
 978-1-5090-1613-6/17/$31.00 ©2017 IEEE 
 1 

A Model-Based Systems Engineering (MBSE) Approach 
for Defining the Behaviors of CubeSats 

David Kaslow 
Consultant 

Berwyn, PA 19312 
610-405-6685 

david.kaslow@gmail.com 

Bradley Ayres 
The Aerospace Corp. 

2310 E. El Segundo Blvd. 
El Segundo, CA 90245 

937-255-3355 x3422 
bradley.ayres.ctr@afit.edu 

Philip T Cahill 
Consultant 

Bryn Mawr, PA 19010 
610 787-0283 

navyred@msn.com 

Laura Hart 
The MITRE Corporation 

7515 Colshire Drive 
McLean, VA 22102-7508 

610 389-4534 
lhart@mitre.org 

Rose Yntema 
InterCAX 

75 5th Street NW Suite 312 
Atlanta GA 30308 
404-592-6897 x101 

rose.yntema@intercax.com 

 

Abstract—This paper describes an eight-step approach for 
defining the behaviors of CubeSats that begins with mission 
requirements and ends with a functional architecture modeled 
as an activity hierarchy using the Object Management Group’s 
(OMG) Systems Modeling Language (SysML).  This approach 
could be applied to other satellite development efforts but the 
emphasis here is on CubeSats because of their historically high 
mission failure rate and the rapid growth in the number of 
these missions over the last few years.  In addition, this 
approach complements the International Council on Systems 
Engineering’s (INCOSE) Space Systems Working Group’s 
(SSWG) efforts to develop a CubeSat Reference Model.  This 
approach provides a repeatable, generalized method for 
CubeSat development teams to follow that incorporates 
standard systems engineering practices such as:  a top-down 
approach, requirements analysis, use case development, and 
functional analysis.   

This effort uses a Model-Based Systems Engineering (MBSE) 
approach.  Some of the benefits of using an MBSE approach 
over a traditional document-based approach are:  enhanced 
communications, reduced development risk, improved quality, 
and enhanced knowledge transfer [1].   Systems engineering 
artifacts produced using this approach, such as definitions of 
the mission domain elements, requirements, use cases, and 
activities, are captured in a system model which serves as a 
single-source-of-truth for members of the CubeSat 
development team. 

Examples are provided throughout the paper which illustrates 
the application of this approach to a CubeSat development 
effort.  Since most space missions are concerned with the 
generation or flow of information, the examples focus on 
requirements to collect and distribute mission data ending with 
a definition of the required system functionality to satisfy those 
requirements. 
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1. INTRODUCTION 

The International Council on Systems Engineering’s 
(INCOSE) Space Systems Working Group (SSWG) began 
investigating the applicability of MBSE for designing 
CubeSats back in 2011.  The SSWG’s recent effort has been 
focused on the development of a CubeSat Reference Model 
to be used by university CubeSat teams, though it could be 
used by any CubeSat development team.  Reference [2] 
provides a history and interim status of that effort. 

The SSWG’s latest work has been on developing and 
incorporating use cases into the model.  The initial focus is 
on the collection and distribution of mission data.   In 
support of that effort, an approach was developed to define 
the behaviors of CubeSats that begins with mission 
requirements and ends with a functional architecture that 
satisfies those requirements.  This approach does not attempt 
to develop an entirely new methodology.  Instead, it draws 
from existing methodologies to provide a repeatable, 
generalized method for university teams to follow with the 
focus being on the application of this method to a CubeSat 
development effort.    

The first step of the approach is to analyze mission 
requirements in order to identify use cases that fully capture 
the behaviors required to have a successful mission.  The 
second step links these use cases to the appropriate mission 
requirements in the system model.  A discussion of use cases 
and how they are used to refine the mission requirements is 
provided. 
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The third step develops use case diagrams identifying the 
primary actors that invoke the use case and any secondary 
actors that may be involved.  The fourth step develops use-
case descriptions for each use case.  These descriptions 
identify such things as preconditions, triggers, post-
conditions, and the scope of the use case.  The fifth step 
captures the use-case descriptions in the system model as 
part of the use case specification.  A discussion of use-case 
descriptions and how to translate these descriptions into the 
model and make them part of the use case specification is 
provided. 

