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I. INTRODUCTION 

Complexity is nothing new to systems engineers and managers. The discipline of 
systems engineering evolved to improve our ability to deal with scale, interdependency, and 
complexity in systems development. Few systems engineers would doubt that complexity is 
increasing every year. The rate of change, the increasing interdependence and adaptability 
of systems, and the increasing ambitions of our clients ensure that complexity keeps 
expanding to the limits of our capacity to cope with it. 

Complex systems science provides a strong foundation for understanding, coping with, 
and even exploiting complexity. There is a large and rapidly expanding literature on 
networks, complexity, and complex adaptive systems that can guide systems engineering 
practice. But busy systems engineers rarely have the time to keep up with this literature, 
which is diffused across the many interdisciplinary applications of complex systems science. 
This paper is written for systems engineers and program/project managers who suspect 
they may encounter complexity-related challenges. This paper applies key concepts from 
complex systems science to systems engineering to suggest new methods that can handle 
complexity rather than assuming it away.  It is not a complete or even extensive treatment, 
but is intended as an introduction to the subject for systems engineers as they encounter 
and work with complexity-related phenomena. 

Section II of this paper defines complexity and describes how we can identify complexity 
in an environment, a problem space, or a solution space.   We also address the extent and 
types of complexity that a system or situation may exhibit, so that systems engineers can 
seek approaches that can better address that kind of complexity.   

Section III then discusses how engineers address the problem of complexity, in two 
sections. The first approach requires thinking differently about the environment, the 
problem, and the solution. The second approach involves implementation of specific tools 
and techniques.  
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II. WHAT IS COMPLEXITY?   

In ordinary language, we often call something complex when we can’t fully understand 
its structure or behavior: it is uncertain, unpredictable, complicated, or just plain difficult. 
Sillitto (2009) described the inability of a human mind to grasp the whole of a complex 
problem and predict the outcome as subjective complexity. John Warfield’s (2006) 
“frustration” in the mind of the system’s builders and users also fits into this bucket. While 
there are ways to reduce this complexity and improve the fit of technical systems into the 
complex environment, they are not the focus of this primer.  

Sillitto’s Objective Complexity describes technical or system characteristics that lead to 
the subjective complexity or difficulty. As systems engineers, we have the ability to modify 
these characteristics; they are also the ones most frequently addressed by complex 
systems science.  

The standard systems engineering process breaks down a problem into parts, 
recursively, until the parts are simple enough that we understand them and can design 
solutions; we then re-assemble the parts to form the whole solution. The approach works 
well for systems whose parts interact in fixed ways (also known as “complicated” systems 
– an example might be a car), even when there are many interacting parts and the systems 
may have unpredictable behavior.  

Other systems, however, present significant problems when analyzed in piecewise 
fashion. Systems such as transportation networks have autonomous parts whose 
interactions lead to emergent self-organized patterns of behavior. In these systems, 
defined here as “complex” systems, the emergent properties that we really care about are 
not understandable form the perspective of the parts in isolation. It is especially for these 
systems that we are providing guidance to additional tools and techniques created in 
complex systems sciences and recommend their use in systems engineering of complex 
systems.  
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A.  CHARACTERISTICS OF COMPLEXITY 

Complexity is a characteristic of more than just a technical system being developed.  It is 
often created by the interaction of people, organizations, and the environment that are part 
of the complex system surrounding the technical system.  Complexity results from the 
diversity, connectivity, interactivity, and adaptivity of a system and its environment. Constant 
change makes it difficult to define stable goals for a project or system. Technical systems 
that worked well in the past to solve an environmental problem become obsolete quickly.  
Intricate networks of evolving cause-effect relationships lead to subtle bugs and surprising 
dynamics. Unintended consequences can overwhelm or even negate the intended 
consequences of actions. 

