
© 2011 TASC, Inc. | TASC Proprietary

 This presentation is marked

TASC Proprietary

 It was approved for Public Release
after the notice was applied.

Release Notice

© 2011 TASC, Inc. | TASC Proprietary
Published and used by INCOSE and affiliated societies with permission.

Glenn D. Fournier
David M. Patterson
Rudy S. Spraycar
Stephen J. Sutton (ret.), (presenter)
Donald M. York
TASC, Inc.

INCOSE Enchantment Chapter
July 13, 2011

Defending Software
Applications from Threats
Through Code Analysis

© 2011 TASC, Inc. | TASC Proprietary

Why Code Analysis of Software
Applications?

© 2011 TASC, Inc. | TASC Proprietary

• Acrobat Reader
• Flash Player
• Web Browsers/Apps
• Office Productivity
• Java

Most Common Attacks

© 2011 TASC, Inc. | TASC Proprietary

How long are your applications safe?

5

http://isc.sans.org/survivaltime.html

© 2011 TASC, Inc. | TASC Proprietary

How Long Are you Safe?

6

© 2011 TASC, Inc. | TASC Proprietary

 Quality and security of software applications pose
risks to mission success

 Risks from process, governance and methodology
flaws
– Concentrating on software function and ignoring software

implementation best practices, such as avoiding common
weaknesses and vulnerabilities

– Lack of development discipline and secure code development
training

– Failure to implement processes that adhere to standards and
best practice

– Lack of discipline in executing documented governance
– Unknown provenance for commercial off the shelf tools
– Growing code complexity and compounding of vulnerabilities

over multiple versions
– Demand to meet mission timelines

Why Code Analysis of Software Applications?

7

80% or More of Attacks Focus on Applications

© 2011 TASC, Inc. | TASC Proprietary

 Demands for assurance in software are growing
– DCID 6/3 (current policy for near term)
– ICD 503 (far term policy)
– NIST 800-53 (expresses requirements; source document for

IC and DoD policy)

 Independent, objective assessment
– Identify security and quality vulnerabilities before deployment
– Identify weaknesses before an adversary or circumstances can

exploit them
– Generate lessons learned
– Stimulate process improvement

Why Code Analysis of Applications? (cont.)

8

Can’t Eliminate All Vulnerabilities, but Can Improve Security Over Time

© 2011 TASC, Inc. | TASC Proprietary

Benefits of Software
Application Code Analysis

© 2011 TASC, Inc. | TASC Proprietary

 Provides actionable information for owners of
software applications
– Operational Risk Assessment

– For acceptable risk level
– Implement operational environment mitigations
– Monitor environment for events related to software risks

– For unacceptable risk level
– Require mitigations by development team
– Identify alternative software solution

– Evaluate Developer Team
– Security best practices
– Code quality

 Promotes an environment for the continued reduction
of operational risk

Key Benefits of Application Code Analysis

10

© 2011 TASC, Inc. | TASC Proprietary

• Technology debt1 – Agile development teams
deliver code that includes bugs, design issues,
and other code quality problems that are
potentially introduced with every addition or
change to the code

– If steps are not taken to minimize technical debt,
change can become prohibitively expensive, making
new capabilities unresponsive to new customer
requirements.

• Code analysis employed during the initial spin of
development and then applied with every
additional spin can help alleviate the
accumulation of errors and associated
vulnerabilities

Benefits of Code Analysis for Agile Development

11

1Black, Sue; Boca, Paul P; et al. September 2009. Formal Versus Agile:
Survival of the Fittest? Computer. IEEE Computer Society. New York, NY. p 44

1Black, Sue; Boca, Paul P; et al. September 2009. Formal Versus Agile:
Survival of the Fittest? Computer. IEEE Computer Society. New York, NY. p. 44.