Use cases contain scenarios, or sequences of events, that 
define what needs to occur in order to achieve goal of the 
use case.  The sixth step models these scenarios using 
activities and activity diagrams.  The seventh step links these 
activities to the appropriate use cases.  Modeling activities 
and how they are used to refine use cases is discussed. 

Finally, activities are decomposed as necessary until the 
appropriate level of the system hierarchy is reached.  This 
results in a functional architecture that defines the behavior 
needed in order to successfully satisfy the mission 
requirements.  Modeling the functional architecture as an 
activity hierarchy is discussed.          

Sections 2 and 3 provide an overview of MBSE and 
CubeSats.  Section 4 discusses the approach for defining 
behaviors of Cubesats.  Examples are provided throughout 
this section which illustrates the application of this approach.  
These examples are taken from the CubeSat Reference 
Model.  Finally, Section 5 concludes the paper with a 
discussion of the benefits of the approach and work that 
remains for future efforts. 

2. MODEL-BASED SYSTEMS ENGINEERING  
MBSE is defined as the formalized application of modeling 
to support system requirements, design, analysis, 
verification, and validation activities beginning in the 
conceptual design phase and continuing throughout 
development and later life cycle phases [1].  A traditional 
systems engineering approach focuses on the development 
of textual specifications and design documentation.  This is 
characterized as being a “document-based” approach.  In 
contrast, MBSE focuses on the development of a coherent 
system model that consists of requirements, design, analysis, 
and verification information and is characterized as a 
“model-centric” approach.  In MBSE, the model serves as a 
single-source-of-truth for the development team and is the 
primary artifact produced by systems engineering activities.  
Documentation becomes secondary and is generated from 
the system model. 

In comparison to the traditional approach, MBSE provides a 
more rigorous method for capturing, integrating, and 
maintaining outputs of systems engineering activities.  The 
benefits of using this model-centric approach include:  
enhanced communications, reduced development risk, 
improved quality, and enhanced knowledge transfer [1].  

Reference [1] states that a MBSE method is a method that 
implements all or part of the systems engineering process 
and produces a system model as one of its primary artifacts.  
The approach here focuses on the requirements analysis and 
functional analysis parts of the systems engineering process.  
The artifacts produced are intended to be parts of a larger 
CubeSat model. 

The Systems Modeling Language (SysML) 

SysML is commonly used in MBSE [3].  It is a graphical 
modeling language developed by the Object Management 
Group (OMG) to be used for modeling a wide range of 
systems engineering problems.  It is not dependent on any 
single systems engineering method and is intended to 
support multiple methods.  It is well-suited for specifying 
requirements, structure, behavior, allocations, and 
constraints on system properties to support engineering 
analyses.  References to SysML are made throughout this 
paper.  Reference [1] provides a thorough description of 
SysML and how it may be applied to modeling systems.          

3. CUBESATS 
The CubeSat concept goes back to 1999 with the work of 
Robert Twiggs at Stanford University and Jordi Puig-Suari 
at the California State Polytechnic University.  The idea was 
to develop a design for an inexpensive small satellite that 
could be built by students in a relatively short period of time 
and launched at a low cost.  The result was a CubeSat 
engineering design standard that was based on a 10 x 10 x 
10 cm cube that had a volume of 1 liter and a mass of 1.33 
kilograms or less.  This standard CubeSat became referred to 
as a one unit, or 1U.  CubeSats are scalable in 1U increments 
with 3U CubeSats becoming very common.  There are 
deployment systems available today that can accommodate 
up to a 27U CubeSat.   

CubeSats have effectively taken over the university-class 
launch space [4].  In 2013, approximately 75% of the 
university-class missions were CubeSats [5].  When launch 
failures are factored out, the failure rate of university 
missions approaches 50% [5].  Reference [6] states that the 
design effort for university CubeSats has largely been based 
on intuition.  The rapid growth of CubeSat missions 
combined with historically high failure rates indicates a need 
for rigorous systems engineering practices to be applied to 
university CubeSat missions.  In response to this need, the 
next section presents a MBSE approach to defining the 
behaviors of CubeSats.      

4. DEFINING THE BEHAVIORS OF CUBESATS  
Starting Point – CubeSat Mission Requirements 

Requirements are a primary focus in the systems engineering 
process because its primary purpose is to transform them 
into a design [7].  It is not surprising then that many life 
cycle models show the process beginning with requirements 
[8].  The approach presented here is no different and starts 
with a well-defined set of mission requirements.  Emphasis 
here is on a “well-defined” set of requirements which is 
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absolutely critical for the success of the mission.  References 
[9] and [10] discuss methods for developing a well-defined 
set of requirements.    

