
 978-1-5090-1613-6/17/$31.00 ©2017 IEEE
 1

A Model-Based Systems Engineering (MBSE) Approach
for Defining the Behaviors of CubeSats

David Kaslow
Consultant

Berwyn, PA 19312
610-405-6685

david.kaslow@gmail.com

Bradley Ayres
The Aerospace Corp.

2310 E. El Segundo Blvd.
El Segundo, CA 90245

937-255-3355 x3422
bradley.ayres.ctr@afit.edu

Philip T Cahill
Consultant

Bryn Mawr, PA 19010
610 787-0283

navyred@msn.com

Laura Hart
The MITRE Corporation

7515 Colshire Drive
McLean, VA 22102-7508

610 389-4534
lhart@mitre.org

Rose Yntema
InterCAX

75 5th Street NW Suite 312
Atlanta GA 30308
404-592-6897 x101

rose.yntema@intercax.com

Abstract—This paper describes an eight-step approach for
defining the behaviors of CubeSats that begins with mission
requirements and ends with a functional architecture modeled
as an activity hierarchy using the Object Management Group’s
(OMG) Systems Modeling Language (SysML). This approach
could be applied to other satellite development efforts but the
emphasis here is on CubeSats because of their historically high
mission failure rate and the rapid growth in the number of
these missions over the last few years. In addition, this
approach complements the International Council on Systems
Engineering’s (INCOSE) Space Systems Working Group’s
(SSWG) efforts to develop a CubeSat Reference Model. This
approach provides a repeatable, generalized method for
CubeSat development teams to follow that incorporates
standard systems engineering practices such as: a top-down
approach, requirements analysis, use case development, and
functional analysis.

This effort uses a Model-Based Systems Engineering (MBSE)
approach. Some of the benefits of using an MBSE approach
over a traditional document-based approach are: enhanced
communications, reduced development risk, improved quality,
and enhanced knowledge transfer [1]. Systems engineering
artifacts produced using this approach, such as definitions of
the mission domain elements, requirements, use cases, and
activities, are captured in a system model which serves as a
single-source-of-truth for members of the CubeSat
development team.

Examples are provided throughout the paper which illustrates
the application of this approach to a CubeSat development
effort. Since most space missions are concerned with the
generation or flow of information, the examples focus on
requirements to collect and distribute mission data ending with
a definition of the required system functionality to satisfy those
requirements.

TABLE OF CONTENTS
1. INTRODUCTION ... 1
2. MODEL-BASED SYSTEMS ENGINEERING 2
3. CUBESATS ... 2
4. DEFINING THE BEHAVIORS OF CUBESATS 2
5. CONCLUSION ... 9

APPENDICES .. 13
A. COLLECT MISSION DATA USE CASE
DESCRIPTION .. 13
B. DISTRIBUTE MISSION DATA USE CASE
DESCRIPTION .. 13
REFERENCES ... 13
BIOGRAPHY ... 14

1. INTRODUCTION

The International Council on Systems Engineering’s
(INCOSE) Space Systems Working Group (SSWG) began
investigating the applicability of MBSE for designing
CubeSats back in 2011. The SSWG’s recent effort has been
focused on the development of a CubeSat Reference Model
to be used by university CubeSat teams, though it could be
used by any CubeSat development team. Reference [2]
provides a history and interim status of that effort.

The SSWG’s latest work has been on developing and
incorporating use cases into the model. The initial focus is
on the collection and distribution of mission data. In
support of that effort, an approach was developed to define
the behaviors of CubeSats that begins with mission
requirements and ends with a functional architecture that
satisfies those requirements. This approach does not attempt
to develop an entirely new methodology. Instead, it draws
from existing methodologies to provide a repeatable,
generalized method for university teams to follow with the
focus being on the application of this method to a CubeSat
development effort.

