A Complexity Primer for Systems Engineers

November 2015

Dr. Jimmie McEver Senior Systems Scientist, JHU Applied Physics Laboratory Chair, INCOSE Complex Systems Working Group jimmie.mcever@jhuapl.edu

Agenda

• Brief overview of Complex Systems WG

Complexity Primer for Systems Engineers

Complex Systems (CxS) WG Overview

- Organized in 2006 from Systems Science WG
- Co-chairs: Dr. Jimmie McEver, JHU/APL
 Mr. Michael Watson, NASA/MSFC
- 46 INCOSE members participated in discussions at IW 2015

https://connect.incose.org/WorkingGroups/ComplexSystems/

Purpose and Objectives

- The purpose of the Complex Systems Working Group is to enhance the ability of the systems engineering community to deal with complexity.
- The CxS Working Group works at the intersection of complex systems sciences and SE, focusing on systems beyond those for which traditional systems engineering approaches and methods were developed.
- Complex Systems Working Group objectives
 - Communicate the complexity characteristics to systems engineering practitioners
 - Provide knowledge and expertise on complex systems in support of other
 INCOSE working groups working in their systems engineering areas
 - Facilitate the identification of tools and techniques to apply in the engineering of complex systems
 - Provide a map of the current, diverse literature on complex systems to those interested in gaining an understanding of complexity.
- Although analysis is important, the goal is to make a difference in synthesis (creation of new systems).

Candidate Activities

- Expand on Mat French MBSE in Complexity Contexts work begun in 2014
- Expand on selected Primer topics; evolve into wiki to facilitate evolution and access; develop annotated complexity bibliography
- Work with US Government partners to identify WG initiatives to help address current systems challenges (digital engineering, engineering resilient systems, open architecture based approaches for engineering complex systems)
- Identify relationships and strengthen interactions with other INCOSE WGs (and with complexity groups in other organizations)
- Workshop or other joint meeting with AIAA Complex Aerospace Systems Exchange organizers
- Maturity Model for the Complex SE capability of an organization or endeavor
- Organize webinars to discuss WG initiatives and topics of interest

A Primer on Complexity for Systems Engineers

- The INCOSE Complex Systems Working Group has drafted a primer to introduce complexity concepts and approaches to practicing systems engineers
- Members of the primer development team
 - Sarah Sheard
 - Eric Honour
 - Jimmie McEver
 - Dorothy McKinney
 - Alex Ryan
 - Stephen Cook
 - Duane Hybertson

- Joseph Krupa
- Paul Ondrus
- Robert Scheurer
- Janet Singer
- Joshua Sparber
- Brian White

Motivation: The Implications of Complexity

- Systems engineering has evolved to improve our ability to deal with scale and interdependency though the life cycle of engineered systems
- Systems are becoming increasingly dynamic and interdependent, with growing emphasis on adaptiveness

Source: Monica Farah-Stapleton, IEEE SOS conference, 2006

 BUT, complexity places new demands on systems engineers that require more than extensions of "classical" SE practice

Classes of Systems Problems: Kurtz and Snowden's Cynefin Framework

Cynefin domains

Complex systems,

characterized by interdependence, self-organization, and emergence – new tools and approaches are needed

Chaotic systems

can only be reacted to; can attempt to transform into another domain

COMPLEX

Cause and effect are only coherent in retrospect and do not repeat

Pattern management

Perspective filters

Complex adaptive systems

Probe-Sense-Respond

KNOWABLE

Cause and effect separated over time and space

Analytical/Reductionist

Scenario planning

Systems thinking

Sense-Analyze-Respond

CHAOS

No cause and effect relationships perceivable

Stability-focused intervention

Enactment tools

Crisis management

Act-Sense-Respond

KNOWN

Cause and effect relations repeatable, perceivable and predictable

Legitimate best practice

Standard operating procedures

Process reengineering

Sense-Categorize-Respond

Massivelycomplicated systems
present challenges of
scale and interface
accounting —
extensions of
traditional methods/
tools can help

Simple and complicated systems

are straightforward to deal with using traditional systems engineering / mgmt approaches

What do we mean by complexity?