The fundamental concern of most space missions is the 
generation or flow of information [11].  Whether the mission 
involves taking an image of the Earth, measuring space 
weather phenomena, or demonstrating advances in new 
technologies like microthrusters, the CubeSat mission 
enterprise must be capable of collecting the required mission 
data and ensuring that data is distributed to those who need 
it.  This leads to the development of the two example 
mission requirements shown in Table 1.  Teams would 
naturally modify these generic requirements to specify the 
actual mission data collection and distribution requirements 
for their unique mission.  For example, for the FireSat II 
mission discussed in Reference [11], the “Distribute Mission 
Data” generic requirement would be modified to meet the 
criteria defined in References [9] and [10] to be “The FireSat 
II system shall be capable of distributing interpreted wildfire 
data to up to 500 fire-monitoring offices and 2,000 fire 
rangers worldwide.”  

In SysML, requirements can be shown in different ways.  
One way is to use a requirements diagram to show the 
requirement as shown in Figure 1 and discussed in Step 2.  
SysML also supports the use of tables to represent 
requirements and their properties as shown in Table 1.  A 
standard requirement in SysML has two properties:  a unique 
identifier (ID) and a text requirement (Text).  CubeSat 
mission requirements are captured in a CubeSat model using 
a table like the one below.   

Table 1. CubeSat Mission Requirements 
ID Name Text 

1 Collect Mission 
Data 

The CubeSat Mission 
Enterprise shall collect 
mission data required to 
satisfy the need of the 
mission data user. 

2 Distribute Mission 
Data 

The CubeSat Mission 
Enterprise shall 
distribute mission data to 
all mission data users 
that require that data. 

 
Step 1 – Analyze Mission Requirements to Identify 
Enterprise-level Use Cases 

Use cases describe the functionality of a system in terms of 
how it is used to achieve the goals of the various users [1].  
These users are described by actors that represent 
individuals or external systems that interact in some way 
with the system [12].  Identifying use cases first involves 
identifying actors that will use the system, and then 
identifying what those actors want the system to do [12, 13].  
Use cases are a common way to capture system requirements 
and are used in many different methodologies such as the 
Object-Oriented Systems Engineering Method (OOSEM) 

[1], the SYSMOD approach [14], and the Rational Harmony 
process [15]. 
 
The requirements in Table 1 are analyzed in order to identify 
potential actors.  Both of the above mission requirements 
make reference to the role of a mission data user.   Mission 
data users use the CubeSat enterprise to collect and 
distribute mission data so that their goal of obtaining needed 
data may be satisfied.  This leads to the identification of two 
enterprise-level use cases:  Collect Mission Data and 
Distribute Mission Data.  An alternative approach would be 
to derive the use cases directly from the mission 
requirements as is done in OOSEM [1].   
 
In SysML, use cases are represented by an oval with the 
name of the use case placed inside.  The use cases for 
Collect Mission Data and Distribute Mission Data are 
captured as model elements as shown in Figures 1 and 2 
below which are discussed in the next sections.   

Step 2 – Define the Relationship between Mission 
Requirements and Enterprise-level Use Cases 

Up to this point, mission requirements have been defined 
and use cases identified but the relationship between the two 
has not been established.  A commonly held view is that a 
use case is a refinement of a requirement [1, 3, 16].  A refine 
relationship in SysML is used to reduce ambiguity in a 
requirement by relating it to another model element that 
clarifies the requirement [1].  It conveys that the model 
element at the client end, a use case, is more definitive than 
the abstract element at the supplier end, a requirement.  
Reference [3] states that a use case provides detail and 
clarity that a text requirement by itself cannot express.  
Likewise, Reference [1] states that a text-based functional 
requirement may be refined with a more precise 
representation like a use case.  That is the approach taken 
here.  The mission requirements defined above are further 
refined by use cases titled “Collect Mission Data” and 
“Distribute Mission Data.” 

A requirements diagram in SysML is used to display text-
based requirements, relationships between requirements, and 
relationships between requirements and other model 
elements, like use cases.  Figure 1 shows the two mission 
requirements in Table 1 and the refine relationship between 
those requirements and the two use cases, Collect Mission 
Data and Distribute Mission Data. 

