Linking System Requirements with Product Performance

Tom Tecco XLDyn (thomas.tecco@xldyn.net)

XLDyn, LLC

XLDyn is an intuitive and easy to use, enterprise system engineering tool that is fully integrated with simulation

XLDyn = XLSE + XL1D

XLSE – For authoring OMG SysML compliant system models

XL1D - For authoring/simulating detailed 1D multi-physics systems models

XLDyn = Enterprise Solution to MBSE

- XLDyn is an actionable tool for engineers to develop, balance, and track designs
- XLDyn supports all verification methods

Enterprise

Data

- Program status is easily available to everyone
- Documentation is byproduct of the development process
- Documentation is critical for team communication
- XLDyn is easy to use: Systems Engineering for everyone

Simulation And Test

- XLSE is a Model Based Systems Engineering Tool
 - Provides design balance tools to develop optimal designs
 - Manages requirements status throughout the design cycle
 - Can be used at system, subsystem, or component level
 - Model is fully synchronized when adding/editing requirements or BoM parts

- XLSE includes the following SysML diagrams:
 - Package (pkg)
 - Block Definition (bdd)
 - Internal Block (*ibd*)
 - Parametric (par)

- Activity (act)
- Requirement (req)
- State Machine (stm)
- Use Case (uc)
- XLSE's Parametric, Activity, and State Machine diagrams are actionable. Change parameters and run simulations directly from the diagrams

- Document your work by attaching objects to the diagram blocks including:
 - Word Documents, PowerPoint,
 - Excel, Visio, Video, PDF, etc.
- XLSE automatically updates requirements status with verifier results in the System Requirement Table (SRT)

ID	Name	Text	Procedure N Target	Actual	Target Wt	Actual Wt	Change Histc Comments	Method	Owner	Assigned To No	otified	Due Date	Last Updated
A.3.2	Deceleration	Deceleration – The vehicle shall	meet all deceleration require	ments									
A.3.2.1	Stopping Distance	Stopping Distance{Distance<60}	- The vehicle shal Distance<6	i0 <mark>56</mark>	4								
A.3.3	Handling	Handling – The vehicle shall mee	t all of the following handlin	g criteria.									
A.3.3.1	Turning Radius	Turning Radius{TurnRad<8.6} – T	he vehicle turning TurnRad<8	.6 <u>8.2</u>	5								
A.3.3.2	Axle Weight Balance	Axle Weight Balance {FrtAxle=50	} – TI CAE 50 47.5 <frtax< td=""><td>le 49</td><td>0</td><td></td><td></td><td>CAT/CAE R</td><td>equest</td><td>thomas.tecc</td><td>Jul 21, 2017</td><td>Jul 31, 2017</td><td>21-Jul-17</td></frtax<>	le 49	0			CAT/CAE R	equest	thomas.tecc	Jul 21, 2017	Jul 31, 2017	21-Jul-17
A.3.4	Ride Quality	Ride Quality - Vehicle shall be be	est in class for smooth and ro	ugh road ride	emetrics								
A.4	Capacity	Capacity – Capacity is comprised	of number of passengers, ca	rgo both weij	ght and volume	, and towing.							
A.4.1	Passengers	Passengers {NumPass==5} - The	vehicle must be a NumPass=	=5									
A.4.2	Cargo	Cargo – Cargo capacity is compri	sed of both weight and volur	ne measures									
A.4.2.1	Cargo Volume	Cargo Volume {CargoVol>1.0} - /	Avail: ad hoc CargoVol>	1.(1.10	0			CAT/CAE R	equest	thomas.tecc	Jul 20, 2017	Jul 30, 2017	20-Jul-17

Model Creation: 'One Click'

Model Creation: 'One Click'

