
 26
th

 Annual INCOSE International Symposium (IS 2016)

Edinburg, Scotland, UK, July 18-21, 2016

Testing of Autonomous Systems - Challenges and

Current State-of-the-Art

Philipp Helle

Airbus Group Innovations

Hamburg, Germany

philipp.helle@airbus.com

Wladimir Schamai

Airbus Group Innovations

Hamburg, Germany

wladimir.schamai@airbus.com

Carsten Strobel

Airbus Group Innovations

Munich, Germany

carsten.strobel@airbus.com

Copyright © 2015 by Author Name. Published and used by INCOSE with permission.

Abstract. Autonomous systems are on the rise. However, the challenge to test autonomous systems

to ensure their safe and fault-free behaviour is not solved yet. This is especially critical when we

consider the fact that autonomous systems are often safety-critical systems envisaged to interact with

humans without explicit human supervision. This paper points out why testing autonomous systems

is such a challenge and provides an overview of the current state-of-the-art and state-of-practice. The

gathered information is then condensed into guiding points for the way forward.

Introduction

Without a doubt, autonomous systems represent a growing market: Mallors estimates an ”untapped

short term market value of circa 7 billion per annum just for relatively low level autonomy products

and services” (Mallors, 2013), Manyika et. al. state, that the ”potential economic impact of

autonomous cars and trucks could be $200 billion to $1.9 trillion per year by 2025” (Manyika, Chui,

Bughin, Dobbs, Bisson, & Marrs, 2013), Autefage et. al. estimate the total market for civilian robots

at more than 10 billion euros in 2012 and continue that it ”should exceed 100 billion euros before

2020” (Autefage, Chaumette, & Magoni, 2015) , and the US DoD had planned to spend a $24

billion-plus total budget for unmanned systems in the 2007-2013 timeframe (Clapper, Young,

Cartwright, & Grimes, 2007). The reasons for this growing trend differ with the application domain.

For space applications, autonomy in satellites or other space vehicles reduces the need for human

attendance especially during long-term missions and also reduces the reliance on the communication

link between the system and the ground station, which is costly in terms of energy and has a large

delay in long-distance missions (Pecheur, 2000) (Brat & Jonsson, 2005). For aerospace applications,

such as Unmanned Air Vehicles (UAVs), autonomy with significant in-mission executive power

allows systems to potentially replace humans in dangerous tasks (Alexander, Hall-May, & Kelly,

2007) and ensures that in the case of remotely piloted vehicles that the UAV remains safe and

controllable in case of a disruption of the command and control communication link (Schumann &

Visser, 2006). For automotive applications, autonomy in consumer cars promises to reduce the

mailto:carsten.strobel@airbus.com

commute burden, decrease traffic congestion, improve road safety and reduce carbon emission

(Bernhart & Winterhoff, 2014).

Most of the research in the area is focused on the development of autonomous systems. This despite

the fact that even today over 25% of total development costs are spent on verification and validation

(V&V), i.e. testing that the product works correctly and fulfils requirements. The testing effort is

projected to increase disproportionately when systems become more complex through the integration

of autonomy (Tallant, Buffington, Storm, Stanfill, & Krogh, 2006), which will make current test

methods not cost-effective for next-generation autonomous control systems. Intuitively, autonomous

systems are hard to test. Their flexible, context-aware behaviour implies unpredictability and can lead

to emergent behaviour, i.e. behaviour that was not necessarily specified, intended or consciously

implemented during the system design (Miles, et al., 2010). A key technology challenge for the

research in the area of autonomous systems should thus be the verification and validation.

Testing every system state, as is often done today for safety-critical systems, is becoming an

impossible task as these systems react to more environmental stimulus and have larger decision

spaces (Barhorst, Paunicka, Stuart, & Hoffman, 2011) (Hinchman, Clark, Hoffman, Hulbert, &

Snyder, 2012) or as Thompson more blatantly puts it "there is a common misconception in the testing

industry that all unmanned autonomous systems can be tested using methodologies developed to test

manned systems" (Thompson, 2008). A strong emphasis on developing methods to achieve V&V of

complex, highly adaptive, autonomous systems will thus be essential to enabling the capabilities they

can provide or as Macias says, "the evolutionary nature of UAS [..] must be met with evolutionary test

capabilities yet to be discovered and developed" (Macias, 2008). And this will not be an easy task as

Dahm writes that "developing certifiable V&V methods for highly adaptive autonomous systems is

one of the major challenges facing the entire field of control science, and one that may require the

larger part of a decade or more to develop a fundamental understanding of the underlying theoretical

principles and various ways that these could be applied" (Dahm, 2010).

This paper provides an overview of the current state-of-the-art and state-of-practice regarding the

stated challenge: V&V of autonomous systems.

