
®

A Complexity Primer for Systems Engineers
July 2015

WHITE PAPER

A Complexity Primer for Systems Engineers
July 2015

2

®

COPYRIGHT INFORMATION

This INCOSE Technical Product was prepared by the International Council on
Systems Engineering (INCOSE). It is approved by the INCOSE Technical
Operations Leadership for release as an INCOSE Technical Product.

Copyright (c) 2015 by INCOSE, subject to the following restrictions:

Author Use. Authors have full rights to use their contributions in a totally
unfettered way with credit to the INCOSE Technical source. Abstraction is
permitted with credit to the source.

INCOSE Use. Permission to reproduce and use this document or parts thereof
by members of INCOSE and to prepare derivative works from this document
for INCOSE use is granted, with attribution to INCOSE and the original
author(s) where practical, provided this copyright notice is included with all
reproductions and derivative works.

External Use. This document may not be shared or distributed to any non-
INCOSE third party. Requests for permission to reproduce this document in
whole or part, or to prepare derivative works of this document for external and
commercial use should be addressed to the INCOSE Central Office, 7670
Opportunity Rd., Suite 220, San Diego, CA 92111-2222.

Electronic Version Use. Any electronic version of this document is to be used
for personal, professional use only and is not to be placed on a non-INCOSE
sponsored server for general use. Any additional use of these materials must
have written approval from INCOSE Central.

A Complexity Primer for Systems Engineers
July 2015

3

®

ACKNOWLEDGMENTS

This Primer is the product of an extended effort of the INCOSE Complex
Systems Working Group. The document was written via a series of bi-weekly
teleconferences over approximately 5 months, which included frequent review
by new teleconference participants. The Working Group is grateful to these
contributors and participants, who should collectively be considered the
authors of this Primer: Sarah Sheard, Stephen Cook, Eric Honour, Duane
Hybertson, Joseph Krupa, Jimmie McEver, Dorothy McKinney, Paul Ondrus,
Alex Ryan, Robert Scheurer, Janet Singer, Joshua Sparber, and Brian White.
Drafts were offered for review to the full working group, and to individuals
expressing interest at subsequent INCOSE workshops and symposia.

The Working Group is also grateful to others outside of the working group for
their contributions to refining the current draft. We would like to thank the team
from Lockheed Martin, led by Mr. Garry Roedler, who provided extensive
comments, including candidate topics for exposition in future working group
products. We have also had the opportunity to provide an overview of the key
concepts in this primer to a number of audiences, including the INCOSE
Systems Science Working Group and the INCOSE Enchantment Chapter,
each of whom provided useful feedback on the importance of these ideas and
how to effectively present them, which will have a positive impact on future
revisions.

We wish to thank Dr. Scott Jackson for his review and suggestions for
improvements to the material, which will be reflected in the next version of the
document.

Finally, the Working Group is indebted to Dr. Sarah Sheard, who chaired the
working group during the inception of the Primer and most of its development
for her leadership and the many contributions she has made to the practice of
systems engineering in the context of complexity.

A Complexity Primer for Systems Engineers
July 2015

4

®

I. INTRODUCTION

Complexity is nothing new to systems engineers and managers. The discipline of
systems engineering evolved to improve our ability to deal with scale, interdependency, and
complexity in systems development. Few systems engineers would doubt that complexity is
increasing every year. The rate of change, the increasing interdependence and adaptability
of systems, and the increasing ambitions of our clients ensure that complexity keeps
expanding to the limits of our capacity to cope with it.

Complex systems science provides a strong foundation for understanding, coping with,
and even exploiting complexity. There is a large and rapidly expanding literature on
networks, complexity, and complex adaptive systems that can guide systems engineering
practice. But busy systems engineers rarely have the time to keep up with this literature,
which is diffused across the many interdisciplinary applications of complex systems science.
This paper is written for systems engineers and program/project managers who suspect
they may encounter complexity-related challenges. This paper applies key concepts from
complex systems science to systems engineering to suggest new methods that can handle
complexity rather than assuming it away. It is not a complete or even extensive treatment,
but is intended as an introduction to the subject for systems engineers as they encounter
and work with complexity-related phenomena.