When systems are complex, their structures cannot be described at a single level or with 
a single view; multi-scale descriptions are needed to understand complex systems. Their 
emergent behavior, derived from the relationships among their elements and with the 
environment, via internal and external feedback loops, gives rise to observed patterns that 
may not be understood or predicted.  Describing the behavior of a system as a response 
function may require an unobtainable amount of information. It is often impossible to predict 
future configurations, structures, or behaviors of a complex system, given finite resources. 

A complex system may have multiple stable states (meaning each state is actually meta-
stable), transient states, or even no lasting stable states, exhibiting continuous evolution. 
Perturbations in the system may result in recovery to the former state but may also lead to 
transitions to another state and consequent radical changes of properties.  In addition, 
details seen at the fine scales can influence large-scale behavior. Dynamics of different 
parts and patterns cannot be reproduced using simple averages. Complex systems are 
perpetually generating novelty, many key variables are opaque, boundaries are 
indeterminate, and weak ties can have a disproportional effect on system behavior. Duality 
is common: tension between large and small, distributed and central, agile and planned 
calls for perpetual seeking of balance. In short, complex systems are different.. 

Although complexity can present challenges, complexity is often inherent and may even 
be a necessary or desirable attribute of a solution system. Systems that have been 
engineered to rule out any but deterministic behaviors are necessarily limited by the 
prescribed behaviors, and do not extend well into unplanned environments.  In contrast, 
complex systems can be engineered to have sufficient adaptability to operate well in a 
changing environment, responding to change in appropriate and effective ways.  A complex 
system provides a welcome kind of variety that can help provide control of different 
dimensions and enables the system to adapt to environmental change. To provide new 
capabilities or graceful degradation, a complex system can adapt by re-organizing its 
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B.  IDENTIFYING THE RIGHT LEVEL OF COMPLEXITY 

dimensions and enables the system to adapt to environmental change. To provide complex 
system provides a welcome kind of variety that can help provide control of different 
dimensions and enables the system to adapt to environmental change. To provide new 
capabilities or graceful degradation, a complex system can adapt by re-organizing its 
structure, responses, or patterns of parts.   

  

Science and engineering help humans to make successful systems because they 
provide ways to understand, predict, and control technology, in order to create desirable 
effects on the world. All science involves abstraction of the complexity of the world into 
approaches and models that use simplifying assumptions. This allows us to generalize from 
one complex situation to another. The best engineering methods take advantage of the 
simplicity in the models without diverging so far from reality that behavior can no longer be 
predicted and controlled.  

As a system’s diversity, connectivity, interactivity, or adaptivity increases, the risk 
associated with using simpler methods and simplifying assumptions also increases, and 
more advanced techniques may be needed. Tools and techniques apply differently to 
systems on a spectrum of increasing complexity. At the less complex end, the waterfall 
model for top-down sequential design applies well. At the more complex end, tools such as 
agent-based models for model-based systems engineering can be used to understand and 
address complex, dynamic systems design challenges. Techniques at the lower end of the 
spectrum tend to be easier to learn, and simpler and faster to apply, because they make 
simplifying assumptions that ignore some of the complexity. The practitioner must apply 
judgment to utilize a mixture of tools along this spectrum that satisfies Einstein’s razor: 
make things as simple as possible, but not simpler.  

It is rarely possible to fully assess in advance what complexity within a project must be 
addressed and what can be assumed away. Because complex systems perpetually 
generate novelty, systems engineers will often have to adapt their approach to unfolding 
conditions and use flexible tools.  Systems engineers should also recognize that the 
complexity of a system, as manifested in many diverse types of parts and relationships, 
provides a welcome kind of variety that can help facilitate control of different dimensions and 
enables the system to adapt to environmental change. 
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III. SOLUTIONS FOR COMPLEXITY 

Throughout its history, systems engineering has been the primary method for 
engineering in the face of complexity.  As the complexity of systems and their contexts has 
grown, systems engineering methods and tools have increasingly fallen short of what is 
needed in the face of this reality.  A common approach has been to seek clever ways to 
simplify, or reduce, the subjective complexity so that the problem and the system are 
understandable.  Scientific advances have, in fact, often come from elegant simplifications 
that model the important variables or forces that dominate behavior.  However, this is not 
always possible – complexity often cannot be simplified away without losing the essence of 
the problem or possible solutions. Further, this simplification leads to an inability on the part 
of the solution to be able to engage with the complexity that remains despite our preference 
to assume it away. 