This paper is structured as follows: Section Autonomous Systems will provide background

information regarding autonomous systems and tries to give some key characteristics of autonomous

system that influence the V&V challenge. Based on this, Section Challenges for Testing Autonomous

Systems elaborates key challenges before Section Current Approaches for Testing of Autonomous

Systems provides examples of currently used approaches for testing autonomous systems. The

Section Synopsis will condense the information presented that far into some guiding points and

Section Conclusion wraps everything up with a conclusion.

 Autonomous Systems

Autonomy, originating from auto = self and nomos = law, in the most basic definition means

self-governance or freedom from external influence or authority (Nguyen, Miles, Perini, Tonella,

Harman, & Luck, 2012). To avoid confusion it should be clarified that there is a significant difference

between the words autonomous and automatic that are sometimes erroneously used interchangeably.

Automatic means that a system will do exactly as programmed, without a choice. Autonomous means

that a system can make choices without considering outside influence, i.e., "an autonomous system

has free will" (Clough, 2002). Consider autonomy as "the ability to reason and make decisions to

reach given goals based on a systems current knowledge and its perception of the variable

environment in which it evolves" (Rudd & Hecht, 2008). Autonomous systems must perform

according to the specification under significant uncertainties in the operational environment for

extended periods of time and they must be able to cope with a certain amount of system failures

without external intervention (Antsaklis, Passino, & Wang, 1988). Hölzl et. al. (Wirsing, Hölzl,

Koch, & Mayer, 2011) provide four major autonomous systems principles:

 Knowledge: The system knows facts about itself and its surroundings.

 Adaptation: The system can adapt its own behaviour dynamically to cope with changing

surroundings.

 Self-awareness: The system can examine and reason about its own state.

 Emergence: Simple system elements construct complex entities.

Similar definitions are provided by Micskei and colleagues who write that "notable characteristics

shared by the different kinds of autonomous systems include reasoning, learning, adaptation and

context-awareness" (Micskei, Szatmári, Oláh, & Majzik, 2012) and others (Watson & Scheidt, 2005)

(Brat & Jonsson, 2005). Of course not all autonomous systems exhibit the same level of autonomy. A

variety of scales for describing the Level of Autonomy (LoA) achieved by a system have been

proposed of which the most influential one probably was developed by Clough (Clough, 2002) for

military UAVs. Higher levels of autonomy of course typically pose a higher challenge for V&V.

Another important preliminary point to make here is that in all modern systems, autonomy is realized

in software (Schumann & Visser, 2006), which means that V&V of autonomous systems often boils

down to software testing.

From the basic definition of autonomy we can develop common characteristics of autonomous

systems. Adaptive Systems are systems whose function evolves over time, as they change their

performance through learning. The advantage of adaptive systems is that they can, through judicious

learning, react to situations for which the designer did not make specific provisions (Mili, Cukic, Liu,

& Ayed, 2003).

Most autonomous systems use a model-based approach. In a model-based system,

application-specific information, like the capabilities and limitations of the system, are described in a

model of the application, not in implemented code. A general purpose reasoning system uses the

model to operate the entity in question (Brat & Jonsson, 2005).

Automatic planning as a kind of predecessor of autonomy is an offline process which can most often

be handled independent of system operation. Given an initial state, a goal and a set of possible

operators and actions that can be used, the objective in automated planning is to derive an optimal

plan to achieve the goal that can then be executed automatically. This problem is quite different when

we consider autonomous systems, which operate in open environments, that cannot be completely

foreseen at design time. In this case, planning must happen continuously and in in parallel to the plan

execution so that previously unanticipated events that occur during the plan execution can be

considered in the next planning step.

Figure 1. Layered Autonomy Model (Watson & Scheidt, 2005)

To reflect this, a canonical architecture has emerged in the research community based on the notion of

layered control loops (Gat, 1998) (Albus & Meystel, 1996). Figure 1 from Watson and Scheidt

(Watson & Scheidt, 2005) shows a simplified example of this architecture, where the lowest-level

control loops are used to provide feedback control with deterministic responsiveness. This control is

reactive in the sense that the system will be driven to some local optima with respect to the overall

behaviour goals, e.g., maintaining system safety. This local control set point is determined by the next

level of the architecture, which is called the plan executor. This loop uses filtered perception data to

assess the progress of the system through a pre-planned sequence of states. Responsiveness at this

level is limited to contingency plans that have been prepared in advance and the event conditions that

trigger them. At the highest level of control, a deliberative planning process uses explicit, declarative

models of the system and its environment, combined with state information from the plan execution

layer, to determine if the current situation requires global re-planning. All layers operate

asynchronously and in parallel to produce the controlled behaviour.

