Optimizing Value at MARTA Using a Systems Approach

David M. Springstead
Senior Director of Engineering and Development
Topics

1. Tee-up the Conversation
2. MARTA Agency Overview
3. Optimization Using SE
4. Capital Project Delivery Success
5. Benefits & Challenges
Transit Relevance in Technology Markets

- New Products are Largely Driven by **Commercial Markets**
- New Products are **Not** Often **Designed for Transit Use**
- **Transits are Unique** and Complex Systems
- **Customer Expectations** are Higher Than Ever
 - No Longer About Getting from Point A to Point B
- Time Management - **Access to Information** (Wireless)
- **Less Funding Available** - Get the Most for Your Investment
- Many Transit **Business Processes** are Outdated
- Very **Traditional Procurement Methods** & Standards
- **Technical Specifications** are Obsolete & Lack Integration
- Technology Purchases are **Rarely Fully Optimized**
To Remain Competitive...Transit Must Adapt to New & Emerging Technology

Perfect Application for Systems Engineering

• Selecting the Right People to implement your projects
• Selecting a Proven Technology to meet your needs
• Selecting the Best Delivery Method, minimizing risk & cost
 • Introducing Non-Traditional Methods - when needed
 Ex: CSI vs. Systems Specification (Building vs. System)
• Verifying & Validating Performance
• Understanding Organizational Readiness
• Understanding Whole Life Cycle Management
• Started bus and rail combined service in 1979
• 9th largest transit system in the U.S.
• 500,000 passengers daily (bus and rail)
• 338 rail cars, 48 miles of service via four lines
 Gold, Red, Blue and Green
• 122 miles of track
• 532 buses, 92 routes
• 187 Mobility (paratransit) vehicles
Going Back Five-to-Seven Years
Numerous Operating & Capital Challenges

- Constrained revenue stream & shrinking Federal Dollars
- Increasing backlog of systems and assets needing replacement
- Poorly defined project scopes, schedules & budgets (plug #’s)
- Projects not linked to Authority strategic goals & objectives
- No formal project prioritization process (lobbyist forum)
- No standardized processes within & across business units
- Limited visibility and timely controls (Oracle Financial vs Project)
- Unreliable asset data
 - No recent safety assessment
 - No recent condition assessment
 - No accessible performance data
- Long procurement cycles

Result: Under-executing CIP, Customer needs not being met!
What Do We Do Next?

- Perform **gap assessments** to determine the State of MARTA
- Identify **needs** and create a **road map**
- Use **reliable empirical data**
- Re-align or establish **business processes** to:
 - Standardized, **value-added**, transparent
 - Achieve **strategic goals**
 - Increase **efficiency**; reduce cost
- Put the right **people, processes and technology** in place – “tools”
- **Align CIP** with Authority, Community & Regional needs
- **Monitor & Report** performance - project, program and agency levels
- **Prioritize & Invest** capture the greatest benefit/most value

Opportunity: improve financial & operational sustainability
THE BIG Picture

Asset Planning & Management

Prioritization & Decision Making

Project Delivery/Project Controls

PD/PC

FASuite

CIP Development
Systems Engineering
(basic definition)

- interdisciplinary approach
- under a structured development process
- focused on defining customer needs
- focused on required functionality (early)
- focused on best performance at lowest cost of ownership
- business and technical needs fully understood
- documenting those requirements
- proceeding with design synthesis
- verifying and validating performance
- implementing, operating & sustaining
Enterprise Asset Management - Asset Database

Priority Codes:
1. Life Safety Critical
2. Regulatory
3. Operation Critical
4. Operation Support
5. Operation Enhance
6. Failed
7. Decommissioned

Condition Codes:
5. Excellent
4. Good
3. Adequate
2. Marginal
1. Poor

Minimum Req’mts:
1. Equipment ID
2. Description
3. Asset Category
4. Equipment Type
5. EUL
6. Location
7. Life Cycle Status
8. Condition ID
9. Date in Service
10. Original Cost
11. Planned Retirement

- Daily management of asset data (PM, PdM & I)
- Trusted, readily accessible data
- Triggers procurement decisions
- Cornerstone of our Capital Improvement Plan