The first step of the approach is to analyze mission
requirements in order to identify use cases that fully capture
the behaviors required to have a successful mission. The
second step links these use cases to the appropriate mission
requirements in the system model. A discussion of use cases
and how they are used to refine the mission requirements is
provided.

tel:937-255-3355%20x3422
mailto:radley.ayres.ctr@afit.edu
mailto:rose.yntema@intercax.com

 2

The third step develops use case diagrams identifying the
primary actors that invoke the use case and any secondary
actors that may be involved. The fourth step develops use-
case descriptions for each use case. These descriptions
identify such things as preconditions, triggers, post-
conditions, and the scope of the use case. The fifth step
captures the use-case descriptions in the system model as
part of the use case specification. A discussion of use-case
descriptions and how to translate these descriptions into the
model and make them part of the use case specification is
provided.

Use cases contain scenarios, or sequences of events, that
define what needs to occur in order to achieve goal of the
use case. The sixth step models these scenarios using
activities and activity diagrams. The seventh step links these
activities to the appropriate use cases. Modeling activities
and how they are used to refine use cases is discussed.

Finally, activities are decomposed as necessary until the
appropriate level of the system hierarchy is reached. This
results in a functional architecture that defines the behavior
needed in order to successfully satisfy the mission
requirements. Modeling the functional architecture as an
activity hierarchy is discussed.

Sections 2 and 3 provide an overview of MBSE and
CubeSats. Section 4 discusses the approach for defining
behaviors of Cubesats. Examples are provided throughout
this section which illustrates the application of this approach.
These examples are taken from the CubeSat Reference
Model. Finally, Section 5 concludes the paper with a
discussion of the benefits of the approach and work that
remains for future efforts.

2. MODEL-BASED SYSTEMS ENGINEERING
MBSE is defined as the formalized application of modeling
to support system requirements, design, analysis,
verification, and validation activities beginning in the
conceptual design phase and continuing throughout
development and later life cycle phases [1]. A traditional
systems engineering approach focuses on the development
of textual specifications and design documentation. This is
characterized as being a “document-based” approach. In
contrast, MBSE focuses on the development of a coherent
system model that consists of requirements, design, analysis,
and verification information and is characterized as a
“model-centric” approach. In MBSE, the model serves as a
single-source-of-truth for the development team and is the
primary artifact produced by systems engineering activities.
Documentation becomes secondary and is generated from
the system model.

In comparison to the traditional approach, MBSE provides a
more rigorous method for capturing, integrating, and
maintaining outputs of systems engineering activities. The
benefits of using this model-centric approach include:
enhanced communications, reduced development risk,
improved quality, and enhanced knowledge transfer [1].

Reference [1] states that a MBSE method is a method that
implements all or part of the systems engineering process
and produces a system model as one of its primary artifacts.
The approach here focuses on the requirements analysis and
functional analysis parts of the systems engineering process.
The artifacts produced are intended to be parts of a larger
CubeSat model.

The Systems Modeling Language (SysML)

SysML is commonly used in MBSE [3]. It is a graphical
modeling language developed by the Object Management
Group (OMG) to be used for modeling a wide range of
systems engineering problems. It is not dependent on any
single systems engineering method and is intended to
support multiple methods. It is well-suited for specifying
requirements, structure, behavior, allocations, and
constraints on system properties to support engineering
analyses. References to SysML are made throughout this
paper. Reference [1] provides a thorough description of
SysML and how it may be applied to modeling systems.

3. CUBESATS
The CubeSat concept goes back to 1999 with the work of
Robert Twiggs at Stanford University and Jordi Puig-Suari
at the California State Polytechnic University. The idea was
to develop a design for an inexpensive small satellite that
could be built by students in a relatively short period of time
and launched at a low cost. The result was a CubeSat
engineering design standard that was based on a 10 x 10 x
10 cm cube that had a volume of 1 liter and a mass of 1.33
kilograms or less. This standard CubeSat became referred to
as a one unit, or 1U. CubeSats are scalable in 1U increments
with 3U CubeSats becoming very common. There are
deployment systems available today that can accommodate
up to a 27U CubeSat.