Ross Ashby’s Law of Requisite Variety shows that a system controller must have at least 
as many degrees of control as the degrees of freedom in the environment to be controlled.  
If a system operates within an environment of human processes, as in today’s air traffic 
control, then the system solution must have sufficient complexity to do so.  In such a 
system, it is difficult and even dangerous to ignore the complexity.   

Therefore it behooves systems engineers to acknowledge, understand and learn to work 
better with complexity.  A first step is to identify the kinds of complexity in a system and its 
environment (Section II).  A second step is to create appropriate new ways to think about 
complexity that guide the approaches used (Section IIIA).  A third step is to evolve and 
publicize methods to deal with different types of complexity in different situations (Section 
IIIB).   

Working with complexity will never be a trivial task that can be reduced to following a 
checklist.  The complex, adaptive neural network of our human brains will always be needed 
to supplement documented lessons of any sort.  A long-term goal of the INCOSE Complex 
Systems Working Group is to facilitate the systems engineering community’s collective 
learning with non-trivial lessons, heuristics, and shared stories, all of which are outside the 
scope of this Primer.  We acknowledge that the world is complex, and that our orderly, 
simple views are inadequate. We must grow toward a new appreciation of the  
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implications of complexity – in our systems, in their ecosystems (both technical and socio-
political), and in the interplay between the two – in order to be successful.  

 
A.  COMPLEXITY THINKING: GUIDING PRINCIPLES  

Complex systems engineering requires both a shift in thinking and an expanded set of 
tools and techniques. In this section, we summarize the shift in thinking needed to 
acknowledge and embrace complexity within systems engineering. Several principles are 
provided below that encourage systems engineers to think differently about how to engage 
with complexity. 

1. Think like a gardener, not a watchmaker.  Consider the complexity of the 
environment and the solution, and think about evolving a living solution to the 
problem rather than constructing a system from scratch. 

2. Combine courage with humility. It takes courage to acknowledge complexity, 
relinquish control, encourage variety, and explore unmapped territory. It takes 
humility to accept irreducible uncertainty, to be skeptical of existing knowledge, and 
to be open to learning from failure. A combination of courage and humility enables 
the complex systems engineer to risk genuine innovation and learn fast from iterative 
prototyping of solutions in context.  

3. Take an adaptive stance. Systems engineers should mimic how living systems cope 
with complexity by identifying and creating variation, selecting the best versions, and 
amplify the fit of the selected versions. This means, for example, to think “influence” 
and “intervention” rather than “control” and “design.” Designing or evolving a complex 
system requires recognition that the designer may not ever be able to control or even 
understand the system completely.   

4. Use free order. In architecting and designing solutions, build in “order for free” using 
self-organization, presuming it has been modeled and can be limited to desired 
effects.  This in particular applies when the system being designed must be resilient. 

5. Identify and use patterns. Patterns are exhibited by complex systems, can be 
observed and understood, and are a key mechanism in the engineering of complex 
systems. Patterns are the primary means of dealing specifically with emergence and 
side effects—that is, the means of inducing desired emergence and side effects, and 
the means of avoiding undesired emergence and side effects. 
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6. Zoom in and zoom out. Because complex systems cannot be understood at a 
single scale of analysis, systems engineers must develop the habit of looking at their 
project at many different scales, by iteratively zooming in and zooming out. Can 
problems be solved more elegantly by addressing them at a higher or lower 
hierarchical level? The complex systems engineer must be especially open to 
solutions that arise from the bottom-up through self-organization, rather than only 
seeking to impose order from the top-down.  

