaches for knowledge aggregation - hours Power technologies scalable to expanding mission endurance - hours	Assessing UAS effects and capabilities with increasing mission endurance - day and months Frameworks for persistent information requiring new approaches for knowledge aggregation - day and months Power technologies scalable to expanding mission endurance - day and months	Assessing UAS effects and capabilities with increasing mission endurance - years Frameworks for persistent information requiring new approaches for knowledge aggregation - years Power technologies scalable to expanding mission endurance - years
Speed	р	2. Air		Reliable non-intrisive fail-safe mechanisms to ensure safety for Subsonic uas	Reliable non-intrisive fail-safe mechanisms to ensure safety for Transonic uas	Reliable non-intrisive fail-safe mechanisms to ensure safety for Super / Hypersonic uas
Stealth	р	2. Air		Assessing unmanned aerial systems signature and counter-measures and capabilities with Epoch I stealth Address automated signature reduction associated with stealth and develop assessment of Epoch I unmanned aerial systems Technologies for signature testing	Assessing unmanned aerial systems signature and counter-measures and capabilities with Epoch II stealth Address automated signature reduction associated with stealth and develop assessment of Epoch II unmanned aerial systems Technologies for signature testing	Assessing unmanned aerial systems signature and counter-measures and capabilities with Epoch III stealth Address automated signature reduction associated with stealth and develop assessment of Epoch III unmanned aerial systems 61 Technologies for signature testing

UAST Roadmap 1 CH 22 S&T Implications: Protocols and Design

USIR Performance Technology Drivers	Performance (p) Technology (t)	Domain	UAST Capabilities Reference Framework (T&E Capabilities)	S&T Technology Areas (Epoch I) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch II) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch III) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges
Commands	p	1. All		Sequencing of test for human machine interface Test specified by advancing standards in autonomous behavior Ground station for JAUS compliance testing	Sequencing of test for human machine interface - Scripted Voice Command / Hand Signals Test specified by advancing standards in autonomous behavior - Scripted Voice Command / Hand Signals Ground station for JAUS compliance testing - Scripted Voice Command / Hand Signals	Sequencing of test for human machine interface - Natural Language Understanding Test specified by advancing standards in autonomous behavior - Natural Language Understanding Ground station for JAUS compliance testing - Natural Language Understanding
Product Line	р	1. All	Design	Testing technologies for black box testing of proprietary systems Inter-domain challenges of UAS built for specific missions Sequence testing of navigation control from autonomous payload Interface management for mission dependent product lines Test message and hand shake definition technologies	Testing technologies for grey box testing of standards based systems Inter-domain challenges of UAS built for multiple missions Sequence testing of navigation control from autonomous payload based on standards Interface management for mission dependent product lines based on open standards Test message and hand shake definition technologies based on open	Testing technologies for white box testing of standards based systems Inter-domain challenges of collaborative UAS built for multiple missions Sequence testing of navigation control from autonomous payload based on open standards Collaborative interface management for mission dependent product lines based on open standards 62 Test message and hand shake

UAST Roadmap 1 CH 23 S&T Implications: UAS Test Bed and Environment

USIR Performance Technology Drivers	Performance (p) Technology (t)	Domain	UAST Capabilities Reference Framework (T&E Capabilities)	S&T Technology Areas (Epoch I) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch II) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges	S&T Technology Areas (Epoch III) Modeling and Simulation Centers System Integration Labs Hardware in-the-loop Test Facilities Installed System Test Facilities Open Air Ranges
Frequency	p	1. All	for UAST	Technologies for dynamic spectrum band allocation - Constrained RF Assessment of behavior relative to spectrum operations - Constrained RF Test operations gaurantee e-stop frequency allocation - Constrained RF Command and control frequency data capture - Constrained RF	Technologies for dynamic spectrum band allocation - Frequency Hopping Assessment of behavior relative to spectrum operations - Frequency Hopping Test operations gaurantee e-stop frequency allocation - Frequency Hopping Command and control frequency data capture - Frequency Hopping	Technologies for dynamic spectrum band allocation - Multi-Frequency Communications Assessment of behavior relative to spectrum operations - Multi- Frequency Communications Test operations gaurantee e-stop frequency allocation - Multi-Frequency Communications Command and control frequency data capture - Multi-Frequency Communications
Power	t	1. All	nd Environments	Alternative power for onboard test technologies across multiple domains - Battery Powered Long duration power technologies - Battery Powered Maritime environment power technologies - Battery Powered Extreme environment power technologies - Battery Powered	Alternative power for onboard test technologies across multiple domains - Next Gen Power Resource Long duration power technologies - Next Gen Power Resource Maritime environment power technologies - Next Gen Power Resource Extreme environment power technologies - Next Gen Power	Alternative power for onboard test technologies across multiple domains - Bio Mass Reactor Powered/ Opportunistic Power Grazing Long duration power technologies - Bio Mass Reactor Powered/ Opportunistic Power Grazing Maritime environment power technologies - Bio Mass Reactor Powered/ Opportunistic Power

