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Abstract. Autonomous systems are on the rise. However, the challenge to test autonomous systems 

to ensure their safe and fault-free behaviour is not solved yet. This is especially critical when we 

consider the fact that autonomous systems are often safety-critical systems envisaged to interact with 

humans without explicit human supervision. This paper points out why testing autonomous systems 

is such a challenge and provides an overview of the current state-of-the-art and state-of-practice. The 

gathered information is then condensed into guiding points for the way forward. 

Introduction 

Without a doubt, autonomous systems represent a growing market: Mallors estimates an ”untapped 

short term market value of circa 7 billion per annum just for relatively low level autonomy products 

and services” (Mallors, 2013), Manyika et. al. state, that the ”potential economic impact of 

autonomous cars and trucks could be $200 billion to $1.9 trillion per year by 2025” (Manyika, Chui, 

Bughin, Dobbs, Bisson, & Marrs, 2013), Autefage et. al. estimate the total market for civilian robots 

at more than 10 billion euros in 2012 and continue that it ”should exceed 100 billion euros before 

2020” (Autefage, Chaumette, & Magoni, 2015) , and the US DoD had planned to spend a $24 

billion-plus total budget for unmanned systems in the 2007-2013 timeframe (Clapper, Young, 

Cartwright, & Grimes, 2007). The reasons for this growing trend differ with the application domain. 

For space applications, autonomy in satellites or other space vehicles reduces the need for human 

attendance especially during long-term missions and also reduces the reliance on the communication 

link between the system and the ground station, which is costly in terms of energy and has a large 

delay in long-distance missions (Pecheur, 2000) (Brat & Jonsson, 2005). For aerospace applications, 

such as Unmanned Air Vehicles (UAVs), autonomy with significant in-mission executive power 

allows systems to potentially replace humans in dangerous tasks (Alexander, Hall-May, & Kelly, 

2007) and ensures that in the case of remotely piloted vehicles that the UAV remains safe and 

controllable in case of a disruption of the command and control communication link (Schumann & 

Visser, 2006). For automotive applications, autonomy in consumer cars promises to reduce the 
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commute burden, decrease traffic congestion, improve road safety and reduce carbon emission 

(Bernhart & Winterhoff, 2014).  

Most of the research in the area is focused on the development of autonomous systems. This despite 

the fact that even today over 25% of total development costs are spent on verification and validation 

(V&V), i.e. testing that the product works correctly and fulfils requirements. The testing effort is 

projected to increase disproportionately when systems become more complex through the integration 

of autonomy (Tallant, Buffington, Storm, Stanfill, & Krogh, 2006), which will make current test 

methods not cost-effective for next-generation autonomous control systems. Intuitively, autonomous 

systems are hard to test. Their flexible, context-aware behaviour implies unpredictability and can lead 

to emergent behaviour, i.e. behaviour that was not necessarily specified, intended or consciously 

implemented during the system design (Miles, et al., 2010). A key technology challenge for the 

research in the area of autonomous systems should thus be the verification and validation.  

Testing every system state, as is often done today for safety-critical systems, is becoming an 

impossible task as these systems react to more environmental stimulus and have larger decision 

spaces (Barhorst, Paunicka, Stuart, & Hoffman, 2011) (Hinchman, Clark, Hoffman, Hulbert, & 

Snyder, 2012) or as Thompson more blatantly puts it "there is a common misconception in the testing 

industry that all unmanned autonomous systems can be tested using methodologies developed to test 

manned systems" (Thompson, 2008). A strong emphasis on developing methods to achieve V&V of 

complex, highly adaptive, autonomous systems will thus be essential to enabling the capabilities they 

can provide or as Macias says, "the evolutionary nature of UAS [..] must be met with evolutionary test 

capabilities yet to be discovered and developed" (Macias, 2008). And this will not be an easy task as 

Dahm writes that "developing certifiable V&V methods for highly adaptive autonomous systems is 

one of the major challenges facing the entire field of control science, and one that may require the 

larger part of a decade or more to develop a fundamental understanding of the underlying theoretical 

principles and various ways that these could be applied" (Dahm, 2010). 

This paper provides an overview of the current state-of-the-art and state-of-practice regarding the 

stated challenge: V&V of autonomous systems. 

