

Systems Engineering for Software Intensive Projects

Using Agile Methods

Larri Rosser
Raytheon

Intelligence, Information and Services

Garland, TX

larri_rosser@raytheon.com

 Phyllis Marbach Gundars Osvalds, CSEP

 Boeing Praxis Engineering

 Huntington Beach, CA Annapolis Junction, MD

phyllis.r.marbach@boeing.com gosvalds@praxiseng.com

David Lempia

Rockwell Collins

Cedar Rapids, IA

 dllempia@rockwellcollins.com

Copyright 2013 © by Larri Rosser, Phyllis Marbach, Gundars Osvalds, and David Lempia. Published and used by INCOSE with permission.

Abstract. “Systems engineering is an interdisciplinary approach and means to enable the

realization of successful systems” as defined in the INCOSE Systems Engineering handbook.

When software development teams apply agile software methodologies such as Scrum, test driven

development and continuous integration (collectively referred to as “Agile software development”

hereafter); there are challenges in coordination with traditional systems engineering efforts. This

paper, developed by the INCOSE Agile Systems Engineering Working Group, proposes methods

for cross-functional teams that include Systems and Software Engineers working on mid-size (~80

contributors), customer “pull” projects to produce software products. This paper defines a

proposed Agile SE Framework that aligns with agile software development methodology, and

describes the role of the Systems Engineer in this context. It presents an iterative approach to the

aspects of development (requirements, design, etc.) that are relevant to systems engineering

practice. This approach delivers frequent releasable products that result in better customer

alignment and the ability to absorb changes in mission requirements through collaboration

between systems engineers and software engineers.

Introduction

Over a span of forty plus years, systems engineering has proven to be a value-added activity on

complex software intensive projects.
1
 Over the last decade and a half, agile software development

1
 A software-intensive project is defined as one in which software contributes essential influences to the

design, construction and deployment of a project.

mailto:larri_rosser@raytheon.com
mailto:dllempia@rockwell.com

methodologies have offered a faster, leaner, and more flexible approach to developing software.
2

Systems Engineers (SE) and Software Engineers (SWE) have been challenged to integrate value

added systems engineering activities into an agile software development approach. This challenge

has been met most successfully on small projects, in which the necessary systems engineering

activities can be owned by members of the development team and definition of capabilities and

determination of system readiness can be handled by the customer and stakeholders with minimal

formality.

Success in these small commercial environments encourages application of Agile software

development to larger and more complex projects, and to those with different business models,

such as Department of Defense (DoD) [U.S.] projects. Given the current economic climate and the

U.S. government’s fiscal challenges, the DoD and other federal customers are focused on lower

costs and greater value for money. One of the banners on the Better Buying Power web site (DoD

2010) states, “Ensuring Our Nation Can Afford The Systems and Services It Acquires.” The first

Focus Area of Better Buying Power is to “Achieve Affordable Programs.” Additional focus areas

emphasize “Control Costs Throughout the Product Lifecycle” and “Eliminate Unproductive

Processes and Bureaucracy.” The Engineered Resilient Systems (ERS) initiative, one of the DoD

Science and Technology Office’s top seven priorities, focuses on creation of affordable, effective

and adaptable solutions through faster implementation, reduced rework, better informed decision

making and the support of a broader range of mission contexts. Both the acquisition and technical

communities in the DoD are sending the same request: systems that meet their mission needs,

quickly and affordably. The Agile Defense Adoption Proponents Team (ADAPT) is composed of

industry and government representatives who are interested in advancing the adoption of Agile

software development in DoD acquisition. ADAPT has published a White Paper “Achieving

Better Buying Power 2.0 For Software Acquisition: Agile Methods” submitted for consideration to

USD (AT&L), DoD CIO and DCMO (ADAPT 2013). This paper was written in response to the

“Better Buying Power” challenge (DoD 2010).

While agile software development shows promise for providing more value at lower cost on DoD

and federal programs, its application has not been without its challenges. DoD programs have a

mature operational framework with long-standing practices and methods that are not well aligned

with agile software development concepts. These projects often have expectations of formal

milestones and an approach to delivery that are inconsistent with the agile software development

approach.