UAST Roadmap 1 A CONSENSUS ON UAST INVESTMENT FRAMEWORK

Confidence in Unmanned & Autonomous Systems

26) Path Forward: The Larger Picture

- 27) Path Forward: UAST Construction Approach
- 28) S&T Implications: Notional Budget
- 29) Path Forward: Usage Case Driven Investment
- 30) Path Forward: The Larger Picture
- 31) Path Forward: The Need for an Agile Roadmap Process
- 32) Summary Recommendation

UAST Roadmap 1 CH 26 Path Forward: The Larger Picture

Confidence in Unmanned & Autonomous Systems

Establishing an investment process for the S&T of UAST that is sensitive to both deliberate and rapid acquisition

UAST Roadmap 1 CH 27 Path Forward: UAST Construction Approach

Confidence in Unmanned & Autonomous Systems

S&T provides risk mitigation solutions critical for the development of T&E capabilities for UAS

Challenge:

T&E Capabilities are available in time to provide useful insight to decision-makers and warfighters

NDIA 11th Annual Science & Engineering Technology Conference, 13-15 April 2010 66

UAST Roadmap 1 CH 28 S&T Implications: Notional Budget

Should we use USIR Budget?

The T&E budget is forecast at 15% of the average of the overall RDT&E budget. Based on this value a 3% budget for S&T of T&E has been established. The MILCON investment is based on matching the current investment rate of \$5m a year based on a need for new infrastructure to address emerging test challenges in test facilities as agile test capabilities are established.

Confidence in Unmanned & Autonomous Systems

PORs FY09PB (\$M)	Funding Source	FY09	FY10	FY11	FY12	FY13	TOTAL
	RDT&E*	\$1291.2	\$747.5	\$136.2	\$108.7	\$68.9	\$2,353
UGV	PROC*	\$33.4	\$42.3	\$53.5	\$59.5	\$21.1	\$210
	O&M*	\$2.9	\$3.9	\$3.0	\$12.8	\$10.1	\$33
	RDT&E	\$1347.0	\$1305.1	\$1076.4	\$894.0	\$719.5	\$5,342
UAS	PROC	\$1875.5	\$2006.1	\$1704.7	\$1734.3	\$1576.2	\$8,897
	O&M	\$154.3	\$251.7	\$249.0	\$274.9	\$320.2	\$1,250
	RDT&E	\$57.3	\$73.8	\$63.2	\$70.1	\$76.9	\$341
UMS	PROC	\$56.7	\$78.4	\$95.9	\$91.6	\$103.7	\$426
	O&M	\$5.0	\$4.5	\$11.3	\$13.5	\$13.9	\$48
TOTAL		\$4,823	\$4,513	\$3,393	\$3,260	\$2,911	\$18,900

* RDT&E = Research, Development, Test, and Evaluation; PROC = Procurement; O&M = Operations and Maintenance

Table 1. FY2009–13 President's Budget for Unmanned Systems

MILCON	Ş	5	Ş	5	\$	5	\$ 5	\$ 5
S&T for T&E	\$	7	\$	7	\$	7	\$ 7	\$ 7
T&E	\$	241	Ş	241	Ş	241	\$ 241	\$ 241
RDT&E	\$	1,607	\$	1,607	\$	1,607	\$ 1,607	\$ 1,607
TOTAL	\$	1,860	\$	1,860	\$	1,860	\$ 1,860	\$ 1,860

UAST Roadmap 1 CH 28 S&T Implications: Notional Budget

How much detail is needed?

This table maps a notional budget across all seven investment areas for an overall notional budget.

The graph shows current UAS budget by platform with sliver of investment for UAST S&T/T&E.