Step 3 – Capture the Use Cases Identified in Step 1  

In SysML, the use case diagram concisely conveys a set of 
use cases, the actors that invoke and participate in those use 
cases, and the system that owns and performs the use cases 
[3].  In the diagram, the system is viewed as a black-box.  
The actor in a use case represents the role of an entity 
(human, organization, or external system) that participates in 
the use of the system [1].  The actor is often a stakeholder 
representing an entity that has an interest in the system [8, 
17].  A use case may also involve supporting (or secondary) 
actors who are external to the system but participate in the 
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Figure 1. CubeSat Mission Requirements Refined by 

Collect and Distribute Mission Data Use Cases 

use case by performing actions or providing a service to the 
system.  References [1] and [3] provide a detailed discussion 
of use case modeling.  
 
In this example, the mission data user is a Chief Scientist 
who initiates the two use cases in order to obtain mission 
data that is needed to support a research effort.  The system 
is the CubeSat enterprise that has the responsibility for 
collecting and distributing the mission data to the Chief 
Scientist who needs it.  Figure 2 is an example use case 
diagram conveying the above information.  

 
Figure 2. CubeSat Enterprise-level Use Cases 

Step 4 – Develop Use Case Descriptions 

Reference [12] states that each use case should have a 
description where the full story of the use case is told.  These 
descriptions, or specifications, provide the substance of the 
use-case model.  The use case description is what refines the 
requirement.  They typically identify the goals of the use 
case, a main pattern of use, and a number of variant uses [1].  
References [12, 13, 17] provide a detailed discussion of use 
case descriptions.  For the purposes of this effort, the use 
case description consists of the following parts: 
 

• Use Case Name 
• Scope 
• Primary Actor 

• Supporting Actor 
• Stakeholder 
• Preconditions 
• Trigger 
• Postconditions 

 
Scope refers to the system that performs the use case.  A 
stakeholder is someone or something that has a vested 
interest in the behavior of the system.  Preconditions are 
those conditions that must be true for the use case to begin 
and postconditions are the conditions that must be true at the 
end of the use case. The trigger refers to the event that 
causes the use case to begin.  Typically the primary actor is 
the one who triggers the use case.  The text-based use case 
description for the Collect Mission Data use case can be 
found in Appendix A and the one for the Distribute Mission 
Data use case can be found in Appendix B. 

Step 5 – Capture the Use Case Descriptions in the Model 

How use case descriptions are incorporated into the CubeSat 
model is very dependent on the modeling tool being used.  
Most tools have some means of capturing the text-based use 
case description as part of the use case model element.  In 
this example, the MagicDraw modeling tool developed by 
No Magic Inc. is used.  In MagicDraw, each use case has a 
specification.  It specifies details about the use case such as 
documentation or hyperlinks associated with the use case, 
use case scenarios, extension points, and usage in SysML 
diagrams.  These details are represented as tabs in the use 
case specification window.  The information contained in the 
text-based use case description is captured in the 
“Documentation/Hyperlinks” tab of the use case 
specification window as shown below in Figures 3 and 4.  
An alternative method would have been to create a hyperlink 
to a text file that contained the use case description.   

Step 6 – Model the Use Case Scenarios 

Two key parts of the use case description that were not 
discussed above are the main success scenario and 
extensions.  A use case scenario captures the functionality 
required in order to satisfy the actors’ goals and also how the 
system interacts with its actors.  It represents a complete 
path through the use case from beginning to end.  The main 
success scenario represents a typical case in which nothing 
goes wrong, the primary actor’s goal is delivered, and all 
stakeholders’ interests are satisfied [17].  Extensions 
represent alternative sequences that branch off of the main 
success scenario.  The use case combines all of the scenarios 
together.  References [1], [3], and [16] state that a SysML 
activity diagram can be used to describe a use case scenario.  
The approach used here follows that of Reference [16] 
which states that the use case is a “wrapper” around the 
system’s functions defining the preconditions, 
postconditions, trigger, and result with SysML activity 
diagrams describing the functions.   
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Figure 3. Use Case Description in the Collect Mission Data Use Case Specification 

Figure 4. Use Case Description in the Distribute Mission Data Use Case Specification 
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In SysML, activities are model elements that convey flow-
based behavior that is focused on the transformation of 
inputs to outputs.  An activity is composed of actions that 
represent steps in the transformation process.  A special kind 
of action is a Call Behavior action that represents an activity 
that can be further decomposed into other actions.  The 
result is an activity hierarchy that resembles the product 
obtained from a traditional functional decomposition.  