7. See through new eyes. A complex situation often looks very different from the 
perspectives of the variety of stakeholders. By empathizing with these multiple 
perspectives, a systems engineer can sometimes find creative ways to solve several 
problems at once.  

8. Collaborate. Collaboration includes information sharing, active listening, 
establishment of trust to enable candid dialogue, and making decisions transparent. 
A collaborative mindset can lead to deeper stakeholder engagement practices that 
may include crowdfunding and crowdsourcing, to enable co-creation and co-
evolutionary systems design. 

9. Achieve Balance. Optimization is often counterproductive within a complex system. 
Either the whole is sub-optimized when a part is optimized, or an optimized whole 
becomes rigid, unable to flex with changing conditions. Instead of optimizing, 
complex systems engineers should seek balance among competing tensions within 
the project. Systems engineers can leverage integrative thinking to generate 
improved solutions and avoid binary either/or tradeoffs. The goal is a system that 
would continue to meet the need even if a number of current conditions change.  

10.Learn from problems. In a changing context, with an evolving system, where 
elements are densely interconnected, problems and opportunities will continually 
emerge. Moreover, they will emerge in surprising ways, due to phase transitions, 
cascading failures, fat tailed distributions, and “black swan” (Taleb, 2007) events. A 
traditional approach to risk management and mitigation should be augmented by a 
complexity mindset that balances risk management with exploiting opportunity and 
expects and learns from error.    

11.Meta-cognition. Meta-cognition, or reflecting on how one reflects, helps to identify 
bias, make useful patterns of thinking more frequent, and improve understanding of a 
complex situation.  

12.Focus on desired regions of outcome space rather than specifying detailed 
outcomes.  Instead of zeroing in on an exact solution, focus on what range of 
solutions will have the desired effects, and design to keep out of forbidden ranges.  
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1

13.Understand what motivates autonomous agents.  Changing rewards will shape 
collective behavior. Implement incentives that will move the system toward a more 
desired state. 

2

14.Maintain adaptive feedback loops.  Adaptive systems correct for output variations 
via a feedback mechanism. Over time, feedback loops can either hit the limit of their 
control space, or may be removed in the interest of maintaining stability. To maintain 
robustness, periodically revisit feedback and ensure that adaptation can still occur. 

3

15. Integrate problems. Focus on the relationships among problems rather than 
addressing each problem separately. This allows fewer solutions that take care of 

4

multiple problems in an integrative fashion 

B.  SPECIFIC METHODS 

The principles and approaches described above are important points of departure for 
systems engineers facing complexity in their SE activities.  It is also useful to describe how 
these concepts apply to particular aspects of the systems engineer’s work – aspects that 
are fundamental regardless of the nature of the system being developed or the problem 
being addressed.  Systems engineers’ toolkits should include a wide range of methods and 
processes to address environmental and system complexity in appropriate and useful ways. 

A key first step is one of diagnosis – the systems engineer must identify the kind and 
extent of complexity that bears on the problem set.  As we have seen, complexity can exist 
in the problem being addressed, in its environment or context, or in the system under 
consideration for providing a solution to the problem.  The diagnoses made will allow the 
systems engineer to tailor his/her approaches to key aspects of the systems engineering 
process: requirements elicitation, trade studies, the selection of a development process life 
cycle, solution architecting, system decomposition and subsystem integration, test and 
evaluation activities, and others. 

