CATIA Magic

Custom Reporting: Report Patterns

Daniel Brookshier
. Daniel.Brookshier@3ds.com
linkedin.com/in/danielbrookshier/

INCOSE North Texas, October 2022

L[] ‘7}
NO Maglc .S BASSAULT | The 3DEXPERIENCE' Company
1 ‘

nt_2015

3DS.COM © Dassault Systemes | Confidential Information | 10/12/2022 | ref.: 3DS_Docume

Overview

» Quick overview of reports

» About Patterns

» Pattern: Filter-based Section

» Pattern: Tables to Select Report Content

» Pattern: Report Wizard Selected Elements

» Pattern: Smart Package for Report Content Data
» Pattern: Report Model

» Pattern: Use Tables to Drive Reports

» Pattern: Flatten Tables

» Pattern: Reading Writing JSON (Code or Data Generation)
» Anti-pattern: Monolithic Template

» Anti-pattern: Too Many Macros

» Anti-pattern: Hard coded references

» Anti-pattern: Expected data

No Magic

)
/- passauLr
() SUSTEMES

| The 3DEXPERIENCE" Company

Velocity merges data from a data model to a
template to produce the document.

- Boilerplate
References

— Directives
Utilities

NO Maglc 4;7 § DASSAULT The 3NEXPERIENCE' Company
; ‘

nt_2015

3DS.COM © Dassault Systemes | Confidential Information | 10/12/2022 | ref.: 3DS_Docume

Velocity Templates and Report Wizard

» Velocity Template Language (VTL)
> Established template language for Java (CATIA Magic/Cameo/MagicDraw are Java apps)
> Extensible
> Very fast
> Works even when data is incomplete

» Issues with VTL
>VTL was written for text templates (HTML/email)
> Not designed for reporting on complex data models like UML/SysML
> Not intended for complex processing (this is why it is so fast)
> Interpreted (all errors are runtime)
> Works even when data is incomplete

No Maglc 75 2B3SAUT The SDEXPERIENCE Company

Example Template

This is my first velocity template
file

This is a list of classes in the file:
#foreach($class in
$sort.humanSort($Class))

Name: $class.name

#end

No Maglc 55 2ESSAULT The SDEXPERIENCE Company
] ‘

Example Template

Boilerplate
text

Reference

This is myffirst velocity template file
This is a listfof classes in the file:

Boilerplate
text

Reference
Reference

L[] 7}
NO Maglc .S BASSAULT | The 3DEXPERIENCE' Company
3 ‘

About Patterns

* Design Patterns are a common
method to match problems with
solutions

* Not necessarily a reusable code
because solutions are often
specific to application

» Knowing pattern reduce the effort
of designing the solution

* Anti-patterns are a method of
detecting problems and
su%gestl_ng a solution
(refactoring)

* Combining patterns and anti-
patterns avoids re-inventing
solutions

 Caution: Not all patterns are good
for your needs or simple to
Implement.

Design Patterns

Elements of Reusable

Object-Oriented.Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissicles

Foreword by Grady Booch

-
>
Q
=}
o
Q
z
=
m
@
=
-
-
=
o
]
m
w
oz
g

Anti
Patterns

Refactoring Software, Architectures,
and Projects in Cri

¢
William H. Brown Raphael

I Hays W.“Skip™ McCormicklll Thomas J. Mowbray

Why Patterns in Reporting

* Models change over time

* Templates are a view of the
changing model

» Rare that two companies or two
stakeholders have the same
model structure or formatting of
template results.

* Templates and source models may
become standardized, but not
today.

* Translation:

All templates are just an
application of a pattern to create a
current view of the model with
current stakeholder viewpoint.

* Understand Patterns
» Match pattern to needs
» Understand variations
* Manage templates over time

* Use simplified templates with
example patterns as a starting point
for production templates

* Understand Anti-patterns
* When are you in trouble?

 Why do templates break?

« Match ant-pattern to patterns to
recover.

The Big Issues:

*Reports are hard
Critics are harder

*Responding to critics is even harder

Pattern: Filter-based Section

Print Properties By Kind

\ 4
< VR

SDEXPERIENCE

3DS.COM © Dassault Systemes | Confidential Information | 10/12/2022 | ref.: 3DS_Document_2015

11

Pattern: Filter-based Section

» Problem:
> Many metatypes of UML, SysML, and other profiles are similar
> Need to separate by metatype because they represent very different concepts

» Examples:
> Attributes
> Ports
> SysML:

» Ports: standard, full, and proxy
» Constraint Properties
» SysML Value Properties

» Solution: Print filters of attributes by metatype name.

> Macro to Print type by name
> Name is used to filter: 'Value Property', 'Full Port Property',etc.
> The section is printed
> The section contents are then printed
> Macro to print list of named types (Could also use array of strings)
» Used to designate the name and order or the sections.
» The example calls the display macro

No Maglc 75 2B3SAUT The SDEXPERIENCE Company

Filter Tool

» The filter tool reduces a collection based on a criteria

» All Classes (Class, Block, Interface Block, Performer, etc.) have properties
(ownedProperty), but these properties are grouped in compartments.