CubeSats have effectively taken over the university-class
launch space [4]. In 2013, approximately 75% of the
university-class missions were CubeSats [5]. When launch
failures are factored out, the failure rate of university
missions approaches 50% [5]. Reference [6] states that the
design effort for university CubeSats has largely been based
on intuition. The rapid growth of CubeSat missions
combined with historically high failure rates indicates a need
for rigorous systems engineering practices to be applied to
university CubeSat missions. In response to this need, the
next section presents a MBSE approach to defining the
behaviors of CubeSats.

4. DEFINING THE BEHAVIORS OF CUBESATS
Starting Point – CubeSat Mission Requirements

Requirements are a primary focus in the systems engineering
process because its primary purpose is to transform them
into a design [7]. It is not surprising then that many life
cycle models show the process beginning with requirements
[8]. The approach presented here is no different and starts
with a well-defined set of mission requirements. Emphasis
here is on a “well-defined” set of requirements which is

 3

absolutely critical for the success of the mission. References
[9] and [10] discuss methods for developing a well-defined
set of requirements.

The fundamental concern of most space missions is the
generation or flow of information [11]. Whether the mission
involves taking an image of the Earth, measuring space
weather phenomena, or demonstrating advances in new
technologies like microthrusters, the CubeSat mission
enterprise must be capable of collecting the required mission
data and ensuring that data is distributed to those who need
it. This leads to the development of the two example
mission requirements shown in Table 1. Teams would
naturally modify these generic requirements to specify the
actual mission data collection and distribution requirements
for their unique mission. For example, for the FireSat II
mission discussed in Reference [11], the “Distribute Mission
Data” generic requirement would be modified to meet the
criteria defined in References [9] and [10] to be “The FireSat
II system shall be capable of distributing interpreted wildfire
data to up to 500 fire-monitoring offices and 2,000 fire
rangers worldwide.”

In SysML, requirements can be shown in different ways.
One way is to use a requirements diagram to show the
requirement as shown in Figure 1 and discussed in Step 2.
SysML also supports the use of tables to represent
requirements and their properties as shown in Table 1. A
standard requirement in SysML has two properties: a unique
identifier (ID) and a text requirement (Text). CubeSat
mission requirements are captured in a CubeSat model using
a table like the one below.

Table 1. CubeSat Mission Requirements
ID Name Text

1 Collect Mission
Data

The CubeSat Mission
Enterprise shall collect
mission data required to
satisfy the need of the
mission data user.

2 Distribute Mission
Data

The CubeSat Mission
Enterprise shall
distribute mission data to
all mission data users
that require that data.

Step 1 – Analyze Mission Requirements to Identify
Enterprise-level Use Cases

Use cases describe the functionality of a system in terms of
how it is used to achieve the goals of the various users [1].
These users are described by actors that represent
individuals or external systems that interact in some way
with the system [12]. Identifying use cases first involves
identifying actors that will use the system, and then
identifying what those actors want the system to do [12, 13].
Use cases are a common way to capture system requirements
and are used in many different methodologies such as the
Object-Oriented Systems Engineering Method (OOSEM)

[1], the SYSMOD approach [14], and the Rational Harmony
process [15].

The requirements in Table 1 are analyzed in order to identify
potential actors. Both of the above mission requirements
make reference to the role of a mission data user. Mission
data users use the CubeSat enterprise to collect and
distribute mission data so that their goal of obtaining needed
data may be satisfied. This leads to the identification of two
enterprise-level use cases: Collect Mission Data and
Distribute Mission Data. An alternative approach would be
to derive the use cases directly from the mission
requirements as is done in OOSEM [1].

In SysML, use cases are represented by an oval with the
name of the use case placed inside. The use cases for
Collect Mission Data and Distribute Mission Data are
captured as model elements as shown in Figures 1 and 2
below which are discussed in the next sections.