 Challenges for Testing Autonomous Systems

There is a consensus among researchers that if testing complex systems is hard then testing complex

autonomous systems is even harder and as stated in a recent paper, "testing autonomous systems is

still an unsolved key area" (Weiss, 2011) or as Brat and Jonsson (Brat & Jonsson, 2005) state, our

current validation techniques struggle with existing mission systems and now we are faced with

validating autonomous systems that can exhibit a much larger set of behaviours.

There are a number of causes for this:

 Complex environment: The larger size and higher complexity of the valid input space and

the context in which the system operates, both of which might be partially unknown at design

time. This makes exhaustive testing - as it is done traditionally - impossible (Brat & Jonsson,

2005) (Schumann & Visser, 2006) (Clapper, Young, Cartwright, & Grimes, 2007) (Micskei,

Szatmári, Oláh, & Majzik, 2012) (Brun, 2009) (Pouly & Jouanneau, 2012).

 Complex software: The complexity of the program logic, which is caused by characteristics

that are inherent in autonomous systems such as assembling their own course of actions for a

given goal, adapting to different environments, learning, diagnosing themselves and

reconfiguring themselves to maintain their functionality (Schumann & Visser, 2006)

(Mikaelian, 2010) (Brat & Jonsson, 2005). Brat and Jonsson observe that "verifying a planner

is an enormous challenge considering that planners are meant to find intricate solutions in

very large state spaces" (Brat & Jonsson, 2005).

 Non-deterministic behaviour: Since often the autonomous behaviour is based on some kind

of learning mechanism, autonomous systems may react differently to the same inputs over

time, since their knowledge on which their behaviour is based changes over time (Nguyen,

Miles, Perini, Tonella, Harman, & Luck, 2012) (Mikaelian, 2010) (Schumann & Visser,

2006) (Cukic, 2001) (Menzies & Pecheur, 2005). This also means that one successful test

does not guarantee that the system will pass the same test on the next test run. Kurd identifies

a key challenge as being the difficulty of understanding the model that the system has learned

(behaviour transparency and representation) (Kurd, 2005).

There is a second angle that makes testing autonomous systems even more important. Since

autonomous systems are by design not always under human control or supervision, it is crucial to

ensure their behaviour is safe (Mikaelian, 2010) especially since "society holds robots to a higher

standard and has a lower tolerance for their errors" (Weiss, 2011). This is a major impediment for the

certification of autonomous system as Dahm acknowledges that "it is possible to develop systems

having high levels of autonomy, but it is the lack of V&V methods that prevents all but relatively low

levels of autonomy from being certified for use" (Dahm, 2010). Since autonomous systems are often

safety-critical (e.g. flight control) systems, they have to adhere to strict certification standards,

leaving a wide technological gap between the requirements of the application domain and the

capabilities of available technologies. Heitmeyer and Leonard see a major problem for autonomous

systems in the "Human Mistrust of Automation/Autonomy" (Heitmeyer & Leonard, 2015) and

Zwillinger and colleagues (Zwillinger, Palmer, & Selwyn, 2014) state that two kinds of trust are

needed so that a user accepts an autonomous system:

 System trust: Human confidence that the system behaves as intended. Achieving this trust

requires a high assurance that the system satisfies its requirements, i.e. the traditional V&V

challenges.

 Operational trust: Human confidence that system helps the user to perform the assigned

tasks. Achieving this trust requires a high assurance that the scenarios for which the system

was designed are useful.

US Air Force (USAF) Chief scientist Werner Dahm identified control science, i.e., the systematic

way to study certifiable validation and verification (V&V) methods and tools to allow humans to trust

decisions made by autonomous systems as a top priority for the USAF saying that "the major barrier

that prevents the USAF from gaining more capability from autonomous systems is the lack of V&V

methods and tools" (Dahm, 2010).

So, why can current testing methods not cope with the challenge? The currently used methods for

software testing can be classified into three categories:

 Fault Avoidance, which is built on the premise that it is possible to build fault-free systems

by design.

 Fault Removal, which is an ex post facto approach, which is based on the assumption that we

can remove all faults from systems by extensive testing and corrections.

 Fault Tolerance, which concedes that a fault-free system is unrealistic in practice and tries to

ensure that residual faults do not lead to system failures.

Unfortunately, none of these three methods can cope with the challenges of autonomous system

testing at the moment for different reasons (Mili, Cukic, Liu, & Ayed, 2003):

 Fault Avoidance: Formal design methods exist for current systems that can proof that design

and implementation formally adhere to the requirements. This does not work for autonomous

systems where the behaviour not only depends on design and implementation but also on the

acquired knowledge of the system, which could not have been included in the formal

verification process during design time.

 Fault Removal: All testing methods are built on the assumption that the system under test

will behave in the same way in the field as they do in the test environment and, consequently,

that if a system passes all tests then it will work flawlessly during operation. And, as said

before, this does not hold for autonomous systems, whose behaviour can change over time

(Alexander, DelGobbo, Cortellessa, Mili, & Napolitano, 2000).