With respect to the definition of stakeholder needs, two general models are identified. The “push”

project, typical of commercial product development, is defined as one in which the enterprise

plans, proposes and implements a product that is then released to the market. The “pull” project

has a stakeholder or end customer who specifies the capabilities required and presents them to a

contractor for implementation. For purposes of this paper, the challenges and best practices are

examined as they apply to integrating systems engineering with the use of agile software

development on “pull” projects for DoD or federal programs in the Engineering and

2
 This paper addresses agile software development not the development of systems that are designed to

have agile capabilities.

Manufacturing Development (EMD) phase, with an assumed team size of approximately eighty

people.

This paper summarizes a traditional systems engineering approach, and proposes how systems

engineering can work on projects using agile software development. It describes some of the

unintended consequences and undesirable effects that have been experienced when combining

agile software development with formal systems engineering practices, and offers suggestions for

overcoming them. An Agile SE Framework is introduced which consists of architecture, process,

and roles describing the changes necessary to align SE and SWE in an agile methodology context.

Finally, a list of “Challenges” is described along with “Enablers” identified from the Agile SE

Framework that help resolve the identified challenges. Now software intensive projects using agile

software development methods can pick and choose the enablers most important to their teams’

success in working with SE.

Traditional Systems Engineering and DoD Acquisition

Historically, systems engineering provides value to projects in areas of cost, schedule and

technical quality (Honour 2004). Systems engineering delivers value through a variety of

activities, including technical management, mission and needs analysis, requirements articulation

and management, system architecture and design, and technical analysis and trades (Frank 2000).

Given this range of activities, systems engineering provides value to several stakeholders: the

customer, the user, the program manager and the implementation team. SE works with

stakeholders (customers and users) to articulate and prioritize needs, to coordinate prioritization

and progress reporting between the implementation teams and the program office, to remove

barriers, and to provide architectural focus and technical analysis to the implementation team.

While acknowledging that the role of SE includes working with the customer and the program

office, this paper will focus analysis and recommendations on the role of SE in supporting

implementation in the context of an agile software development paradigm. This paper will address

some of the technical processes described in the in Systems and software engineering -- System life

cycle processes (ISO/IEC 2008) standard as presented in Figure 1 from the INCOSE Systems

Engineering Handbook (INCOSE 2011). The technical processes addressed are: stakeholder

requirements definition, requirements analysis, architectural design, implementation, integration,

and verification.

Figure 1. System Life-cycle Process Overview

The traditional DoD program uses a waterfall lifecycle model, in which phases of activity (needs

definition, design, implementation, and test) occur sequentially for entire projects or large

increments of capability. It is assumed that quality and efficiency are ensured by fully

understanding the needs and completely specifying the solution before implementation begins.

This approach is sometimes described as “Big Design Up Front” (BDUF). In this paradigm, it is an

SE responsibility to obtain and document system needs from the stakeholders (customer,

stakeholder, user, etc.) via requirements, operational concepts, workflows and similar artifacts. SE

then develops the systems architectural designs and creates software specifications that are derived

from the system requirements. EMD programs are the focus of this paper, although

recommendations made will work with other acquisition phases or smaller projects as well. EMD

programs begin at Milestone B as described in the Defense Acquisition Guidebook (DoD 2012)

and depicted in Figure 2. At Milestone B requirements are defined for the system to be developed.

Figure 2. System Acquisition Framework

Traditionally, the systems team is responsible for meeting the stakeholder needs and developing

the systems design. The software team is responsible for using the system specifications,

architecture, and requirements to perform detailed design and develop the software. Workflows

between these teams are defined as interfaces with system and software specifications output from

the system team and input to the software team. This has been described as throwing one team’s

output “over the wall” to become another team’s input. Thus feedback and coordination is limited

to the detriment of the project. The next section describes a different way for systems team and

software team to work together on a software intensive project.

The Agile SE Framework

The Agile SE Framework describes changes to the architecture, process, and roles, required to

move from traditional SE processes to a SE process that augments the agile software development

teams. An issue with current agile methodologies is that the system architecture is not part of the

agile software development methodology strategy. When developing small systems software the

architecture is the responsibility of the agile software development team. For larger systems there

needs to be consideration for dependencies between the system capabilities and architectural

elements. The SE must become a member of the Agile SE Framework based Implementation

Team to anticipate the architecture support needed. It is imperative that the SE have the

responsibility to identify and analyze architecture dependencies and create and continuously

update an architecture that will provide the framework to support the software implementation

(Brown et al 2010).

