,,/

INCOSE

Speaker Meeting
June 11, 2019

International Council on Systems Engineering (INCOSE)
Los Angeles Chapter

Agenda INCOSE

. 05:30 Networking & Introductions
* 06:00 Announcements
Working Group Overview
* 06:30 “Systems Architecting,”
Mark L. McKelvin, Ph. D.,
President, INCOSE Los Angeles Chapter
« 07:30 Adjourn

Welcomel!

Host and Remote Sites

Remote Site

Aerospace Corp./El Segundo Deborah Cannon deborah.a.cannon@aero.org

(Host)

Antelope Valley/Palmdale Dr. J. S. Shelley J.Shelley@csulb.edu

CSU, Dominguez Hills Dr. Antonia Boadi aboadi@csudh.edu

Ricardo Control Point/Goleta Paul Stowell paul.stowell@control-pt.com
Deanna Regalbuto deanna.regalbuto@ngc.com

Virtual Attendee Deborah Cannon deborah.a.cannon@aero.org

Thanks to all for registering in advance

Please contact Programs Director, Nazanin Sharifi (programs@incose-la.orq) if
you would like to host a remote site.

mailto:programs@incose-la.org
mailto:deborah.a.cannon@aero.org
mailto:JShelley@csulb.edu
mailto:aboadi@csudh.edu
mailto:Paul.stowell@control-pt.com
mailto:Stephen.guine@ngc.com
mailto:deborah.a.cannon@aero.org

Virtual Networking INCOSE

 Briefly introduce yourself (e.g., name, title, company)
. Host site (The Aerospace Corporation, EI Segundo)
« INCOSE Los Angeles remote sites
« Other INCOSE chapters
. Other virtual attendees

« Announcement of job openings

Welcome New Members!

Name Organization

David Utley CEB Metasystems, Inc.
Kamran Ossia Fresca Medical
Behnam Afsharpoya Dassault Systemes
Tim Bode LinQuest Corporation
Marc Carithers LinQuest Corporation

Announcements INCOSE

« Chapter Events
« Board of Directors meeting, next meeting is Friday, June 14
« Next speaker meeting, Dr. Antonia Boadi, August 13
« Other local chapter events?

« Chapter Conferences

« Sept 13-15, Western States Regional Conference @ LMU
* More information: www.incose.org/wsrc2019 or Phyllis Marbach

« March 19-21, Conference on Systems Engineering (CSER) 2020 @
Redondo Beach Crowne Plaza

« Save the date; currently looking for volunteers
« Contact: Eric Belle (eric.belle@incose.org)
« Around INCOSE: www.incose.org/
« Other events sponsored by INCOSE “West Coast™?

http://www.incose.org/wsrc2019
http://www.incose.org/

Volunteer Opportunities INCOSE

* Treasurer
. Manages finances, reimbursements
« Represents Chapter on financial matters

Remote site coordinator

. Coordinates communication with remote sites for speaker meetings

Networking coordinator
. Plan networking events

« Propose new methods to improve Chapter networking

Membership records management support

« Support the Membership Director in collecting attendance records and
membership matters

Conference committee members (WSRC, CESR)
. Management

. Technical

Working Group Spotlights ifcos

* Model-Based Systems Engineering Initiative

» https://www.incose.org/incose-member-resources/working-
groups/transformational/mbse-initiative

e http://www.omagwiki.org/MBSE/doku.php

» Tool Integration and Model Lifecycle Management Working Group

* https://www.incose.org/incose-member-resources/working-
groups/transformational/tools-integration-interoperability

https://www.incose.org/incose-member-resources/working-groups/transformational/mbse-initiative
http://www.omgwiki.org/MBSE/doku.php
https://www.incose.org/incose-member-resources/working-groups/transformational/tools-integration-interoperability

Speaker: Dr. Mark McKelvin iNcose

« President of INCOSE Los Angeles Chapter

« The Aerospace Corporation, emphasis on systems modeling, analysis,
and infusion of model-based techniques and tools into practice

« Lecturer at University of Southern California, System Architecting and
Engineering Program (since 2015)

. UC Berkeley, Electrical Engineering and Computer Sciences (Ph.D.)