 Fault Tolerance: Fault tolerance techniques are based on the assumption that we can

formalize the required behaviour of software in a way that we can use them to design error

detection and recovery capabilities. With adaptive systems, it is not possible to formulate such

expectations because the full required behaviour in all working conditions is not known at

design time.

Current Approaches for Testing of Autonomous Systems

After stating the specific problems that come with the testing of autonomous systems, this chapter

will provide examples of existing approaches to these challenges. The goal is not to present the

approaches in detail but to identify which methods and tools are used in order to form a

comprehensive list of technologies that are useful for testing autonomous systems.

Pouly and Jouanneau (Pouly & Jouanneau, 2012) present an approach for development and testing of

an autonomous satellite that was elaborated in the frame of the AGATA project (Charmeau &

Bensana, 2005). The approach relies on using a Model-based Systems Engineering approach based

on the Unified Modelling Language (UML) with automatic code generation and uses a model-based

testing approach, i.e., automatic generation of test cases from a model, to support the verification of

the on-board software. It reshapes the traditional V-shaped development process into a Y-shaped

production cycle, which enables an incremental development process in which the software

validation can start much earlier. They further state that "current works are exploring how to integrate

model-checking in our process" (Pouly & Jouanneau, 2012).

Hölzl et. al. present results from the ASCENS (Autonomic Service-Component Ensembles) project

which targets "ensembles: systems with massive numbers of nodes, operating in open and

non-deterministic environments with complex interactions, and the need to dynamically adapt to new

requirements, technologies or environmental conditions without redeployment and without

interruption of the systems functionality" (Hölzl, et al., 2011). In their effort to develop a "coherent,

integrated set of methods and tools to build software for ensembles” they are combining several

methods: A Model-based approach with different domain-specific languages (DSLs) built on

components for the construction and run-time monitoring including predictive analysis to support the

verification of the systems.

Lill and Saglietti (Lill & Saglietti, 2012) present a model-based testing approach for testing the

cooperative behaviour of software controlled autonomous systems using Coloured Petri Nets (CPN)

(Jensen & Kristensen, 2009) in order to identify adequate test scenarios and provide objectively

measurable test stopping rules for testing especially the interaction between autonomous systems.

Horányi and his colleagues propose a model-based testing approach using UML for testing the

control module of autonomous robots. They use a monitor-based testing approach where

requirements are formalized into "observer automata", which are then used as test oracles and test

data is automatically generated from a context model of the system (Horányi, Micskei, & Majzik,

2013).

A similar approach is presented by Nguyen et. al. in (Nguyen, Miles, Perini, Tonella, Harman, &

Luck, 2012). They use meta-heuristic search techniques for online test generation, calculating the

fitness of potential test data on the basis of evaluating the execution of the system under test and

optimization to generate demanding test cases. They conclude that this evolutionary test approach

"can test agents in a greater range of contexts than standard tests, thereby accounting for their

autonomy to act differently in each such context" (Nguyen, Miles, Perini, Tonella, Harman, & Luck,

2012).

Berger and Rumpe report experience from their participation at the 2007 DARPA Urban Challenge

(Berger & Rumpe, 2012). They used a mostly traditional software development approach only

partially supported by some UML modelling activities. Regarding testing, they developed a complete

virtual test environment that could supply the control software with virtual raw sensor inputs to

enable automatic testing as early as possible in a "simulate first approach" where all tests are

conducted in the virtual test environment before they are conducted in the real world.

A similar stance is taken by Mutter et. al. (Mutter, et al., 2011) and Bayha et. al. (Bayha, Grüneis, &

Schätz, 2012) from the domain of autonomous aerial vehicles. They worked on a virtual testing

environment for autonomous UAVs that allows to "test the software as-is, i.e., without any

modifications or instrumentation for testing purposes" (Bayha, Grüneis, & Schätz, 2012). They state

that "virtual integration of the system makes it possible to test a software implementation without

endangering the hardware or the environment" (Mutter, et al., 2011).

Thompson also advocates testing in virtual environments and takes this even further when he states

that "virtual testing must become a standard complement to field-testing UASs if the testing

community is ever going to be able to test an intelligent UAS safely and comprehensively"

(Thompson, 2008) and that "hardware-in-the-loop is a necessity of any virtual test environment"

(Thompson, 2008).

Scrapper and colleagues (Scrapper, Balakirsky, & Messina, 2006) also report on virtual environments

for testing of autonomous mobile robot systems. And while they advocate the usage of virtual testing

they also warn that not everything can be tested virtually, at least not with today’s simulation

capabilities, and that "much further testing will be needed in the real world". They see deficits in the

representation of complexity and noise found in the real world, the approximation to reality of

simulated sensor feeds, the complete and accurate modelling of the system under test’s physical

behaviour.