This paper is structured as follows: Section Autonomous Systems will provide background 

information regarding autonomous systems and tries to give some key characteristics of autonomous 

system that influence the V&V challenge. Based on this, Section Challenges for Testing Autonomous 

Systems elaborates key challenges before Section Current Approaches for Testing of Autonomous 

Systems provides examples of currently used approaches for testing autonomous systems. The 

Section Synopsis will condense the information presented that far into some guiding points and 

Section Conclusion wraps everything up with a conclusion. 

 Autonomous Systems 

Autonomy, originating from auto = self and nomos = law, in the most basic definition means 

self-governance or freedom from external influence or authority (Nguyen, Miles, Perini, Tonella, 

Harman, & Luck, 2012). To avoid confusion it should be clarified that there is a significant difference 

between the words autonomous and automatic that are sometimes erroneously used interchangeably. 

Automatic means that a system will do exactly as programmed, without a choice. Autonomous means 

that a system can make choices without considering outside influence, i.e., "an autonomous system 

has free will" (Clough, 2002). Consider autonomy as "the ability to reason and make decisions to 



 
reach given goals based on a systems current knowledge and its perception of the variable 

environment in which it evolves" (Rudd & Hecht, 2008). Autonomous systems must perform 

according to the specification under significant uncertainties in the operational environment for 

extended periods of time and they must be able to cope with a certain amount of system failures 

without external intervention (Antsaklis, Passino, & Wang, 1988). Hölzl et. al. (Wirsing, Hölzl, 

Koch, & Mayer, 2011) provide four major autonomous systems principles: 

 Knowledge: The system knows facts about itself and its surroundings. 

 Adaptation: The system can adapt its own behaviour dynamically to cope with changing 

surroundings. 

 Self-awareness: The system can examine and reason about its own state. 

 Emergence: Simple system elements construct complex entities. 

Similar definitions are provided by Micskei and colleagues who write that "notable characteristics 

shared by the different kinds of autonomous systems include reasoning, learning, adaptation and 

context-awareness" (Micskei, Szatmári, Oláh, & Majzik, 2012) and others (Watson & Scheidt, 2005) 

(Brat & Jonsson, 2005). Of course not all autonomous systems exhibit the same level of autonomy. A 

variety of scales for describing the Level of Autonomy (LoA) achieved by a system have been 

proposed of which the most influential one probably was developed by Clough (Clough, 2002) for 

military UAVs. Higher levels of autonomy of course typically pose a higher challenge for V&V. 

Another important preliminary point to make here is that in all modern systems, autonomy is realized 

in software (Schumann & Visser, 2006), which means that V&V of autonomous systems often boils 

down to software testing. 

From the basic definition of autonomy we can develop common characteristics of autonomous 

systems. Adaptive Systems are systems whose function evolves over time, as they change their 

performance through learning. The advantage of adaptive systems is that they can, through judicious 

learning, react to situations for which the designer did not make specific provisions (Mili, Cukic, Liu, 

& Ayed, 2003). 

Most autonomous systems use a model-based approach. In a model-based system, 

application-specific information, like the capabilities and limitations of the system, are described in a 

model of the application, not in implemented code. A general purpose reasoning system uses the 

model to operate the entity in question (Brat & Jonsson, 2005). 

Automatic planning as a kind of predecessor of autonomy is an offline process which can most often 

be handled independent of system operation. Given an initial state, a goal and a set of possible 

operators and actions that can be used, the objective in automated planning is to derive an optimal 

plan to achieve the goal that can then be executed automatically. This problem is quite different when 

we consider autonomous systems, which operate in open environments, that cannot be completely 

foreseen at design time. In this case, planning must happen continuously and in in parallel to the plan 

execution so that previously unanticipated events that occur during the plan execution can be 

considered in the next planning step. 



 

 

Figure 1.  Layered Autonomy Model (Watson & Scheidt, 2005) 

To reflect this, a canonical architecture has emerged in the research community based on the notion of 

layered control loops (Gat, 1998) (Albus & Meystel, 1996). Figure 1 from Watson and Scheidt 

(Watson & Scheidt, 2005) shows a simplified example of this architecture, where the lowest-level 

control loops are used to provide feedback control with deterministic responsiveness. This control is 

reactive in the sense that the system will be driven to some local optima with respect to the overall 

behaviour goals, e.g., maintaining system safety. This local control set point is determined by the next 

level of the architecture, which is called the plan executor. This loop uses filtered perception data to 

assess the progress of the system through a pre-planned sequence of states. Responsiveness at this 

level is limited to contingency plans that have been prepared in advance and the event conditions that 

trigger them. At the highest level of control, a deliberative planning process uses explicit, declarative 

models of the system and its environment, combined with state information from the plan execution 

layer, to determine if the current situation requires global re-planning. All layers operate 

asynchronously and in parallel to produce the controlled behaviour. 

