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ABSTRACT

This paper demonstrates a vetted methodology for
identifying areas of architectural modularity using two
detailed architecture references:

e NISTIR Logical Reference Model [1] — a work product
of the NIST smart grid standards effort that establishes
actors and interfaces in the smart grid

e NRECA'’s Demonstration Architecture [2] — a planned
architecture for a federally funded smart grid
demonstration project.

The design structure matrix methodology [3] is applied with
the intent to demonstrate how this approach can apply to
defining smart grid architectures and to help identify
architectural groupings that can lead to better
modularization of smart grid systems and standards efforts.

This paper is intended to inform current and future smart
grid architecture efforts and to help improve the
organization by which smart grid systems and standards can
be established. The paper concludes that initial smart grid
architectural efforts (as documented in [1] and [2], actual
architectures may have other constraints such as backward
compatibility) can be improved upon by identifying areas of
modularity and organizing around them. The tools
demonstrated can be best applied when the full
dimensionality and scope of the problem is made explicit,
but the demonstrations in this paper that use only publically
available information also yield interesting findings.
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1. WHY MODULARITY?

One significant interoperability challenge today is to
integrate with legacy systems while driving toward elegant
solutions for future integrations. This challenge is
compounded by a phenomenon called “accidental
architecture.” [4]

An accidental architecture is the de facto structure of a
system resulting from numerous point-to-point integrations
between various applications to achieve near-term
objectives. Point-to-point integrations are not scalable and
often create unintended ripple effects on downstream
applications. The result of this haphazard evolution is a
unique and customized system that becomes increasingly
difficult to maintain, update and integrate with. Minimizing
the accidental architecture phenomenon requires both
backward-looking and forward-looking efforts — how do we
integrate with the existing architectures of today while
ensuring robust architectures tomorrow.

Part of the mechanism that leads to accidental architectures
is the highly integrated nature of these grid communication
systems. The characteristics of each dependency and
interface of the system are so nuanced that custom
approaches are required. The original architectural
principals of these systems can be difficult and costly to
maintain, and therefore they are not maintained.

Modular systems [5], on the other hand, are less tightly
integrated and tend to integrate easily, evolve flexibly, and
operate simply and reliably [6]. Modularity can often be
difficult to achieve in large complex systems. This paper
demonstrates a vetted approach to identifying modularity in
complex systems that can lead to improved system
structures and ultimately reduce the impetus for point-to-
point integrations that lead to accidental architectures.
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2. DESIGN STRUCTURE MATRIX OVERVIEW

The design structure matrix (DSM) is a modeling tool that
represents the relationships and dependencies between
components of a system, product, or process. The DSM was
first introduced by Donald Steward [7] and captures
coupling and dependency relationships between the
components of a system.

Figure 1. Simple Example System and DSM Representation
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The DSM methodology has been applied to understand and
improve the architecture of complex products and processes
in automotive [8], aerospace [9], and other technology-
based industries — including architecture for meter data
management systems. [10] The matrix format is a useful
visualization tool that cleanly represents dependencies
between elements within systems, simplifying the study and
analysis of systems. The matrix format allows systematic
application of a variety of quantitative techniques — such as
clustering described below — that can be used to characterize
[11] and organize [12] complex systems. The DSM
methodology has also been extensively applied to the study
of process architectures [13] in addition to system
architectures.

The DSM represents the components of a system as rows
and columns in a matrix where the components are listed in

the same order along both axes. An off-diagonal mark
located within the matrix denotes an interface, dependence
or coupling between two components. The diagonal of the
square matrix is unimportant and often shaded a different
color since the DSM analysis only looks at relationships
across components and not within components. Steward’s
original model is also referred to as a hinary DSM because
each cell in the matrix represents a binary choice of
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dependency. For example, the system shown in Figure 1,
where each subsystem is represented by a letter, can be
represented as a 7x7 binary DSM. The example shown here
is a symmetric structure where each coupling shows
interdependency (bi-directional) rather than hierarchical
dependency (uni-directional), which is typical in
architectures of physical systems. /Note: Processes are a
typical example where hierarchical dependency occurs
where one task must be completed before another task can
begin. For this reason, process DSM representations are
typically asymmetric.