- No easy, agreed-upon definition
- We often call something complex when we cannot fully understand its structure or behavior: it is uncertain, unpredictable, complicated, or just plain difficult (see Sillitto (2009): Subjective Complexity)
- Concepts that seem essential
 - Emergence: Features/behavior associated with the holistic system that are more than aggregations of component properties
 - Multi-scale behavior: System not describable by a single rule, structure exists on many scales, characteristics are not reducible to only one level of description.
 - A system with self-organization, analogous to natural systems, that grows without explicit control, and is driven by multiple locally operating, socio-technical processes, usually involving adaptation

Complex vs Complicated

Complex system

Traffic jams exhibit:

- Self-organization and Emergence local actors and decisions interact to create larger patterns
- Memory even after an obstacle is removed the jam can persist for hours
- Counter-intuitive outcomes e.g., Braess' Paradox – adding capacity to the network can degrade network performance

Complicated system

Modern transit vehicles exhibit:

- Large numbers of interacting systems fuel, electrical, engine, transmission, safety, etc.
- Aggregate properties, but not emergence
 - e.g., range, top speed…
 - Unexpected outcomes still possible, but origin is different
 - Transit *systems* may be complex

The opposite of "complex" is "decomposable", not "simple"

Source: Alex Ryan

Hallmarks and Implications of Complexity

How complexity makes it different

Hallmarks of complexity	Impact on Decision Maker
Interdependence	Cannot treat by decomposition
Nonlinearities	Extrapolation of current conditions → error
Open boundaries	Cannot focus only on processes inside boundary
Multi-scalarity	Have to address all relevant scales
Causal & influence networks	Challenge: develop 'requisite' conceptual model within time and information resource constraints
Emergence	Unknown risks and unrecognised opportunities
Complex goals	Goals may change, be unrealistic, vague
Adaptation & innovation	'Rules' change, interventions stimulate adaptation
Opaqueness	Many possible hypotheses about causal paths, insufficient evidence to discriminate

Adapted from Grisogono, Anne-Marie and Vanja Radenovic, The Adaptive Stance –Steps towards Teaching more Effective Complex Decision-Making, International Conference on Complex Systems, June 2011.

Sources of Complexity

System

- Large number of components, many intricate interdependencies
- Adaptive components, interactions
- Interfaces with human users or other complex entities
- Evolving technology

Environment

- Operational environment
 - Problem you're trying to solve changes
 - Conditions under which you're trying to solve a problem change
 - Way that you elect to solve the problem changes
- System environment
 - Changes to elements of the larger SoS
- Design/management
 - Large number of people and organizations involved

System Complexity as SE Challenges

Complexity and Systems Development

- You need complexity to respond to complexity
 - Provides degrees of freedom to needed to deal with/work in complex, volatile and uncertain environments
- But developing and using complex systems have their own challenges
 - Less ability to plan and predict
 - Problems/systems not neatly decomposable – interdependencies between subsystems grow beyond ability to deal with them in traditional ways
 - Uncomfortable phenomena arise, such as normal accidents, black swans, catastrophic fragility

Ashby's Law of Requisite Variety

A model system or controller can only model or control something to the extent that it has sufficient internal variety to represent it.

Candidate approaches: Selected Guiding Principles

Think like a gardener, not a watchmaker

- Grow, don't build
- Focus on the ecosystem
 - Extensible substrate
 - Rules and feedback for adaptation
- Influence and intervene vice design and control

Take an adaptive stance

- Enable and improve adaptation capabilities
 - Observe system behavior
 - ID and create variation
 - Selecting the best versions
 - Amplify the fit of the selected versions

Candidate approaches: Selected Guiding Principles

Think at multiple levels and from multiple perspectives

- Systems may create different value at different levels and from different perspectives
- Need to look at systems and requirement from diverse perspectives

- System behavior may be fundamentally different at different levels
- The decomposed problem is a different problem

