What is a system and what is systems engineering?

A presentation to INCOSE-LA
7 August 2018

Scott Jackson, PhD
Burnham Systems
Greater Los Angeles Area
The INCOSE Fellows Initiative Task Team

Hillary Sillitto, Edinburgh, UK
Scott Jackson, Los Angeles, USA
Regina Griego, New Mexico, USA

Dov Dori, Tel Aviv, Israel
Daniel Krob, Paris, France
Eileen Arnold, Minneapolis, USA

Dorothy McKinney, California, USA
Patrick Godfrey, Bristol, UK
James Martin, Virginia, USA
Fellows’ Initiative - Task statement (Dorothy McKinney, May 2016)

• A Task Team of INCOSE Fellows to write a white paper that contains a definition of systems engineering that reflects the consensus for INCOSE Fellows.

• The purpose of this white paper is to distill the discussion of the definition of systems engineering so it is constructive and helpful to both systems engineering practitioners, and to those INCOSE is reaching out to educate about the value of systems engineering.

• Project launched at IS16, Edinburgh,

• Sponsored by INCOSE President and President Elect

• Agreed we needed to look at definitions of “System” as well as “Systems Engineering”

• This presentation is based on team’s draft recommendations plus outputs of IFSR Conversation in Linz last week.
Part 1 – What is a system?
Headlines and conclusions

• INCOSE definition of SYSTEM needs to widen

• Include system types excluded by current definition, notably
 - Naturally occurring systems (involved in and/or affected by many engineered systems)
 - Systems whose properties cannot be fully controlled by design – complex, viable, autonomous, eco-systems...

• Three motivations:
 - Define what we do
 - Learn to do better
 - Facilitate cross-fertilization with Systems Sciences, other system domains

• At least 7 Different system worldviews in INCOSE
 - these correspond to different system types with different characteristics.
The presentation will discuss:

• INCOSE’s current definition of “system”
• Review of SYSTEM definitions
• Seven System Worldviews in the INCOSE community
• Our System taxonomy
• Taxonomy vs the seven worldviews
• The complex system challenge for INCOSE – “systems with minds of their own”
• Current challenges and proposed direction of travel towards
 • (a) new definition(s)
 • a “system ontology”
INCOSE’s current definition of “system”

and why it needs to change to accommodate the wider vision for SE presented in INCOSE’s Vision 2025
Current INCOSE definition of “SYSTEM”

...an integrated set of elements, subsystems and assemblies that accomplish a defined objective. These elements include products (hardware, software, firmware), processes, people, information, techniques, facilities, services, and other support elements. -- INCOSE SE Handbook 4th Edition

Critique

• Couched in terms of “real” systems
• Restricted to purposeful human-made systems, excludes naturally occurring systems
 ○ since these don’t have an ‘a priori’ defined objective
• Does not include naturally occurring elements
• Does not recognize that system is an open system which accomplishes its defined objective by interacting with wider context or environment
• Does not recognize that unintended consequences may arise from unintended interactions.
• Not compatible with wider system science definitions – limits knowledge transfer
NB INCOSE also offers another, wider, definition of SYSTEM:

A Consensus of the INCOSE Fellows

Definition of a System

A system is a construct or collection of different elements that together produce results not obtainable by the elements alone. The elements, or parts, can include people, hardware, software, facilities, policies, and documents; that is, all things required to produce systems-level results. The results include system level qualities, properties, characteristics, functions, behavior and performance. The value added by the system as a whole, beyond that contributed independently by the parts, is primarily created by the relationship among the parts; that is, how they are interconnected (Rechtin, 2000).

https://www.incose.org/AboutSE/WhatIsSE
Our review of SYSTEM definitions
What else is out there?