Unmanned Systems and UAST Funding

	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
												Un	man	ned an	d Aut	tonom	ous S	System	ns Ter	sting ((UAS	т)														
															Roc	- huae	Fund	ing (\$		-																
	E	Y09	F	Y10	F	¥11	F	¥12	F	v13	F	v14	E	v15	E)	v16	FY	/17	EY	/18	E	v19	F	¥20	E P	v21	EY2		EY2	T	EY2	24	EY2	5	T	OTAL
				1.00				112			AST	2 or of i		Hom	200	10	Aut	17	-	10				120			-		-						Ì	JIAL
11 CON	ć	1	s	1	5	1	4	1	5	1	AS.	Preul	ting ¢	1	inne c	1	¢.	1	i c	Syste.	() (1 temp	enc.	1	c	1	ć	1	ć	1	c	1	¢		¢	17
AT for T&F	ş	2	2	1	ŝ	1	Ş	1	Ş	1	ŝ	1	ş	1	р с	1	ې د	1	s s	1	э с	1	s	1	ې د	1	ې	1	\$ c	1	\$	1	<u>ې</u>	1	\$	16
0.c	Ś	58	Ś	46	Ś	27	Ś	23	Ś	19	Ś	34	Ś	34	Ś	34	Ś	34	ŝ	34	Ś	34	Ś	34	i s	34	Ś	34	i c	24	ç	34	, ,	34	s	528
NE DT&F	Ś	385	Ś	304	Ś	182	S	153	Ś	124	Ś	230	Ś	230	s	230	¢ ¢	230	i s	230	s	230	Ś	230	4	230	\$ 2	220	¢ 2:	20	\$ 7	730	15 7	,20	s	3.518
	Ś	446	Ś	352	Ś	2	Ś	2	Ś	144	Ś	266	Ś	266	Ś	266	Ś	266	ŝ	255	Ś	266	Ś	266	, s	266	5 7	266	s 20	56	5 1	766	5 7	466	s	4.078
	*	-	-	30-	Ť		-		-	14.	-	LAST F	mul	ating	Mist	ion a	nd E	aviror	nmer	atal C	ome	lexit	-	200	-	200		.00	-	-	-	100	-	-	-	4,012
U.CON	5	9	s	9	s	1	5	1	s	1	s	1	5	1	S	1	s	1	S	1	S	1	s	1	s	1	s	1	5	1	5	1	s	1	¢	33
AT for T&E	s	2	Ś	1	Ś	1	ŝ	1	Ś	1	s	1	s	1	s	1	Ś	1	i s	1	Ś	1	s	1	i s	1	Ś	1	i s	1	s	1	, s	1	s	16
2F	Ś	58	ŝ	46	Ś	27	ŝ	23	ŝ	19	ŝ	34	Ś	34	Ś	34	Ś	34	Ś	34	Ś	34	ŝ	34	Ś	34	Ś	34	is i	34	s	34	Ś	34	Ś	528
DT&F	s	385	ŝ	304	s	182	Ś	153	s	124	s	230	s	230	Ś	230	s s	230	i s	230	Ś	230	s	230	s s	230	S 2	730	\$ 2'	30	\$ 5	730	15 7	,30	s	3.518
	ŝ	454	ŝ	360	ş	2	ŝ	2	ŝ	144	ŝ	266	ŝ	266	ŝ	266	ŝ	266	Ś	266	ŝ	266	ŝ	266	ŝ	266	5 7	266	\$ 20	56	\$ 7	266	ŝ;	66	ŝ	4.094
711.02			-				Ť						UA	ST AS	essi	ne Ef	forts	and	Capa	biliti	-		-		Ť		Ť.	-		Ť	Ť.	-	in the second se		Ť	
ULCON	Ś	2	s	2	s	1	Ś	1	Ś	1	Ś	2	Ś	1	s	1	\$	1	s	1	s	1	Ś	1	s	1	s	1	s	1	\$	1	s	1	\$	20
&T for T&E	s	2	\$	1	\$	1	ş	1	ş	1	ş	1	\$	1	Ś	1	Ś	1	i s	1	Ś	1	\$	1	Ś	1	Ś	1	Ś	1	Ś	1	Ś	1	ŝ	16
δF	\$	58	s	46	s	27	ŝ	23	\$	19	ŝ	34	ş	34	ŝ	34	Ş	34	ŝ	34	s	34	ŝ	34	\$	34	ŝ	34	s i	34	ŝ	34	ŝ	34	\$	528
DT&E	\$	385	\$	304	\$	182	s	153	\$	124	\$	230	\$	230	\$	230	\$	230	1 \$	230	\$	230	\$	230	\$	230	Ś 2	230	S 2:	30	s :	230	15 7	30	ŝ	3,518
OTAL	\$	447	Ş	353	\$	2	Ş	2	\$	144	Ş	267	\$	266	ŝ	266	\$	266	ŝ	266	\$	266	Ş	266	\$	266	\$ 2	266	\$ 2/	56	\$:	266	s :	266	\$	4,081
														U/	ST P	rotocr	als a	nd De	sign	s																
III CON	\$	4	s	4	\$	1	\$	1	\$	1	\$	2	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	s	1	\$	24
&T for T&E	\$	2	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	Ś	1	i s	1	s	1	i ŝ	1	\$	16
¢Ε	\$	58	\$	46	\$	27	\$	23	\$	19	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	Ś	34	s i	34	s	34	s	34	\$	528
DT&E	\$	385	\$	304	\$	182	\$	153	\$	124	\$	230	\$	230	\$	230	\$	230	\$	230	\$	230	\$	230	\$	230	IS 2	230	\$ 25	30	\$ 1	230	15 2	230	\$	3,518