Clustering is a process applied to a DSM by which
subsystems are arranged and grouped in order to minimize
interdependency across groups. Groupings may be called
architectural areas or subsystems, which are defined simply
as groups whose internal elements exhibit relatively high
dependency, and whose external elements exhibit relatively

Figure 2. Example System DSM Clustered into More Modular Subsystems
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low dependency. Interfaces between subsystems require
individual attention, but the process of clustering is intended
to minimize the number of subsystem interfaces. Clustering
is an organizational optimization process that is intended to
assist in identifying useful architectures by rearranging the
order of the components in the rows and columns of the
matrix as shown in Figure 2.

The paper later develops a DSM for the smart grid based on
the NIST Logical Reference Model and NRECA’s
Demonstration ~ Architecture  and  processes  the
corresponding DSMs based on a clustering algorithm [14] to
identify groupings that may lead to an improved smart grid
architecture and standards development organization.

3. SMART GRID ARCHITECTURE REFERENCES

The DSM methodology requires identification of
components of a system, as well as the dependencies or
interfaces between the components as a starting point. The
analysis performed here does not identify new components
or dependencies in the smart grid, but instead uses
components and dependencies identified in existing smart
grid references. Two smart grid architectural references are
widely accepted — the GWAC Stack [15,16] and the NIST
Conceptual Model. [17] These are very useful architectural
references, but do not provide sufficient detail on the
underlying components of the smart grid and the
dependencies between them to apply the DSM
methodology. Two other architectural references, however,
do provide a level of detail for which the DSM methodology
could be useful — the NISTIR Logical Reference Model and

NRECA’s Demonstration Architecture. This section
describes each of these four architecture references.

3.1. GWAC Stack

The GridWise Context-Setting Framework identifies

communications layers as a key dimension of the smart grid
architecture. The communications layers proposed by the
GridWise Architecture Council are colloquially referred to
as the “GWAC Stack,” which is shown in Figure 3. As a
framework, the GWAC Stack makes no architectural or
technical recommendations but establishes a context to
discuss alternatives and complementary approaches. It is a
high-level, operational view common to the electricity
community used to communicate within the electricity
system to compare, align, and harmonize solutions and
processes as well as to manage critical infrastructure.
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Figure 3. The GWAC Stack Interoperability Framework
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3.2. NIST Conceptual Model

The NIST Conceptual Model is intended as a high-level,
overarching perspective tool for identifying actors,
communications paths, interactions, applications, and
capabilities enabled by these interactions. The Conceptual
Model is intended to aid in analysis — it is not a design
diagram that defines a solution and its implementation. In
other words, the conceptual model is descriptive and not
prescriptive. It is meant to foster understanding of Smart
Grid operational intricacies but not prescribe how the smart
grid will be implemented.

Figure 4. NIST Smart Grid Conceptual Model: Domains and
Customer Domain Detail

Customer Domain Detail

Domains

It does not represent the final architecture of the smart grid,
rather it is a tool for describing, discussing, and developing
that architecture. The conceptual model provides a context
for analysis of interoperation and standards for the
development of the architectures of the smart grid. The top
level domains of the conceptual model and a detail of the
customer domain are shown in Figure 4.



Rogers &

Figure 5 depicts a refinement of the conceptual model meant
to combine the domain views into one diagram and includes
example actor names, organizational  structure,
communications networks and some information about
security concerns.

Figure 5. NIST Combined Conceptual Reference Diagram
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However, neither of the NIST Conceptual Model
illustrations is intended to provide a complete list of smart
grid components and their dependencies.

Gilbert

3.3. Logical Reference Model

The Guidelines for Smart Grid Cyber Security: Vol. 1,
Smart Grid Cyber Security Strategy, Architecture, and
High-Level Requirements is a document produced by the
Smart Grid Interoperability Panel, Cyber Security working
group. The document expands upon the NIST Conceptual
Model to depict a composite high-level view of the actors
within each of the smart grid domains and the logical
interfaces between them — the Logical Reference Model
shown in Figure 6. Although cyber security is the primary
purpose of the document, the Logical Reference Model
provides sufficient detail for use as an input in DSM
methodology. This diagram served as the basis for the first
DSM analysis.