Brat and Jonsson (Brat & Jonsson, 2005) present an approach that relies heavily on composition for

design and verification. Their design process relies on creating new systems based on known building

blocks in an assume-guarantee framework. For the verification of autonomous systems they combine

"advanced verification techniques (static analysis, model checking, compositional verification, and

automated test generation)" (Brat & Jonsson, 2005) with automatic generation of certified code.

Further advocates of formal verification, i.e., static analysis, model checking and runtime

verification, for testing autonomous systems include (Schumann & Visser, 2006), (Feather, Fesq,

Ingham, Klein, & Nelson, 2004), (Cheng, et al., 2014), (De Lemos, et al., 2013) and (Simmons,

Pecheur, & Srinivasan, 2000).

Synopsis

From the characteristics of autonomous systems, the challenges that they present for V&V and the

already existing approaches to solve these challenges, this section tries to provide a synopsis in the

form of a list of things that will support successful autonomous systems development and testing.

 Use models: It has been shown that using a Model-based Systems Engineering (MBSE), e.g.,

(Helle & Schamai, 2014) (Estefan, 2008), approach can significantly reduce the number of

defects that are introduced into a development project, especially in the early development

stage (Saunders, 2011). This benefit increases in the scope of autonomous systems

development, where exhaustive testing is not possible and it is therefore more difficult to

ensure that a product is fault-free. Furthermore, the operational models that are part of most

MBSE processes can be used to communicate the intended behaviour of the system to the

potential users more easily and earlier on, which helps to build the operational trust and

thereby the acceptance of the system.

 Be formal: One common trend in the whole complex systems development area that could

also be shown in the existing autonomous system testing approaches discussed in this paper is

to move towards formal methods, which can be used to formally prove the absence of faults in

specifications and/or code. The potential of formal methods have never been doubted but the

widespread usage of formal methods so far have been hindered by two facts: Firstly, ease of

use for non-experts and secondly, dealing with large state-spaces. The latter becomes even

more of a challenge when we consider the fact that the state-space in autonomous systems

development is typically bigger than for other systems. So, there is still work to be done.

Nevertheless, formal methods can be used today and will help people building better systems.

 Automate: Automatic test execution is already the current state-of-practice in industry. What

is not, however, is automatic generation of test scenarios, i.e., model-based testing (MBT). It

has been shown that MBT can significantly reduce the effort for testing (Kläs, Bauer,

Rick
Highlight

Söderqvist, Dereani, & Helle, 2015) and a number of the presented approaches in the previous

chapter consider it a useful tool for testing autonomous systems.

 Test early: It has been shown before that fixing defects becomes more expensive the later the

defect is discovered in the product lifecycle. Laycock claims that ”the effort needed to

produce test cases during each phase will be less than the effort needed to produce one huge

set of test cases of equal effectiveness on a separate lifecycle phase just for testing” (Laycock,

1993). Especially, if we found our development on models, as advised by the first bullet point,

we can start the testing of these models as soon as they are built thereby preventing errors

from trickling down and snowball into a big problem during a separate testing phase.

 Test continuously: Runtime monitoring can be used to continue monitoring the intended

behaviour of a system even in service (Leucker & Schallhart, 2009), (Levy, Saïdi, & Uribe,

2002). Monitor-based testing, e.g., (Schamai, Helle, Fritzson, & Paredis, 2011), is a similar

approach where we do not have to care so much about the resource consumption of the

monitors on-board the system because they are running on the test bench. What both

approaches have in common, is that they enable the testing of certain properties of a system in

any context, even unknown ones and this makes them ideal approaches for testing of

autonomous systems.

 Test virtually: Google relies on extensive road testing of their autonomous vehicle and they

have clocked more than 700000 miles so far (Johanning & Mildner, 2015). This is done in an

effort to gain trust in the system and prove to the world that autonomous driving is possible

today. This approach of testing extensively in real-life service is not feasible for some

autonomous systems, e.g., in the space domain, and becomes very costly and time-consuming

and therefore impractical if autonomy becomes a regular feature. Virtual testing, which is not

a new topic, can help with that. Firstly, virtual testing can start with imperfect systems that fail

frequently and which we would not want to test in a real environment because nothing serious

can happen. Secondly, virtual testing scales better because it can be done in parallel on several

virtual test benches. It is only limited by the available computing power and Moore’s Law still

holds. Thirdly, coming back to the third bullet point, virtual testing can be started before the

first metal is cut. The challenges for virtual testing when it comes to autonomous systems

testing is that the virtual test environment needs to be representative of the intended

operational environment of the system under test and, as said before, this can potentially be

the whole world with a very large state space.