Design, Modeling, and Analysis for embedded systems, electronic systems, cyber-
physical systems, and fault tolerant automotive control systems

« Clark Atlanta University, Electrical Engineering (B.S.)

« Previous experience: JPL, General Motors R&D, Intel Corporation, HRL,
Sandia National Lab, Army Research Lab, Army High Performance
Research Center

. Key roles in space systems (previous experience): Fault Protection
Engineer, Electrical Systems Engineer, Software and Systems Engineer

What is Architecture? INCOSE

 Itis the fundamental and unifying system structure
defined in terms of system elements, interfaces,
processes, constraints, and behaviors. [INCOSE]

. Itis the structure of components, their relationships, and
the principles and guidelines governing their design and
evolution over time. [DoD]

. The fundamental organization of a system, embodied in
Its components, their relationships to each other and the
environment, and the principles governing its design and
evolution. [ANSI/IEEE 1471-2000]

Architecting NCose

« Architecting is the process for developing an architecture
. Characterizing and selecting the problem
. Generating and selecting an overall concept
. Evaluating concepts for feasibility, or fithess for use

= Describes problem to be solved
Requirements = Typically captured in textual format
= Admits many solutions

> Translates needs into a @

technical solution - L
= Captures system structure

» Constrains the design space Architecture = Exposes high-level system properties

» Enable trade-studies of = Facilitates trade-off studies
alternatives | -

» Support “make-buy” decisions @

Used to help develop both requirements and design

Why do Architecting? INCOSE

o A system is more than the sum of its parts
« Systems come to realization through interactions
. Complexity is a consequence of interactions

Systems =2 Interactions =2 Complexity

« Anything can seem complex if one does not understand it
. Complexity is not a system property that can be judged or regulated in
absolute technical terms (e.g., what is the threshold for “too complex”)

. Complexity is a comparative measure of a system against those who
must understand it

Complexity leads to misunderstanding

Understanding through Views |

function
aeronautics
modes
power

timing
structure

conTr‘oI laws hardware architecture
logic inertial

coordination

layout

no single view
is sufficient

perspectives (viewpoints)

Complex system = many teams = many models = many views

Software Hardware Mechanical
Development Development

Launch Integration &
Vehicle 4 - o ‘ f Test

System
Analysis 7 ol il e . ¢ Operations

Project ' ' ET
Management 7 Mission J Management
Assurance

P w
-

When Architecturing Doesn’t Happen... |Nco§E /

"‘é"zcr A

Winchester Mystery House,
San Jose, CA

* Doors leading to nowhere

* 2-inch high steps

* Windows overlooking other rooms

* Columns installed upside down

* Doors opened into walls

» Fully furnished decorated rooms walled-off
« Stairways leading to the ceiling

Source: Library of Congress/Wikimedia Commons

e Blueprintsavailable? None!

e Mrs. Winchester never had a master set of blueprints, but did sketch out individual
rooms on paper and even tablecloths (according to legend)!

Considerations INCOSE

Architectures are not unique

. More than one architecture can satisfy the needs

« Constraints by human biases, legacy, and available resources can
lead to a single option

« Architectures provide enough detalil to,

. Describe properties of the solution to the problem

« Describe the technical and organizational risks, impacts, and inter-
dependencies

« Confirm that a solution fulfills the functional, technical, and business
requirements

« Architecture provides enough analysis and context to address
all stakeholder concerns

« An architecture can be implemented (realized solution) in more
than one way

General Methods for Architecting Nco_\le

Normative Solution basis Building codes, government
regulations

Rational Procedural basis Data analysis, structured
techniques, object-oriented, text-
book

Participative Stakeholder basis Tiger teams, Brainstorming, Delphi
sessions

Heuristic Lessons learned Rules of thumb from experience,

qualitative judgment from examples

« Science-based, deductive methods:
. Normative: hard rules are provided and success defined by compliance to rules

. Rational: defined from objectives utilizing optimizations and formal techniques

« Art-based, inductive methods:
. Participative: solution from group consensus

« Heuristics: based on lessons learned and “soft” rules developed from experience