SE working with agile software development teams can apply the Agile SE Framework to select

the enablers that best work in their situation. Specific changes to the traditional SE process are

called Enablers. The Enablers are described in the Agile SE Framework and are detailed in the

“Challenges and Enablers” section, later in this paper.

Role Changes

In traditional systems engineering approaches, the handoff from systems teams to agile software

development teams is not always rapid and iterative. In an agile environment, the SWE and SE

need to work together to define, implement, and test the project’s capabilities. At the present time

there is limited guidance from the agile software methodologies on how SE and SWE collaborate

to design the systems capability. Therefore it is imperative that SE work as a team with SWE so

that the overall system integrity is maintained using an iterative process in order that the SE

continue to provide value within the construct of agile software methodologies.

Larger programs that have several agile software development based Implementation Teams

working in parallel especially need SE engaged and providing value. The critical message to SE

participating with projects using agile software development methodologies is: the work tempo

changes, but the SE work products still matter. The SE focus on articulation and satisfaction of

needs and on verification of capabilities and performance is as important as ever. The challenge is

to carry out the essential work in agreement, rather than conflict with the agile software

development teams. To achieve this end the systems engineering processes must be adapted to

support the agile software design and development methods. In a waterfall model, the design and

development teams only have one chance to get each aspect of a project right. In Agile

methodologies for SE, every aspect of development (requirements, design, etc.) is continually

revisited throughout the development lifecycle (Smith 2008). This paper proposes the Agile SE

Framework to help shift the focus to "a flexible and holistic” software design and development

strategy.

The team structure, timeline and roles described in Figure 3 and Table 2 illustrate the Agile SE

Framework that provides for integrating systems engineering value with an agile software

development approach. The Table contents are intended to be illustrative, not prescriptive to

provide self-organizing teams the flexibility to manage their artifacts and activities. The desired

outcome is to incorporate the value of both systems engineering activities and agile software

methodologies into the project approach. This requires “just enough systems engineering” up front

to provide a clear understanding of key performance parameters and robust system architecture.

This upfront work should guide but not unnecessarily constrain the implementation, and should

introduce minimal delays in starting implementation. Additional systems engineering activities

should occur as part of the implementation iterations, with SE acting as full participants in the

Agile SE Framework. The goal is to mature the requirements and architecture as the project

proceeds, taking advantage of early iterations to add clarity before solidifying specific

architectural features or sets of requirements. In the next section are documented challenges that

some teams have experienced when traditional SE and SWE using agile software development

methodologies work together in developing systems.

Figure 3. Agile SE Framework

The Responsibility Assignment Matrix also known as the RACI matrix
3
 describes the project

participants in various role in supporting the program, project or task. Table 1 is provided as an

example of how a typical team self-organizes with example assignments.

Table 1. RACI Matrix Legend

Responsible Does the work

Accountable Approves and is responsible for assigning the work

Consulted Subject Matter Expert

Informed Need to be aware of the work status

Not Applicable

3
 RACI = Responsible, Accountable, Consulted and Informed.

Table 2. RACI Matrix for Agile SE Framework

PLANNING TEAM

ROLES Customer Stakeholder
Product
Owner

Program
Manager

Chief
Architect

Chief
Engineer

Systems
Engineer

Develop

Requirements
A R R I I I I

Analyze

Requirements
I A C I R R C

Analyze

Operations
C A C C R R C

Plan Project A C C R C C C

ARCHITECTURE TEAM

ROLES Stakeholder
Product

Owner

Chief

Architect

Chief

Engineer

Systems

Engineer

System

Admin

Config

Manager

System

Tester

CONOP A C C R C N/A N/A I

Architectural

Design
A C R R C I I I

INTEGRATION AND TEST TEAM

ROLES
System

Admin

Config

Manager
Integrator

System

Tester
Customer

Software Backup R A N/A N/A N/A

System Integration N/A N/A R A I

Validation N/A N/A C R A

IMPLEMENTATION TEAM

ROLES

Product

Owner

Systems

Engineer

Scrum

Master

Software

Engineer

Product

Tester

System

Admin

Config

Manager

Integrat

or

Software Design C A I R C N/A N/A N/A

Software

Implementation A C I R C C C C

Integration I C I A C C C R

Verification A C I C R I I C

Process Changes

In the agile software development process for an EMD project which begins at Milestone B the

capabilities are defined for the system to be developed, as in the traditional process. Prior to

starting any agile software development effort pre-planning is done, reference Figure 4 Step 1.