 Start by testing the correctness of the autonomy capability: Autonomy introduces a new

level of abstraction - a meta-level for design and V&V. When designing a deterministic

system, engineers decide how the system should react in particular situations. Autonomous

systems are able to learn and adapt their behaviour to some extent. This implies that, now, the

system itself will make decisions based on the data learnt so far, its current state and the state

of its environment. Taking such decision requires some reasoning capability that will take into

account reasoning rules, constraints or optimization objectives. Dealing with the challenge of

ensuring that the system will be safe and reliable therefore means dealing with the verification

of the reasoning component of the system in the first place. Having the confidence that the

system will reason correctly, traditional V&V approaches can still be used for ensuring that,

after taking the correct decision, the system will be able to accomplish its mission.

Rick
Highlight

 Think ahead: All the points made so far have one thing in common: They have not made it

into the industrial practice for complex systems development in a widespread fashion, yet.

And, while they exist and have the potential to support the testing of autonomous systems,

they do not have all the necessary features, yet, e.g. formal methods need improvement

regarding state-space explosion, virtual test environments need to represent reality in a more

detailed fashion, and so on. So, successful autonomous systems development and testing

requires using methods and tools that are on the cutting edge of technology. This requires

thinking ahead and forecasting, which of these cutting edge technologies are here to stay and

which of them lead to a dead-end.

Conclusion

In the face of the rising complexity of safety, testing becomes one of the biggest challenges. This

paper showed that and why this is even more true when considering testing of autonomous systems.

Non-deterministic behaviour that depends on the acquired knowledge of the system during operation

and the fact that autonomous system often have to operate in a large environment that is not

necessarily fully known at design time are just two of the aspects that are responsible for this. A lot of

effort is spent on research to support the testing of autonomous system and this paper tried to give an

overview of what has been done and condense this information into some guiding points for going

forward into the future. Autonomous systems are on the rise and we need to make sure that we can test

these systems and ensure their safe behaviour before they can be put into operation where they may

interact with humans without explicit human supervision.

References

Albus, J. S., & Meystel, A. M. (1996). A reference model architecture for design and implementation

of intelligent control in large and complex systems. International Journal of Intelligent

Control and Systems, pp. 15-30.

Alexander, C., DelGobbo, D., Cortellessa, V., Mili, A., & Napolitano, M. (2000). Modeling the fault

tolerant capability of a flight control system: An exercise in SCR specifications. Proceedings

of the Langley Formal Methods Conference.

Alexander, R. D., Hall-May, M., & Kelly, T. P. (2007). Certification of autonomous systems under

UK military safety standards. University of York.

Antsaklis, P. J., Passino, K. M., & Wang, S. J. (1988). Autonomous control systems: Architecture and

fundamental issues. American Control Conference (pp. 602-607). IEEE.

Autefage, V., Chaumette, S., & Magoni, D. (2015). Comparison of time synchronization techniques

in a distributed collaborative swarm system. European Conference on Networks and

Communications (EuCNC) (pp. 455-459). IEEE.

Barhorst, J. F., Paunicka, J. L., Stuart, D. A., & Hoffman, J. (2011). Emerging Directions in

Aerospace Software V&V. Proceedings of Infotech@ Aerospace Conference, (pp.

1507-1512).

Bayha, A., Grüneis, F., & Schätz, B. (2012). Model-based software in-the-loop-test of autonomous

systems. Proceedings of the 2012 Symposium on Theory of Modeling and Simulation-DEVS

Integrative M&S Symposium. Society for Computer Simulation International.

Berger, C., & Rumpe, B. (2012). Engineering autonomous driving software. In C. Rouff, & M.

Hinchey, Experience from the DARPA Urban Challenge (pp. 243-271). Springer.

Bernhart, W., & Winterhoff, M. (2014). Autonomous Driving: Disruptive Innovation that Promises

to Change the Automotive Industry as We Know It. In J. Langheim, Energy Consumption and

Autonomous Driving - Proceedings of the 3rd CESA Automotive Electronics Congress, Paris,

2014 (pp. 3-10). Springer.

Brat, G., & Jonsson, A. (2005). Challenges in verification and validation of autonomous systems for

space exploration. Proceedings of the IEEE International Joint Conference on Neural

Networks (IJCNN'05) (pp. 2909--2914). IEEE.

Brun, Y. (2009). Software Engineering for Self-Adaptive Systems: A Research Roadmap. In B.

Cheng, R. de Lemos, P. Inverardi, & J. Magee, Software Engineering for Self-Adaptive

Systems (pp. 48-70). Springer.

Charmeau, M.-C., & Bensana, E. (2005). AGATA: A Lab Bench Project for Spacecraft Autonomy.