• We reviewed literally hundreds of definitions of system.
• These tend to cover one or more of three aspects:
 o System IS: structure
 ➢ e.g. multiple interacting or inter-related elements
 o System DOES: function/behavior
 ➢ e.g. does things the parts can’t do on their own
 o WHY: e.g. purpose
 ➢ NB purpose can only be safely attributed to deliberately constructed “artificial” systems
• Definitions tend to be grounded, usually implicitly, in specific worldviews
 o Systems occur in the “real” (physical) world
 o Systems are mental constructs
 o Systems may consist of pure information
 o System boundaries are observer designated
 o System boundaries are discoverable based on objective criteria
 o Systems are "parts standing in relation”
 o Systems have complex dynamic properties
• Most definitions refer, usually implicitly, to specific system subtypes
The seven different worldviews on “system” within the INCOSE community
System Worldviews in INCOSE community

We don’t agree on what is and is not a system!

System Worldviews Survey issued to Fellows and SSWG Dec 16 / Jan 17

Seven different worldviews identified.

1. A formal minimalist view based on mathematics and logic;
2. Constructivist - systems are purely a mental construct;
3. Moderate realist – systems exist in physical and mental “worlds”;
4. Strong and Extreme Realists – systems only exist in physical world;
5. Complex, viable and living systems - Miller, 1978; CAS, etc.
6. Systems as a Mode of Description – Aslaksen, 2013;
7. System as a process – process, rather than object/structure, is the essence of systems: Blockley, 2010, also “Process Philosophy”.
“Systemicity”

- Generally the more complex the system, the more of the properties (listed below) it exhibits. The properties are sorted according to the frequency of responses in the SSWG survey on “system definition, January 2017 – sample size 33. Similar in Fellows’ responses (26)

- Many of these properties:
 - are not present in the current generation of systems-engineered “product systems”;
 - are present in naturally occurring and “viable” systems;
 - are seen as desirable or essential in future intelligent systems.

<table>
<thead>
<tr>
<th>Property</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>relationships between the parts</td>
<td>29</td>
</tr>
<tr>
<td>interactions between the parts</td>
<td>28</td>
</tr>
<tr>
<td>more than one part</td>
<td>27</td>
</tr>
<tr>
<td>"emergent properties", properties of the whole system not possessed by the individual parts acting separately</td>
<td>27</td>
</tr>
<tr>
<td>a boundary separating or distinguishing the system from its environment</td>
<td>24</td>
</tr>
<tr>
<td>systems occur at multiple levels of integration with new properties emerging at each level</td>
<td>22</td>
</tr>
<tr>
<td>internal communication between parts</td>
<td>19</td>
</tr>
<tr>
<td>input / output behavior</td>
<td>19</td>
</tr>
<tr>
<td>have dynamic and integrity limits</td>
<td>16</td>
</tr>
<tr>
<td>The characteristic of being "whole" or "complete"</td>
<td>16</td>
</tr>
<tr>
<td>"homeostasis", the ability to maintain a condition of equilibrium within its internal environment, even when faced with external changes</td>
<td>15</td>
</tr>
<tr>
<td>adaptive control using internal feedback</td>
<td>14</td>
</tr>
<tr>
<td>internal decision making processes</td>
<td>13</td>
</tr>
<tr>
<td>cohesiveness, the ability to or characteristic of clustering as a group</td>
<td>13</td>
</tr>
<tr>
<td>when deployed into their operational environment, systems both change and adapt to their environment</td>
<td>12</td>
</tr>
<tr>
<td>a defined "purpose" or "goal"</td>
<td>10</td>
</tr>
<tr>
<td>viability, the ability to survive in a non-benign environment</td>
<td>10</td>
</tr>
<tr>
<td>resilience, the ability to absorb and recover from major disruption</td>
<td>10</td>
</tr>
</tbody>
</table>

That’s why we need:
- a minimalist universal definition
- specific definitions for each system type

Selection or not of these additional criteria is highly dependent on worldview.