DTAL	\$	449	\$	355	\$	2	\$	2	\$	144	\$	267	\$	266	\$	266	\$	266	\$	266	\$	266	\$	266	\$	266	\$ 2	266	\$ 21	56	s :	266	\$ 7	66	\$	4,085
														UAST	Tes	t Bed	and	Envir	onm	ent																
ILCON	\$	- 1	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	Ś	5	s	5	s	5	\$	5	\$	80
&T for T&E	\$	2	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	Ś	1	i s	1	s	1	ı s	1	\$	16
šЕ	\$	58	\$	46	\$	27	\$	23	\$	19	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	\$ 7	34	\$	34	\$	34	\$	528
DT&E	\$	385	\$	304	\$	182	\$	153	\$	124	\$	230	\$	230	\$	230	\$	230	\$	230	\$	230	\$	230	\$	230	\$ 2	230	\$ 2	30	\$ 7	230	\$ 7	/30	\$	3,518
OTAL	\$	445	\$	356	\$	2	\$	2	\$	148	\$	270	\$	270	\$	270	\$	270	\$	270	\$	270	\$	270	\$	270	\$ 2	270	\$ 2	70	\$ 7	270	\$ 7	70	\$	4,141
										UAST	Ref	erence	e Da	ta and	Dat	ta Set	s (Gr	ound	Trut	n, Dec	cisic	on, & B	seha	vior)												
ILCON	\$	-	\$		\$	- 1	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$		\$	-	\$	-	\$ -		\$ -		\$	-	\$.		\$	
&T for T&E	\$	2	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	16
àе	\$	58	\$	46	\$	27	\$	23	\$	19	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	\$ 7	34	\$	34	\$	34	\$	528
DT&E	\$	385	\$	304	\$	182	\$	153	\$	124	\$	230	\$	230	\$	230	\$	230	\$	230	\$	230	\$	230	\$	230	\$ 2	230	\$ 2.	30	\$ 7	230	\$ 7	:30	\$	3,518
DTAL	\$	445	\$	351	\$	2	\$	2	\$	143	\$	265	\$	265	\$	265	\$	265	\$	265	\$	265	\$	265	\$	265	\$ Z	265	\$ 26	ô5	\$ 7	265	\$ 2	.65	\$	4,061
														UA	ST T	ools a	ind T	echni	que	5																
ILCON	\$	-	\$	-	\$	-]	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$		\$	-	\$	-	\$ -		\$ -		\$		\$.		\$	
کT for T&E	\$	2	\$	_1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	1	\$	16
дЕ	\$	58	\$	46	\$	27	\$	23	\$	19	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	\$	34	\$ 7	34	\$	34	\$	34	\$	528
DT&E	\$	385	\$	304	\$	182	\$	153	\$	124	\$	230	\$	230	\$	230	\$	230	\$	230	\$	230	\$	230	\$	230	\$ 2	230	\$ 2:	30	\$ 2	230	\$ 2	30	\$	3,518
DTAL	\$	445	\$	351	\$	2	\$	2	\$	143	\$	265	\$	265	\$	265	\$	265	\$	265	\$	265	\$	265	\$	265	\$ 2	265	\$ 26	<u>5</u> 5	\$ 2	265	\$ 2	.65	\$	4,061
																UAS	Γ Tot	tals																		
NILCON	\$	-	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	5	\$	80
&T for T&E	\$	12	\$	10	\$	6	\$	5	\$	4	\$	7	\$	7	\$	7	\$	7	\$	7	\$	7	\$	7	\$	7	\$	7	\$	7	\$	7	\$	7	\$	111
&E	\$	404	\$	319	\$	191	\$	161	\$	130	\$	241	\$	241	\$	241	\$	241	\$	241	\$	241	\$	241	\$	241	\$ 2	241	\$ 20	\$1	\$ 7	241	\$ 2	41	\$	3,694
DT&E	\$2	.,696	\$	2,126	\$1	1,276	\$:	1,073	<u> </u>	\$865	\$1	1,607	\$1	1,607	\$1	.,607	\$1	,607	\$1,	,607	\$1	1,607	\$1	1,607	\$1	.,607	\$1,6	j07	\$1,60)7	\$1,€	ô07	100	67	\$	27,320
OTAL			2 A C	(a							A 4							000	1 x x/	laca V	6 2 1				1 4 1			400 1	1 A A A/	6 6 V	4 . 1	2 0 0 C	/	100	1 4 1	a