3.4. NRECA’s Demonstration Architecture

The National Rural Electric Cooperative Association
(NRECA) developed a detailed architecture as part of an
Interoperability and Cyber Security Plan required by the
DOE for a smart grid demonstration project partially funded
through an ARRA grant. The Demonstration Architecture is
based on the NIST Conceptual Model, but has been
modified to sufficiently meet the specific needs of this
project. In addition to identifying the key components that
must interoperate, the NRECA document also identifies

Figure 6. Actors and Interfaces Identified in the Logical Reference Model

—— -

— —— £ - Chatiburiony
KE - R‘maalmnl
4117 _T_. = w| TrananEsen "l-r-iu-— 4
—— * U F #| Eginesring uia |
| ‘ [ |,
e e . i e Cimsyrm Vi Bsrtaed! 111
= —d HiT Esgiraning = e 1 -l ash | g
AT - PRSI ! T 40 - Vol b 1 =] hemekon | e
Wit | o - y '1_—:'— _h A Marsjenims - 0a o 1 Eymiem |/ & EE‘. _I
Uni {1 5 -« Db bukal Syatam L b= Fi 3L
4 Nz Gsrerakin d ] S e
& A Slogge [ Y T S | [ 12 Ciskiubon..
7 lhiebind smiper g T A A | Dwa Detasiors
. ¢ :‘r i L ’.':\"(;::'L || ..”.I"L" o gt
Byalon e el ayem i -lﬂ-mnmc,rml‘ un
/ A i k | BE1 I R ! = T ==L _.
Manl Conirol LiE - T b teciciadinn) | e 5 i IIH-
Sk ol | Transrasson Cporaar i3 u I smmm“':
[y DA [ 38- ||
; I3 3 Load Maragemend k| L] § [ R
Ak & M | 1R —T "!.lzsy.-snclu.'D:r'at'd- L 7] CLshomer e
1 I Respanse Portal .
wiE £ 1 e 1 anagermn| Sysken [ TS T ot
ke i | T vy i ik & Friyme I..: ..l-|u.Jtz-|:.um|
L { - - L 3 L S maumiain: || —
% 1 - Dotsaik £ u }
1 T Ll Ty ] i b 10 _,.,.T T
[TEY] T a0l Pbibuten g2 | 13— | ] 25
T - Enrsy | hhbd—a = Managerent [ 23 - Cusstom [
= Marsgman | | . . 191 E'fsl-ar L Uz ormaion |- [AE i
SyaEn  [e—Und ] B el o . e LI & R LZE
77 5 L hi bt = 4 L] |
uoT .
L1E 2 I 5 A T
@-ba ||| »| 51- GORTO L1 | ! b a-am [0 T A .
Boragn [ = Oparalica | ] uki | T~ Mnlw Dein gt 0  Feacend |- [TIECY] A Do
'.'l..n:-q,umnl | Flanagament L | | 3 [ I T
1 | Lo 0 T R g B Digiay
] [=d - cining! | & 1 = i L n"&-&mmr L SRR
. B Eliegi iy LIt I Ewry Mrsmn| = e
(20 - IBRTOn Bk Do |- ] R ST - 54 ME g : "\ Epism
Yeholesal [ | b z LG g T 1
i B T 1 1" i : o ' P et
Warks) st e | o i s-cwtm-l..
- = 1i—3 e Utz Bgplanue au
il s uss | E'T.LIN.. Lo | AR
_ e e h) | a—
i . Sy e ||| 2 W bierigee’ HAM  ja Lad
S8 - Erengy . _Calwway_ o ’.'LL_.'U ™
oy Mok ca T i gl i i
Chaainghouse v - Letsr el
. T LI - ” e
—— -
~ - i L5
CEEr Acter Color Kay Lo i o s
j==—== LR T | e =y 10 Sutmatr
Optora || Dtetca ) b ooer | Ao ERune vasney, RO 5
| e femnosinnarn)  Bahida [EVEST] ———
S y o o h REN
[Pl - -