Step 2 – Define the Relationship between Mission
Requirements and Enterprise-level Use Cases

Up to this point, mission requirements have been defined
and use cases identified but the relationship between the two
has not been established. A commonly held view is that a
use case is a refinement of a requirement [1, 3, 16]. A refine
relationship in SysML is used to reduce ambiguity in a
requirement by relating it to another model element that
clarifies the requirement [1]. It conveys that the model
element at the client end, a use case, is more definitive than
the abstract element at the supplier end, a requirement.
Reference [3] states that a use case provides detail and
clarity that a text requirement by itself cannot express.
Likewise, Reference [1] states that a text-based functional
requirement may be refined with a more precise
representation like a use case. That is the approach taken
here. The mission requirements defined above are further
refined by use cases titled “Collect Mission Data” and
“Distribute Mission Data.”

A requirements diagram in SysML is used to display text-
based requirements, relationships between requirements, and
relationships between requirements and other model
elements, like use cases. Figure 1 shows the two mission
requirements in Table 1 and the refine relationship between
those requirements and the two use cases, Collect Mission
Data and Distribute Mission Data.

Step 3 – Capture the Use Cases Identified in Step 1

In SysML, the use case diagram concisely conveys a set of
use cases, the actors that invoke and participate in those use
cases, and the system that owns and performs the use cases
[3]. In the diagram, the system is viewed as a black-box.
The actor in a use case represents the role of an entity
(human, organization, or external system) that participates in
the use of the system [1]. The actor is often a stakeholder
representing an entity that has an interest in the system [8,
17]. A use case may also involve supporting (or secondary)
actors who are external to the system but participate in the

 4

Figure 1. CubeSat Mission Requirements Refined by

Collect and Distribute Mission Data Use Cases

use case by performing actions or providing a service to the
system. References [1] and [3] provide a detailed discussion
of use case modeling.

In this example, the mission data user is a Chief Scientist
who initiates the two use cases in order to obtain mission
data that is needed to support a research effort. The system
is the CubeSat enterprise that has the responsibility for
collecting and distributing the mission data to the Chief
Scientist who needs it. Figure 2 is an example use case
diagram conveying the above information.

Figure 2. CubeSat Enterprise-level Use Cases

Step 4 – Develop Use Case Descriptions

Reference [12] states that each use case should have a
description where the full story of the use case is told. These
descriptions, or specifications, provide the substance of the
use-case model. The use case description is what refines the
requirement. They typically identify the goals of the use
case, a main pattern of use, and a number of variant uses [1].
References [12, 13, 17] provide a detailed discussion of use
case descriptions. For the purposes of this effort, the use
case description consists of the following parts:

• Use Case Name
• Scope
• Primary Actor

• Supporting Actor
• Stakeholder
• Preconditions
• Trigger
• Postconditions

Scope refers to the system that performs the use case. A
stakeholder is someone or something that has a vested
interest in the behavior of the system. Preconditions are
those conditions that must be true for the use case to begin
and postconditions are the conditions that must be true at the
end of the use case. The trigger refers to the event that
causes the use case to begin. Typically the primary actor is
the one who triggers the use case. The text-based use case
description for the Collect Mission Data use case can be
found in Appendix A and the one for the Distribute Mission
Data use case can be found in Appendix B.

Step 5 – Capture the Use Case Descriptions in the Model

How use case descriptions are incorporated into the CubeSat
model is very dependent on the modeling tool being used.
Most tools have some means of capturing the text-based use
case description as part of the use case model element. In
this example, the MagicDraw modeling tool developed by
No Magic Inc. is used. In MagicDraw, each use case has a
specification. It specifies details about the use case such as
documentation or hyperlinks associated with the use case,
use case scenarios, extension points, and usage in SysML
diagrams. These details are represented as tabs in the use
case specification window. The information contained in the
text-based use case description is captured in the
“Documentation/Hyperlinks” tab of the use case
specification window as shown below in Figures 3 and 4.
An alternative method would have been to create a hyperlink
to a text file that contained the use case description.