During the pre-planning phase the Planning Team defines the scope and deliverables of the

project. Next the Architecture Teams, Step 2, establish the vision, the roadmap, architecture, and a

product backlog. The pre-planning period includes the technical management, mission and needs

analysis, requirements articulation, requirements management definition, and architecture

framework. Depending on the product in development this pre-planning could require anywhere

from 3 days to 6 months or more. The input into this pre-planning step is capabilities and the

output is a vision, roadmap, architecture framework, and a prioritized backlog of significant

capabilities to be developed. When working with agile software development teams, the level of

detail of the design artifacts needed to start the first implementation iteration may be less than what

is normally produced on traditional life cycle projects. Some elements of the architecture or

requirements may be identified for analysis and elaboration later in the implementation cycle.

Depending on the level of formality of the project, outputs might include a concept of operations

document (CONOP), planning artifacts, architecture diagrams and models, and a high level list of

requirements.

Those outputs from the pre-planning phase will flow into the first iteration where they will be

updated as the work is done on the highest priority capability in the iterations (in Scrum
4
 Agile

iterations are called Sprints). While one or more teams are working on the highest priority

capability product (or software) backlog items, the Architecture Team will be working to define

the requirements for the next highest level capability that software will develop in the next

iteration. The Architecture Team members will also participate on the Implementation Teams to

maintain the architecture as the detailed design evolves and help the SWE understand and align the

software product to the proposed architecture and requirements.

It the Agile SE Framework, Implementation Team members include SE, SWE, Product Testers,

and other cross-functional team members as needed for the product in development. When an

implementation iteration is complete (Figure 4, Step 3) and deployed, the Architecture Team

reviews (Step 4) the next implementation activity (Step 5) for adherence to the architecture and if

needed revises it to provide an architectural framework for the next capability to be implemented.

This sequence continues until the customer is satisfied with the capabilities of the system. During

iterations, design artifacts or models are developed by the SE in collaboration with the

Implementation Teams including: system capabilities, interface definitions, trades studies,

detailed design representations, test procedures, and test reports or if MBSE (Model Based

Systems Engineering) is being practiced the model products are being updated.

The SE may model the system functionality using Model Based Systems Engineering (MBSE)

Process Using SysML for Architecture Design, Simulation and Visualization as described by

4
 Scrum is an iterative and incremental Agile software development framework for managing software

intensive projects and product or application development. It is one of most used methodologies and was
documented by the Schwaber, Ken; Beedle, Mike (2002) in the book Agile Software Development with
Scrum. Prentice Hall. ISBN 0-13-067634-9.

http://ses.gsfc.nasa.gov/ses_data_2011/110301_Osvalds_Poster.pdf
http://ses.gsfc.nasa.gov/ses_data_2011/110301_Osvalds_Poster.pdf
http://h

(Osvalds 2011). MBSE uses capability statements as inputs and generates requirements, activity,

sequence, block and state models that represent the systems capabilities. The model, when

executed, can provide visual representation of the system operation. The model can be used for the

customer to validate the design before and as the software is implemented. The change from

traditional systems engineering is the level of maturity of the artifacts required to start

implementation, coupled with planned maturation of the architecture and requirements as

implementation progresses.

Figure 4. Agile SE Process

Architecture Changes

As described in a previous section, traditional SE often involves the BDUF. The architecture

changes required to decompose the big design for agile software development teams involve

identifying critical architecture choices that must be made up front, and creating a flexible

architecture that is amenable to planned refinement as the implementation progresses. SE should

treat this planned refinement as an opportunity to manage technical risk and benefit from technical

and user evaluations made on the products of early iterations. SE is responsible for maintaining

balance in the key quality attributes of the architecture, and also for adjustments to the architecture

to maintain and improve its flexibility. The Architecture Team stays just ahead of the

Implementation Team, incorporating lessons learned from the previous iteration as input to

refactor and refine the architecture, followed by developing new SE artifacts needed for the next

iteration.