- - —
= v
R e Ty oy

Grid-Interop Forum 2011




Rogers & Gilbert

Figure 7. NRECA's Demonstration Architecture: Physical and Logical Architecture for Enterprise Application Integration
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each expected interface between the components. The level
of detail provided in NRECA’s architecture is sufficient for
use as an input to the DSM methodology. Although this
architecture is specific to the demonstration project and may
not encompass every possible facet of the future smart grid,
this architecture may be the most advanced to date coming
from an actual smart grid implementation project. The
diagram show in Figure 7 and its documentation served as
the basis for the second DSM analysis.

The following sections discuss the application of the DSM
methodology in the context of the NISTIR Logical
Reference Model and NRECA’s  Demonstration
Architecture.

4. APPLICATION OF DSM TO THE LOGICAL
REFERENCE MODEL

The Logical Reference Model was chosen for further
analysis since it portrays the structure of the smart grid in
greater detail and fidelity than the NIST Conceptual Model
and the GWAC Stack. The Logical Reference Model
identifies 48 actors and the interfaces between them as
shown in Figure 6. The interfaces were further grouped into
22 categories; however, this paper does not qualify each
interface by category, but rather treats the interfaces in a
binary fashion.
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These actors and interfaces were transformed into a DSM
representation with the actors listed along the rows and
columns in the order that they are numbered by the Logical
Reference Model. The resulting DSM is depicted in Figure
8.

Although there does appear to be some cluster density in the
initial organization of Logical Reference Model (actors 2-
11, which portray the customer domain), actors outside of
the customer domain do not appear to be optimally
organized since their interfaces are sparsely distributed
throughout the matrix. If a more optimal organization and
grouping of actors is possible, this should be evident after
arranging and optimizing the DSM for clusters.

A clustering exercise was performed to identify modular
groups. Two similar schemes emerged from the clustering
exercise, shown in Figure 9 and Figure 10.
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Figure 8. DSM Representation of the NISTIR Logical Reference Model (grouped according to Conceptual Model Domains)
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Figure 9. Clustered DSM Representation of the NISTIR Logical Reference Model — Scheme 1
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Figure 10. Clustered DSM Representation of the NISTIR Logical Reference Model — Scheme 2
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Both schemes reflect a hub & spoke structure, illustrated in
Figure 11, where spoke groups exhibit a high degree of
modularity (low degree of interdependency) between each
other and where the hub group contains actors that interact
with multiple spoke groups. The primary difference between
the schemes in the clustered DSMs presented below is that
the first scheme allows overlap between spoke groups where
actors are allowed to belong to either one or two groups,
while the second scheme only allows actors to belong to a
single group. The second scheme reflects a pure hub &
spoke approach where each spoke is modular with respect to
the other spokes; however, achieving complete modularity
among the spoke groups requires a larger hub group.

Figure 11. Simple Illustration of a Hub & Spoke Architecture

shown

The clustered DSM in Figure 9 depicts an
organizational structure of smart grid actors that
concentrates interfaces within groupings and reduces the
number of interfaces between groupings. Spoke groups A
through D are relatively modular with respect to each other
with only a few actors belonging to two spoke groups.
Elements of the hub group, on the other hand, exhibit
dependency with all of the spoke groups.

The clustered DSM shown in Figure 10 depicts an
organizational structure of smart grid actors that
concentrates interfaces within groupings and eliminates
interfaces between groupings. Spoke groups A through E in
Figure 10 are completely modular with respect to each
other. To achieve complete modularity between the spoke
groups, certain elements were moved to the hub group.
Thus, although the spoke groups are modular, the hub group
is relatively large.
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5. APPLICATION OF DSM TO NRECA’S
DEMONSTRATION ARCHITECTURE
NRECA'’s demonstration architecture was chosen for further
analysis since it portrays the structure of the smart grid in
sufficient detail and, and since it reflects the most detailed,
publically available architecture to date of a planned smart
grid implementation. The architecture identifies 22
applications, 18 automation components, and the interfaces
between them as shown in Figure 7. These applications,
automation components, and interfaces were transformed
into a DSM representation with the applications and
automation components listed along the rows and columns
in the order that they are presented by the demonstration
architecture. The resulting DSM is depicted in Figure 12.