UAST Roadmap 1 CH 28 S&T Implications: Notional Budget

Confidence in Unmanned & Autonomous Systems

Do budgets need to be significantly adjusted for each Epoch?

Do we need stair-step investment model as problem complexity increase?

					Unma	inned a	and Au	tonom	ous Sy	stems	Test (l	JAST)					
			l	UAST P	redicti	ing Unr	nanne	d and /	Autono	mous	Systen	n Intell	igence	•			
	Tele-	operat	ed Sys	tems			Multi	-syster	n Auto	nomy			Collab	oorativ	e Auto	nomy	
FY10	FY11	FY12	FY13	FY14	FY15	FY16	FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY25	>FY25
			l	UAST P	redicti	ing Unr	nanne	d and /	Autono	mous	Systen	n Intell	igence	•			
TRL 3	TRL4	TRL 5	TRL 6	TRL 7	TRL 8	TRL 3	TRL 4	TRL 5	TRL 6	TRL7	TRL 8	TRL 3	TRL 4	TRL 5	TRL 6	TRL 7	TRL 8
				U.	AST En	nulatin	g Missi	ion and	d Envir	onmen	ntal Co	mplexi	ty				
TRL 3	TRL4	TRL 5	TRL 6	TRL 7	TRL 8	TRL 3	TRL 4	TRL 5	TRL 6	TRL7	TRL 8	TRL 3	TRL 4	TRL 5	TRL 6	TRL 7	TRL 8
				-		UAST A	ssessi	ng Effe	ects and	d Capa	bilities					-	
TRL 3	TRL4	TRL 5	TRL 6	TRL 7	TRL 8	TRL 3	TRL 4	TRL 5	TRL 6	TRL7	TRL 8	TRL 3	TRL 4	TRL 5	TRL 6	TRL 7	TRL 8
						L	JAST P	rotoco	ls and I	Design	s						
TRL 3	TRL4	TRL 5	TRL 6	TRL 7	TRL 8	TRL 3	TRL 4	TRL 5	TRL 6	TRL7	TRL 8	TRL 3	TRL 4	TRL 5	TRL 6	TRL 7	TRL 8
					_	UAS	ST Test	Bed a	nd Env	ironme	ent						
TRL 3	TRL4	TRL 5	TRL 6	TRL 7	TRL8	TRL 3	TRL 4	TRL 5	TRL 6	TRL7	TRL 8	TRL 3	TRL 4	TRL 5	TRL 6	TRL 7	TRL 8
			UAS	T Refe	rence	Data ar	nd Data	a Sets (Groun	d Truth	n, Decis	sion, &	Behav	/ior)			-
TRL 3	TRL4	TRL 5	TRL 6	TRL 7	TRL 8	TRL 3	TRL 4	TRL 5	TRL 6	TRL7	TRL 8	TRL 3	TRL 4	TRL 5	TRL 6	TRL 7	TRL 8
						L	JAST T	ools an	d Tech	niques	5						
TRL 3	TRL4	TRL 5	TRL 6	TRL 7	TRL 8	TRL 3	TRL 4	TRL 5	TRL 6	TRL7	TRL 8	TRL 3	TRL 4	TRL 5	TRL 6	TRL 7	TRL 8