XLDyn[®] 's patented method creates SysML requirement, BoM, and Activity diagrams Functional Tree Structure: for the *entire* system Packages and Requirements Vehicle v1.4 Com 🏄 🔚 🛨 😆 pkg [Package] Fuel Economy Burner Main System Vehicle v1.4 Compl... 👻 GSet_1_Main_System_1 2 - 2 E-Functional Requirements <<requirement>> <<requirement>> <<requirement>> **Fuel Economy Highway Cycle Urban Driving Cycle** Combined City/Highway Fuel Safety Burger Main System Economy GUID="" GUID="" Frontal Crash GSet_1_Main_System_1 id="A.2.1.1" id="A.2.1.2" GUID="" text="Fuel Economy Highway text="Urban Driving Cycle id="A.2.1.3" Head Injury Criterion E-Functional Requirements Cycle {HWFET>30} - The fuel (UDDS>24) - The fuel text="Combined City/Highway economy of the vehicle shall economy of the vehicle shall Fuel Economy (CombCtyHiwy ErashModel - Physical Decomposition be at least 30 mpg on EPA be at least 24 mpg when >26) - The combined Highway Fuel Economy Test tested using the Urban Horacic Chest Accelera - Vehicle Interior Assemblies City/Highway fuel economy is Driving Schedule" Dynamometer Driving Cycle" weighted 55% City and 45% regSpec="HWFET>30" Femur Load Seat Assemblies Front (1-010 regSpec="UDDS>24" Highway" reqSpec="CombCtyHiwy >26" Seat Assemblies Rear (1-020 🗄 🔚 Star Rating Instrument Panel (1-0300-A) 📥 Star Ratinos Trim Panels and Headliner (1 interior Absorbed Energy Carpet (1-0500-A) 🗄 💾 Rollover Lighting (1-0600-A) HVAC (1-0600A) Chassis Assemblies Physical Tree Structure: SysML Requirement Powertrain Assemblies **BoM Assemblies and Parts** nodes created - 📇 Body and Structure Assembles

Requirements Verification

- Verification checks if requirements are met for a given set of design parameters and operating conditions
- XLSE has two classes of verifiers:
 - Internal: Perform simulations or retrieve test data directly from the diagram view. 3rd Party simulation tools can be easily added.
 - External: Generate and track work request for test or large scale simulation
- Multiple verifiers for a requirement:
 - Verification methods can change over the life of a product program
 - Simple models, design rules followed by detailed simulation and test
 - XLSE allows engineers to change verifiers and track the history of the methods and values

XLDyn® Verification Methods

Verification methods supported by XLDyn[®]

- Cell Equations Simple equations or Macros
- Worksheets Link the input/output cells of a worksheet to the results set
- CAT/CAE Request¹ Automated e-mail request for a test or simulation. Automatic updated to SRT when work is completed
- Observation¹ Automated e-mail request to make a simple observation, *e.g.* verify label is installed

¹Requires Microsoft Outlook

XLDyn® Verification Methods

Verification methods supported by XLDyn[®]

- XL1D Model² Use a XL1D model including reliability
- Activate Model³ Use a solidThinking Activate model.
- *Modelica Model*⁴ Use a Modelica model
- act Diagram⁵ Calculate process time using an activity diagram
- stm Diagram⁶ Determine system state for different parameters and conditions

- Radius
- Force T > 90 Nm
- Friction

- ² Requires XL1D model in workbook
 ³ Requires Activate models in Activate model library
- ⁴ Requires OpenModelica solver and Modelica models in Modelica model library
- ⁵Requires Activity diagram in workbook
- ⁶ Requires State diagram and XL1D mode.

Creating An Activate Verifier

XL

Creating An Activate Verifier

Using an Activate Verifier

XLSE Activity Diagram

XL

XLSE Activity Diagram

- Activity diagrams can be used as a verifier, design parameters can be varied and simulations performed
- Monte Carlo or Reliability simulations can also be performed

XLDyn State Diagram

- A state transition machine diagram, or state diagram for short, is used in dynamic system models as well as SysML models
- A state diagram shows the conditions that causes a system to change its state
- In this example, a simple cooling system has three states, and the system will shift from *FansOff* to *HighCool* or *LowCool* depending on the temperature difference ΔT

XLDyn State Diagram

Active v1 = 1if DeltaT > T high then goto highcool if DeltaT > T Low then goto lowcool end Active OnExit Pressure=40 End OnExit end State State LowCool OnEntry end OnEntry Active y1 = 2if DeltaT > T high then goto 3 if DeltaT < T Low then goto 1 end Active end state

State FansOff

OnEntry End OnEntry

 Use script to create the XL1D state machine

Start with easy to write script

 Determine states based on inputs

State Machine used to verify requirement

XL

XLDyn State Diagram

- Use same script to create SysML diagram
- Find possible transition paths
- Animate transition during simulation
- Determine reliability

XLSE Use Case Diagrams

- Use Cases can be imported from a Word document or created directly in XLDyn
- Use Cases can be associated with other diagrams such as requirements
- Use Cases can be linked: (parent/child)

Schematic Diagrams with Reliability

Calculate Reliability

- •Create schematic diagrams from part list with defined connector types
- Show connectivity and flow
- Select components then <u>calculate</u> reliability

Internal Block Diagram (ibd)

Domain Mapping

- XLDyn automatically maps the requirements to the parts using the tree structure of the model
- Add relationship strength directly to table
- Use for peer reviews and to create DFMEA

DFMEA Process

Table Entry Generated

Configuring A System Level DoE

- XLDyn can easily configure a system level Design of Experiments (DoE)
- All verifiers in the model can be used including tests data

First, select the MoE's you want to include.