There does appear to be some clustering in the initial
organization of Logical Reference Model (elements A1-A13
appear to be loosely clustered, A15-A20 appear to be
loosely clustered, and C9-C18 appear to be loosely
clustered), but the initial degree of clustering does not
readily indicate an apparent scheme for modular grouping.
If a more optimal organization and grouping of actors is
possible, this should be evident after arranging and
optimizing the DSM for clusters.

Two similar schemes of modular groupings based on
clusters that emerge from the clustering process are shown
in Figure 13 and Figure 14.

Two hubs emerge as modular architectural features for the
NRECA’s Demonstration Architecture in both Figures. An
interesting finding is that each of these hubs has a
substantial number of spoke elements that depend solely
upon the hub and not with other spoke elements. The
primary difference between the two schemes is that the first
architecture has large spoke groups that exhibit some
dependency between spokes. The second scheme moves
several important elements into the large hub and reduces
the large spoke groups into a chain of elements that each has
dependency with the hub, but which have minimal and
manageable dependency with other spoke elements rather
than other spoke groups. The second scheme, in effect,
reduces the need for grouping at the spoke level.

The clustered DSM shown in Figure 13 has two hubs, each
of which has a number of independent spoke elements.
There are also several relatively large spoke groups that
stem from Hub II and which have some dependency with
each other.

The clustered DSM shown in Figure 14 has a similar two
hub structure, but by moving some key elements into Hub
I1, the large spoke groups depicted in Figure 13 are reduced
to a “daisy chain” of coupled spoke elements and small
spoke groups.
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Figure 12. DSM Representation of NRECA's Demonstration Architecture
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Figure 13. Clustered DSM Representation of NRECA’s Demonstration Architecture — Scheme 1
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Figure 14. Clustered DSM Representation of NRECA’s Demonstration Architecture — Scheme 2
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6. CONCLUSIONS

Two smart grid reference architectures — the NISTIR
Logical  Reference  Architecture and  NRECA’s
Demonstration Architecture — were analyzed using the
design structure matrix (DSM) methodology.  Visual
comparison of the DSM for each architecture before and
after clustering indicates that there is room for improvement
in identifying and organizing by areas of modularity.

A “hub & spoke” scheme for grouping architectural
elements emerges from clustering the DSMs representing
both reference architectures. Spokes are groupings of
elements that exhibit a high degree of dependency with each
other and minimal dependency with elements of other
spokes. Hubs are groupings of elements that exhibit a high
degree of dependency with elements of multiple spoke
elements.

Clustering allows identification of groupings that are meant
to simplify architectures by creating areas of modularity and
identifying critical elements that are integral to the system.
It is in fact the identification and grouping of these cross-
cutting elements in the system that allows for modularity to
be identified elsewhere in the system. Prioritizing these hub
elements and acknowledging their importance can reduce
the complexity of the system and can even be used to create
hierarchical protocols.

Modularization can help combat accidental architectures by
isolating groups of dependency allowing them to be treated
as quasi-independent sub-systems. Modular systems can
evolve more elegantly because modular organization is
more easily respected than highly integrated systems when
upgrades or additions are needed.

Identifying modularization can also be useful for setting
smart grid standards. Hub elements can be viewed as
elements which provide the architectural foundation and can
be prioritized. Standards for spoke elements if developed in
coordination with their respective hub elements would then
not require substantial harmonization or iteration with other
spoke groups.

Inadequate architectural organization does not create
modularity, but instead leads to highly integrated systems
that cannot integrate easily, evolve flexibly, and operate
simply and reliably. The approach demonstrated here can
be applied to study existing utility architectures and to
identify appropriate technical solutions going forward.
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