This step begins with the approach described by Reference 
[16] where a top-level activity is defined which matches the 
name of the use case and represents the whole use case.  
Once the top-level activity is defined, it is decomposed into 
the actions that are necessary to satisfy the functionality 
required of the top-level activity.  This follows a traditional 
functional decomposition approach.  These actions are then 
used to develop an activity diagram capturing all of the 
behavior required by the top-level activity.  

In the example of the Collect Mission Data use case, a top-
level activity is created that matches that use case.  That 
activity is then decomposed into the following actions: 

• A1 - Generate Mission Data Collection & Space-
Ground Communication Schedules.  Once a request 
for mission data is received, schedules for 
collecting the mission data and for communication 
opportunities between the CubeSat and the Ground 
Segment are generated.  Based on these schedules, 
a spacecraft command sequence is generated that 
contains data collection and space-to-ground 
communication commands. 

• A2 - Uplink Spacecraft Command Sequence.  The 
Ground Segment and CubeSat communications 
equipment are configured for uplink of the 
spacecraft command sequence.  The command 
sequence is uplinked to the CubeSat. 

• A3 - Collect and Pre-Process Mission Data.  In 
accordance with the uplinked spacecraft command 
sequence, the CubeSat collects the required mission 
data and does any necessary pre-processing of the 
data. 

• A4 - Downlink Mission Data.  The CubeSat and 
Ground Segment communications equipment are 
configured for downlink of the mission data.  The 
mission data is downlinked to the Ground Segment. 

Figure 5 shows the decomposition of the Collect Mission 
Data activity.     

The actions from Figure 5 are then used to develop an 
activity diagram for the Collect Mission Data activity 
conveying the order of execution and input/output flows 
between actions.  This is shown in Figure 6 below. 

The activity diagram shows that the Collect Mission Data 
activity takes in the mission tasking and transforms it into 
mission data that flows out of the activity.  The mission 

tasking contains information about the types of data that 
need to be collected and under what conditions it should be 
collected.  As discussed previously, the mission tasking is 
converted into a spacecraft command sequence that is 
uplinked to the CubeSat that collects and pre-processes the 
mission data prior to downlinking the data. 

Only the main success scenario is shown in the examples.  
However, teams should also consider anomalous scenarios 
as well.  For example, the inability to uplink commands or 
downlink mission data.  These scenarios can be modeled in 
the same way as the success scenario.  The process is 
repeated for the Distribute Mission Data use case as shown 
in Figures 7 and 8 below. 

Figure 8 shows the downlinked mission data being post-
processed, the post-processed data being turned into required 
mission data products, and finally the original downlinked 
mission data and data products being distributed to the Chief 
Scientist who made the request that started the collect and 
distribute mission data process.  Also shown in Figure 8 is 
an activity partition titled “Ground Segment” which conveys 
that the Ground Segment part of the CubeSat Enterprise is 
responsible for performing all of the actions within that 
partition. 

References [1] and [3] provide a more detailed description of 
SysML activity diagrams, using activity diagrams to model 
scenarios, and for modeling activity hierarchies. 

Step 7 – Link the Activities to the Use Cases 

At this point, activities have been defined that represent the 
use case functionality but no relationship between those 
activities and their corresponding use cases has been 
established.  This approach uses the refine relationship 
discussed in Step 2 as the method for relating the activities 
to use cases.  SysML does not limit the refine relationship to 
just relating model elements to requirements.  The refine 
relationship can be used to relate any two model elements.  
In this case, it conveys that the activity at the client end is 
more definitive than the abstract use case at the supplier end.  
With regards to a use case scenario, the activity provides 
detail and clarity that the use case itself cannot express.  
Reference [1:301] states that, “The textual definition for a 
use case, together with the use case models described 
previously, can describe the functionality of a system.  If 
desired, however, a more detailed definition of the use case 
may be modeled with interactions, activities, and/or state 
machines.”  Figure 9 below adds to Figure 2 the refine 
relationship between the activities and their corresponding 
use cases.     
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Figure 5. Decomposition of the Collect Mission Data Activity 