Select the parameters to include in the study. Some parameters are common

System Level DoE Results

Run	FrtArea	Cd	EngTransMass	TrackWDT	Z60 =	"bd.txt"	CombCtyHiwy =	Current, Z60 =	Current, "bd	Current, CombCtyHi	Total_Deviatio
1	1.755	0.27	166.25	135.9	6.90	55.6	38.5	9.17	59.5	33	0.43251
2	1.755	0.27	166.25	166.1	12.12	58.7	31.30	9.17	59.5	33	0.40669
3	1.755	0.27	183.75	135.9	7.29	56.3	37.9	9.17	59.5	33	0.39642
4	1.755	0.27	183.75	166.1	12.72	57.7	30.90	9.17	59.5	33	0.46449
5	1.755	0.33	166.25	135.9	6.90	55.3	36.7	9.17	59.5	33	0.38782
6	1.755	0.33	166.25	166.1	12.12	58.6	30.13	9.17	59.5	33	0.39414
7	1.755	0.33	183.75	135.9	7.29	56.3	36.2	9.17	59.5	33	0.35027
8	1.755	0.33	183.75	166.1	12.72	57.7	29.76	9.17	59.5	33	0.45453
9	2.145	0.27	166.25	135.9	6.90	55.3	36.7	9.17	59.5	33	0.38782
10	2.145	0.27	166.25	166.1	12.12	58.6	30.13	9.17	59.5	33	0.39414
11	2.145	0.27	183.75	135.9	7.29	56.3	36.2	9.17	59.5	33	0.35027
12	2.145	0.27	183.75	166.1	12.72	57.7	29.76	9.17	59.5	33	0.45453
13	2.145	0.33	166.25	135.9	6.90	55.2	34.8	9.17	59.5	.3	0.34031
14	2.145	0.33	166.25	166.1	12.12	58.5	28.81	9.17	59.5	38	0.38339
15	2.145	0.33	183.75	135.9	7.29	56.0	34.3	9.17	59.5	33	0.30219
16	2.145	0.33	183,75	166.1	12.72	57.6	28.47	9.17	59.5	33	0.44653
Main Effects	-0.2277	-0.228	0.09243	0.450826							\smile

The *Main Effects* row ranks the effect of system parameters on *Total Deviation*. To improve your design, *Track Width* is the parameter to adjust

Total Deviation is shows the combination of parameters that yields the best design.

- Static, transient, and frequency domain analyses
- Supports continuous and discrete time simulation
- Powerful scripting language (without 3rd party compiler)
- Finite state machines using scripts
- Transfer Function blocks with custom labels

ŧ	Limiter	% ;	Variable Delay
m	Bang-Bang	filo	Delay
0	Slip		

- Automated chart creation with Excel functionality
- Built-in Units Management
- Links system parameters to Excel cells
- Run Monte Carlo to calculate performance variations, component properties have built in variation specification

- Easily configures DoE studies
- Automatically connects components across worksheets (superblocks)
- Completely integrated with XLSE for requirements verification and parametric studies

stmMach1				×
Simulation Duration	5	s 🛩	Integration Me	thod
Step Size	0.01	s	DE	*
No. of Integration Steps	500	1	Static Analy	sis
Output Points Spacing	5		Monte Carlo	
Base Sample Time	0		Equilibrium	Start
No. of Monte Carlo Runs	100			
Progress				
			Simulat	9
			Set Unit	5
			Tagach	
			Jacobian	
			Perce	
			Plot Resu	lts
			phen Benn	ie.
			Quit	
Ready				

С	onfigure Multiple Rur	?		×			
eth sig	nod Taguchi gn L2 50 ect Parameters And Sp	C C	bj Function	OK	etric1 SE Canc	S 4	~
	Name	Low	Current	High	+/- %		^
	SimpleRollResistFor	0.01	0.0125	0.015	20	•	
	SimpleRollResistFor	951	1189	1427	20	•	
	DragForceMetric1.A	1.56	1.95	2.34	20	•	
	DragForceMetric1.CD	0.24	0.3	.36	20	•	
	DragForceMetric1	.98	1.225	1.47	20	•	
	Britishto Metric.k	1.085	1.356	1.627	20	•	
	SlidingMass1.m	951	1189	1427	20	•	
	SlidingMass1.s(start)	0.0	0.0	0.0	20	•	
	SlidingMass1.v(start)	0.0	0.0	0.0	20	•	
	VelocitytoRPMMetri	600	750	900	20	•	
	DriverModule1.Gea	.8	1	1.2	20	•	
1	DeverMedule 1 DDMC	4000	5000	c000	20		\sim