© 2011 TASC, Inc. | TASC Proprietary

A Plan for a Code Analysis
Process

© 2011 TASC, Inc. | TASC Proprietary 13

•Process Team
(Dedicated Laboratory)
•Vendor Tools and Agreements
•Staff Expertise
•Best practices from current contractual
work and lessons learned from the
process

SW Code Analysis Process
•Elicit service need

•Match service to need
•Select tools and expertise

•Conduct analysis
•Report and consult
•Train developers

•Continual service improvement

•IC, DoD, and Federal Information
System Protection Policies
•SW Development Best Practices
•SW Deficiency/Weakness Databases

Internal or External
Customer

SW Characteristics
•Legacy – multiple languages
•Composite (open source,
COTS, GOTS, custom)
•Various missions
•Various locations
•Various classifications

Needs
Expectations
Source/Binary Code
Contract
Service fees
(or Charge-Back)

SLAs
Reports
Training
Consultation
Invoices
(or Charge-Backs)

Code Analysis Process: Concept of Operations

© 2011 TASC, Inc. | TASC Proprietary

An Analysis of Sample Code

© 2011 TASC, Inc. | TASC Proprietary

 Sample of Open Source Embedded Code
– SOA framework for instantiating an application through a GUI;

has initial set of components
– Code written in C/C++, Python
– Scripts written using XML

 Analysis Approach
– Define an unclassified use case
– Define and identify a risk taxonomy to judge the findings
– Scan code with vendor and open source tools
– Manually verify tool results; manually review major code

elements

Sample Code Analysis

15

© 2011 TASC, Inc. | TASC Proprietary

Risk Determination

Critical Critical issue. Resolve immediately. Easy to discover/exploit. High
value assets/capabilities.

High Significant security issue. Needs attention. May be hard to
discover/exploit or not involve high value assets/capabilities.

Medium Potential security issue. Address in future release. Issues may not
currently be exploitable but could become so.

Low Minimal security risk in likelihood/consequence. Issues with low
likelihood/impact.

Informational Note good/bad practices, unsuccessful attempts to penetrate the
system, or other—not a security issue.

LIKELIHOOD

High Medium High Critical

Medium Low Medium High

Low Informational Low Medium

Low Medium High

IMPACT

16

© 2011 TASC, Inc. | TASC Proprietary

 Open Source Tool #1 – Identified 369 Total findings
– 38 Total Unique Findings

– Risk Level 5 – 8 Total Findings
– Risk Level 4 – 87 Total Findings
– Risk Level 3 – 4 Total Findings
– Risk Level 2 – 161 Total Findings
– Risk Level 1 – 109 Total Findings

 Open Source Tool #2– Identified 424 Total Findings
– 26 Total Unique Findings

– Risk Level High – 76
– Risk Level Medium – 54
– Risk Level Low – 294

Open Source Results

17

© 2011 TASC, Inc. | TASC Proprietary

 Automated Analysis
– Total findings identified

– Commercial Tool – 335
– Open Source Tool #1– 369
– Open Source Tool #2 – 424

 Manual Analysis
– Reduced findings to 23 total findings

– 22 identified first through automated tools
– 1 identified through manual analysis alone

– Eliminated false positives and unexploitable code quality
findings, such as:
– Memory Leaks
– Poor Style
– Dead Code

Sample Code Analysis Findings

18

© 2011 TASC, Inc. | TASC Proprietary

 Significant vulnerabilities found (number of
instances)
– Attackers Can Access CORBA Objects Due To Lack of

Authentication (1 - manual)
– Attacker Can Cause Buffer Overflow Due to Unverified Bounds

(2)
– Attackers With System Access Can Execute Arbitrary

Commands Through Directory Traversal (3)
– Attackers Can Cause Application Errors Due to Weak Input

Validation Scheme (16)
– Attackers Can Eavesdrop on System Communications Due to

Lack of SSL (1)

Sample Code Analysis Findings (cont.)