There are strong and mutually inconsistent patterns and clustering in the data.
A taxonomy summarizing the range of system types we identified in the literature
Synonyms for "Real" system include: Physical, Concrete, Natural (Rosen)

Synonyms for "Conceptual" system include: Abstract

System typology proposed in 2017

Real systems
- Recognized Systems
 - Naturally occurring
 - Artificially Influenced
 - Hybrid
 - Artificially modified
 - Artificial

Conceptual systems
- Abstracted Systems
 - Mental
 - Shared informal
 - Shared formal
How this taxonomy relates to the seven worldviews
Impact of different worldviews on definition(s)

Widest definition of system encompassing all worldviews:

- Complex viable open systems in dynamic relationship with environment

Minimum definition:
- Two or more related parts

Composition

Conceptual Systems (Systems of pure information)

Systems of matter and energy (Real systems)
Examples of different system types – not to scale

Widest definition of system encompassing all worldviews:

Two or more related parts

Ecosystems, cities, enterprises, living organisms, bacterial culture in your gut

Systems in dynamic relationship with environment

Connected variety, dynamic reconfiguration

Increasing complexity

Conceptual Systems
(Systems of pure information)

Models of observed or intended systems; works of art; computer program; language, mathematics

Aeroplanes, ships, bridges, cars, beaver dam, beehive

Complicated structures but relatively simple static relationships

Systems of matter and energy
(Real systems)

Hydrogen atom, the word “is”, the sentence “I live”, sperm cell and egg, two people working together, married couple, Earth and Moon, binary star
Impact of different worldviews on definition(s)

Widest definition of system encompassing all worldviews:

- Two or more related parts
- Complex viable open systems in dynamic relationship with environment
- Conceptual Systems (Systems of pure information)
- Systems of matter and energy (Real systems)

Current INCOSE Handbook definition is about here
Impact of different worldviews on definition(s)

Widest definition of system encompassing all worldviews:

- Complex viable open systems in dynamic relationship with environment
- Two or more related parts
- Systems of matter and energy (Real systems)
- Conceptual Systems (Systems of pure information)

The systems that SE is now being asked to create and adapt are here

Current INCOSE Handbook definition is about here
Worldview 1: A formal minimalist view based on mathematics and logic

Worldview 2: Constructivist: Systems purely a mental construct

Worldview 3: Moderate realist – Systems exist in real and mental “worlds”

Worldview 4: Strong/Extreme realist – systems only exist in physical world

Worldview 5: Complex, Viable and Living Systems

Worldview 6: System as a mode of description

Worldview 7: System as a process?

nothing “is” a system, anything can be described as a system

NB – object/process duality is applicable to all worldviews.

– a system is a complex organised whole exhibiting some or many of a wide range of interesting emergent behaviours (D. Hitchins)
What’s in a system?
We need to agree that we disagree...??!!!

Before we can come up with a definition, or set of definitions, that the whole INCOSE community can agree with –

......we all need to realise that we disagree with each other!!!!

......and that we won’t change each others’ minds by telling people they are wrong!!!

So:

We need

1. A very fundamental definition that applies to “all systems”
 ➢ that means it has to work for anybody’s type of system, not just mine or yours

2. More specific definition(s) applicable to the types of system we are interested in

3. Preferably, definitions that are shared with other system communities
Key distinctions in the systems universe

• “Observables” vs “Concepts”

• Real (matter-energy) vs Conceptual (abstract informatic objects)

• Statics (parts, relationships, connections, “qualities”, material, energy)
 o vs

• Dynamics (processes, interactions, flows, transactions, performance, history)

• In real systems –
 o essential ingredients of all systems, vs
 o properties and behaviors of all systems, vs
 o properties and behaviors of some classes or types or combinations of system
Part 2 – A fresh look at systems engineering
Fig 1: Conceptual model for SE in context

Sponsor/Problem owner

Initiates and governs

Identifies problem/opportunity in

Context System for SE
(e.g. “Developmental Environment”)

Works to change

Observes, analyses and understands,
Monitors SoI effects in

Systems Engineering

operates within,
provides information and services to
changes, is changed by

Context System for SoI
(e.g. “Operational Environment”)

Is deployed into,
changes, is changed by

Creates, operates,
supports, evolves, retires

System(s) of Interest (SoI)

Architects and specifies
Monitors performance and
effectiveness
Most systems interact with their environment by exchanging material, energy, force and information. Thus, systems change, and are changed by, their environment.