Step 6 – Model the Use Case Scenarios

Two key parts of the use case description that were not
discussed above are the main success scenario and
extensions. A use case scenario captures the functionality
required in order to satisfy the actors’ goals and also how the
system interacts with its actors. It represents a complete
path through the use case from beginning to end. The main
success scenario represents a typical case in which nothing
goes wrong, the primary actor’s goal is delivered, and all
stakeholders’ interests are satisfied [17]. Extensions
represent alternative sequences that branch off of the main
success scenario. The use case combines all of the scenarios
together. References [1], [3], and [16] state that a SysML
activity diagram can be used to describe a use case scenario.
The approach used here follows that of Reference [16]
which states that the use case is a “wrapper” around the
system’s functions defining the preconditions,
postconditions, trigger, and result with SysML activity
diagrams describing the functions.

 5

Figure 3. Use Case Description in the Collect Mission Data Use Case Specification

Figure 4. Use Case Description in the Distribute Mission Data Use Case Specification

 6

In SysML, activities are model elements that convey flow-
based behavior that is focused on the transformation of
inputs to outputs. An activity is composed of actions that
represent steps in the transformation process. A special kind
of action is a Call Behavior action that represents an activity
that can be further decomposed into other actions. The
result is an activity hierarchy that resembles the product
obtained from a traditional functional decomposition.

This step begins with the approach described by Reference
[16] where a top-level activity is defined which matches the
name of the use case and represents the whole use case.
Once the top-level activity is defined, it is decomposed into
the actions that are necessary to satisfy the functionality
required of the top-level activity. This follows a traditional
functional decomposition approach. These actions are then
used to develop an activity diagram capturing all of the
behavior required by the top-level activity.

In the example of the Collect Mission Data use case, a top-
level activity is created that matches that use case. That
activity is then decomposed into the following actions:

• A1 - Generate Mission Data Collection & Space-
Ground Communication Schedules. Once a request
for mission data is received, schedules for
collecting the mission data and for communication
opportunities between the CubeSat and the Ground
Segment are generated. Based on these schedules,
a spacecraft command sequence is generated that
contains data collection and space-to-ground
communication commands.

• A2 - Uplink Spacecraft Command Sequence. The
Ground Segment and CubeSat communications
equipment are configured for uplink of the
spacecraft command sequence. The command
sequence is uplinked to the CubeSat.

• A3 - Collect and Pre-Process Mission Data. In
accordance with the uplinked spacecraft command
sequence, the CubeSat collects the required mission
data and does any necessary pre-processing of the
data.

• A4 - Downlink Mission Data. The CubeSat and
Ground Segment communications equipment are
configured for downlink of the mission data. The
mission data is downlinked to the Ground Segment.

Figure 5 shows the decomposition of the Collect Mission
Data activity.

The actions from Figure 5 are then used to develop an
activity diagram for the Collect Mission Data activity
conveying the order of execution and input/output flows
between actions. This is shown in Figure 6 below.

The activity diagram shows that the Collect Mission Data
activity takes in the mission tasking and transforms it into
mission data that flows out of the activity. The mission

tasking contains information about the types of data that
need to be collected and under what conditions it should be
collected. As discussed previously, the mission tasking is
converted into a spacecraft command sequence that is
uplinked to the CubeSat that collects and pre-processes the
mission data prior to downlinking the data.

Only the main success scenario is shown in the examples.
However, teams should also consider anomalous scenarios
as well. For example, the inability to uplink commands or
downlink mission data. These scenarios can be modeled in
the same way as the success scenario. The process is
repeated for the Distribute Mission Data use case as shown
in Figures 7 and 8 below.

