Mechanical & System Engineering Challenges Associated with the Development of the ChemCam Instrument for the NASA Mars Science Laboratory

Presentation Outline

The MSL Mission and Curiosity, the MSL Rover The ChemCam Instrument System Engineering ChemCam Mechanical Engineering ChemCam Launch and the Future Mission

The MSL Mission and Curiosity

- Assess the biological potential of the site by investigating any organic and inorganic compounds and the processes that might preserve them
- Characterize geology and geochemistry, including chemical, mineralogical, and isotopic composition, and geological processes
- Investigating the role of water, atmospheric evolution, and modern weather/climate
- Characterize the spectrum of surface radiation

Mission Overview

CRUISE/APPROACH

- 8½-month cruise
- Arrives August 6, 2012

- Launched on Nov. 26, 2011
- Atlas V (541)

ENTRY, DESCENT, LANDING

- Guided entry and powered "sky crane" descent
- 20 × 25-km landing ellipse
- Designed to access landing sites ±30° latitude, < 0 km
- 900-kg (1 ton) rover

SURFACE MISSION

- Prime mission is one Mars year
- Latitude-independent and long-lived power source
- Ability to drive out of landing ellipse
- 75 kg (165 lbs.) of science payload
- Direct (uplink) and relayed (downlink) communication
- Fast CPU and large data storage

Curiosity – the MSL Rover

MSL Science Payload

2.2 m

Height of Mast:

REMOTE SENSING

Mastcam (M. Malin, MSSS) - Color and telephoto imaging, video, atmospheric opacity

ChemCam (R. Wiens, LANL/CNES) – Chemical composition; remote micro-imaging

CONTACT INSTRUMENTS (ARM)

MAHLI (K. Edgett, MSSS) – Hand-lens color imaging APXS (R. Gellert, U. Guelph, Canada) - Chemical composition

ANALYTICAL LABORATORY (ROVER BODY)

SAM (P. Mahaffy, GSFC/CNES) - Chemical and isotopic composition, including organicsCheMin (D. Blake, ARC) - Mineralogy

ENVIRONMENTAL CHARACTERIZATION

MARDI (M. Malin, MSSS) - Descent imaging
REMS (J. Gómez-Elvira, CAB, Spain) - Meteorology / UV
RAD (D. Hassler, SwRI) - High-energy radiation
DAN (I. Mitrofanov, IKI, Russia) - Subsurface hydrogen

Science Strategy

1. REMOTE SENSING

- Landscape imaging
- Sampling of rock and soil chemistry

2. TRAVERSE/APPROACH

- Driving ~100 m per sol
- Imaging and profiling chemistry along the drive
- Locating sampling targets

3. CONTACT SCIENCE

- Removal of surface
 dust
- Chemical and handlens observations of a specific target

4. SAMPLE ACQUISITION/ANALYSIS

- Drilling, processing, and delivering sample material to the rover's lab instruments
- Analyzing for mineralogy, organics, elemental and isotopic chemistry

Each class of activity may require multiple sols. Results from each class are reviewed on Earth before moving on to the next. Weather and radiation monitoring occur on all sols.

cnes

The ChemCam Instrument

IASA/IE

CENTRE NATIONAL D'ETUDES SPATIALES

System Engineering ChemCam

CEC

RSITE PAUL SAE

System Functional/Performance Model

			Observed from 5.4m Standoff Distance				
Element/Oxide	Wavelength (nm)	Spectrometer	Concentration (Molc wt%)	Accuracy	Precision	S/N Observed	Required S/N
SiO ₂	288.2	UV	44.64	2.10%	0.77%	568.0	81.3
A1.0	308.2	UV	13.50	8.16%	5.97%	28.5	28.5
AI_2O_3	309.3	UV	13.50	3.57%	1.81%	52.0	<10.0
Fe ₂ O _{3tot}	404.5	VIS	6.21	7.49%	5.49%	14.4	<10.0
CaO	714.8	IR	7.12	4.80%	1.46%	27.3	<10.0
MgO	285.21	UV	8.46	11.33%	6.43%	357.0	357.0
TiO ₂	453	VIS	0.70	1.57%	10.42%	28.1	28.1
Na ₂ O	589.6	IR	2.22	7.82%	10.21%	78.7	78.7
КO	766.5	IR	0.20	9.01%	1.49%	64.1	64.1
K ₂ 0	769.9	IR	0.20	4.26%	1.32%	42.6	13.0
Minor Elements							
С	247.8	UV	0.525%	TBD	20.1%	23.9	23.9
C.	407.7	VIS	252 ppm	9.26%	21.42%	12.1	12.1
51	421.6	VIS	252 ppm	7.46%	19.90%	18.8	18.8
Li	670.8	IR	7.5 ppm	11.33%	1.06%	13.1	13.1