Architecting is a decision-making process, not diagrams or documents

An Approach to Architecting

* Abstraction and decomposition
— Eliminate unnecessary details with respect to the goal at hand
— Break system development into semi-independent parts (“divide-and-conquer”) and
separation of concerns (i.e. “what” vs. “how”, computation vs. communication)
— Incremental refinement: include details while preserving propetrties

* Construction
— Constrain the design space and define transformations from high-level abstraction to
final implementation
— Defines verified, strongly encapsulated components with well-defined interfaces
(enabling reuse)

Methodologies
abstraction tools

[ASV 2010]

Dealing with today’s system design challenges requires more than just developing
new tools. It requires understanding principles of design, necessary changes to
design methodologies, and supply chain dynamics [ASV 2008]

Example: Architecting VLSI Systems

—

= L\
INCOSE %

&
2]

X=AR:Y =CD:
I=X+Y:

]
& H‘
J

i

(R
\

L
specifications D_ecomposnmn.
_ o break system development
system description .
languages |r_1tc_: _59|111-|r1depender1t parts
v (“divide-and-conquer”) and

functional design

\J
logic design

v
circuit design

\J
physical design

|

fabrication

hardware description

languages, schematic editors

logic synthesis tools

(technology mappers)

physical synthesis tools

(place & route)

tape out and manufacture

separation of concerns (i.e.
‘what” vs. “how”, computation
VS. communication)

Abstraction:
eliminate unnecessary details

with respect to the goal at
hand

Construction:

constrain the design space
and define transformations
from high-level abstraction to
final implementation,
supported by design
automation tools

This methodology illustrates a structured means by which specification is transformed to

implementation in electronic design automation; also applied in embedded software engineering,
automotive systems, synthetic biology, and building automation

VLSI = Very Large Scale Integrated circuits

Platform-Based Design Approach

Key Principles of Platform-Based Design (PBD):

* A “‘meet-in-the-middle” design process where successive refinements of specification
meet abstractions of potential implementations

« Provides a mechanism for identifying critical hand-off points in design chain

» Provides a structured method for design reuse at all levels of abstraction

“What?”

N

Function space

Function instance

Platform
mapping
oooooooooooooooooo Co;nmon semantc
Platform domain

design-space
export

Platform inslance

a Platform

“HOW7 59 (architectural) space

Platform
mapping

|

Functien space

Function instance

Functicn instance

Function space Haooed poce
orm instance

Plattorm
design-space
export

Platform
(architectural)
space

Platform

{architeclural)

Source: Sangiovanni-Vincentelli, A. "Is a unified methodology for system-level design possible?." Design & Test of Computers,

IEEE 25.4 (2008): 346-357

Fractal
nature of
design
[ASV 2008]

Example in Hardware Design

VHDL functional description
{/' Representation as logic functions

f = abed + abe + abe + bed

@ Boolean Minimization

S f =uac+ bed

Library of Standard Cells

Cost of literals

ay -

Specifications
(requirements)

f

A

s m e e m
CIICI |
EEEEE]
[T L LN
LI}

T
-

(L]}

(ML

RN

N

Image Source: Alberto Sangiovanni-Vincentelli

Performance
estimations

Platform-Based Design Approach INCOSE

Somar

Function space

* A meet-in-the-middle design method SR what
— Platform: an abstraction layer that Platform
hides the details of several possible B v
implementation refinements of the S QNS ormmen sermantic
underlying layers o e A
* Function model w how
— Provides an abstraction of what the Siatiorm
system is supposedtodo entectaspace
* Architecture component model successive refinements
— Provides an abstraction that describes o Patom
how the function is realized mapping geme ot
. Function space S ———) Platform
* Mapping
— Process by which function and N /
architecture meet I formnetanee
— Propagates constraints from above to ﬂr”;l”n

meet performance estimations from
bejow Function instance \

orm instance

[A. Sangiovanni-Vincentelli, “Is a unified methodology for system design possible?”. 2008]

Component-Based Design Pattern H{EZO“\E

Abstract syntax

e N (N
Component L : Channel —L Component
(C1) (M) (C2)
\ BN / \ / /
interfaces interfaces
(and signals) (and signals)
Abstract semantics
Concept Description Examples
signal represents messages, flows, signal traces command message, power, current
component an entity that encapsulates behavior, produces and consumes power converter, assembly, circuit,
signals reaction wheel
interface a point of interaction between a component and its external message port, RS422 circuit, serial data
environment interface
channel logical or physical medium for communication abstractions communication medium, wire, signal path