Figure 8 shows the downlinked mission data being post-
processed, the post-processed data being turned into required
mission data products, and finally the original downlinked
mission data and data products being distributed to the Chief
Scientist who made the request that started the collect and
distribute mission data process. Also shown in Figure 8 is
an activity partition titled “Ground Segment” which conveys
that the Ground Segment part of the CubeSat Enterprise is
responsible for performing all of the actions within that
partition.

References [1] and [3] provide a more detailed description of
SysML activity diagrams, using activity diagrams to model
scenarios, and for modeling activity hierarchies.

Step 7 – Link the Activities to the Use Cases

At this point, activities have been defined that represent the
use case functionality but no relationship between those
activities and their corresponding use cases has been
established. This approach uses the refine relationship
discussed in Step 2 as the method for relating the activities
to use cases. SysML does not limit the refine relationship to
just relating model elements to requirements. The refine
relationship can be used to relate any two model elements.
In this case, it conveys that the activity at the client end is
more definitive than the abstract use case at the supplier end.
With regards to a use case scenario, the activity provides
detail and clarity that the use case itself cannot express.
Reference [1:301] states that, “The textual definition for a
use case, together with the use case models described
previously, can describe the functionality of a system. If
desired, however, a more detailed definition of the use case
may be modeled with interactions, activities, and/or state
machines.” Figure 9 below adds to Figure 2 the refine
relationship between the activities and their corresponding
use cases.

 7

Figure 5. Decomposition of the Collect Mission Data Activity

Figure 6. The Collect Mission Data Activity

 8

Figure 7. Decomposition of the Distribute Mission Data Activity

Figure 8. The Distribute Mission Data Activity

 9

Step 8 – Continue Decomposing the Activities

The process of decomposing a higher-level activity into
lower-level actions and then creating an activity diagram
continues as necessary until the appropriate level of the
system hierarchy is reached. In this example, the Generate
Mission Data Collection and Space-Ground Communication
Schedules activity and the Uplink Spacecraft Command
Sequence activity are further decomposed and activity
diagrams created for each activity as was done previously.
Figures 10, 11, 12, and 13 show the results for these two
activities.

In Figure (13), the CubeSat is responsible for the following
actions:

• Determining when to begin to prepare for the
uplinking of the mission data,

• Retrieving the stored space-to-ground
communications command sequence (A2.2),

• Configuring the communications equipment to
accept the uplink (A2.3), and

• Receiving the uplinked command sequence (A2.5).

These actions can be captured as functional requirements of
the CubeSat as was done in Step 1 for the mission
requirements. The approach can then be recursively applied
at the CubeSat-level.

The decomposition of activities into actions can continue
down to the subsystem-level of the CubeSat. The end result
can be shown in an activity hierarchy representing the full
functional decomposition and the resulting functional
architecture. Figure 14 shows a continued decomposition
for the Collect Mission Data activity.

5. CONCLUSION
Summary

This paper presents an eight-step MBSE approach for
defining the behaviors of the CubeSats. The approach
begins with a well-defined set of mission requirements and
ends with a representation of the functional architecture
captured as an activity hierarchy. The order of execution
and input/output flows between actions for each activity is
captured in a SysML activity diagram. This approach has
the following benefits:

• Traceability: There is clear traceability from the
mission requirements to the functionality required
to satisfy those requirements.

• Recursive: The approach can be recursively
applied at all levels of the mission hierarchy with
the outputs at the higher-level becoming inputs to
the lower-level

• Generalizability. This approach is not dependent
on any specific tool and is general enough to be
easily incorporated into many systems engineering
methodologies.

Future Work

The approach presented here just focuses on functional
requirements. Future work is needed to address non-
functional and interface requirements also using a
MBSE approach in order to develop a complete MBSE
method for CubeSats.

Related topics are the allocation of the behaviors to the
structural elements responsible for performing those
behaviors and verification of the functional
requirements. Though allocation was touched upon
here, a more in-depth discussion is required.