Operate & Maintain
Evaluate & Replace

Enterprise Asset Management

Non Asset Based Projects

PD/PC

Planning

Design

Construction & Implementation

Initiation

Closeout

Tools

Project Delivery

Tool Kit

Decision Tool Project Selection

Project Adopted in Capital Budget

Procurement

Scoping & Econo

Engineering & Design

Develop CIP Candidates

Project Controls

Initiation

Closeout

PD/PC

Planning

Design

Construction & Implementation

Tool Kit

Decision Tool Project Selection

Project Adopted in Capital Budget

Procurement

Scoping & Econo

Engineering & Design

Develop CIP Candidates

Project Controls

Initiation

Closeout

PD/PC

Planning

Design

Construction & Implementation

Tool Kit

Decision Tool Project Selection

Project Adopted in Capital Budget

Procurement

Scoping & Econo

Engineering & Design

Develop CIP Candidates

Project Controls

Initiation

Closeout

PD/PC

Planning

Design

Construction & Implementation

Tool Kit

Decision Tool Project Selection

Project Adopted in Capital Budget

Procurement

Scoping & Econo

Engineering & Design

Develop CIP Candidates

Project Controls

Initiation

Closeout

PD/PC

Planning

Design

Construction & Implementation

Tool Kit

Decision Tool Project Selection

Project Adopted in Capital Budget

Procurement

Scoping & Econo

Engineering & Design

Develop CIP Candidates

Project Controls

Initiation

Closeout

PD/PC

Planning

Design

Construction & Implementation

Tool Kit

Decision Tool Project Selection

Project Adopted in Capital Budget

Procurement

Scoping & Econo

Engineering & Design

Develop CIP Candidates

Project Controls

Initiation

Closeout

PD/PC

Planning

Design

Construction & Implementation

Tool Kit

Decision Tool Project Selection

Project Adopted in Capital Budget

Procurement

Scoping & Econo

Engineering & Design

Develop CIP Candidates

Project Controls
Renewing, Rebuilding, Reinvesting

Capital Program Formation

- Integrated asset management module, tie-in to FASuite asset tracking and management
- Categorizes assets in meaningful “buckets”
- Identifies replacement assets meeting agency established criteria
- Ensures agency is continuously aware of assets ready for replacement and project identification
Project Decision Making

- **Integrated project decision making**, tie-in to FASuite asset database and capital module
- Groups candidate replacement assets by agency-driven criteria
- Creates executive level scenarios optimizing capital project decision making
- Presents financially constrained capital improvement plans ensuring informed decision making
Project Delivery

- Ongoing project monitoring and reporting throughout project lifecycle
- Proposed adjustments to project budgets evaluated through capital project decision model
- Actual project costs captured and stored in FASuite database for future capital planning
- New asset data delivered by contract and entered into EAM
Decision Criteria

1. Customer Service
2. Sustaining our Assets
3. Funding Optimization
4. Financial Impact
5. Regional and Other Collaboration Opportunities
6. Environmental Stewardship
7. Project Deliverability
Decision Making Software: Expert Choice

Shows your optimal project portfolios for various budget increments.

Improving competitiveness of projects
Selecting the optimal project mix to maximize the collective benefit, while balancing other factors such as risk, budget or staffing constraints and political considerations.

Budget Constraints Actual Funding

Comparative ranking based on established criteria of the Agency.
Composition of the CIP by anticipated FTA Asset Category

- **$131M (45%)**: Facilities & Stations
- **$65M (23%)**: Vehicles
- **$55M (19%)**: Systems
- **$23.4M (8%)**: Non-Asset
- **$14M (5%)**: Maintenance of Way

“System Renewal”
I’ve Got the Solution!

- Build in-house SE competency
 - Limited in-house skill; small but mighty
 - Largely discipline engineers
 - Build a case for budget request – takes time!

- Secure external SE support
 - Industry is lean; spread thin
 - Maybe we’re looking in the wrong place? (Transit)
 - Solicitation (pending) – had to justify

Only One Problem...The Rest of the Agency Hasn’t Got a Clue!!!
Challenges

• **Agency Culture & Processes**

 awareness, buy-in, structure, participation

 – How to Implement SE in a Non-Mature Environment?

 – Break the traditional mold

 • Within Engineering

 • Within Contracts & Procurement

 • Within Operations & Maintenance (Stakeholder/End-User)

 • All Other Contributing Business Units – including leadership team!