Section II of this paper defines complexity and describes how we can identify complexity
in an environment, a problem space, or a solution space. We also address the extent and
types of complexity that a system or situation may exhibit, so that systems engineers can
seek approaches that can better address that kind of complexity.

Section III then discusses how engineers address the problem of complexity, in two
sections. The first approach requires thinking differently about the environment, the
problem, and the solution. The second approach involves implementation of specific tools
and techniques.

A Complexity Primer for Systems Engineers
July 2015

5

®

II. WHAT IS COMPLEXITY?

In ordinary language, we often call something complex when we can’t fully understand
its structure or behavior: it is uncertain, unpredictable, complicated, or just plain difficult.
Sillitto (2009) described the inability of a human mind to grasp the whole of a complex
problem and predict the outcome as subjective complexity. John Warfield’s (2006)
“frustration” in the mind of the system’s builders and users also fits into this bucket. While
there are ways to reduce this complexity and improve the fit of technical systems into the
complex environment, they are not the focus of this primer.

Sillitto’s Objective Complexity describes technical or system characteristics that lead to
the subjective complexity or difficulty. As systems engineers, we have the ability to modify
these characteristics; they are also the ones most frequently addressed by complex
systems science.

The standard systems engineering process breaks down a problem into parts,
recursively, until the parts are simple enough that we understand them and can design
solutions; we then re-assemble the parts to form the whole solution. The approach works
well for systems whose parts interact in fixed ways (also known as “complicated” systems
– an example might be a car), even when there are many interacting parts and the systems
may have unpredictable behavior.

Other systems, however, present significant problems when analyzed in piecewise
fashion. Systems such as transportation networks have autonomous parts whose
interactions lead to emergent self-organized patterns of behavior. In these systems,
defined here as “complex” systems, the emergent properties that we really care about are
not understandable form the perspective of the parts in isolation. It is especially for these
systems that we are providing guidance to additional tools and techniques created in
complex systems sciences and recommend their use in systems engineering of complex
systems.

A Complexity Primer for Systems Engineers
July 2015

6

®

A. CHARACTERISTICS OF COMPLEXITY

Complexity is a characteristic of more than just a technical system being developed. It is
often created by the interaction of people, organizations, and the environment that are part
of the complex system surrounding the technical system. Complexity results from the
diversity, connectivity, interactivity, and adaptivity of a system and its environment. Constant
change makes it difficult to define stable goals for a project or system. Technical systems
that worked well in the past to solve an environmental problem become obsolete quickly.
Intricate networks of evolving cause-effect relationships lead to subtle bugs and surprising
dynamics. Unintended consequences can overwhelm or even negate the intended
consequences of actions.

When systems are complex, their structures cannot be described at a single level or with
a single view; multi-scale descriptions are needed to understand complex systems. Their
emergent behavior, derived from the relationships among their elements and with the
environment, via internal and external feedback loops, gives rise to observed patterns that
may not be understood or predicted. Describing the behavior of a system as a response
function may require an unobtainable amount of information. It is often impossible to predict
future configurations, structures, or behaviors of a complex system, given finite resources.

A complex system may have multiple stable states (meaning each state is actually meta-
stable), transient states, or even no lasting stable states, exhibiting continuous evolution.
Perturbations in the system may result in recovery to the former state but may also lead to
transitions to another state and consequent radical changes of properties. In addition,
details seen at the fine scales can influence large-scale behavior. Dynamics of different
parts and patterns cannot be reproduced using simple averages. Complex systems are
perpetually generating novelty, many key variables are opaque, boundaries are
indeterminate, and weak ties can have a disproportional effect on system behavior. Duality
is common: tension between large and small, distributed and central, agile and planned
calls for perpetual seeking of balance. In short, complex systems are different..