 Challenges for Testing Autonomous Systems 

There is a consensus among researchers that if testing complex systems is hard then testing complex 

autonomous systems is even harder and as stated in a recent paper, "testing autonomous systems is 

still an unsolved key area" (Weiss, 2011) or as Brat and Jonsson (Brat & Jonsson, 2005) state, our 

current validation techniques struggle with existing mission systems and now we are faced with 

validating autonomous systems that can exhibit a much larger set of behaviours. 

There are a number of causes for this: 

 Complex environment: The larger size and higher complexity of the valid input space and 

the context in which the system operates, both of which might be partially unknown at design 

time. This makes exhaustive testing - as it is done traditionally - impossible (Brat & Jonsson, 



 
2005) (Schumann & Visser, 2006) (Clapper, Young, Cartwright, & Grimes, 2007) (Micskei, 

Szatmári, Oláh, & Majzik, 2012) (Brun, 2009) (Pouly & Jouanneau, 2012). 

 Complex software: The complexity of the program logic, which is caused by characteristics 

that are inherent in autonomous systems such as assembling their own course of actions for a 

given goal, adapting to different environments, learning, diagnosing themselves and 

reconfiguring themselves to maintain their functionality (Schumann & Visser, 2006) 

(Mikaelian, 2010) (Brat & Jonsson, 2005). Brat and Jonsson observe that "verifying a planner 

is an enormous challenge considering that planners are meant to find intricate solutions in 

very large state spaces" (Brat & Jonsson, 2005). 

 Non-deterministic behaviour: Since often the autonomous behaviour is based on some kind 

of learning mechanism, autonomous systems may react differently to the same inputs over 

time, since their knowledge on which their behaviour is based changes over time (Nguyen, 

Miles, Perini, Tonella, Harman, & Luck, 2012) (Mikaelian, 2010) (Schumann & Visser, 

2006) (Cukic, 2001) (Menzies & Pecheur, 2005). This also means that one successful test 

does not guarantee that the system will pass the same test on the next test run. Kurd identifies 

a key challenge as being the difficulty of understanding the model that the system has learned 

(behaviour transparency and representation) (Kurd, 2005).  

There is a second angle that makes testing autonomous systems even more important. Since 

autonomous systems are by design not always under human control or supervision, it is crucial to 

ensure their behaviour is safe (Mikaelian, 2010) especially since "society holds robots to a higher 

standard and has a lower tolerance for their errors" (Weiss, 2011). This is a major impediment for the 

certification of autonomous system as Dahm acknowledges that "it is possible to develop systems 

having high levels of autonomy, but it is the lack of V&V methods that prevents all but relatively low 

levels of autonomy from being certified for use" (Dahm, 2010). Since autonomous systems are often 

safety-critical (e.g. flight control) systems, they have to adhere to strict certification standards, 

leaving a wide technological gap between the requirements of the application domain and the 

capabilities of available technologies. Heitmeyer and Leonard see a major problem for autonomous 

systems in the "Human Mistrust of Automation/Autonomy" (Heitmeyer & Leonard, 2015) and 

Zwillinger and colleagues (Zwillinger, Palmer, & Selwyn, 2014) state that two kinds of trust are 

needed so that a user accepts an autonomous system: 

 System trust: Human confidence that the system behaves as intended. Achieving this trust 

requires a high assurance that the system satisfies its requirements, i.e. the traditional V&V 

challenges. 

 Operational trust: Human confidence that system helps the user to perform the assigned 

tasks. Achieving this trust requires a high assurance that the scenarios for which the system 

was designed are useful. 

US Air Force (USAF) Chief scientist Werner Dahm identified control science, i.e., the systematic 

way to study certifiable validation and verification (V&V) methods and tools to allow humans to trust 

decisions made by autonomous systems as a top priority for the USAF saying that "the major barrier 

that prevents the USAF from gaining more capability from autonomous systems is the lack of V&V 

methods and tools" (Dahm, 2010). 