UAST Roadmap 1 CH 29 Path Forward: Usage Case Driven Investment

UAST Roadmap 1 CH 29 Path Forward: Usage Case Driven Investment - Template

Emphasis on Programs of Record and Operational Necessity

There are 138 systems in the USIR that are critical to understanding emergent autonomy and safety challenges. Gathering the tens of test use cases associated with each system will allow workgroup to identify patterns and then consolidate into high-value test cases that can drive UAST S&T.

ase Type I ID	Domain	Tester	Evaluator	UAST Capability Framework		Use Case Label		USIR Perform	aance Technology Driver	Performance / Technology
POR A	ALL	x			Top Level Use Cas	e (a)				
1	All			UAST Inv Area x	Top Level Use Cas	e (a) – subcase (x)		Key Perform For	nance Parameter ecast (i)	Performance
1	Ground			UAST Inv Area y	Top Level Use Cas	e (b) – subcase (y)		Key Perform For	nance Parameter ecast (j)	Technology
					т	ne USIR Forecasts of KPPs and	KSAs			
KPP/KS/	A p/	't Dom	ain UAST	l Framework	Category	Epoch I	Epoch II			Epoch II
iey Performa 'arameter Fo i)	ance orecast	p D a	omain (all, ir, ground, maritime)	UAST Invest	ment Area x	Epoch I forecast for KPP forecast (i)	EPOCH II forecast for KI	PP forecast (i)	EPOCH III forecast	for KPP forecast (i
.ey System A orecast (j)	Aspect	t D	omain (all, ir, ground, maritime)	UAST Invest	ment Area y	Epoch I forecast for KPP forecast (j)	EPOCH II forecast for KF	PP forecast (j)	EPOCH III forecast	for KPP forecast (j
				The	e T&E of Auton	omous Behavior Needed to Me	et Epoch Challenge	s		
KPP/KSA	p/t	Domai	n UAST F	.C. UASTU	lse Case	Epoch I – S&T	Epoch II	-S&T		Epoch III – S&
(ey Performance Parameter Forecast (i)	e i	Domain (air, grou maritim	all, UAST nd, Investm e) Area x	Top Le nent subcas	vel Use Case (a) – e (x)	S&T investment for epoch I	S&T investment f	or epoch II	S&T investme	nt for epoch III
(ey System Attributes Forecast (j)	t [Domain (; air, grour maritim	all, UAST nd, Investm e) Area y	Top Le ent subcas	vel Use Case (b) – e (y)	S&T investment for epoch I	S&T investment fo	or epoch II	S&T investme	nt for epoch III

- Systems: UAS(i), any system target for future testing [PORs: xxxx, yyyy, zzzz]
- Use Case Level: UCRL 2. Practitioner First Draft Reviewed by EA and SMEs
- Description (subclass use cases by mission, domain, and USIR epoch):
- Develop UAST(i), technologies for autonomy and safety testing
- USIR Subclass 1) KPP and domain S&T investment
- USIR Subclass 2) KSA and domain S&T investment

UAST Roadmap 1 CH 30 Path Forward: The Larger Picture

UAST Roadmap 1 CH 31 Path Forward: The Need for an Agile Roadmap Process

Is the Pace and Tempo of T&E capability development sufficient for rapid acquisition and exponential technology associated with UAS?

The intent of this Roadmap is to introduce concepts that will facilitate the test and evaluation of unmanned and autonomous systems.. The performance and technical challenges for test are extensive. T&E Capabilities typically take 7 years to develop. There is a nurturing of the technology in an S&T program for 3 years followed by 4 years of development in a CTEIP programs. CTEIP programs typically provide the drivers for S&T. Key drivers from CTIEP programs include Program of Record drill downs that are based on the acquisition documents driving both Test and Evaluation. Typically a Program of Record has a T&E strategy, a CONOPS, an ICD, a CDD, and finally a TEMP that must all be explored for specific requirements critical to the T&E of any System Under Test.