In addition, the diagnosis will allow the systems engineer to consider whether there may 
be mechanisms for shifting complexity to a more desirable region of the problem space.  
There may be choices available or investments that can be made to allow the decoupling of 
aspects of the system or of the system to its environment.  Likewise, there may also be 
options for shaping the feedbacks within and across problem-environment-solution 
elements, allowing the complexity of the situation to be harnessed via the leveraging of 
beneficial adaptation and self-organization.  
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The tables below show examples of the kinds of choices that can improve the success of 
engineering complex systems when complexity of different types and from different sources 
exists. These lists are by no means exhaustive; indeed, astute readers will note that some 
entries in the tables below are blank. These tables are intended to convey the types of 
approaches and departures from traditional SE methods that may be required when dealing 
with complexity in problem, solution, and environment contexts.  The authors expect that 
this table will be augmented and evolved in future updates to this primer.   

These approaches are offered to help systems engineers ensure that their processes 
are appropriate for dealing with the dynamics, uncertainty and behaviors that can arise 
when significant complexity exists in the problem, the solution, or the environment.  
Experience suggests that when SE activities do not account for these factors when they 
exist, projects fail and problems go unaddressed.  Our goal in this primer is to provide 
systems engineers with techniques for better recognizing complexity and its consequences 
as it pertains to their activities, and for expanding the envelope of the degree and types of 
complexity that can be dealt with.  Without doubt, there is additional work to do to expand 
our understanding of these phenomena – and to provide practical tools to allow the systems 
engineering community to leverage and better apply emerging insights.  The concepts and 
approaches in this section, however, should provide a useful starting point. 
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Table 1.  Candidate approaches to address complexity in problem context or environment. 

 
REQUIREMENTS 

ELICITATION  
AND DERIVATION 

TRADE STUDIES 
SOLUTION 

ARCHITECTURE  
AND DESIGN 

DEVELOPMENT 
PROCESS 

COMPLEXITY IN THE 
ENVIRONMENT - 

GENERAL 

Use multiple methods for 
requirements elicitation 
Elicit requirements from 
multiple perspectives and at 
multiple levels of 
aggregation 
Emphasize capture of 
system objectives and 
desired outcomes rather 
than thousands of detailed 
requirements. 

Emphasize robustness over 
local efficiency and 
performance 

Include both positive and 
negative feedback 
mechanisms to provide 
mechanisms to compensate 
for the effects of higher-
than-linear positive feedback 
and runaway system 
behavior 

Employ soft systems 
methodologies to surface the 
nature of the problem space, 
its internal structure and 
information flows, and 
produce simple 
representations, eg ‘rich 
pictures’ to communicate 
these. 

INTRICATE AND 
EVOLVING/SELF-

ORGANIZING 
INTERACTIONS WITH 
THE ENVIRONMENT 

Include requirements for the 
system to provide adaptive 
local control, rather than 
strong, deterministic control 

Trade end-to-end system 
performance and behavior 
against problem space 
complexity.  Think hierarchy 
rather than flat networks. 

Early implantation (or at least 
prototyping) of external 
interfaces 

Early deployment of system 
functionality with feedback 
to developers 

ENVIRONMENT 
SUSCEPTIBLE TO 
“BLACK SWAN” 

EVENTS (UNLIKELY, 
UNPREDICTABLE, 

HIGH-CONSEQUENCE 
EVENTS) AND/OR 

RECURSIVE 
COMPLEXITY 

Use power laws rather than 
Gaussian distributions to 
characterize phenomena in 
requirements and sell-off 
criteria 
Focus requirements 
elicitation on resiliency, 
robustness and 
adaptiveness vice optimizing 
to particular assumptions 

Make resilience a key trade-
space attribute and use 
trades to identify aspects of 
the problem space that will 
drive the system architecture 

Design for resilience to 
“beyond-design-envelope” 
events to provide robustness 
and timely recovery to a 
minimally functional state. 

Resilience analysis. 
Enterprise development: 
study how enterprises or 
societies survive 
catastrophes. 