 
So, why can current testing methods not cope with the challenge? The currently used methods for 

software testing can be classified into three categories: 

 Fault Avoidance, which is built on the premise that it is possible to build fault-free systems 

by design. 

 Fault Removal, which is an ex post facto approach, which is based on the assumption that we 

can remove all faults from systems by extensive testing and corrections. 

 Fault Tolerance, which concedes that a fault-free system is unrealistic in practice and tries to 

ensure that residual faults do not lead to system failures. 

Unfortunately, none of these three methods can cope with the challenges of autonomous system 

testing at the moment for different reasons (Mili, Cukic, Liu, & Ayed, 2003): 

 Fault Avoidance: Formal design methods exist for current systems that can proof that design 

and implementation formally adhere to the requirements. This does not work for autonomous 

systems where the behaviour not only depends on design and implementation but also on the 

acquired knowledge of the system, which could not have been included in the formal 

verification process during design time. 

 Fault Removal: All testing methods are built on the assumption that the system under test 

will behave in the same way in the field as they do in the test environment and, consequently, 

that if a system passes all tests then it will work flawlessly during operation. And, as said 

before, this does not hold for autonomous systems, whose behaviour can change over time 

(Alexander, DelGobbo, Cortellessa, Mili, & Napolitano, 2000). 

 Fault Tolerance: Fault tolerance techniques are based on the assumption that we can 

formalize the required behaviour of software in a way that we can use them to design error 

detection and recovery capabilities. With adaptive systems, it is not possible to formulate such 

expectations because the full required behaviour in all working conditions is not known at 

design time. 

Current Approaches for Testing of Autonomous Systems 

After stating the specific problems that come with the testing of autonomous systems, this chapter 

will provide examples of existing approaches to these challenges. The goal is not to present the 

approaches in detail but to identify which methods and tools are used in order to form a 

comprehensive list of technologies that are useful for testing autonomous systems. 

Pouly and Jouanneau (Pouly & Jouanneau, 2012) present an approach for development and testing of 

an autonomous satellite that was elaborated in the frame of the AGATA project (Charmeau & 

Bensana, 2005). The approach relies on using a Model-based Systems Engineering approach based 

on the Unified Modelling Language (UML) with automatic code generation and uses a model-based 

testing approach, i.e., automatic generation of test cases from a model, to support the verification of 

the on-board software. It reshapes the traditional V-shaped development process into a Y-shaped 

production cycle, which enables an incremental development process in which the software 

validation can start much earlier. They further state that "current works are exploring how to integrate 

model-checking in our process" (Pouly & Jouanneau, 2012). 



 
Hölzl et. al. present results from the ASCENS (Autonomic Service-Component Ensembles) project 

which targets "ensembles: systems with massive numbers of nodes, operating in open and 

non-deterministic environments with complex interactions, and the need to dynamically adapt to new 

requirements, technologies or environmental conditions without redeployment and without 

interruption of the systems functionality" (Hölzl, et al., 2011). In their effort to develop a  "coherent, 

integrated set of methods and tools to build software for ensembles” they are combining several 

methods: A Model-based approach with different domain-specific languages (DSLs) built on 

components for the construction and run-time monitoring including predictive analysis to support the 

verification of the systems. 

Lill and Saglietti (Lill & Saglietti, 2012) present a model-based testing approach for testing the 

cooperative behaviour of software controlled autonomous systems using Coloured Petri Nets (CPN) 

(Jensen & Kristensen, 2009) in order to identify adequate test scenarios and provide objectively 

measurable test stopping rules for testing especially the interaction between autonomous systems. 

Horányi and his colleagues propose a model-based testing approach using UML for testing the 

control module of autonomous robots. They use a monitor-based testing approach where 

requirements are formalized into "observer automata", which are then used as test oracles and test 

data is automatically generated from a context model of the system (Horányi, Micskei, & Majzik, 

2013). 

A similar approach is presented by Nguyen et. al. in (Nguyen, Miles, Perini, Tonella, Harman, & 

Luck, 2012). They use meta-heuristic search techniques for online test generation, calculating the 

fitness of potential test data on the basis of evaluating the execution of the system under test and 

optimization to generate demanding test cases. They conclude that this evolutionary test approach 

"can test agents in a greater range of contexts than standard tests, thereby accounting for their 

autonomy to act differently in each such context" (Nguyen, Miles, Perini, Tonella, Harman, & Luck, 

2012). 