Confidence in Unmanned & Autonomous Systems

UAST Roadmap 1 CH 31 Path Forward: The Need for an Agile Roadmap Process

UAST Augmented Study Methodology

Confidence in Unmanned & Autonomous Systems

•

- PORs currently have limited drivers for UAST driven by autonomy
- USIR introduced concept that NPORs are critical for understanding future need
 - T&E for autonomy can be forecast based on performancee and technology forecasts that will only be possible due to increased automation and autonomy
 - The need for autonomy test continues to be articulated

UAST Roadmap 1 CH 32 Summary Recommendation

Confidence in Unmanned & Autonomous Systems

The realization of the technology targets will require continued investment in the UAST technology group for usage case development and criteria consolidation. The promise of UAS can be realized through next generation UAST developments necessitating the need for:

- 1. Field Office focused on the S&T for T&E of Autonomy with Assured Safety
 - a. to facilitate development joint actions with two or more transition partners
 - b. to engage up to five test centers to demonstrate the return on S&T investments
 - c. to lead development of usage cases for clarifying and justifying TRL advancements needed for selected T&E demonstrations
 - d. to oversee authorized S&T developments and identify other relevant technology advancements
 - e. to oversee integration of S&T developments for autonomy with assured safety into new UAST capabilities
 - f. to oversee the integration of these S&T results with S&T results by other technology groups such as netcentric, cognitive, etc.
 - g. to monitor and assess UAS testing sessions to assess the value of the S&T advancements
 - h. to initialize a portal for "T&E of autonomy with assured safety"
 - i. to foster new relevant education through DAU
- 2. Resources for authoring usage cases in response to the Roadmap: includes quarterly face to face working sessions at various test centers for cross review and consolidation as well as budget justification. Also includes review and assessment of on-going S&T projects.
- 3. Resources for evolving the Autonomy with Assured Safety T&E capability at the pace of UAS evolutionary acquisition and Test Range evolution: includes technology development planning and budgeting session to be conducted at a level of 2 days per month with 15 people from test centers engaging in the S&T roadmap; plus technical support and session facilitation.
- 4. Resources for hosting collaboration with autonomy experts at NASA, DoE, FAA, and Academia in quarterly sessions.

Predicting Unmanned and Autonomous System Behaviors

Emulating Mission and Environmental Complexity with Assured Safety

Assessing UAS Effects and Capabilities

11	12	13	14	15	16	17	18	19	20	21	22	23	24	25		
	Epocł	n l				Epoch	II			Epoch III						
T&E/S	&T Inve	estment	S			A	utonomy Metr	ics		Autonomy Metrics						
	Perform	ance Assessme	ent - single		Performa	nce Assessmen	ıt - team			Performance Assessment - collaboration						
Design of Dash	Experiment To boards for auto interoperabi	ools – single au nomy -ilities: a	tonomy adaptability, fle system mission	exibility,	Designers Dashboar interoper	of Experiment ds for autonon ability for team	: Tools – team a ny -ilities: adap ned mission	utonomy tability, flexibil	ity,	Designers of Experiment Tools – collaboration autonomy Dashboards for autonomy -ilities: adaptability, flexibility, interoperability for collaborative missions						
Safety Knowled	Implements a	cross Test Spe	ectrum – remote	e control nformation	Safety Im	dge and decision valued inform	ss Test Spectru on-making from mation and righ	n data to inform t time - team	ntrol	Sarety implements across Test Spectrum – remote control Knowledge and decision-making from data to information to valued information and right time - collaboration						
UAS se external	to valued info elf-monitoring/ monitoring/rep	rmation and ri reporting built porting capabil	ght time - singl into vehicles b lities of test infr	e alancing rastructure	UAS se external	lf-monitoring/ monitoring/rep	reporting built porting capabili	into vehicles ba ties of test infra	alancing	UAS self-monitoring/reporting built into vehicles balancing external monitoring/reporting capabilities of test infrastructure						
Challe	Nges Unmann Mission	ned Autono	omy in			Teamed A Mission E	Autonomy i Based T&E	n			Collaboratii Mission Bas	ng Autonor sed T&E	ny in			
	Unmanr Joint Ca Survivat	ned Autono pability T&	↓ ↓ Domy in E afety		Teamed Autonomy in Joint Capability T&E Survivability and Safety of Teaming					Collaborating Autonomy in Joint Capability T&E Survivability and Safety of Collaboration						
T&E C	apabilit	Y		F												