Although complexity can present challenges, complexity is often inherent and may even
be a necessary or desirable attribute of a solution system. Systems that have been
engineered to rule out any but deterministic behaviors are necessarily limited by the
prescribed behaviors, and do not extend well into unplanned environments. In contrast,
complex systems can be engineered to have sufficient adaptability to operate well in a
changing environment, responding to change in appropriate and effective ways. A complex
system provides a welcome kind of variety that can help provide control of different
dimensions and enables the system to adapt to environmental change. To provide new
capabilities or graceful degradation, a complex system can adapt by re-organizing its

A Complexity Primer for Systems Engineers
July 2015

7

®

B. IDENTIFYING THE RIGHT LEVEL OF COMPLEXITY

dimensions and enables the system to adapt to environmental change. To provide complex
system provides a welcome kind of variety that can help provide control of different
dimensions and enables the system to adapt to environmental change. To provide new
capabilities or graceful degradation, a complex system can adapt by re-organizing its
structure, responses, or patterns of parts.

Science and engineering help humans to make successful systems because they
provide ways to understand, predict, and control technology, in order to create desirable
effects on the world. All science involves abstraction of the complexity of the world into
approaches and models that use simplifying assumptions. This allows us to generalize from
one complex situation to another. The best engineering methods take advantage of the
simplicity in the models without diverging so far from reality that behavior can no longer be
predicted and controlled.

As a system’s diversity, connectivity, interactivity, or adaptivity increases, the risk
associated with using simpler methods and simplifying assumptions also increases, and
more advanced techniques may be needed. Tools and techniques apply differently to
systems on a spectrum of increasing complexity. At the less complex end, the waterfall
model for top-down sequential design applies well. At the more complex end, tools such as
agent-based models for model-based systems engineering can be used to understand and
address complex, dynamic systems design challenges. Techniques at the lower end of the
spectrum tend to be easier to learn, and simpler and faster to apply, because they make
simplifying assumptions that ignore some of the complexity. The practitioner must apply
judgment to utilize a mixture of tools along this spectrum that satisfies Einstein’s razor:
make things as simple as possible, but not simpler.

It is rarely possible to fully assess in advance what complexity within a project must be
addressed and what can be assumed away. Because complex systems perpetually
generate novelty, systems engineers will often have to adapt their approach to unfolding
conditions and use flexible tools. Systems engineers should also recognize that the
complexity of a system, as manifested in many diverse types of parts and relationships,
provides a welcome kind of variety that can help facilitate control of different dimensions and
enables the system to adapt to environmental change.

A Complexity Primer for Systems Engineers
July 2015

8

®

III. SOLUTIONS FOR COMPLEXITY

Throughout its history, systems engineering has been the primary method for
engineering in the face of complexity. As the complexity of systems and their contexts has
grown, systems engineering methods and tools have increasingly fallen short of what is
needed in the face of this reality. A common approach has been to seek clever ways to
simplify, or reduce, the subjective complexity so that the problem and the system are
understandable. Scientific advances have, in fact, often come from elegant simplifications
that model the important variables or forces that dominate behavior. However, this is not
always possible – complexity often cannot be simplified away without losing the essence of
the problem or possible solutions. Further, this simplification leads to an inability on the part
of the solution to be able to engage with the complexity that remains despite our preference
to assume it away.

Ross Ashby’s Law of Requisite Variety shows that a system controller must have at least
as many degrees of control as the degrees of freedom in the environment to be controlled.
If a system operates within an environment of human processes, as in today’s air traffic
control, then the system solution must have sufficient complexity to do so. In such a
system, it is difficult and even dangerous to ignore the complexity.

Therefore it behooves systems engineers to acknowledge, understand and learn to work
better with complexity. A first step is to identify the kinds of complexity in a system and its
environment (Section II). A second step is to create appropriate new ways to think about
complexity that guide the approaches used (Section IIIA). A third step is to evolve and
publicize methods to deal with different types of complexity in different situations (Section
IIIB).

Working with complexity will never be a trivial task that can be reduced to following a
checklist. The complex, adaptive neural network of our human brains will always be needed
to supplement documented lessons of any sort. A long-term goal of the INCOSE Complex
Systems Working Group is to facilitate the systems engineering community’s collective
learning with non-trivial lessons, heuristics, and shared stories, all of which are outside the
scope of this Primer. We acknowledge that the world is complex, and that our orderly,
simple views are inadequate. We must grow toward a new appreciation of the

A Complexity Primer for Systems Engineers
July 2015

9

®

implications of complexity – in our systems, in their ecosystems (both technical and socio-
political), and in the interplay between the two – in order to be successful.

A. COMPLEXITY THINKING: GUIDING PRINCIPLES

Complex systems engineering requires both a shift in thinking and an expanded set of
tools and techniques. In this section, we summarize the shift in thinking needed to
acknowledge and embrace complexity within systems engineering. Several principles are
provided below that encourage systems engineers to think differently about how to engage
with complexity.

1. Think like a gardener, not a watchmaker. Consider the complexity of the
environment and the solution, and think about evolving a living solution to the
problem rather than constructing a system from scratch.

2. Combine courage with humility. It takes courage to acknowledge complexity,
relinquish control, encourage variety, and explore unmapped territory. It takes
humility to accept irreducible uncertainty, to be skeptical of existing knowledge, and
to be open to learning from failure. A combination of courage and humility enables
the complex systems engineer to risk genuine innovation and learn fast from iterative
prototyping of solutions in context.

3. Take an adaptive stance. Systems engineers should mimic how living systems cope
with complexity by identifying and creating variation, selecting the best versions, and
amplify the fit of the selected versions. This means, for example, to think “influence”
and “intervention” rather than “control” and “design.” Designing or evolving a complex
system requires recognition that the designer may not ever be able to control or even
understand the system completely.

4. Use free order. In architecting and designing solutions, build in “order for free” using
self-organization, presuming it has been modeled and can be limited to desired
effects. This in particular applies when the system being designed must be resilient.

5. Identify and use patterns. Patterns are exhibited by complex systems, can be
observed and understood, and are a key mechanism in the engineering of complex
systems. Patterns are the primary means of dealing specifically with emergence and
side effects—that is, the means of inducing desired emergence and side effects, and
the means of avoiding undesired emergence and side effects.

A Complexity Primer for Systems Engineers
July 2015

10

®

6. Zoom in and zoom out. Because complex systems cannot be understood at a
single scale of analysis, systems engineers must develop the habit of looking at their
project at many different scales, by iteratively zooming in and zooming out. Can
problems be solved more elegantly by addressing them at a higher or lower
hierarchical level? The complex systems engineer must be especially open to
solutions that arise from the bottom-up through self-organization, rather than only
seeking to impose order from the top-down.

7. See through new eyes. A complex situation often looks very different from the
perspectives of the variety of stakeholders. By empathizing with these multiple
perspectives, a systems engineer can sometimes find creative ways to solve several
problems at once.

8. Collaborate. Collaboration includes information sharing, active listening,
establishment of trust to enable candid dialogue, and making decisions transparent.
A collaborative mindset can lead to deeper stakeholder engagement practices that
may include crowdfunding and crowdsourcing, to enable co-creation and co-
evolutionary systems design.

9. Achieve Balance. Optimization is often counterproductive within a complex system.
Either the whole is sub-optimized when a part is optimized, or an optimized whole
becomes rigid, unable to flex with changing conditions. Instead of optimizing,
complex systems engineers should seek balance among competing tensions within
the project. Systems engineers can leverage integrative thinking to generate
improved solutions and avoid binary either/or tradeoffs. The goal is a system that
would continue to meet the need even if a number of current conditions change.

10.Learn from problems. In a changing context, with an evolving system, where
elements are densely interconnected, problems and opportunities will continually
emerge. Moreover, they will emerge in surprising ways, due to phase transitions,
cascading failures, fat tailed distributions, and “black swan” (Taleb, 2007) events. A
traditional approach to risk management and mitigation should be augmented by a
complexity mindset that balances risk management with exploiting opportunity and
expects and learns from error.

11.Meta-cognition. Meta-cognition, or reflecting on how one reflects, helps to identify
bias, make useful patterns of thinking more frequent, and improve understanding of a
complex situation.

12.Focus on desired regions of outcome space rather than specifying detailed
outcomes. Instead of zeroing in on an exact solution, focus on what range of
solutions will have the desired effects, and design to keep out of forbidden ranges.

A Complexity Primer for Systems Engineers
July 2015

11

®

1

13.Understand what motivates autonomous agents. Changing rewards will shape
collective behavior. Implement incentives that will move the system toward a more
desired state.

2

14.Maintain adaptive feedback loops. Adaptive systems correct for output variations
via a feedback mechanism. Over time, feedback loops can either hit the limit of their
control space, or may be removed in the interest of maintaining stability. To maintain
robustness, periodically revisit feedback and ensure that adaptation can still occur.

3

15. Integrate problems. Focus on the relationships among problems rather than
addressing each problem separately. This allows fewer solutions that take care of

4

multiple problems in an integrative fashion

B. SPECIFIC METHODS

The principles and approaches described above are important points of departure for
systems engineers facing complexity in their SE activities. It is also useful to describe how
these concepts apply to particular aspects of the systems engineer’s work – aspects that
are fundamental regardless of the nature of the system being developed or the problem
being addressed. Systems engineers’ toolkits should include a wide range of methods and
processes to address environmental and system complexity in appropriate and useful ways.

A key first step is one of diagnosis – the systems engineer must identify the kind and
extent of complexity that bears on the problem set. As we have seen, complexity can exist
in the problem being addressed, in its environment or context, or in the system under
consideration for providing a solution to the problem. The diagnoses made will allow the
systems engineer to tailor his/her approaches to key aspects of the systems engineering
process: requirements elicitation, trade studies, the selection of a development process life
cycle, solution architecting, system decomposition and subsystem integration, test and
evaluation activities, and others.

In addition, the diagnosis will allow the systems engineer to consider whether there may
be mechanisms for shifting complexity to a more desirable region of the problem space.
There may be choices available or investments that can be made to allow the decoupling of
aspects of the system or of the system to its environment. Likewise, there may also be
options for shaping the feedbacks within and across problem-environment-solution
elements, allowing the complexity of the situation to be harnessed via the leveraging of
beneficial adaptation and self-organization.

A Complexity Primer for Systems Engineers
July 2015

12

®

The tables below show examples of the kinds of choices that can improve the success of
engineering complex systems when complexity of different types and from different sources
exists. These lists are by no means exhaustive; indeed, astute readers will note that some
entries in the tables below are blank. These tables are intended to convey the types of
approaches and departures from traditional SE methods that may be required when dealing
with complexity in problem, solution, and environment contexts. The authors expect that
this table will be augmented and evolved in future updates to this primer.

These approaches are offered to help systems engineers ensure that their processes
are appropriate for dealing with the dynamics, uncertainty and behaviors that can arise
when significant complexity exists in the problem, the solution, or the environment.
Experience suggests that when SE activities do not account for these factors when they
exist, projects fail and problems go unaddressed. Our goal in this primer is to provide
systems engineers with techniques for better recognizing complexity and its consequences
as it pertains to their activities, and for expanding the envelope of the degree and types of
complexity that can be dealt with. Without doubt, there is additional work to do to expand
our understanding of these phenomena – and to provide practical tools to allow the systems
engineering community to leverage and better apply emerging insights. The concepts and
approaches in this section, however, should provide a useful starting point.

A Complexity Primer for Systems Engineers
July 2015

13

®

Table 1. Candidate approaches to address complexity in problem context or environment.

REQUIREMENTS

ELICITATION
AND DERIVATION

TRADE STUDIES
SOLUTION

ARCHITECTURE
AND DESIGN

DEVELOPMENT
PROCESS

COMPLEXITY IN THE
ENVIRONMENT -

GENERAL

Use multiple methods for
requirements elicitation
Elicit requirements from
multiple perspectives and at
multiple levels of
aggregation
Emphasize capture of
system objectives and
desired outcomes rather
than thousands of detailed
requirements.

Emphasize robustness over
local efficiency and
performance

Include both positive and
negative feedback
mechanisms to provide
mechanisms to compensate
for the effects of higher-
than-linear positive feedback
and runaway system
behavior

Employ soft systems
methodologies to surface the
nature of the problem space,
its internal structure and
information flows, and
produce simple
representations, eg ‘rich
pictures’ to communicate
these.

INTRICATE AND
EVOLVING/SELF-

ORGANIZING
INTERACTIONS WITH
THE ENVIRONMENT

Include requirements for the
system to provide adaptive
local control, rather than
strong, deterministic control

Trade end-to-end system
performance and behavior
against problem space
complexity. Think hierarchy
rather than flat networks.

Early implantation (or at least
prototyping) of external
interfaces

Early deployment of system
functionality with feedback
to developers

ENVIRONMENT
SUSCEPTIBLE TO
“BLACK SWAN”

EVENTS (UNLIKELY,
UNPREDICTABLE,

HIGH-CONSEQUENCE
EVENTS) AND/OR

RECURSIVE
COMPLEXITY

Use power laws rather than
Gaussian distributions to
characterize phenomena in
requirements and sell-off
criteria
Focus requirements
elicitation on resiliency,
robustness and
adaptiveness vice optimizing
to particular assumptions

Make resilience a key trade-
space attribute and use
trades to identify aspects of
the problem space that will
drive the system architecture

Design for resilience to
“beyond-design-envelope”
events to provide robustness
and timely recovery to a
minimally functional state.

Resilience analysis.
Enterprise development:
study how enterprises or
societies survive
catastrophes.

COMPLEXITY IN THE
PROBLEM/MISSION

Emphasize identification of
constraints as well as
requirements
Capture scenarios and
mission threads in
preference to large numbers
of requirements

Use scalability and agility as
criteria in appropriate trade
studies

Use solution elements which
are adaptable and/or
reconfigurable.
Design to achieve scenarios
rather than detailed
requirements.
Satisfice at the system level
rather than satisfy detailed
requirements.

Use Agile, evolution-ary SE
processes instead of
Waterfall SE processes.
Define multi-layer processes
and their interface points.

COMPLEXITY IN
STAKEHOLDER

RELATIONSHIPS

Use multiple scales (or a
Balanced Scorecard
approach) instead of a single
utility function to determine
“goodness” or fitness for use

Seek stakeholder buy-in to
trade studies

Use modeling and simulation
to enable stakeholders to
experience (rather than just
be briefed about)
interactions of solution
elements and the
environment

Employing a multi-
methodological approach,
i.e., soft systems methodol-
ogies plus SE plus boundary
critique, identify
stakeholders and achieve
buy-in.

COMPLEXITY IN
INTERACTIONS

BETWEEN DIFFERENT
MISSION ELEMENTS

Capture scenarios and
mission threads in
preference to large numbers
of detailed requirements.
Develop understanding and
means of controlling non-
linearities, disruptive events.

Make minimizing
interactions/interdependenc
es between complex
systems elements a key
trade-off attribute. Model
with system dynamics.

Use exploratory modeling
and simulation to assess
ability of solution elements to
address mission elements
under wide range of
conditions and assumptions.
Use system dynamics to link
economics and system
changes.

Establish and maintain an
interdependency database
between constituent
systems that is used for all
major design decisions

A Complexity Primer for Systems Engineers
July 2015

14

®

REQUIREMENTS

ELICITATION
AND DERIVATION

TRADE STUDIES SOLUTION ARCHITECTURE
AND DESIGN DEVELOPMENT PROCESS

COMPLEXITY IN
SYSTEM DESIGN
& DEVELOPMENT

(GENERAL)

Use multi-scale modeling (linking macro- and micro-
level models), including exploratory analysis and
agent-based modeling, and experimentation:

• To generate insight into the implications
of derived requirements

• As the basis for trade studies and to
inform trade-off decisions

Emphasize selection of robust
and adaptive elements and
structures over optimizing to
meet current requirements

Use SoSE methodologies to
synchronize constituent sys-
tems; incentivize collaboration.
Ensure prototyping and
experimentation are used.

EMERGENT
PROPERTIES OR
BEHAVIORS IN

SOLUTION
SYSTEM

Maximize description of
emergent properties in
scenarios and mission
definition.
Elicit requirements from
multiple perspectives and at
multiple levels of
aggregation; ensure
requirements and constraints
at all relevant levels are
understood
Understand the real value of
predictability at different
levels; encourage the
definition of requirements at
higher “essential value”
levels

Employ modeling and
experimentation to
ensure relevant effects
of trades are explored
at different levels of
aggregation

Build in feedback mechanisms
to enable the system and
system elements to adapt to the
environment and each other in
effect ways.
Acknowledge the limits to the
value of decomposition-based
methods; emergence is a
collective phenomenon that
requires aggregation –
emergence will not be observed
until the system is considered
as a whole

Conduct development activities
always within context of the
whole
Employ collaborative
development processes so that
information about design
decisions are visible throughout
the project
Prototyping and holistic testing
are critical to explore and check
for the manifestation of
emergent behavior

COMPLEXITY IN
SYSTEM

DEPLOYMENT &
OPERATION

Employ soft systems
methodologies to surface the
nature of the deployed
solution, and its internal
structure and information
flows; produce simple
representations, e.g., ‘rich
pictures’ to communicate
these.
Use problem definition
methods from an
evolutionary SE or SoSE
methodology.

Trade criteria need to
value cost and ease of
training and logistical
support over acquisition
cost. Model system
evolution with genetic
algorithms.

Use self-organizing and self-
repairing elements when
possible. Model the cost of
change, the benefits, and the
balance.

Employ soft systems
methodologies to surface
issues, engage stakeholders,
identify approaches to improve
the deployed system, and to
achieve stakeholder buy-in to
the solution.
Use an evolutionary SE or
SoSE methodology.
Identify utility and cost of using
and modifying legacy systems.

COMPLEXITY IN
SYSTEM

EVOLUTION &
SUPPORT

Focus on capabilities, not
requirements.

Use resilience and
robustness as criteria in
trade studies

Ensure that the most important
system elements are
composable (that is, capable of
being re-configured adaptively
with other elements in the future
to satisfy emergent operational
needs not previously
envisioned) and have clear and
accessible interfaces.

Emphasize understanding the
problem, and at each stage of
this iterative process, intervene
to add an incremental capability
and watch carefully over time to
see whether there is
improvement. If not, try
something else.

Table 2. Candidate approaches to address system/solution complexity.

A Complexity Primer for Systems Engineers
July 2015

15

®

Analyze, Diagnose, Model and Synthesize. Additionally, Shalizi’s (2006) review of
complexity tools suggested new tools not in the original Cook Matrix. The tools in each
column generally range from the simplest at the top to the most complex at the bottom. The
resulting matrix, shown in Table 3, provides a starting point for systems engineers seeking
complexity-appropriate modeling approaches to systems engineering.

ANALYZE DIAGNOSE MODEL SYNTHESIZE
Data Mining Algorithmic Complexity Uncertainty Modeling Design Structure Matrix

Splines Monte Carlo Methods Virtual Immersive Modeling Architectural Frameworks

Fuzzy Logic Thermodynamic Depth Functional / Behavioral
Models Simulated Annealing

Neural Networks Fractal Dimension Feedback Control Models Artificial Immune System

Classification & Regression
Trees Information Theory Dissipative Systems Particle Swarm

Optimization

Kernel Machines Statistical Complexity Game Theory Genetic Algorithms

Nonlinear Time Series
Analysis Graph Theory Cellular Automata Multi-Agent Systems

Markov Chains Functional Information System Dynamics Adaptive Networks

Power Law Statistics Multi-scale Complexity Dynamical Systems

Social Network Analysis Network Models

 Agent Based Models

 Multi-Scale Models

Table 3. Selected modeling methods for complex systems from the Cook Matrix.

A Complexity Primer for Systems Engineers
July 2015

16

®

IV. SUMMARY

Although the many different meanings of complexity vary, from “confusion” to
measurable characteristics of technical systems, it is most useful to systems engineers to
identify characteristics that can be resolved and whose resolution will improve the
development and operation of modern systems. This primer has attempted to describe
complexity in such a usable and useful manner. Complexity is an attribute of the technical
system being developed but also of the problem space (including people and
organizations), and the environment. Complexity is associated with size, diversity,
dynamism and with emergence. It is a challenge to systems engineers not to over-simplify in
pursuit of representations and capabilities that can be understood and controlled; the right
level of complexity is key.

 We have shown principles to guide the extension of systems engineering practices to
handle ever-more-complex situations and systems. We have also catalogued a number of
systems engineering approaches based on concepts from complex systems science.
These are shown on a matrix of type of complexity and type of systems engineering practice
(which may occur across any specific life cycle). We also list modeling methods that may be
of use and are under consideration for longer explanatory articles.

A Complexity Primer for Systems Engineers
July 2015

17

®

RECOMMENDED READING

Bar-Yam, Y., Making Things Work: Solving Complex Problems in a Complex World, New
England Complex Systems Institute, 2005.

Boccara, N., Modeling Complex Systems. New York: Springer-Verlag, 2004.

Checkland, P. B. and Scholes, Soft Systems Methodology in Action, Wiley & Sons:
Chichester, 1990.

"Principles of Systems Thinking." in A. Pyster and D.H. Olwell (eds). 2013. The Guide to
the Systems Engineering Body of Knowledge (SEBoK), v. 1.1.1. Hoboken, NJ: The Trustees
of the Stevens Institute of Technology. Accessed 16 June 2013. www.sebokwiki.org/

Hybertson, D., Model-Oriented Systems Engineering Science: A Unifying Framework for
Traditional and Complex Systems, Auerbach/CRC Press, Boca Raton, FL, 2009.

Shalizi, C. R., “Methods and techniques of complex systems science: An overview”,
in Complex Systems Science in Biomedicine, pp. 33-114, Springer US, 2006.

Sillitto, H. G., “On Systems architects and systems architecting: some thoughts on
explaining the art and science of system architecting,” Proc. of INCOSE IS 2009, Singapore,
20-23 July 2009.

Taleb, N. N., Antifragile – Things that Gain from Disorder, New York: Random House,
2012.

Taleb, N. N., The Black Swan – Impact of the Highly Improbable, New York: Random
House, 2007.

Warfield, J. N. 2006, An Introduction to Systems Science, World Scientific Publishing Co.
Pte. Ltd., Singapore, 2006.

CONTACT THE AUTHOR

If you have questions, comments, or other feedback on this paper, please
email cxswg@incose.org