Green elements are at the accuracy requirement with the observed S/N

CENTRE NATIONAL D'ETUDES SPATIALES

Photon Budget from S/N Model Drives Optical Design

					K-769	K-766
	Source Line etreneth		ot/mmA7/er	/line)	2 12E+09	3 26E+09
	Source Line strengt	r (photons/sr	00/11111-2/51	/inte)	2.121.403	5.201+05
	Target distance - mn	n			9000	9000
	Telescope Semi-ape	rture - mm			55	55
	solid angl	le - sr			0.000117	0.000117
	trans to fi	ber interface			0.4	0.25
	NA match	n to fiber			0.12	0.12
	fiber core	- mm			0.3	0.3
	Fiher image area at i	nlaema - mm	AD		27 25654	27 25654
	Plasma diameter (to	n hat) - mm	2		27.20034	27.20034
	(image m	µst<≕nlasma	a diam or lin	nit to 5 mm	19 63495	19 63495
	(intage in				19.63495	19.63495
					10.00400	10.00400
	Det int time - sec				3 333333	3 333333
	Laser ren rate - Hz				15	15
	Shots per read				50	50
	Photons delivered to	tel fiber-ph	ot/read/line		9.77E+07	9.39E+07
		· · ·				
	Demux trans				0.58	0.58
	Fresnel	0.963		2	0.927369	0.927369
	Fiber joints	0.966	NO.	0	1	1
	fiber length - m	0.995	meter	5	0.975249	0.975249
	Gain at fiber (demux	output interf	ace)			
	DN/phot				7.94E-06	8.21E-06
	gain impr	ovements				
		cyl lens			1.8	1.8
		NA match	0.12	0.22	1	1
		slit size	14.3	14.3	1	1
	projecte	d gain 👘 👘			1.43E-05	1.48E-05
	Digital counts output	- DNs/read			406.8	404.3
	with impre	ovements			732.2	727.7
	Read noise - RMS D	IN			3 705 - 05	3
	NEP at gain FU - ph	otons			3.78E+05	3.65E+05
					2.10E+05	2.03E+05
	Loss due to duet/ees	attering	0.1		0.0	0.9
	Loss due to alignme	nt	0.1		0 712	0 712
	~S/N		0.200		86.9	86.4
					156.4	155.4
	Required S/N (LIBS I	LAB)			13	64.1
	S/N Margin (ass	ume thro	uahput)		6.68	1.35
AR	S/N Projected				12.03	2 /2
-					12.00	2.42
	21/12					

Design Elements Impacted by System Model:

- Laser power output, pulses, rep rate
- Telescope Optics and Coatings
- Fiber optic cable material
- Complete development of Optical Bandpass Filter (demux)
- Body Unit FOC bundle
- Spectrometer slit design, Optic materials
 & coatings,
- 2-D CCD array
- Incorporation of CCD cryocooler & other thermal features
- Time of day for operation

System Engineering Challenges

- Extremely complex instrument and tough science requirements
- Short development time (~2 years from start to flight delivery) to conduct a qual level program
- Numerous mission and environmental requirements (science, mission assurance, planetary protection, environmental, Rover accommodation, etc)
- ChemCam made up of three teams (LANL & JPL in US, and CESR in France). Many different cultural aspects at all 3 institutions!