Figure 9. CubeSat Enterprise-level Use Cases Refined by Activities

 10

Figure 10. Decomposition of Generate Mission Data Collection and Space-Ground Communication Schedules

Figure 11. Generate Mission Data Collection and Space-Ground Communication Schedules Activity

 11

Figure 12. Decomposition of Uplink Spacecraft Command Sequence

Figure 13. Uplink Spacecraft Command Sequence Activity

 12

Figure 14. Activity Hierarchy for the Collect Mission Data Activity

 13

APPENDICES
A. COLLECT MISSION DATA USE CASE

DESCRIPTION

Use Case Name: Collect Mission Data
Scope: CubeSat Enterprise
Primary Actor: Chief Scientist
Stakeholder: Chief Scientist
Preconditions:

Chief Scientist has provided:
• A “list” of objects for study
• The type of mission data to be

collected and studied
• The conditions under which the

mission data is to be collected

The CubeSat is:
• On-orbit
• Operating normally
• Has an orbit and sensor capable of

collecting the mission data under the
specified condition

Trigger: Chief Scientist requests collection of mission data
Postconditions: Requested mission data is received by the
Ground Segment

B. DISTRIBUTE MISSION DATA USE CASE

DESCRIPTION

Use Case Name: Distribute Mission Data
Scope: CubeSat Enterprise
Primary Actor: Chief Scientist
Stakeholder: Chief Scientist
Preconditions:

The Space Segment has downlinked the requested
mission data to the Ground Segment

Trigger: Requested mission data has been received by the
Ground Segment
Postconditions: Requested mission data is received by the
Chief Scientist

REFERENCES
[1] S. Friedenthal, A. Moore, and R. Steiner, A Practical

Guide to SysML: The Systems Modeling Language, 3rd ed.
Morgan Kaufmann, 2015.

[2] D. Kaslow, B. Ayres, M. Chonoles, S. Gasster, L. Hart, C.
Massa, R. Yntema, and B. Shiotani. “Developing a
CubeSat Model-Based Systems Engineering (MBSE)
Reference Model – Interim Status #2.” Proceedings of
IEEE Aerospace Conference. Big Sky, MT. 2014.

[3] L. Delligatti, SysML Distilled: A Brief Guide to the
Systems Modeling Language. Addison-Wesley, 2014.

[4] M. Swartwout. “Attack of the CubeSats: A Statistical
Look.” 25th Annual AIAA/USU Conference on Small
Satellites. Logan, UT. 2011.

[5] M. Swartwout. “University-Class Spacecraft by the
Numbers: Success, Failure, Debris. (But Mostly
Success.).” 30th Annual AIAA/USU Conference on Small
Satellites. Logan, UT. 2016.

[6] S. Spangelo, J. Cutler, L. Anderson, E. Fosse, L. Cheng,
R. Yntema, M. Bajaj, C. Delp, B. Cole, G. Soremekum,
and D. Kaslow. “Model Based Systems Engineering
(MBSE) Applied to Radio Aurora Explorer (RAX)
CubeSat Mission Operational Scenarios.” Proceedings of
IEEE Aerospace Conference. Big Sky, MT. 2013.

[7] DoD Systems Management College, Systems Engineering
Fundamentals. DAU Press, 2001.

[8] INCOSE Systems Engineering Handbook, v.
3.2.2. INCOSE‐TP‐2003‐002‐03.2.2. INCOSE, 2011.

[9] E. Hull, K. Jackson, and J. Dick. Requirements
Engineering, 3rd ed. Springer, 2011.

[10] Guide for Writing Requirements. INCOSE-TP-2010-
006-02. INCOSE, 2015.

[11] J. Wertz, D. Everett, and J. Puschell, Space Mission
Engineering: The New SMAD. Microcosm Press, 2011.

[12] K. Bittner and I. Spence, Use Case Modeling. Pearson
Education, Inc., 2003.

[13] G. Schneider and J. Winters, Applying Use Cases: A
Practical Guide, 2nd ed. Addison-Wesley, 2001.