Challenges and Enablers

The traditional systems engineering model described in section “Traditional Systems Engineering

and DoD Acquisition” contains some inherent limitations, an overview is described below:

Lack of Rapid Response. Lack of continuous interfacing between groups causes delays in resolving

issues that invariably arise when interpreting and implementing the specification, or integrating elements of

a system. Many intergroup interfaces, including both communication meetings and integration activities,

are planned and scheduled meetings are set to a specific time interval. This can lead to significant delay in

identifying and resolving issues.

Big Design Up Front. Creates delay in beginning implementation, and forces design decisions to be made

early in the project, often with incomplete information and understanding of the problem space. Project

management, may assume that changes in requirements and plans after an initial definition period are bad,

and they work hard to limit changes. The risk is that the original specification is incomplete or immature

and changes are required to best satisfy the stakeholder needs within the scope of the project.

Architecture Interpretation. The SE develops systems architecture plans which are provided to the SWE

as documents. Their interpretation and application to the detailed SW design may vary from the original SE

designed intent. Alternatively, additional information may arise within the implementation teams that

would suggest changes to the architectural approach that SE is not aware of because they are not present

with the implementation team.

Non-Functional Requirements (NFR) Interpretation. The SWE would not consider the quality

attributes of system performance or behavior (i.e., “ilities” - reliability, speed, usability, flexibility,

etc.) during design and implementation unless the NFR is included into the work planned. Also, if

the SWE needs clarification the SE may not be available to help with information in a traditional

process.

Responding to Change at Scale. When agile software development methodologies are successfully

applied to a small project are then applied to a very large software development effort they may fail to

scale, thus SE activities and products are not effectively used in implementation.

Verification, Validation and Test: Traditional SE practice for “pull” programs assumes that sell-off is

based on verification of compliance with requirements not stakeholder (customer) satisfaction with

deliverable functions which require validation that capabilities satisfy stakeholder needs. This can result in

customer dissatisfaction that must be dealt with late in the program, when modification is most expensive.

The subsections below elaborate on the limitations described above between systems engineering

activities and an agile software development team that the authors have experienced. The

proposed solutions to these challenges are called enablers. The enablers summarize the Agile SE

Framework changes previously described.

Lack of Rapid Response

When systems engineering activities are performed in isolation from software development teams,

important systems engineering activities such as definition of key performance parameters, testing

scenarios, and architecture principals, risk analysis and technical trades are not informed by or

responsive to findings from the software development team.

Enabler. Continual Interfacing – A cross functional Implementation Team consisting of SE,

SWE, and tester(s) co-develop one story/capability from concept through completed customer

acceptance testing during an iteration. The cycle time between concept and completed testing is

very short. Learning is fast. Risks in incorrect requirements are quickly eliminated.

Implementation Teams have a solid foundation to build new capabilities as opposed to abstract

changing concepts. Design as needed. Continuous communication through use of Scrum of

Scrums meetings (where all teams are represented), internal demonstrations, and other shared

events helps ensure rapid response to findings and issues. The integration strategy and a

continuous integration environment is also planned and implemented early in the development.

Environment. Projects being developed iteratively.

Theory. Frequent communication during iterations both within and between teams, as well as,

frequent builds and integration find errors and issues early. Errors in the definition of one

capability do not propagate into other capabilities.

Big Design Up Front

When systems engineering activities are performed on a traditional schedule it is assumed that

development will not begin until the Big Design Up Front (BDUF) is released. If the SE is “not

finished” implementation is delayed or the software team may start to develop detailed design and

code with no input from SE.

Enabler. Capability Roadmaps - Create a roadmap of capabilities to implement over time. From

that roadmap create a prioritized backlog. Break down the capabilities until each high priority

backlog item is sized so that it can be implemented in one iteration. Iterative planning allows the

Implementation Team to start into development of the detailed design and coding with input from

the SE (who is on the Architecture Team), because the capability roadmap is done and the detailed

plan for the first (or next) high priority capability is also done.

Environment. This enabler applies to projects with a significant number of new capabilities or

changes.

Theory. The roadmap provides a high level summary of the planned implementation. SE as part of

the Architecture Team matures artifacts for each capability in sequence, just before they are

addressed by the Implementation Teams. All Implementation teams focus on developing the same

capability at the same time. This increases collaborative information flow between the teams.