A system’s effectiveness, delivered value, and fitness for purpose depend on what the system actually does, and how the system actually works, in its real-world context.

This applies both to the Sol and to the “system that does the SE”

A system becomes part of a bigger system when placed in its operating environment.

Thus, we must analyse the current problem situation as a system, and understand how the proposed new or improved system will interact with and change the rest of the “problem system” to predict its effectiveness.

We need to think of multiple layers or levels of system, with new properties and capabilities emerging at each level.

We need to apply systems engineering at multiple interacting levels in a complex systems endeavour.
The world:
Wider stakeholders - Society, the Environment

Fig 3: SE in context in context – poached egg diagram

- Sponsor/Problem owner
- Users/Operators
- Support/Logistics
- SE
- Sol
- Operational Environment
- Developmental Environment
- Resources
- Threats
SE 2025 Vision demands PARADIGM SHIFT IN SE -> NEED FOR CHANGE!!!

Now
(present paradigm)

robust, dependable, mainly-technological, “deterministic systems”

implicitly, a command and control view of how SE works

Next
(future paradigm)

resilient, adaptive, “evolutionary” systems and systems-of-systems
- encompassing products, services and enterprises
- integrating technological, social and environmental elements

explicitly, a collaborative view of how SE works
Some aspects of the upcoming paradigm shift in SE

Deterministic systems

Evolutionary systems

“Ballistic” SE – System trajectory set by initial conditions established at start of lifecycle

“Goal-oriented” SE – System trajectory monitored and adjusted to achieve and maintain fitness for purpose throughout the system lifecycle

Complexity feared and minimised

Complexity understood and managed
More aspects of the paradigm shift needed in SE

SE defined rather in a vacuum – vague about the context in which it operates

SE defined as a “human activity system” operating within the “Context System for SE” - specific about the context in which it operates through the whole system lifecycle

SE defined as technical and management processes for (mainly technological) system development and whole-lifecycle support to operations

SE defined as a collaboration between people with the varied competencies needed for whole-system whole-lifecycle success

including

- **systemic** and **systematic** “SE” knowledge and leadership
- domain and discipline knowledge (societal, environmental & technical) relevant to the problem space and solution options
- cognitive, behavioural and psychological skills applied to both SE and Sol
Change in focus of SE

Focus of SE “was”

- interdisciplinary
- dependable, robust, pseudo-deterministic, mainly technological systems
- requirements and operational concepts can be established early in the lifecycle and are not expected to change (much) through life

Focus of SE “is” opened out to

- transdisciplinary
- resilient, adaptive whole-system solutions - systems and SoS - that may be in a state of continual evolution, at least in their operational environment, and probably the solution system as well
- systems of interest may be autonomous, possibly involving Artificial Intelligence, probably involving environmental aspects, and certainly involving social aspects as well as engineering and technology.
- to address societal grand challenges related inter alia to the Sustainable Development Goals (SDGs)

Such systems will still need dependable robust technological building blocks (which is why we say the focus “opens out” rather than “shifts”).
SYSTEMS ENGINEERING definition
Headlines – SE definition

• Many definitions of SE
 o most describe different aspects of the same thing, and at different levels of abstraction, rather than different things

• SE Worldviews Survey
 o distribution Gaussian(ish) rather than Multimodal
 o variation in worldviews on SE much less than in worldviews on system
 o Poster paper describing this in IS18 – tomorrow!