19

© 2011 TASC, Inc. | TASC Proprietary 20

1 CWE-79 Failure to Preserve Web
Page Structure ('Cross-site
Scripting')

10 CWE-311 Missing Encryption of
Sensitive Data

19 CWE-306 Missing
Authentication for Critical
Function

2 CWE-89 Improper Sanitization of
Special Elements used in an SQL
Command ('SQL Injection')

11CWE-798 Use of Hard-coded Credentials

20 CWE-494 Download of Code
Without Integrity Check

3 CWE-120 Buffer Copy without
Checking Size of Input ('Classic
Buffer
Overflow')

12 CWE-805 Buffer Access with Incorrect
Length Value

21 CWE-732 Incorrect
Permission Assignment for
Critical Resource

4 CWE-352 Cross-Site Request
Forgery (CSRF)

13 CWE-98
Improper Control of Filename for
Include/Require
Statement in PHP Program ('PHP File
Inclusion')

22 CWE-770 Allocation of
Resources Without Limits or
Throttling

5 CWE-285 Improper Access Control
(Authorization)

14 CWE-129 Improper Validation of Array
Index

23 CWE-601 URL Redirection to
Untrusted Site ('Open Redirect')

6 CWE-807 Reliance on Untrusted
Inputs in a Security Decision

15 CWE-754 Improper Check for Unusual or
Exceptional Conditions

24 CWE-327 Use of a Broken or
Risky Cryptographic Algorithm

7 CWE-22 Improper Limitation of a
Pathname to a Restricted
Directory ('Path Traversal')

16 CWE-209
Information Exposure Through an Error
Message

25 CWE-362 Race Condition

8 CWE-434 Unrestricted Upload of
File with Dangerous Type

17 CWE-190 Integer Overflow or
Wraparound

9 CWE-78 Improper Sanitization of
Special Elements used in an OS
Command ('OS Command Injection')

18 CWE-131 Incorrect Calculation of Buffer
Size

1http://cwe.mitre.org/top25/

2010 CWE/SANS Top 25 Most Dangerous Errors Leading to
Vulnerabilities1

© 2011 TASC, Inc. | TASC Proprietary

Findings of Assessment by Location in Sample

0

2

4

6

8

10

12

14

16

18

FrameWork Parser OmniORB DTD

Location

21

© 2011 TASC, Inc. | TASC Proprietary

 Attackers Can Access CORBA Objects Due to Lack of
Authentication
– Location: omniORB Service
– Severity: Medium
– Risk: The framework does not provide a means by which

interacting components can authenticate one another through
the CORBA service. The current CORBA implementation does
not utilize authentication or authorization, so any remote
CORBA objects can be exposed to an attacker. An attacker
can set up a rogue communications endpoint to access or
modify objects via the CORBA service. Without proper
authentication, framework components would be unable to
differentiate legitimate data and commands placed in the
naming service from injected or forged ones. As a result, the
application cannot provide proper accountability or access
control. If this system is used in a closed environment, risk is
LOW, but should an attack occur the impact is nevertheless
HIGH.

A Close Look at One Vulnerability

22

© 2011 TASC, Inc. | TASC Proprietary

 Recommended Solution: Implement an authentication
mechanism to verify the identity of users and/or
distributed components. Alternative methods:

– The Common Secure Interoperability, version 2 for CORBA implements
client/server authentication at the transport layer or above. This
standard also provides transport encryption and integrity as well as
other security services using CORBA. However, the CORBA
implementation used by the this application, omniORB, does not
support Common Secure Interoperability, version 2 (CSIv2).

– Implement a custom authentication mechanism that operates in
conjunction with this framework. The mechanism should protect any
identity credentials at all times and should be resistant to attack. The
mechanism may also need to provide management functions to
configure allowed credentials.

– Implement a network-based scheme using a combination of access
control lists and network policies. This scheme would segment the
network such that only legitimate systems could communicate with
each other. A certificate-based authentication mechanism could be
used to reinforce network identity. Note that this scheme does not
prevent a malicious user on one system from connecting to other
endpoints in the network.

A Close Look at One Vulnerability (cont.)