[14] T. Weilkiens, Systems Engineering with SysML/UML:
Modeling, Analysis, and Design. Morgan Kaufmann,
2007.

[15] H. Hoffmann, Systems Engineering Best Practices with
the Rational Solution for Systems and Software
Engineering Deskbook Release 4.0. IBM Corporation,
2013.

 14

[16] T. Weilkiens, J. Lamm, S. Roth, and M. Walker, Model-
Based System Architecture. John Wiley & Sons, 2016.

[17] A. Cockburn, Writing Effective Use Cases. Addison-
Wesley, 2001.

BIOGRAPHY
 David Kaslow has thirty-four
years of experience at Lockheed
Martin in both the technical and
management aspects of
developing ground mission
capabilities. He has five years of
experience at Analytical Graphics
creating their Standard Object
Catalog and pursuing Model-

Based Systems Engineering. Dave is a co-author of four
chapters Cost-Effective Space Mission Operations. He is
also the author and co-author of papers and presentation
for INCOSE Annual International Symposiums and
Workshops, the IEEE Aerospace Conference, the Small
Satellite Workshop and the NDIA Systems Engineering
Conference. Dave is the lead for the INCOSE Space
Systems Working Group. He has participated in the Space
Systems MBSE Challenge Team since its founding in
2007 and is a principal contributor to the CubeSat
Challenge Team.

Bradley Ayres, Ph.D., is an Adjunct
Assistant Professor of Systems
Engineering, Department of
Aeronautics and Astronautics at the
Air Force Institute of Technology.
He serves as the Aerospace
Corporation Chair supporting AFIT
and the Center for Space Research
and Assurance. He received his

Ph.D. in Business Administration specializing in MIS
from Florida State University in 2003. Dr. Ayres has
degrees from University of Missouri (BS, Chemical
Engineering), Webster University (M.A., Procurement
and Acquisition Management) and AFIT (M.S., Software
Systems Management). Dr. Ayres' research interests
include management of complex systems, model-based
systems engineering, and space systems engineering. His
is a member of the PMI, INCOSE and AIAA.

Phil Cahill has forty-five years of
experience in the Information
Technology industry, as
consultant, customer, and
contractor for government and
commercial systems. He spent
thirty of those years with the
Lockheed Martin Corporation,

concerned primarily in the specification and development
of defense and space systems, and retired as a Lockheed
Martin Fellow. Phil's professional interests center on
System Engineering, particularly for Systems of Systems,
but he developed a passion for Data Center Operations

late in his career and maintains an active interest in that
field. He received his PhD in Physics from the University
of Illinois at Urbana-Champaign.

Laura Hart is a Systems Engineer
at The MITRE Company in Mclean
VA where her focus is on the
advancement and application of
model-based systems engineering.
Prior to that, Ms. Hart worked for
Lockheed Martin as a Sr. member of
the Corporate Engineering and
Technology Advanced Practices
group responsible for codifying,

teaching and applying MBSE best practices across the
LM Corporation. She has over twenty years of industry
experience covering a wide spectrum of responsibilities
from requirements, design, implementation, integration
and test within the DoD industry. Laura is an active
member of the OMG and supports both the SysML and
UPDM/UAF specification working groups.

Rose Yntema is the Applications
Engineer at Intercax
(www.intercax.com) where she
applies MBSE techniques to complex
systems in areas such as aerospace,
energy, defense, and
telecommunications. She is actively
involved in the development of
software for integrating the total

system model (TSM) federation of models with SysML at
its core, including parametric modeling and simulation,
as well as quality assurance and technical support.
Yntema earned her M.S. (2012) in Electrical and
Computer Engineering from the Georgia Institute of
Technology, and Sc.B. (2010) in Electrical Engineering
from Brown University. She is a member of the INCOSE
Space Systems Working Group and has co-authored
papers for the IEEE Aerospace Conference in that
capacity.

http://www.intercax.com/