Figure 6. The Collect Mission Data Activity 
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Figure 7. Decomposition of the Distribute Mission Data Activity 

Figure 8. The Distribute Mission Data Activity 
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Step 8 – Continue Decomposing the Activities 

The process of decomposing a higher-level activity into 
lower-level actions and then creating an activity diagram 
continues as necessary until the appropriate level of the 
system hierarchy is reached.  In this example, the Generate 
Mission Data Collection and Space-Ground Communication 
Schedules activity and the Uplink Spacecraft Command 
Sequence activity are further decomposed and activity 
diagrams created for each activity as was done previously.  
Figures 10, 11, 12, and 13 show the results for these two 
activities. 

In Figure (13), the CubeSat is responsible for the following 
actions: 

• Determining when to begin to prepare for the 
uplinking of the mission data, 

• Retrieving the stored space-to-ground 
communications command sequence (A2.2), 

• Configuring the communications equipment to 
accept the uplink (A2.3), and 

• Receiving the uplinked command sequence (A2.5). 

These actions can be captured as functional requirements of 
the CubeSat as was done in Step 1 for the mission 
requirements.  The approach can then be recursively applied 
at the CubeSat-level. 

The decomposition of activities into actions can continue 
down to the subsystem-level of the CubeSat.  The end result 
can be shown in an activity hierarchy representing the full 
functional decomposition and the resulting functional 
architecture.  Figure 14 shows a continued decomposition 
for the Collect Mission Data activity. 

5. CONCLUSION  
Summary 

This paper presents an eight-step MBSE approach for 
defining the behaviors of the CubeSats.  The approach 
begins with a well-defined set of mission requirements and 
ends with a representation of the functional architecture 
captured as an activity hierarchy.  The order of execution 
and input/output flows between actions for each activity is 
captured in a SysML activity diagram.  This approach has 
the following benefits: 

• Traceability:  There is clear traceability from the 
mission requirements to the functionality required 
to satisfy those requirements. 

• Recursive:  The approach can be recursively 
applied at all levels of the mission hierarchy with 
the outputs at the higher-level becoming inputs to 
the lower-level 

• Generalizability.  This approach is not dependent 
on any specific tool and is general enough to be 
easily incorporated into many systems engineering 
methodologies. 

Future Work 

The approach presented here just focuses on functional 
requirements.  Future work is needed to address non-
functional and interface requirements also using a 
MBSE approach in order to develop a complete MBSE 
method for CubeSats.   

Related topics are the allocation of the behaviors to the 
structural elements responsible for performing those 
behaviors and verification of the functional 
requirements.  Though allocation was touched upon 
here, a more in-depth discussion is required.         

Figure 9. CubeSat Enterprise-level Use Cases Refined by Activities 
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Figure 10. Decomposition of Generate Mission Data Collection and Space-Ground Communication Schedules 

Figure 11. Generate Mission Data Collection and Space-Ground Communication Schedules Activity 
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Figure 12. Decomposition of Uplink Spacecraft Command Sequence 

Figure 13. Uplink Spacecraft Command Sequence Activity 
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Figure 14. Activity Hierarchy for the Collect Mission Data Activity 



 

 13 

APPENDICES  
A. COLLECT MISSION DATA USE CASE 

DESCRIPTION 

Use Case Name: Collect Mission Data 
Scope: CubeSat Enterprise 
Primary Actor: Chief Scientist 
Stakeholder: Chief Scientist 
Preconditions: 

Chief Scientist has provided: 
• A “list” of objects for study  
• The type of mission data to be 

collected and studied  
• The conditions under which the 

mission data is to be collected 

The CubeSat is: 
• On-orbit 
• Operating normally 
• Has an orbit and sensor capable of 

collecting the mission data under the 
specified condition 

Trigger: Chief Scientist requests collection of mission data 
Postconditions:  Requested mission data is received by the 
Ground Segment 

 
B. DISTRIBUTE MISSION DATA USE CASE 

DESCRIPTION 

Use Case Name: Distribute Mission Data 
Scope: CubeSat Enterprise 
Primary Actor: Chief Scientist 
Stakeholder: Chief Scientist 
Preconditions: 

The Space Segment has downlinked the requested 
mission data to the Ground Segment 

Trigger: Requested mission data has been received by the 
Ground Segment 
Postconditions:  Requested mission data is received by the 
Chief Scientist 
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