Key principles [component-based design]: strongly encapsulated design entities
(components) with rigorous interface specifications = reusable, replaceable

(modular), minimal dependencies between components, separation of
communication and computation

Example Application: Platform Models =
for Spacecraft Interface Design NG

Component Libraries

o) Sb)lm! ctiof ignals,;
o L P - . ntrol Iylmpaamet

(i.e. distributed control fun l ns)
(Goal: To capture a\ i ; T

flight system ===)) = . g(‘hhtml e oo
architecture, we E = T
define a set of e l e
platforms based on
principles of % Bl o [8 et
component-based 11
refine pacificatio
and platform-based

design e 4
: : -~ <TmEP>
s o I

Example Application: Platform Models
for Spacecraft Interface Design

"'APIatform: Functional Design Model

r — S— Spacecraft
| Sense Estimate l IComrol Amtuue1 pu > Convert l Dynamics
1, Angular angular_rates . Attitude and [8tttude_est —force_cmds X - command - forcex |

el - l.‘ - - Rates - = I toForces Lyl] =

L | l_ltees:_ I I l_] force omd y L l_;!nue_y [

) T force_cmd_z A force_z I
| Sense ; % —J '1 -~ -} {
f—— Star star_position 3 L X L actual_atttude_rates
T~ Position [: o

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)

““““““““““““ Interfaces/Signals
(SysML ports)

Channels . I-“,— | —l
I e

gl l ;
mo |

r;’i'kmcu“v. O b ’
B o o5 _ m= _ ®
san leascrt f) — 8 O R Brver - O— :
Sun jeascrt O - ’ _——1 b q
San Leancs 7 O = 3 o .M«)l‘-m' o |[w: :
Il‘ﬂm‘u O - e | .

In this example, the Systems Modeling Language (SysML) was used to capture
platform models

Integrating Data Through the System
Architecture Model

N

document analyses
views /
transform transform
tabular \ d_block
: ladgrams
VIEWS / g
transform transform
| |
enabling practices

The architecture model provides a framework - a structure where information is stored —
for integrating data and import/export data to external tools for analysis

| Application of Modeling, Analysis to
System Architecting

* Separate areas of concern
— Function from component realization; computation from communication; data from view
— Enables optimization and independent management of irrelevant features/functionality
— Easier to read, understand, and communicate

* Use existing data sources and workflows to establish levels of abstraction

* Use model elements that are intended to be used for a specific level of
abstraction

* Favor composition over inheritance to maximize reuse
— Inheritance limits reuse due to parent/child dependency
— Composition enables modularity, enhances reuse

* Coupling between abstractions (platforms) is implemented through explicit
mapping relationships to maximize reuse and modularity

Summary

* Modeling framework is constructed upon platform-based and component-
based design principles to unify modeling, design, and analysis

* Benefits of approach:
— Provides structure through a unified system architecture

— Partitions models along key articulation points in design process = enables explicit
design decisions, assumptions, and constraints

— Ensures consistency of information that characterizes a system

— Enhances traceablility

— Enables semantic knowledge representation and analysis

— Supports model transformations for external analyses and end user views

References INCOSE

Yomar

* [ASV 2008] A. Sangiovanni-Vincentelli, "Is a Unified Methodology for System-Level
Design Possible?," in [EEE Design & Test of Computers, vol. 25, no. 4, pp. 346-357,
July-Aug. 2008.

* [ASV 2010] A. Sangiovanni-Vincentelli, "Corsi e Ricorsi: The EDA Story," in [EEE Solid-
State Circuits Magazine, vol. 2, no. 3, pp. 6-25, Summer 2010.

* [McKelvin 2015] M. McKelvin, R. Castillo, K. Bonanne, M. Bonnici, B. Cox, C. Gibson, J.
P. Leon, J. Gomez-Mustafa, A. Jimenez, and A. M. Madni. “A Principled Approach to the
Specification of System Architectures for Space Missions”, 2015.