Candidate approaches: Selected Guiding Principles

- Combine courage with humility
- Use free order
- Identify and use patterns
- See through new eyes
- Collaborate
- Achieve balance
- Learn from problems
- Meta-cognition

- Focus on desired regions of the outcome space rather than specifying detailed outcomes
- Understand what motivates autonomous agents
- Maintain adaptive feedback loops
- Integrate problems

Candidate approaches: SE Methods

Environmental Complexity

	Requirements Elicitation and Derivation	Trade Studies	Solution Architecture and Design	Development Process
Environment susceptible to unpredictable	Use power laws to characterize relevant	Make dimensions of agility key	Design for resilience to "beyond-	Resilience analysis
but high- consequence events and/or	phenomena Focus elicitation	trade-space attributes	design- envelope" events to	Enterprise development: study how
recursive complexity	on agility vice optimizing to particular	Use trades to ID aspects of the problem	provide robustness and timely	enterprises or societies survive
	assumptions	space that will drive the system architecture	recovery to a minimally functional state.	catastrophes.

Candidate approaches: SE Methods

System/Solution Complexity

	Requirements Elicitation and Derivation	Trade Studies	Solution Architecture and Design	Development Process
Complexity in System Design & Development (General)	Use multi-scale (linking macro- level models), in exploratory and agent-based me experimentation • To generate in implications or requirements • As the basis f studies and to off decisions	and micro- ncluding llysis and odeling, and n: nsight into the f derived or trade	Emphasize selection of robust and adaptive elements and structures over optimizing to meet current requirements	Use Systems of-Systems methodologies to synchronize constituent systems; incentivize collaboration. Ensure prototyping and experimentation are used.

Applicability of Generalized Analytic Methods: The Cook Matrix

- Lists and briefly describes modeling and analysis methods from a wide range of disciplines
- Candidate approaches to consider in modeling complex systems problems

Analyze	Diagnose	Model	Synthesize
Data Mining	Algorithmic Complexity	Uncertainty Modeling	Design Structure Matrix
Splines	Monte Carlo Methods	Virtual Immersive Modeling	Architectural Frameworks
Fuzzy Logic	Thermodynamic Depth	Functional / Behavioral Models	Simulated Annealing
Neural Networks	Fractal Dimension	Feedback Control Models	Artificial Immune System
Classification & Regression Trees	Information Theory	Dissipative Systems	Particle Swarm Optimization
Kernel Machines	Statistical Complexity	Game Theory	Genetic Algorithms
Nonlinear Time Series Analysis	Graph Theory	Cellular Automata	Multi-Agent Systems
Markov Chains	Functional Information	System Dynamics	Adaptive Networks
Power Law Statistics	Multi-scale Complexity	Dynamical Systems	
Social Network Analysis		Network Models	
		Agent Based Models	
		Multi-Scale Models	

Candidate approaches: Analytic tools for the Complex SE Toolkit?

- Some are emerging for "massively complicated" SE
 - MBSE tools and methods
 - Emerging thinking on T&E in large test spaces
- For complex SE, some exist but are not designed for or aligned with SE community
- Complex SE (or CxSE) requires more than just tools
 - Not a "run the tool, get the answer" problem
 - Requires understanding of the nature of complexity and how to deal with volatility and deep uncertainty
 - Mindset, experience (and education)
 - Tools needed are those that will enable this understanding
- A key role of the systems engineer is to facilitate this understanding across his/her stakeholder communities

Next Steps (for the Primer and the WG)

- Present Primer for INCOSE technical review
- Continue to socialize primer as a resource for INCOSE members
- Expand on selected Primer topics; evolve into wiki to facilitate evolution and access; develop annotated complexity bibliography
 - Construct Concept Map for complex systems knowledge

- Leverage primer (and other) approaches to address (or at least generate new insight into) community "hard problems"
 - Cybersecurity
 - Evolutionary Acquisition
 - Systems of systems
- Engage with other working groups to identify intersection topics we can work together