23

© 2011 TASC, Inc. | TASC Proprietary

Code Analysis Tools –
Strengths & Weaknesses

© 2011 TASC, Inc. | TASC Proprietary

 The Pros…
– Analyze large amounts of code in a short period of time
– Allow developers to maintain the development tempo
– Reduce the work to manually address ~20% of vulnerabilities

 Commercial tools…
– Are continually improved and updated by vendors
– Provide a variety of reporting options

– Summary
– Executive
– Detailed

– Ability to drill down into findings
– References and/or links for remediation

Strengths of Automated Tools

25

Tools provide a necessary level of automation for the process

© 2011 TASC, Inc. | TASC Proprietary

 The Cons…
– Provide an excessive amount of data
– Do not consider intent of code, threat environment, or areas of

specific customer concern
– May miss serious vulnerabilities

 Utilizing multiple tools provides a more
comprehensive description of operational risk

 Expertise and manual review are necessary to
overcome these weaknesses while maintaining the
benefits of automated tools

Automated Tools are not Enough

26

However, tools are not sufficient to give a complete assessment

© 2011 TASC, Inc. | TASC Proprietary

Expertise and Manual Review

© 2011 TASC, Inc. | TASC Proprietary

 Employ the expertise of…
– Senior Software Development Engineers
– Senior Security Engineers

 … to conduct a manual review of the software and
automated tool findings
– Applied to automated tool findings

– Minimizes false positives by validating automated tool findings
– Focuses remediation efforts on findings that are not mitigated by

other environmental factors
– Applied directly to code base

– Minimizes false negatives by identifying findings missed by
automated tools

– Focuses analysis efforts on areas of customer importance that
could be missed by automated tools

Expertise and Manual Review

28

Use Expertise and Manual Review to Overcome the
 Weaknesses but Maintain the Benefits of Automated Tools

© 2011 TASC, Inc. | TASC Proprietary 29

QUESTIONS?

© 2011 TASC, Inc. | TASC Proprietary

 The Software Code Analysis Process Should…
– Identify significant security vulnerabilities in applications
– Utilize static and dynamic analysis techniques
– Consider the perspective of a malicious user while conducting

analysis activities
– Isolate findings to specific locations or sub-components within

the software application
– Offer mitigations for identified vulnerabilities

What this Process Does

30

© 2011 TASC, Inc. | TASC Proprietary

 The software code review process provides a
comprehensive review of source code and/or binary code
for flaws, vulnerabilities, backdoors and exploitable errors
through Static Analysis

 Along with a review of the code, the review team should
identify potential ways an adversary could exploit the
application from a running state
– (e.g., SQL injections from a Web front end, unhandled errors,

etc.)

 Mitigation information, prioritized, should be provided to
the development team, allowing them to decide on actions
related to enhancing the security of and reducing the risks
to the application in question

 The objective is not just a simple code review, but a review
from the point of view of the adversary, to see how an
adversary can exploit an application, and then prevent this
from taking place

Process Description

31

© 2011 TASC, Inc. | TASC Proprietary

 Drive for continual service improvement in results,
products and assessment thoroughness, expanded
capabilities, and staff knowledge and expertise

 Determination to enhance the assurance of Customer
applications (and systems)

 Best practices from project- and organization-specific
experience, and lessons learned in the laboratory

Improving the Process at TASC

32

	Release Notice
	Defending Software Applications from Threats Through Code Analysis��
	Why Code Analysis of Software Applications?
	Most Common Attacks�
	How long are your applications safe?
	How Long Are you Safe?
	Why Code Analysis of Software Applications?
	Why Code Analysis of Applications? (cont.)
	Benefits of Software Application Code Analysis
	Key Benefits of Application Code Analysis
	Benefits of Code Analysis for Agile Development
	A Plan for a Code Analysis Process
	Slide Number 13
	An Analysis of Sample Code
	Sample Code Analysis
	Risk Determination
	Open Source Results
	Sample Code Analysis Findings�
	Sample Code Analysis Findings (cont.)�
	2010 CWE/SANS Top 25 Most Dangerous Errors Leading to Vulnerabilities1
	Findings of Assessment by Location in Sample
	A Close Look at One Vulnerability
	A Close Look at One Vulnerability (cont.)
	Code Analysis Tools – Strengths & Weaknesses
	Strengths of Automated Tools
	Automated Tools are not Enough
	Expertise and Manual Review
	Expertise and Manual Review
	Slide Number 29
	What this Process Does
	Process Description
	Improving the Process at TASC�

