Integrating Systems Engineering Concepts into Transportation Research, Education, and Practice John Collura, Ph.D., P.E. Professor of Civil and Environmental Engineering University of Massachusetts at Amherst

Regional Traveler Information Center

Systems Engineering: a definition and some concepts

- Systems Engineering/an interdisciplinary process that ensures that the customer's needs are satisfied throughout a system's entire life cycle.
- Define the Problem/identifying customers/stakeholders, understanding customer needs, defining system requirements and system functions.
- Articulate Objectives/determining what will be achieved
- Formulate and Evaluate Alternatives/develop concept of operations plan, architecture and model system
- Integrate requires extensive wire and wireless communication, interfaces, and coordination.
- Deploy the system/means implementing the system, producing outputs, outcomes (+ and - ?)
- Assess performance and re-evaluate/ employ quantitative/qualitative measures

Regional Traveler Information Center (RTIC)

- Transportation research, educational, and deployment initiative at the University of Massachusetts Amherst serving the 5 College Area (UMass, Amherst College, Hampshire College, and Mount Holyoke College, and Smith College)
- Collaborative venture including Umass Transportation Center, UMass Transit Services, U.S. DOT, and MassDOT

UMassAmherst RTIC as a Research and Teaching Laboratory

- ITS field lab for University Transportation Studies
 - Source of traffic data
 - Real-life ITS experience
 - Research opportunities
 - New technologies

RTIC's Objectives

- Establish Transportation Database
 - Collection
 - Analysis
 - Dissemination
- Provide Highway Travel Advisories
 - Construction
 - Road closures
- Provide Public
 Transit Advisories
- Support academic activities

Traffic camera and license plate reader system

ITS National System Architecture (aka Sausage Diagram)

- The diagram depicts the basic communication channels between the subsystems.
- The subsystem diagram is a top-level <u>architecture</u> <u>interconnect</u> diagram.
- Variations of the subsystem diagram are sometimes used to depict <u>regional ITS architectures</u> or <u>project ITS</u> <u>architectures</u> at a high level.

Roadside to RTIC

Center to Center

RTIC Database

Traffic Cameras

- Network enabled cameras
 - Dial up
 - Ethernet
 - Wireless
- Most popular RTIC resource

License Plate Recognition Challenges

- Privacy!!!
- Illumination
- Computationally expensive
- Massachusetts plates
- Occlusion
- Bumper stickers

Travel Time Estimation

- License plate reader
- Electronic toll collection tags

License Plate Recognition Challenges

- **\$**\$\$
- Privacy
- Illumination
- Computationally expensive
- Massachusetts plates
- Occlusion
- Bumper stickers

Travel Time Estimation Using FASTLANE Tags

- Tag is programmed with station number and timestamp at each reader station.
- System calculates travel time between previous and current station.

Travel time of 25 minutes from Station 1 to Station 2

No personal or uniquely identifiable information collected!

FastLane Travel Time Estimation

- Route 116 launched September 1st, 2007
- Route 9 launched September 1st, 2009
- 24,209,957 tags
- 3,822,659 journeys

Routes 9 and 116 Travel Time Estimation Route 116 Northbound : There is light congestion; expect delays.

Travel Time: 16 Minutes* Average Speed: 18 MPH Last Updated: 3:30 PM on Tue, September 8th, 2009

Route 116 Southbound Traffic is flowing freely.

Travel Time: 8 Minutes* Average Speed: 34 MPH Last Updated: 3:39 PM on Tue, September 8th, 2009

Installation

Travel Time Data

Travel Time Data with Congestion

I-91 Bluetooth Travel Time Estimation

- Similar process to LPR and Toll-Tag
- System detects discoverable Bluetooth devices
- MAC addresses matching
- Many vehicles carry such probes
 - Roadside Phones Rivetoof Reader Computers MAC: 02:00:69:02:01 FC Travel tim GPS Time: 09:12:00 MAC-02-00-69-02-01 12 mondes Time: 09:00:00 Hands-free devices On-board Stereos Binetooth Toys 🔊 Bluetooth . . .

I-91 Travel Time Study

- Comparing different methods of collecting travel times on a rural highway.
- Commercial data
 - INRIX Fleet GPS
 - TraffiCast Bluetooth
- Supporting data
 - Video based license plate matching
 - Floating car
 - GPS
 - License plate

I-91 Travel Time Study Results

 Results of statistical tests for Bluetooth and GPS on different segments.

		BT-GT	GPS-GT	Critical Value
	MAPE	5.48%	3.97%	
Segment 1	t-test	-7.62	-0.99	t _{0.025,34} =2.02
	χ2	48.48	48.51	$\chi^2_{0.05,34} = 48.6$
	MAPE	4.24%	3.33%	
Segment 2	t-test	-5.76	-0.60	t _{0.025,33} =2.03
	χ2	47.34	47.34	$\chi^2_{0.05,33} = 47.4$
	MAPE	5.91%	4.88%	
Segment 3	t-test	-5.72	-0.62	t _{0.025,31} =2.04
	χ2	44.95	44.91	$\chi^2_{0.05,31} = 44.99$

- For a travel time of 7 minutes, an error of 5.5% represents 23.1 seconds.
- How does this error affect our decisions?

Sources

- Collura, John and Carrie W., "Information Technology Innovations in Public Transportation", <u>Transportation Engineer's Handbook</u>, M cGraw-Hill, Second Edition, 2011.
- IEEE Intelligent Transportation Systems Society Newsletter IEEE ITS Society Newsletter Vol. 16, No. 1, January 2014
- USDOT Joint Program Office, ITS Program

Closing comments/Questions??

- Transit Management and Operations Certificate Program (Uass Transit, UMTC, FTA, and First Transit, Inc)
- masstraveler.com RTIC website
- collura@ecs.umass.edu

Bus Tracker

- GPS/computer/cell modem
- Originally a Computer Science DARPA research project
- Data onto a Google Map
 - Bus passengers
 - Dispatchers
- End of life ⊗
- New PVTA AVL

DieselNet/RTIC Topology

Bus Tracker Travel Time Algorithm (single vehicle)