COMPLEXITY IN THE 
PROBLEM/MISSION 

Emphasize identification of 
constraints as well as 
requirements 
Capture scenarios and 
mission threads in 
preference to large numbers 
of requirements 

Use scalability and agility as 
criteria in appropriate trade 
studies 

Use solution elements which 
are adaptable and/or 
reconfigurable. 
Design to achieve scenarios 
rather than detailed 
requirements. 
Satisfice at the system level 
rather than satisfy detailed 
requirements. 

Use Agile, evolution-ary SE 
processes instead of 
Waterfall SE processes. 
Define multi-layer processes 
and their interface points. 

COMPLEXITY IN 
STAKEHOLDER 

RELATIONSHIPS 

Use multiple scales (or a 
Balanced Scorecard 
approach) instead of a single 
utility function to determine 
“goodness” or fitness for use 

Seek stakeholder buy-in to 
trade studies  

Use modeling and simulation 
to enable stakeholders to 
experience (rather than just 
be briefed about) 
interactions of solution 
elements and the 
environment 

Employing a multi-
methodological approach, 
i.e., soft systems methodol-
ogies plus SE plus boundary 
critique, identify 
stakeholders and achieve 
buy-in. 

COMPLEXITY IN 
INTERACTIONS 

BETWEEN DIFFERENT 
MISSION ELEMENTS 

Capture scenarios and 
mission threads in 
preference to large numbers 
of detailed requirements. 
Develop understanding and 
means of controlling non-
linearities, disruptive events. 

Make minimizing 
interactions/interdependenc
es between complex 
systems elements a key 
trade-off attribute. Model 
with system dynamics. 

Use exploratory modeling 
and simulation to assess 
ability of solution elements to 
address mission elements 
under wide range of 
conditions and assumptions.  
Use system dynamics to link 
economics and system 
changes. 

Establish and maintain an 
interdependency database 
between constituent 
systems that is used for all 
major design decisions 
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REQUIREMENTS 

ELICITATION  
AND DERIVATION 

TRADE STUDIES SOLUTION ARCHITECTURE  
AND DESIGN DEVELOPMENT PROCESS 

COMPLEXITY IN 
SYSTEM DESIGN 
& DEVELOPMENT 

(GENERAL) 

Use multi-scale modeling (linking macro- and micro-
level models), including exploratory analysis and 
agent-based modeling, and experimentation: 

• To generate insight into the implications  
of derived requirements 

• As the basis for trade studies and to  
inform trade-off decisions 

Emphasize selection of robust 
and adaptive elements and 
structures over optimizing to 
meet current requirements 

Use SoSE methodologies to 
synchronize constituent sys-
tems; incentivize collaboration. 
Ensure prototyping and 
experimentation are used. 

EMERGENT 
PROPERTIES OR 
BEHAVIORS IN 

SOLUTION 
SYSTEM 

Maximize description of 
emergent properties in 
scenarios and mission 
definition. 
Elicit requirements from 
multiple perspectives and at 
multiple levels of 
aggregation; ensure 
requirements and constraints 
at all relevant levels are 
understood 
Understand the real value of 
predictability at different 
levels; encourage the 
definition of requirements at 
higher “essential value” 
levels 

Employ modeling and 
experimentation to 
ensure relevant effects 
of trades are explored 
at different levels of 
aggregation 

Build in feedback mechanisms 
to enable the system and 
system elements to adapt to the 
environment and each other in 
effect ways. 
Acknowledge the limits to the 
value of decomposition-based 
methods; emergence is a 
collective phenomenon that 
requires aggregation – 
emergence will not be observed 
until the system is considered 
as a whole 

Conduct development activities 
always within context of the 
whole 
Employ collaborative 
development processes so that 
information about design 
decisions are visible throughout 
the project 
Prototyping and holistic testing 
are critical to explore and check 
for the manifestation of 
emergent behavior 

COMPLEXITY IN 
SYSTEM 

DEPLOYMENT & 
OPERATION 

Employ soft systems 
methodologies to surface the 
nature of the deployed 
solution, and its internal 
structure and information 
flows; produce simple 
representations, e.g., ‘rich 
pictures’ to communicate 
these. 
Use problem definition 
methods from an 
evolutionary SE or SoSE 
methodology. 