Architecture Interpretation

When SE as part of the Architecture Team develops a detailed and comprehensive architecture and

passes it over to the Implementation Team, software implementation opportunities and constraints

are not adequately considered in systems engineering thus limiting flexibility; or, the

Implementation Team proceeds without waiting for SE to provide the architecture design, leading

to (at best) wasted effort and major variance between documentation and “as built.” Furthermore,

it could lead to poor implementation that result in excessive defects and a lack of evolvability. Not

starting with a well-considered, flexible architecture can lead to suboptimal solutions that miss the

benefits of a well thought out architecture.

Enabler. Architecture Teams - Architecture modularity and an iterative process requires

architecture design effort throughout the development lifecycle. However, for large teams the

integrity of the architecture needs to be maintained as the development proceeds. A modular

framework is sufficient to begin development. As the work proceeds there may be architectural

epics, introduced in “Agile Software Requirements” (Leffingwell 2011), where the epic will be

accomplished through multiple releases or the epic scope affects multiple products, or the epic will

affect multiple teams or parts of the organization. The management of these epics of work is

coordinated through the architecture team. SEs work between the implementation team(s) and the

Architecture Team to update the system architecture

Environment. This solution works best when multiple Implementation Teams work in parallel to

develop a solution.

Theory. Minimize defects by reducing communication misunderstanding at the handoff.

Non-Functional Requirements Interpretation

When quality attributes of system performance or behavior (i.e., “ilities” - reliability, speed,

usability, flexibility, etc.) are not analyzed and tracked through design and implementation then

the system may not perform as desired and confidence in the system’s ability to perform as desired

may be limited.

Enabler. Include “ilities” into the Product Backlog Items - Quality attributes are planned into

each iterative development user story when a team plans and performs work on agile

cross-functional Implementation Teams as described in the Agile SE Framework.

Enabler. Product Lessons Learned - After each iteration where design, implementation, and test

are completed, the team captures lessons learned on the product. Lessons learned are the result of a

completely implemented capability instead of an untested idea. Product lessons learned result in

actionable items for a tools team to implement to improve the development and test engineering

environment. Product lessons learned result in improved process, metrics, and checklists/job aids

for the entire team to benefit from. Product lessons learned result in improved requirements,

architecture, or understanding of the requirements or architecture. Each of these lessons learned

are applied to the next iteration resulting in improved work environment immediately.

Environment. All lifecycle development efforts benefit from this enabler.

Theory. Studies show that >50% of product development is waste because requirements may be

incorrect (Schwaber 2006). Lessons learned reduce waste and educate people on the best use of

tools, process, and architecture.

Responding to Change at Scale

When agile software development methods have been used successfully on small projects are

applied to a very large effort, the processes fail to scale and SE activities and products are not

effectively used in implementation. Requirements may be interpreted differently by different

Implementation Teams, architectural principles may not be universally applied, and interface

definitions may develop gaps and overlaps.

Enabler. Agile SE Scalability - Larger teams need a team to integrate and test the products

produced by the Implementation Teams. This team is depicted by the Integration and Test (I&T)

Team in Figure 3. Dean Leffingwell, in “Agile Software Requirements” (Leffingwell 2011), calls

this team the System Team. In the proposed Agile SE Framework described herein, SE are

members of the Architecture Team, the Implementation Teams, and the I&T Team so the name

I&T Team is used rather than System Team to minimize the risk of confusion about team

membership. In addition to the I&T Team, the Planning Team is needed to identify the prioritized

list of capabilities to be developed by the Implementation Teams and the Architecture Team is

needed to maintain the overall integrity of the architecture as the product and detail designs evolve.

Environment. This solution works best when multiple Implementation Teams work in parallel to

develop a solution.

Theory. The I&T Team works on the same release goals as the Implementation Teams focusing

on the highest priority capability being developed.

Verification, Validation and Test

Traditional SE practice for “pull” programs assumes that sell-off is based on Verification of

compliance with requirements not stakeholder (customer) satisfaction with deliverable functions

which require Validation that capabilities satisfy stakeholder needs. This can result in customer

dissatisfaction that must be dealt with late in the program, when modification is most expensive.