International Symposium on Artificial Intelligence Robotics and Automation in Space

(iSAIRAS).

Cheng, B. H., Eder, K. I., Gogolla, M., Grunske, L., Litoiu, M., Müller, H. A., et al. (2014). Using

models at runtime to address assurance for self-adaptive systems. In Models@run.time (pp.

101-136). Springer.

Clapper, J., Young, J., Cartwright, J., & Grimes, J. (2007). Unmanned systems roadmap 2007-2032.

Office of the Secretary of Defense.

Clough, B. T. (2002). Metrics, schmetrics! How the heck do you determine a UAV's autonomy

anyway. Air Force Research Laboratory.

Cukic, B. (2001). The need for verification and validation techniques for adaptive control system.

Proceedings of the 5th International Symposium on Autonomous Decentralized Systems (pp.

297-298). IEEE.

Dahm, W. J. (2010). Technology Horizons a Vision for Air Force Science & Technology During

2010-2030. Office of the US Air Force Chief Scientist.

De Lemos, R., Giese, H., Müller, H. A., Shaw, M., Andersson, J., Litoiu, M., et al. (2013). Software

engineering for self-adaptive systems: A second research roadmap. In Software Engineering

for Self-Adaptive Systems II (pp. 1-32). Springer.

Estefan, J. (2008). Survey of Model-Based Systems Engineering (MBSE) methodologies. International

Council on Systems Engineering.

Feather, M. S., Fesq, L. M., Ingham, M. D., Klein, S. L., & Nelson, S. D. (2004). Planning for V&V

of the Mars Science Laboratory rover software. Proceedingsof the 2004 IEEE Aerospace

Conference. IEEE.

Gat, E. (1998). On three-layer architectures. Artificial intelligence and mobile robots.

Heitmeyer, C. L., & Leonard, E. I. (2015). Obtaining trust in autonomous systems: tools for formal

model synthesis and validation. 2015 IEEE/ACM 3rd FME Workshop on Formal Methods in

Software Engineering (FormaliSE) (pp. 54-60). IEEE.

Helle, P., & Schamai, W. (2014). Towards an integrated methodology for the development and

testing of complex systems - with example. International Journal on Advances in Systems and

Measurements, pp. 129-149.

Hinchman, J., Clark, M., Hoffman, J., Hulbert, B., & Snyder, C. (2012). Towards Safety Assurance of

Trusted Autonomy in Air Force Flight Critical Systems. Computer Security Applications

Conference, Layered Assurance Workshop.

Hölzl, M., Wirsing, M., Klarl, A., Koch, N., Reiter, S., Tribastone, M., et al. (2011). Engineering

Ensembles: A White Paper of the ASCENS Project.

Horányi, G., Micskei, Z., & Majzik, I. (2013). Scenario-based Automated Evaluation of Test Traces

of Autonomous Systems. SAFECOMP 2013 - Workshop DECS (ERCIM/EWICS Workshop

on Dependable Embedded and Cyber-physical Systems) of the 32nd International Conference

on Computer Safety, Reliability and Security.

Jensen, K., & Kristensen, L. M. (2009). Coloured Petri nets: modelling and validation of concurrent

systems. Springer.

Johanning, V., & Mildner, R. (2015). Car IT kompakt: Das Auto der Zukunft--Vernetzt und autonom

fahren. Springer.

Kläs, M., Bauer, T., Söderqvist, T., Dereani, A., & Helle, P. (2015). A Large-Scale Technology

Evaluation Study: Effects of Model-based Analysis and Testing. Proceedings of the 37th

International Conference on Software Engineering (ICSE 2015). IEEE.

Kurd, Z. (2005). Artificial neural networks in safety-critical applications. University of York.

Laycock, G. T. (1993). The theory and practice of specification based testing. University of

Sheffield.

Leucker, M., & Schallhart, C. (2009). A brief account of runtime verification. Journal of Logic and

Algebraic Programming, pp. 293-303.

Levy, J., Saïdi, H., & Uribe, T. E. (2002). Combining monitors for runtime system verification.

Electronic Notes in Theoretical Computer Science, pp. 112–127.

Lill, R., & Saglietti, F. (2012). Test Coverage Criteria for Autonomous Mobile Systems based on

Coloured Petri Nets. 9th Symposium on Formal Methods for Automation and Safety in

Railway and Automotive Systems (FORMS/FORMAT 2012), (pp. 155-162).

Macias, F. (2008). The test and evaluation of unmanned and autonomous systems. ITEA Journal, pp.

388–395.

Mallors, R. L. (2013). Autonomous systems: Opportunities and challenges for the UK. IET Seminar

on UAVs in the Civilian Airspace.

Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., & Marrs, A. (2013). Disruptive

technologies: Advances that will transform life, business, and the global economy. McKinsey

Global Institute San Francisco, CA, USA.