Trade criteria need to 
value cost and ease of 
training and logistical 
support over acquisition 
cost. Model system 
evolution with genetic 
algorithms. 

Use self-organizing and self-
repairing elements when 
possible. Model the cost of 
change, the benefits, and the 
balance. 

Employ soft systems 
methodologies to surface 
issues, engage stakeholders, 
identify approaches to improve 
the deployed system, and to 
achieve stakeholder buy-in to 
the solution. 
Use an evolutionary SE or 
SoSE methodology. 
Identify utility and cost of using 
and modifying legacy systems. 

COMPLEXITY IN 
SYSTEM 

EVOLUTION & 
SUPPORT 

Focus on capabilities, not 
requirements. 

Use resilience and 
robustness as criteria in 
trade studies 

Ensure that the most important 
system elements are 
composable (that is, capable of 
being re-configured  adaptively 
with other elements in the future 
to satisfy emergent operational 
needs not previously 
envisioned) and have clear and 
accessible interfaces. 

Emphasize understanding the 
problem, and at each stage of 
this iterative process, intervene 
to add an incremental capability 
and watch carefully over time to 
see whether there is 
improvement. If not, try 
something else. 

Table 2.  Candidate approaches to address system/solution complexity. 
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Analyze, Diagnose, Model and Synthesize.  Additionally, Shalizi’s (2006) review of 
complexity tools suggested new tools not in the original Cook Matrix.  The tools in each 
column generally range from the simplest at the top to the most complex at the bottom. The 
resulting matrix, shown in Table 3, provides a starting point for systems engineers seeking 
complexity-appropriate modeling approaches to systems engineering.  

ANALYZE DIAGNOSE MODEL SYNTHESIZE 
Data Mining Algorithmic Complexity Uncertainty Modeling Design Structure Matrix 

Splines Monte Carlo Methods Virtual Immersive Modeling Architectural Frameworks 

Fuzzy Logic Thermodynamic Depth Functional / Behavioral 
Models Simulated Annealing 

Neural Networks Fractal Dimension Feedback Control Models Artificial Immune System 

Classification & Regression 
Trees Information Theory Dissipative Systems Particle Swarm 

Optimization 

Kernel Machines Statistical Complexity Game Theory Genetic Algorithms 

Nonlinear Time Series 
Analysis Graph Theory Cellular Automata Multi-Agent Systems 

Markov Chains Functional Information System Dynamics Adaptive Networks 

Power Law Statistics Multi-scale Complexity Dynamical Systems  

Social Network Analysis  Network Models  

  Agent Based Models  

  Multi-Scale Models  

Table 3. Selected modeling methods for complex systems from the Cook Matrix. 
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IV.  SUMMARY  

Although the many different meanings of complexity vary, from “confusion” to 
measurable characteristics of technical systems, it is most useful to systems engineers to 
identify characteristics that can be resolved and whose resolution will improve the 
development and operation of modern systems.  This primer has attempted to describe 
complexity in such a usable and useful manner.  Complexity is an attribute of the technical 
system being developed but also of the problem space (including people and 
organizations), and the environment. Complexity is associated with size, diversity, 
dynamism and with emergence. It is a challenge to systems engineers not to over-simplify in 
pursuit of representations and capabilities that can be understood and controlled; the right 
level of complexity is key. 

 We have shown principles to guide the extension of systems engineering practices to 
handle ever-more-complex situations and systems.  We have also catalogued a number of 
systems engineering approaches based on concepts from complex systems science.  
These are shown on a matrix of type of complexity and type of systems engineering practice 
(which may occur across any specific life cycle). We also list modeling methods that may be 
of use and are under consideration for longer explanatory articles. 
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