Mechanical Engineering ChemCam

- Delicate high precision optics (position, alignment, stability)
- Sensitive electronics
- Lightweight materials (Be, Mg)
- Small Packaging Envelope
- Thermal dissipation, temperature & CTE control
- Mechanical strength & stability for vibration & shock
- Protection from EMI, dust, radiation

Mechanical Design Example

Spectrometer Evolution

Commercial Ocean Optics Aluminum HR2000 Spectrometer ChemCam EDU Ti Spectrometer ChemCam EM Ti Spectrometer (partial)

Modifications to HR2000 Required for MSL Flight Compatibility:

- Change housing material and geometry to reduce mass and minimize thermal expansion/contraction problems
- Change CCD for radiation survivability
- Change optics/mount materials for CTE compatibility
- Relocate spectrometer electronics to Ebox
- Reconfigure grating mount for stiffness and adjustability
- Change FOC mount for enhanced alignment and stability

Mechanical Design – Spectrometer Housing Alamos

Individual Spectrometer Design Summary

- Be S200F housing: low mass, low CTE
- SFL57 Optics/Ti-6AI-4V mounts for CTE match
- Semi-kinematic mounts for mirrors and grating
- Thermal float mount for CCD with clocking adjustment
- Light baffles + Z306 black paint for scattered light suppression
- Outer Ni plating for low ε and Be containment
- Be-Cu slit, SS-FC bulkhead connector CTE matched, ok on venting
- Hi tolerance machining for alignment reasons

Multiple Spectrometer Design Summary

- Close
- Ti-6AI-4V bolts for cinching & CTE match
- 15 μ m filter for venting, avoids icing and ΔP failure
- Three AI-6061-T6 mounting feet for CTE mismatch with Magnesium Ebox, good thermal conductivity
 Copper tape to seal screw holes and seams

Mechanical Design – Grating Mount

Grating Mount changed to kinematic configuration for stiffness and alignment enhancement & stability

Mechanical Design - CCD

2-D CCD with new Mounting Hardware and PCB

 CCD Subassembly on spectrometer and CCD PCB flex cable connected to Ebox spectrometer PCB
 Cover designed to allow +/-2.3 deg clocking rotation.

CENTRE NATIONAL D'ETUDES SPATIALES

Thermal Analyses: CCD Thermal Fatigue

• Assumptions:

- PCB Fixed at center
- 1-D Analysis
- Thermal expansion difference:

$$\Delta l = \left(\alpha_{PCB} - \alpha_{Component}\right) d\Delta T$$

where d is the diagonal length of the component

EDU Test Results

- Titanium EDU Spectrometer with SFL Optics on Ti
 Mounts and old Sony 1-D
 CCD put through
 Qualification Vibration and
 Thermal-atmosphere tests
- Test results lead to
 - Redesign of grating mount
 - Choice of material for optics and their mounts
 - Flatness specification of Spectrometer housing

PQV Testing - Optics

- Spectrometer Optics
 - 900 LPM Zerodor grating on a Ti-6Al-4V mount
 - Round and Rectangular SFL57 mirrors on Ti-6Al-4V mounts
 - All mounted with Dymax 602 Rev A series bonding adhesive (no activator used)
- No damage nor releasing of the epoxy noticed throughout the 2000 cycles

Optical/Mechanical Design

Optic mounting:

- Adjustability limited for mass, envelope, and vibe slip reasons.
 Adjustments in Z of lenses and XY for FOC output connector
- High precision machining on flatness & positioning
- Spring mounts designed for CTE mismatch & vibration levels

CENTRE NATIONAL D'ETUDES SPATIALES

Fiber Bundle Design

- Fiber needed to transport LIBS plasma light from demux to spectrographs
- Fiber Optic Cable Vendor: CeramOptec
- History:
 - New CCD opened the possibility of using fiber bundle to increase throughput into spectrometer (round bundle on demux end, linear array on spectrometer slit end)
 - Discussed and ordered prototype in Aug. '06
 - Received and optically tested Oct. '06
 - Thermally cycled Nov. '06 to Jan. '07
 - SOW negotiated Nov. to Feb., visited CeramOptec in Feb.
 - Inputs from C. Hays & M. Ott
 - Includes vacuum bake, pull tests, inspections
- Design Features:
 - FC-FC 19-fibers, 50-55-66 μm core+cladding+buffer
 - Matching of key to linear feature on spectrometer end
 - PTFE jackets

LVPS PCB Thermal Analyses

Materials:

- Polyimide PCB
- Ceramic Power Supplies
- Al-6061-T6 heat sinks
- Micro-Faze A thermal pads
- Thermal Conditions
 - Steady-state analysis
 - Total power (nominal for all BU functions) = 4.7 W
 - Max power = 5.6 W (120% for uncertainty)
 - Thermal contact resistance modeled for PCB to housing and thermal pad mounts
 - PCB edge temperature determined from Ebox temperature (Ebox thermal model) and PCB thermal contact resistance
 - Thermal path of pins neglected
 - Qual. Operating, Hot & Cold temperature conditions
 - AFT Operating Hot & Cold temperature conditions

120% Nominal Power Results (no limits exceeded)

LVPS Board Thermal F	Results						
Polyimide board with co	opper layers						
Temp of EBOX mounti	ng70C		50				
Temp of board at mour	nti 77C		57				
Condition Modeled	Qual Hot Operating		AFT Hot Operating				
	Temp top of	Temp of	Temp top of	Temp of	Nominal recom- mended Op Case Temp	Max Rated Op Junction	JPL derated Op Allowable max Junction
A. 411-1	case (deg	Junction	case (deg	Junction	Range	Temp	temp
Component ID	case (deg C)	Junction (deg C)	case (deg C)	Junction (deg C)	Range (deg C)	Temp (deg C)	temp (deg C)
Component ID +/-12VDC converter	case (deg C) 96.9	Junction (deg C) 99.3	case (deg C) 77.5	Junction (deg C) 79.9	Range (deg C) -55 to 125'	Temp (deg C) 135	temp (deg C) 110
Component ID +/-12VDC converter -12VDC converter	case (deg C) 96.9 96.9	Junction (deg C) 99.3 99.3	case (deg C) 77.5 77.5	Junction (deg C) 79.9 79.9	Range (deg C) -55 to 125' -55 to 125'	Temp (deg C) 135 135	temp (deg C) 110 110
Component ID +/-12VDC converter -12VDC converter Filter	case (deg C) 96.9 96.9 99.1	Junction (deg C) 99.3 99.3 NA	case (deg C) 77.5 77.5 79.7	Junction (deg C) 79.9 79.9 NA	Range (deg C) -55 to 125' -55 to 125' -55 to 120'	Temp (deg C) 135 135 130	temp (deg C) 110 110 105
Component ID +/-12VDC converter -12VDC converter Filter +/-5VDC converter	case (deg C) 96.9 96.9 99.1 99.6	Junction (deg C) 99.3 99.3 NA 102.0	case (deg C) 77.5 77.5 79.7 80.3	Junction (deg C) 79.9 79.9 NA 82.7	Range (deg C) -55 to 125' -55 to 125' -55 to 120' -55 to 125'	Temp (deg C) 135 135 130 130	temp (deg C) 110 110 105 110
Component ID +/-12VDC converter -12VDC converter Filter +/-5VDC converter +5VDC converter	case (deg C) 96.9 96.9 99.1 99.6 99.6	Junction (deg C) 99.3 99.3 NA 102.0 102.0	case (deg C) 77.5 77.5 79.7 80.3 80.3	Junction (deg C) 79.9 NA 82.7 82.7	Range (deg C) -55 to 125' -55 to 120' -55 to 120' -55 to 125' -55 to 125'	Temp (deg C) 135 135 130 130 135 135	temp (deg C) 110 110 105 110 110

SITE PAUL SAF

Procurements / Manufacturing / Assembly

39

Machining, Plating & Painting Be & Mg

Custom Alignment & Test Tools

Electronics Integration

CCBU FM#1 Assembly

Demux Assembly & Alignment

Functional Testing

Environmental Testing

41

Random Vibration

Mechanical Shock

Launch & the Future Mission

Assembled Spacecraft

Gale Crater

The landing ellipse allows access to a fan at the base of a fluvial channel that begins on the crater wall.

Other science targets include fresh craters that expose bedrock, and small channel features.

> Clay Minerals and Sulfate Salts

Clay Minerals

Dark Sand

Crater Floor

Direction of Traverse

The primary science targets are the lower strata of the central mound, where orbital mapping indicates the presence of phyllosilicate minerals (clays) near the base of the section, transitioning to sulfates higher up.

Additional Slides

Rover Family Portrait

Learn More about Curiosity

Mars Science Laboratory http://mars.jpl.nasa.gov/msl

MSL for Scientists http://msl-scicorner.jpl.nasa.gov

Mars Exploration Program http://mars.jpl.nasa.gov