Assessing UAS Effects and Capabilities

Autonomous Test Protocols and Design

Autonomous Test Protocols and Design

Test Bed and Environments for UAST

11	12	13	14	15	16	17	18	19	20	21	22	23	24	25		
	Epocł	ו ו				Epoch	II			Epoch III						
T&E/S	&T Inve	stment	S			Stimulus	selection or ge	eneration		Stimulus selection or generation						
	Stimulu	s selection or g	eneration				Sensors			Sensors						
	Data Acqu	Sensors	anagomont			Data Acqu	uisition and Ma	nagement		Data Acquisition and Management						
Da	ta Comprossion	and Character		uros)	Dat	a Compression	and Character	ization (signatu	ires)	Data Compression and Characterization (signatures)						
Da	Data roduct			ures		Data reduct	ion/analysis/in	terpretation		Data reduction/analysis/interpretation						
Prov	Pc iding increased	wer Technolog mission time a	gies: and capability w	vithout	Provid	Po ding increased increasir	wer Technolog mission time an ng the logistics	ies: nd capability w footprint	ithout	Providing increased mission time and capability without increasing the logistics footprint						
	increasi	ng the logistics	footprint	_	1	Test conducting	g including situa	ation awarenes	s	Test conducting including situation awareness						
	Test conducting	g including situ	ation awarene	SS		Tes	st operation Sat	fety		Test operation Safety						
	Te	st operation Sa	afety			FAA and	other Civil Coo	rdination		FAA and other Civil Coordination						
	FAA and	ISB Interoperat	bility			C4ISR Interoperability					C4ISR Interoperability					
Challe	Unmanr System Unmanr	ned Autono Evaluation ned Autono	omy t		Teamed Autonomy in System Evaluation Teamed Autonomy in Test Management					Collaborating Autonomy in System Evaluation Collaborating Autonomy in Test Management						
T&E C	Test Ma Range S apabilit	nagement afety of Re Y	mote Cont	rol	Range Safety of Teaming					Range Safety of Collaboration						
T																

Test Bed and Environments for UAST

UAST Reference Data Sets (Ground Truth, Decision, & Behavior)

Tools and Techniques for Systemic UAST

11	12	13	14	15	16	17	18	19	20	21	22	23	24	25		
	Epoch	۱l				Epoch	II			Epoch III						
T&E/S	&T Inve Analys Architectu Tes Evaluat Discover Evaluating Ikeli ssing the risk of tifying cost-effe emizing UAST(s supports fe	stment is of Test Requ re/Design of Te t Planning/Tim ating UAS Effec ring UAS capat ng likelihood o ihood of cyber f errors and om ectiveness of U) as a composa	S est episodes eeline tiveness bility limits f fratricide security intrusi hissions in test f AST configurati ble infrastructu	on findings ion used ure that	Analysis of Test Requirements Architecture/Design of Test episodes Test Planning/Timeline Evaluating UAS Effectiveness Discovering UAS capability limits Evaluating likelihood of fratricide Evaluating likelihood of cyber security intrusion Assessing the risk of errors and omissions in test findings Quantifying cost-effectiveness of UAST configuration used Systemizing UAST(s) as a composable infrastructure that supports test-specific plug-in modules					Analysis of Test Requirements Architecture/Design of Test episodes Test Planning/Timeline Evaluating UAS Effectiveness Discovering UAS capability limits Evaluating likelihood of fratricide Evaluating likelihood of cyber security intrusion Assessing the risk of errors and omissions in test findings Quantifying cost-effectiveness of UAST configuration used Systemizing UAST(s) as a composable infrastructure that supports test-specific, plug-in modules						
Challe	Nges Unmanr False Po Unmanr Dynamic Unmanr Enterpri	ned Autonc ositives/Neg ned Autonc c & Functio ned Autonc ise Tools	omy gatives omy onal Limits			Teamed A False Posi Teamed A Dynamic Teamed A Enterpris	Autonomy i itives/Nega Autonomy & Function Autonomy e Tools	atives			Collaboratir Collaborati Dynamic & Collaborati Enterprise	ng Autonor ves/Negati ng Autono Functiona ng Autono Tools	ny ves Tillimits my			
T&E Ca	apabilit	У	<u> </u>	•					.				<u><u></u></u>	<u></u>		

Tools and Techniques for Systemic UAST