• **Lack of Resources**

 – Where to find personnel that have a basic SE understanding?

 – Where to find SE expertise to deliver your projects?

 – How to “gather requirements” from a busy Operations & Maintenance units?

 – How to deliver once awarded?
Project Demonstration Method

• Identify upcoming projects that could be used as a proving ground for an SE approach
 • Fire Protection System Upgrade
 • Train Control & SCADA Upgrade
 • Audio Visual Information System Upgrade
 • Tunnel Ventilation System Upgrade
• Conceptualize, plan, develop and implement these projects
• Demonstrate success and/or contrast against projects that fully or in-part failed to apply a systems engineering approach
Define the Problem: Operation’s Challenges

- Many of our assets are “original”
- Last major system upgrade to software and hardware was prior to the 1996 Olympic Games.
- RSCC Facility itself is inadequate for the intended use
- Wake-up call July 4th, 2009 - MARTA experiences multiple RSCC server failures during one of the busiest days of the year (Peachtree Road Race, Fireworks, Braves Game and several other events); required immediate system wide support; invisible to the riding public.
- RSCC Stabilization Project initiated – life support services for the RSCC until MARTA could complete a multi-year project, Train Control & SCADA Upgrade (TCSU) Project, which was in the early stages.
- Despite these challenges Rail On-Time Performance ≈ 98%, a
Example: $200M+ Project, Two Contracts
1) Integrated Operations Center (IOC)
2) Train Control & SCADA Upgrade (TCSU)
Single Platform for Integrated Systems

$60M investment
- Fire Monitoring System
- Trapeze
- Track Allocation System
- ITS MARTA
- MARTA Data Warehouse

$38M investment
- Radio/Telephone Communication
- Send/Receive Communication
- Vital/Non-Vital Relays
- Train – Wayside Communication
- Yard Tower Management
- Encroachment Detection System
- Escalator & Elevator SCADA

$185M+ investment
- Train Status Data Points
- AVIS Server
- Auto/Ad Hoc Audio-Visual Announcements

$30M investment
- CCTV
- Send Call Commands
- Status
- Incident Report/Service Req./Work Order

$93M investment
- MAXIMUS FASuite
- AVIS

$60M investment
$38M investment
$185M+ investment
$30M investment
$93M investment

Renewing, Rebuilding, Reinvesting
IOC Building Design (Renovation)
Traditional Invitation For Bid (IFB)
Renewing, Rebuilding, Reinvesting

Project: Designed to Optimize Our Operation Flexibility, Growth and Regional Opportunities

- Rare opportunity to design and build an industry leading, combined Integrated Control Center (IOC) and Emergency Operations Center (EOC), housing Rail, Bus and Police control and communications staff.

- Scalable design, open theatre, universal work stations, customizable display board, training center, and room for regional expansion & partners.

- This project is more about a successful business transformation than it is a technology upgrade!
Limited SE Approach Used: Lack of Stakeholder Input

Armour Yard Facility 2005: $300M
• On schedule - under budget – state of the art

Operations-wise:
• Yard location is not optimal; problematic
• Dead-end tracks (wash track & cleaning platform) and lack of a run-around track – unnecessary moves.

In Contrast!
Benefits of an SE Approach

- Identification of gaps and required changes
- Prioritization of initiatives
- Right tools and technology capabilities
- Integrated decision making and reporting
- Improved business & operating processes
- Improved operational performance
- Meaningful Key Performance Indicators (KPIs)
- Higher probability of a successful outcome
- Organizational culture change
Mainline, Yard and Maintenance Facility

Not Optimized
MAP-21 Compliance: It’s All Connected!

FTA/GDOT Safety Management System Requirements
- SMS Hazard/Risk Assessment
- Establish Safety Targets
- Develop Risk Controls & Monitoring Strategy
- Public Transportation Agency Safety Plan

FTA/GDOT Transit Asset Management Requirements
- Asset Inventory / Condition Assessment
- Establish SGR Targets
- Required Reports on System Condition
- Prioritize Investments / Program of Projects
- Transit Asset Management Plan

ISO 55001 Asset Management Requirements
- Lifecycle Management
- Continual Improvement
- Cost and Performance Optimization
- Risk Management in Individual STAMPs
- Agency Certification
dspringstead@itsmarta.com