• We analysed Deficiencies and Drivers for Change in current INCOSE SE Definition
 o new straw man proposed
 o described in this paper (IS18)

• Future vision for Systems Engineering as a Transdiscipline conceived & described
 o described in paper at IS18

• Current proposal moves on from these
PARADIGM SHIFT IN SE

Now
(present paradigm)

- robust, dependable, mainly-technical, “deterministic systems”
- implicitly, a command and control view of how SE works and systems are controlled
- projects

Next
(future paradigm)

- resilient, adaptive, “evolutionary” systems and systems-of-systems
 - encompassing products, services and enterprises
 - integrating technological, social and environmental elements
- explicitly, a collaborative view of how SE works and an influence view of how systems are controlled
- ecosystems
Systems Engineering is an interdisciplinary approach and means to enable the realization of successful systems.

It focuses on defining customer needs and required functionality early in the development cycle, documenting requirements, then proceeding with design synthesis and system validation while considering the complete problem:

- Operations, Cost & Schedule, Performance,
- Manufacturing, Test, Training & Support,
- Disposal

Systems Engineering integrates all the disciplines and specialty groups into a team effort forming a structured development process that proceeds from concept to production to operation.

Systems Engineering considers both the business and the technical needs of all customers with the goal of providing a quality product that meets the user needs.

Definition augmented by extensive Notes:

- **Systems Engineering is a transdisciplinary approach**\(^1\) **that applies systems principles and concepts to enable the successful realization and use of engineered systems and whole-system solutions.**

1. **APPROACH noun:** a way of dealing with a situation or problem – first hit on internet search!

Need to add “retirement” to cover whole lifecycle.
The up-coming paradigm shift for Systems Engineering

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE defined as</td>
<td>SE defined as</td>
</tr>
</tbody>
</table>
| o technical and management process activities associated with (mainly technological) system development and whole-lifecycle support to operations,
 o vague about the context in which it operates
 o defined rather in a vacuum | o a collaboration between people with a variety of competencies needed for whole-system whole-lifecycle success, including
 ➢ systemic and systematic “SE” knowledge, and
 ➢ domain and discipline knowledge (societal and environmental as well as technical) relevant to the problem space and solution options
 o specific about the context in which it operates through whole system lifecycle
 o a “human activity system” operating within the context of a “system lifecycle extended enterprise” |

<table>
<thead>
<tr>
<th>Focus of SE is:</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Deterministic” systems</td>
<td>“Ballistic” SE – trajectory set by initial conditions</td>
<td>“Goal-oriented” SE – trajectory adjusted to achieve and maintain fitness for purpose throughout the system lifecycle</td>
</tr>
</tbody>
</table>
| o to engineer dependable, robust, pseudo-deterministic, mainly technological systems
 o requirements and operational concepts that
 ➢ can be established early in the lifecycle
 ➢ are not expected to change (much) through life | Complexity is feared and minimised | Complexity is understood and optimised |

Focus of SE is opened out:

<table>
<thead>
<tr>
<th>“Evolutionary” systems</th>
<th>“Ballistic” SE – trajectory set by initial conditions</th>
</tr>
</thead>
</table>
| o to address resilient, adaptive systems and systems-of-systems that may be in a state of continual evolution (at least their operational environment, and probably the system as well),
 o systems of interest may be autonomous, possibly involving Artificial Intelligence, probably involving environmental aspects, and certainly involving social aspects as well as engineering and technology,
 o to address societal grand challenges identified by national academies and funding organisations – e.g. NAE, EPSRC,
 o Such systems will still need dependable robust building blocks, which is why we say the focus “opens out” rather than “shifts”. |

Page 38
Headlines and conclusions

• INCOSE definition of SYSTEM needs to widen

• Include system types excluded by current definition, notably
 ➢ Naturally occurring systems (involved in and/or affected by many engineered systems)
 ➢ Systems whose properties cannot be fully controlled by design – complex, viable, autonomous, eco-systems…

• Three motivations:
 ➢ Define what we do
 ➢ Learn to do better
 ➢ Facilitate cross-fertilisation with Systems Sciences, other system domains

• At least 7 Different system worldviews in INCOSE
 ➢ these correspond to different system types with different characterist

* IFSR = International Federation for Systems Research
In order to support the transition to model based SE, we need to shift emphasis from PROCESS to INFORMATION.