Enabler. Incremental Acceptance - Leverage the Agile software development practice of

continuous integration to create a situation in which stories are demonstrated, tested and even

accepted as early as possible in the development cycle. Create tests from use cases, user stories and

requirements before the system is designed or implemented. Share the testing artifacts with the

customer to ensure a common understanding of the functionality to be developed. Strive to

automate testing when each function, feature, and feature set is submitted. This allows standard

execution paths of the feature or story to be tested automatically, with each build, ensuring that the

feature isn’t broken with later development and also freeing human testers to focus on exploratory

testing. Test first development results in developing just what is being testing and meets the

requirement. This has been found to also improve quality.

Environment. Projects with complex and/or emerging needs/requirements.

Theory. Agreement on test procedures with customers enhances understanding of expectations

and customer acceptance of delivered features. Software written to pass an existing test will be

more compartmentalized, easier to test and less likely to contain extra features. Incremental testing

and acceptance reduces the level of effort required to fix problems late in the development cycle

and also levels the effort load for SE, testers and customer representatives.

Conclusion

Over the last decade and a half, agile software development methodologies have offered a faster,

leaner, and more flexible approach to developing software. The challenge to complete traditional

SE activities has been met most successfully on small, projects, in which the necessary systems

engineering activities can be owned by members of the development team, and where definition of

needs and determination of system readiness can be handled by the customer and stakeholders

with minimal formality. When scaling up to more complex projects with multiple teams, formal

milestones and cross team dependencies exist, challenges have been realized. The Agile SE

Framework provides a way to resolve the challenges experienced when coupling systems

engineering practices with an agile software development approach.

On software intensive projects this Agile SE Framework is proposed as a way for SE and SWE to

work together more closely evolving the work products iteratively. This paper proposes that SE

develop “just enough” architecture and requirements prior to the beginning of implementation, and

then work on cross-functional Implementation Teams to maintain integrity of the requirements

and architecture, while evolving them as development proceeds. The role of the SE within the

Implementation Teams, the Architecture Team and/or the I&T Team includes customer and

stakeholder requirements definition, requirements analysis, architectural design, implementation,

integration, and verification. These duties are performed as part of the Agile SE Framework during

the iterations and releases. This approach, for software intensive projects, will deliver frequent

releasable software products that result in less waste, lower cost and higher quality. The iteratively

developed products enable better customer satisfaction and provide the ability to absorb changes in

mission requirements through team collaboration.

References

ADAPT 2013. “Achieving Better Buying Power 2.0 For Software Acquisition: Agile Methods.” The Agile

Defense Adaption Proponents Group of the The association for Enterprise Information.

http://www.afei.org/WorkingGroups/ADAPT/Pages/default.aspx

Brown Nanette, Nord Robert, Ozkaya Ipek. 2010. “Enabling Agility Through Architecture.” CrossTalk.

http://www.sei.cmu.edu/library/assets/whitepapers/brown-nord-ozkaya-crosstalk-Nov10.pdf

DoD. 2010. “Better Buying Power.” Department of Defense.

https://acc.dau.mil/CommunityBrowser.aspx?id=289207&lang=en-US

DoD. 2012. Defense Acquisition Guidebook. Department of Defense. https://dag.dau.mil/

Frank M. 2000. Cognitive and Personality Characteristics of Successful Systems Engineering, INCOSE

International Symposium Proceedings.

Honour, Eric. C. 2004. ”Understanding the Value of Systems Engineering. INCOSE International

Symposium. http://www.incose.org/secoe/0103/ValueSE-INCOSE04.pdf

INCOSE. 2011.“INCOSE Systems Engineering Handbook.”International Council on Systems Engineering,

v3.2.2. http://www.incose.org/ProductsPubs/products/sehandbook.aspx

ISO/IEC. 2008. “15288 Systems and software engineering -- System life cycle processes.” ISO

(International Organization for Standardization) and IEC (International Electrotechnical

Commission). http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43564

Leffingwell, Dean. 2011. Agile Software Requirements, Lean Requirements Practices for Teams,

Programs, and the Enterprise. Pearson Education, Inc. , Boston, MA.

http://deanleffingwell.com/book-agile-software-requirements/

Osvalds, Gundars. 2011. ”Model Based Systems Engineering (MBSE) Process Using SysML for

Architecture Design, Simulation and Visualization.“ NASA, Goddard, Greenbelt, MD.

http://ses.gsfc.nasa.gov/ses_data_2011/110301_Osvalds.pdf

Schwaber, Carey. 2006. “The Root of the Problem: Poor Requirements.” IT View Research Document,