Menzies, T., & Pecheur, C. (2005). Verification and validation and artificial intelligence. Advances in

Computers, pp. 153-201.

Micskei, Z., Szatmári, Z., Oláh, J., & Majzik, I. (2012). A concept for testing robustness and safety of

the context-aware behaviour of autonomous systems. In Agent and Multi-Agent Systems.

Technologies and Applications (pp. 504-513). Springer.

Mikaelian, T. (2010). A Real Options Approach to Testing. MIT.

Miles, S., Winikoff, M., Cranefield, S., Nguyen, C. D., Perini, A., Tonella, P., et al. (2010). Why

testing autonomous agents is hard and what can be done about it.

Mili, A., Cukic, B., Liu, Y., & Ayed, R. B. (2003). Towards the verification and validation of online

learning adaptive systems. In Software Engineering with Computational Intelligence (pp.

173-203). Springer.

Mutter, F., Gareis, S., Schätz, B., Bayha, A., Grüneis, F., Kanis, M., et al. (2011). 18th IEEE

International Conference and Workshops on Engineering of Computer Based Systems

(ECBS) (pp. 269-275). IEEE.

Nguyen, C. D., Miles, S., Perini, A., Tonella, P., Harman, M., & Luck, M. (2012). Evolutionary

testing of autonomous software agents. Autonomous Agents and Multi-Agent Systems, pp.

260-283.

Pecheur, C. (2000). Verification and validation of autonomy software at NASA. National Aeronautics

and Space Administration.

Pouly, J., & Jouanneau, S. (2012). Model-based specification of the flight software of an autonomous

satellite. Embedded Real Time Software Systems (ERTS 2012).

Rudd, L., & Hecht, H. (2008). Certification techniques for advanced flight critical systems. WPAFB.

Saunders, S. (2011). Does a Model Based Systems Engineering Approach Provide Real Program

Savings? Lessons Learnt. Informal Symposium on Model-Based Systems Engineering. DSTO.

Schamai, W., Helle, P., Fritzson, P., & Paredis, C. J. (2011). Virtual verification of system designs

against system requirements. In J. Dingel, & A. Solberg, Models in Software Engineering (pp.

75-89). Springer.

Schumann, J., & Visser, W. (2006). Autonomy software: V&V challenges and characteristics.

Proceedings of the 2006 IEEE Aerospace Conference (pp. 1233--1249). IEEE.

Scrapper, C., Balakirsky, S., & Messina, E. (2006). MOAST and USARSim: a combined framework

for the development and testing of autonomous systems. Defense and Security Symposium.

International Society for Optics and Photonics.

Simmons, R., Pecheur, C., & Srinivasan, G. (2000). Towards automatic verification of autonomous

systems. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS 2000) (pp. 1410-1415). IEEE.

Tallant, G. S., Buffington, J. M., Storm, W. A., Stanfill, P. O., & Krogh, B. H. (2006). Validation &

Verification for emerging avionic systems.

Thompson, M. (2008). Testing the Intelligence of Unmanned Autonomous Systems. ITEA Journal,

pp. 380–387.

Watson, D. P., & Scheidt, D. H. (2005). Autonomous systems. Johns Hopkins APL technical digest,

pp. 368-376.

Weiss, L. G. (2011). Autonomous robots in the fog of war. IEEE Spectrum, pp. 30-57.

Wirsing, M., Hölzl, M., Koch, N., & Mayer, P. (2011). Software Engineering for Collective

Autonomic Systems - The ASCENS Approach. Springer.

Zwillinger, D., Palmer, G., & Selwyn, A. (2014). The Trust V - Building and measuring trust in

autonomous systems. Raytheon.

Biography

Philipp Helle joined Airbus Group Innovations in 2003 and is currently a

member of the team Model-based Systems and Software Engineering. He studied

linguistics and computer science and received his MA from the University of

Hamburg. Since 2005, he is actively involved in research concerning

model-based systems engineering including model-based testing and

model-based safety analysis and the deployment of these approaches in the

Airbus Group business units. Philipp is a member of GfSE, the German INCOSE

chapter, and a certified Project Management Professional (PMP).

Dr. Wladimir Schamai is a researcher in the Systems Engineering department

of Airbus Group Innovations. After studying computer science he worked as

software developer for several years. He received his Ph.D. in Computer and

Information Science from Linköping University in Sweden. Since 2005, he is

actively involved in research concerning Systems Engineering.

Carsten Strobel is head of the Model-based System and Software Engineering

research team of Airbus Group Innovations. He studied Business Engineering at

the Karlsruhe Institute of Technology. Since joining Airbus Group in 2006 he is

working in the field of MBSE at projects for all Airbus Group Divisions, mainly

focusing on integrated model-based specification, design and testing.