Berger and Rumpe report experience from their participation at the 2007 DARPA Urban Challenge 

(Berger & Rumpe, 2012). They used a mostly traditional software development approach only 

partially supported by some UML modelling activities. Regarding testing, they developed a complete 

virtual test environment that could supply the control software with virtual raw sensor inputs to 

enable automatic testing as early as possible in a "simulate first approach" where all tests are 

conducted in the virtual test environment before they are conducted in the real world. 

A similar stance is taken by Mutter et. al. (Mutter, et al., 2011) and Bayha et. al. (Bayha, Grüneis, & 

Schätz, 2012) from the domain of autonomous aerial vehicles. They worked on a virtual testing 

environment for autonomous UAVs that allows to "test the software as-is, i.e., without any 

modifications or instrumentation for testing purposes" (Bayha, Grüneis, & Schätz, 2012). They state 

that "virtual integration of the system makes it possible to test a software implementation without 

endangering the hardware or the environment" (Mutter, et al., 2011). 

Thompson also advocates testing in virtual environments and takes this even further when he states 

that "virtual testing must become a standard complement to field-testing UASs if the testing 

community is ever going to be able to test an intelligent UAS safely and comprehensively" 

(Thompson, 2008) and that "hardware-in-the-loop is a necessity of any virtual test environment" 

(Thompson, 2008). 



 
Scrapper and colleagues (Scrapper, Balakirsky, & Messina, 2006) also report on virtual environments 

for testing of autonomous mobile robot systems. And while they advocate the usage of virtual testing 

they also warn that not everything can be tested virtually, at least not with today’s simulation 

capabilities, and that "much further testing will be needed in the real world". They see deficits in the 

representation of complexity and noise found in the real world, the approximation to reality of 

simulated sensor feeds, the complete and accurate modelling of the system under test’s physical 

behaviour. 

Brat and Jonsson (Brat & Jonsson, 2005) present an approach that relies heavily on composition for 

design and verification. Their design process relies on creating new systems based on known building 

blocks in an assume-guarantee framework. For the verification of autonomous systems they combine 

"advanced verification techniques (static analysis, model checking, compositional verification, and 

automated test generation)" (Brat & Jonsson, 2005) with automatic generation of certified code. 

Further advocates of formal verification, i.e., static analysis, model checking and runtime 

verification, for testing autonomous systems include (Schumann & Visser, 2006), (Feather, Fesq, 

Ingham, Klein, & Nelson, 2004), (Cheng, et al., 2014), (De Lemos, et al., 2013) and (Simmons, 

Pecheur, & Srinivasan, 2000). 

Synopsis 

From the characteristics of autonomous systems, the challenges that they present for V&V and the 

already existing approaches to solve these challenges, this section tries to provide a synopsis in the 

form of a list of things that will support successful autonomous systems development and testing. 

 Use models: It has been shown that using a Model-based Systems Engineering (MBSE), e.g., 

(Helle & Schamai, 2014) (Estefan, 2008), approach can significantly reduce the number of 

defects that are introduced into a development project, especially in the early development 

stage (Saunders, 2011). This benefit increases in the scope of autonomous systems 

development, where exhaustive testing is not possible and it is therefore more difficult to 

ensure that a product is fault-free. Furthermore, the operational models that are part of most 

MBSE processes can be used to communicate the intended behaviour of the system to the 

potential users more easily and earlier on, which helps to build the operational trust and 

thereby the acceptance of the system. 

 Be formal: One common trend in the whole complex systems development area that could 

also be shown in the existing autonomous system testing approaches discussed in this paper is 

to move towards formal methods, which can be used to formally prove the absence of faults in 

specifications and/or code. The potential of formal methods have never been doubted but the 

widespread usage of formal methods so far have been hindered by two facts: Firstly, ease of 

use for non-experts and secondly, dealing with large state-spaces. The latter becomes even 

more of a challenge when we consider the fact that the state-space in autonomous systems 

development is typically bigger than for other systems. So, there is still work to be done. 

Nevertheless, formal methods can be used today and will help people building better systems. 

 Automate: Automatic test execution is already the current state-of-practice in industry. What 

is not, however, is automatic generation of test scenarios, i.e., model-based testing (MBT). It 

has been shown that MBT can significantly reduce the effort for testing (Kläs, Bauer, 
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Söderqvist, Dereani, & Helle, 2015) and a number of the presented approaches in the previous 

chapter consider it a useful tool for testing autonomous systems. 