Forrester Research.

http://www.techworld.com/cmsdata/whitepapers/5104/ot_forrester_rootproblem_wp.pdf

Smith, Gregory. 2008. ”Agile Methodology Blog.” CollabNet. http://agilemethodology.org/

http://www.afei.org/workinggroups/Adapt/Pages/default.aspx
http://www.afei.org/workinggroups/Adapt/Pages/default.aspx
http://www.afei.org/WorkingGroups/ADAPT/Pages/default.aspx
http://www.sei.cmu.edu/library/assets/whitepapers/brown-nord-ozkaya-crosstalk-Nov10.pdf
http://www.sei.cmu.edu/library/assets/whitepapers/brown-nord-ozkaya-crosstalk-Nov10.pdf
http://bbp.dau.mil/
https://acc.dau.mil/CommunityBrowser.aspx?id=289207&lang=en-US
https://dag.dau.mil/
http://www.google.com/url?q=http%3A%2F%2Fwww.incose.org%2Fsecoe%2F0103%2FValueSE-INCOSE04.pdf&sa=D&sntz=1&usg=AFQjCNG6QSLo8DDPP2_t4paierpYYZD6KA
http://www.google.com/url?q=http%3A%2F%2Fwww.incose.org%2Fsecoe%2F0103%2FValueSE-INCOSE04.pdf&sa=D&sntz=1&usg=AFQjCNG6QSLo8DDPP2_t4paierpYYZD6KA
http://www.incose.org/ProductsPubs/products/sehandbook.aspx
http://www.incose.org/ProductsPubs/products/sehandbook.aspx
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43564
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43564
http://deanleffingwell.com/book-agile-software-requirements/
http://deanleffingwell.com/book-agile-software-requirements/
http://h
http://h
http://www.techworld.com/cmsdata/whitepapers/5104/ot_forrester_rootproblem_wp.pdf
http://www.techworld.com/cmsdata/whitepapers/5104/ot_forrester_rootproblem_wp.pdf
http://h
http://h

Acknowledgements. The INCOSE Agile Systems Engineering Working Group acknowledge the

support of all members and especially the reviewers: Mike Coughenour, Lockheed Martin; Rick

Dove, Paradigm Shift; Wayne Elseth, CSEP, Praxis Engineering; David Fadeley, ESEP,

Henggeler Consulting; Dr. Denise Haskins, CSEP, Kimmich Software; Dr. Suzette Johnson,

Northrop Grumman, Robert Angier, IBM (Retired).

Biography

Larri Rosser is a Raytheon Certified Architect in Raytheon Intelligence,

Information and Services. She has 30 years industry experience in aerospace,

defense and computing technology, multiple patents in the area of

human-computer interface and a BS in Information Systems and Computer

Science from Charter Oak State College. Currently, she holds the role of

Systems Engineering, Integration and Test lead for the DCSG-A family of

programs, where she practices Agile Systems Engineering with a cross

functional team.

Phyllis Marbach is a Senior Software Manager in Boeing's Defense Space &

Security (BDS). Phyllis has over 30 years experience in aerospace programs;

including Satellites, chemical lasers, the International Space Station, and

various propulsion systems. Currently she is the project manager with Boeing’s

Lean-Agile Software Services (LASS) and an active BASP Coach for

Unmanned Air Systems, Radio, and research programs. Ms Marbach holds an

MS degree in Engineering from UCLA.

Gundars Osvalds, CSEP and Certified Scrum Master is a Principal Systems

Engineer with over 40 years of experience is currently at Praxis Engineering.

He provides systems engineering support to DoD programs ranging from

Research and Development to large scale transformation utilizing Information

Technology with architecture design, architecture framework development,

engineering process creation, model based system design, agile software and

engineering design. He is an author of 6 papers and 11 presentations on systems

and architecture engineering.

David Lempia is a Principal Systems Engineer in the Engineering

Infrastructure Development & Lean organization of Rockwell Collins with

over 20 years of experience in systems development. He is currently leading

lean for the EID&L organization and working as a skilled modeler. As a skilled

modeler he leads workshops, develops best practices and develops training

materials for Rockwell Collins. He is an author for papers on Requirements

Engineering Management, Model Based Development, and Lean.