XLDyn v2.0 Overview

• XLDyn v2.0 adds a database to version 1.5

XLDyn v2.0 New Features

- Includes v1.5 functionalities with the addition of enterprise data management
- All system artifacts are stored in the database:
 - Requirements, verifiers, parts, diagrams, domain maps, DFMEA, State Machines, XL1D models, user defined models, change history, relationships, etc
- □ Highly scalable only hardware limited
- Authorized users can view any subset of a project

XLDyn v2.0 New Features

- Configure a Main project from imported data
- Configure a model from existing database and save as new database
- Create an Ad Hoc model and save to new database
- One Click model creation from database
- Add, Delete, and Rearrange model content
- Copy content from other workbooks

XLDyn v2.0 New Features

- Workbook stores Work in Progress (WIP) until owner updates Subproject and/or Main databases
- Perform Variant Analysis
 - Select Common Core Requirement set
 - Define BoM and Parameters for Variants 1-N
 - Perform Analysis
 - Compare results

Compare Variants					-		×
		MoE					
Variant		Process Time Frt Axle			Stopping Distance		
suv_safety	9.69		1.8				
suv_vehdyn				50,0	TBD		
	_				_	_	
P - E Main System	B-BN	lain System	Variant Paramet	ers.			
Vehicle Interior Assemblies HVAC (1-0600A) Udyfting (1-0600A) Carpet (1-0500-A) Trim Panels and Headliner (1-0400-A) Instrument Panel (1-0300-A) Seat Assemblies Rear (1-0200-A) Seat Assemblies Front (1-0100-A) Seat Assemblies Front (1-0100-A) Rear Suspension Assembly (2-0800-A) Tires and Wheels (2-0600-A) Tires and Wheels (2-0600-A) Chassis Control Module (2-0500-A) Drive Shaft Assembly (2-0300-A) Front haf shafts Assembly (2-0300-A) Rear Axle Assembly (2-0300-A) Brake Assembles (2-0100-A)		⋳-1	DragForce1 DragForce1 DragForce1 SlidingMass Ar Bag Der Process Sig Sense Puls suv_vehdyn a=50 from 6	Aetric1_CA=195 fm Aetric1_CD=0.3 fm Iloy=1.5 from actC nal=0.1 from actC e Magnitude=0.2 f constraint 1)	um XLconstrain om XLconstrain XLconstraint 1) ionstraint 1) irrom actConst	int 1) (int 1) 1) raint 1)	

Summary

- Balance designs at the system, subsystem and component level
- Import requirements from and export updates to enterprise systems
- All requirements and verifiers managed in a single application
- XLDyn's SysML diagrams are actionable
- Easy access "project status view" including on mobile devices
- XLDyn's ease of use and integration makes MBSE a way to do your work, not document what you did
- XLDyn requires minimal training so ALL engineers can use it

Backup Slides

XI

Adding Requirements and Parts

•Requirements and BoM parts are <u>added directly</u> to diagrams and synchronized in all views and added to the SRD

Requirement Node Specifications GUID & Names	×	<pre><requiremen <="" heig="" lift="" over="" pre=""></requiremen></pre>	t>> ght F	Requirement	A.4.2	Cargo – Cargo capacity is compr A.4.2.1 Cargo Volume (Cargo Vo cargo shall be at least 1	ised of both weight and v />1.0} – Available volume square meter	volume measure e for passenger
*Node Name Lift Over Height Target Spec LOH<60 Req ID A.4.2.3 Edit Requirement Text The lift over height is the distance cargo must be raised to enter the storage space. The lift over height must be less than 60 cm		GUID="" id="A.4.2.3" text="The lift over he the distance cargo m raised to enter the st space. The lift over h must be less than 60	GUID="" Diagram id="A.4.2.3" text="The lift over height is the distance cargo must be raised to enter the storage space. The lift over height must be less than 60 cm"			nents must be able : is the distance :e. The lift over nent		
D	efine Requirement		4.2 A.4.2.1 A.4.2.2	Cargo Cargo Volume Cargo Weight Lift Over Height	Cargo – Cargo o Cargo Volume { Cargo Weight { The lift over he	apacity is comprised of both we (CargoVol>1.0) – Avail(ad hoc CargoWt>50) – Cargo compartm	ight and volume measur CargoVol>1.0 1 ent CargoWt>50	es 100
	< <bom parts="">> Heat Exchanger values id=B.3.6.5</bom>		1,1,2,3	_int over neight	Add Require	ed to System ment Table (SRT)	Londo	
	cost=\$15Parts caweight=4added a	n be Iso					X	T