 Test early: It has been shown before that fixing defects becomes more expensive the later the 

defect is discovered in the product lifecycle. Laycock claims that ”the effort needed to 

produce test cases during each phase will be less than the effort needed to produce one huge 

set of test cases of equal effectiveness on a separate lifecycle phase just for testing” (Laycock, 

1993). Especially, if we found our development on models, as advised by the first bullet point, 

we can start the testing of these models as soon as they are built thereby preventing errors 

from trickling down and snowball into a big problem during a separate testing phase. 

 Test continuously: Runtime monitoring can be used to continue monitoring the intended 

behaviour of a system even in service (Leucker & Schallhart, 2009), (Levy, Saïdi, & Uribe, 

2002). Monitor-based testing, e.g., (Schamai, Helle, Fritzson, & Paredis, 2011), is a similar 

approach where we do not have to care so much about the resource consumption of the 

monitors on-board the system because they are running on the test bench. What both 

approaches have in common, is that they enable the testing of certain properties of a system in 

any context, even unknown ones and this makes them ideal approaches for testing of 

autonomous systems.  

 Test virtually: Google relies on extensive road testing of their autonomous vehicle and they 

have clocked more than 700000 miles so far (Johanning & Mildner, 2015). This is done in an 

effort to gain trust in the system and prove to the world that autonomous driving is possible 

today. This approach of testing extensively in real-life service is not feasible for some 

autonomous systems, e.g., in the space domain, and becomes very costly and time-consuming 

and therefore impractical if autonomy becomes a regular feature. Virtual testing, which is not 

a new topic, can help with that. Firstly, virtual testing can start with imperfect systems that fail 

frequently and which we would not want to test in a real environment because nothing serious 

can happen. Secondly, virtual testing scales better because it can be done in parallel on several 

virtual test benches. It is only limited by the available computing power and Moore’s Law still 

holds. Thirdly, coming back to the third bullet point, virtual testing can be started before the 

first metal is cut. The challenges for virtual testing when it comes to autonomous systems 

testing is that the virtual test environment needs to be representative of the intended 

operational environment of the system under test and, as said before, this can potentially be 

the whole world with a very large state space. 

 Start by testing the correctness of the autonomy capability: Autonomy introduces a new 

level of abstraction - a meta-level for design and V&V. When designing a deterministic 

system, engineers decide how the system should react in particular situations. Autonomous 

systems are able to learn and adapt their behaviour to some extent. This implies that, now, the 

system itself will make decisions based on the data learnt so far, its current state and the state 

of its environment. Taking such decision requires some reasoning capability that will take into 

account reasoning rules, constraints or optimization objectives. Dealing with the challenge of 

ensuring that the system will be safe and reliable therefore means dealing with the verification 

of the reasoning component of the system in the first place. Having the confidence that the 

system will reason correctly, traditional V&V approaches can still be used for ensuring that, 

after taking the correct decision, the system will be able to accomplish its mission. 
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 Think ahead: All the points made so far have one thing in common: They have not made it 

into the industrial practice for complex systems development in a widespread fashion, yet. 

And, while they exist and have the potential to support the testing of autonomous systems, 

they do not have all the necessary features, yet, e.g. formal methods need improvement 

regarding state-space explosion, virtual test environments need to represent reality in a more 

detailed fashion, and so on. So, successful autonomous systems development and testing 

requires using methods and tools that are on the cutting edge of technology. This requires 

thinking ahead and forecasting, which of these cutting edge technologies are here to stay and 

which of them lead to a dead-end. 

Conclusion 

In the face of the rising complexity of safety, testing becomes one of the biggest challenges. This 

paper showed that and why this is even more true when considering testing of autonomous systems. 

Non-deterministic behaviour that depends on the acquired knowledge of the system during operation 

and the fact that autonomous system often have to operate in a large environment that is not 

necessarily fully known at design time are just two of the aspects that are responsible for this. A lot of 

effort is spent on research to support the testing of autonomous system and this paper tried to give an 

overview of what has been done and condense this information into some guiding points for going 

forward into the future. Autonomous systems are on the rise and we need to make sure that we can test 

these systems and ensure their safe behaviour before they can be put into operation where they may 

interact with humans without explicit human supervision. 
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