» For example, a Class has:
> Properties
> Ports
» A Block has more:
> Value properties
> Reference properties
> Constraint properties
> Full Ports
> Proxy Ports
> Flow properties

» How do we print these in a template?

nt_2015

3DS.COM © Dassault Systemes | Confidential Information | 10/12/2022 | ref.: 3DS_Docume

No Maglc 55 2ESSAULT The SDEXPERIENCE Company
12 ‘

nt_2015

3DS.COM © Dassault Systemes | Confidential Information | 10/12/2022 | ref.: 3DS_Documel

13

Filter Tool API

» Sreport filterDiagram(diagramList, diagramTypes)
> Filter diagrams

> $report.filterDiagram($Diagram, 'Block Diagram')

» dreport filterElement(elementList, humanTypes)
> Filter elements by human type name (same as user interface)

> $report.filterElement($list, 'Interface Block')

» Sreport. filterElementType(elementList, elementType)
> Filter elements by official type name

» Sreport. filter(elementList, propertyName, propertyValue)
> Filter properties by type

No Maglc 55 2ESSAULT The SDEXPERIENCE Company

Macro: propertyCompartment

#macro(propertyCompartment $compartmentName)

#set($sectionData =
$report.filterElement($block.ownedAttribute,
[$compartmentName]))

#if(!$sectionData.isEmpty())

% $compartmentName:

% #foreach($pp in $sectionData)

: #if($pp.isConjugated)~#end$pp.name: $pp.type.name
#end

#end

#end##macro

No Magic 55 RESTEYAT The SDEXPERIENCE'Company
14

Macro: printBlockProperties

#macro(printBlockProperties $block)

#if($block.humanType=="Block"' | |$block.humanType=="Interfac
e Block')

Sblock.humanType: Sblock.name

#propertyCompartment('Part Property')
#propertyCompartment('Reference Property')
#propertyCompartment('Value Property')
#propertyCompartment('Constraint Property’)
#propertyCompartment('Flow Property')
#propertyCompartment('Full Port')
#propertyCompartment('Proxy Port')
#propertyCompartment('Flow Port')
#propertyCompartment('Port’')

#end

#end

nt_2015

3DS.COM © Dassault Systemes | Confidential Information | 10/12/2022 | ref.: 3DS_Docume

No Magic 55 RESTEYAT The SDEXPERIENCE'Company
15

Other Benefits

» Can be used to turn on/off various levels of content
» Easier to test.
» Centralizes formatting of similar types

3DS.COM © Dassault Systemes | Confidential Information | 10/12/2022 | ref.: 3DS_Document_2015

No Maglc 55 2ESSAULT The SDEXPERIENCE Company
16 ’

nt_2015

3DS.COM © Dassault Systemes | Confidential Information | 10/12/2022 | ref.: 3DS_Docume

17

Other Variants

» Variation: Package Filter
> Any element, package, or type can be used in a similar way.
> For example: A list of named packages

» Variation: Entry #IF filter
> Use an if statement to detect type to enable or disable content.
> Calling template calls macro without knowing if macro will print

> Can be used to call a macro for content we could print without checking in main body of
the template

> Helps with order of content without adding type and content checks to main body.
> On the surface, very wasteful, but cleans up template significantly
> Compartmentalization of type, sorting, and checks for missing data.

No Maglc 75 2B3SAUT The SDEXPERIENCE Company

Variant

#macro(printBlockProperties $block $sectionNames)

#if($block.humanType=="Block"'||$block.humanType==
"Interface Block')

Sblock.humanType: Sblock.name

#foreach(Ssec in SsectionNames)

#propertyCompartment($sec)
#end
#end
#end

No Magic 55 BESSAUAT The SDEXPERIENCE Company
18 ‘

Variant and Simple Use

Set the value names array in the order of sections

#set($sections = ['Part Property', 'Reference Property’,
‘Value Property', 'Constraint Property', 'Flow Property’,
"Full Port', 'Proxy Port', 'Flow Port', 'Port'])

#foreach($block in $Block)
#printBlockProperties($block,$sectionNames)
#end

#foreach($block in $Block)

Section: Blocks
#printBlockProperties($block, $sectionNames)
#end

#foreach($block in $InterfaceBlock)
Section: Interface Blocks
#printBlockProperties($block,$sectionNames)
#end

nt_2015

3DS.COM © Dassault Systemes | Confidential Information | 10/12/2022 | ref.: 3DS_Docume

No Magic 55 RESTEYAT The SDEXPERIENCE'Company
19

PATTERN: TABLES TO SELECT
REPORT CONTENT

2
DS susTeves

Pattern: Tables to Select Report Content (1 of 2)

» Pattern: Use tables to
> Select data to report via table scope
> To select details to report by what columns are displayed

nt_2015

> To do complex queries and navigation between element
» Good for: Everything!

» For example: Tables for structure of concept, logical, and physical models
> Use separate tables for each set
> Include in scope only what needs to be documented
> Only display columns pertinent to report

> Use GenericTable to get data into report. Optionally use the Flattened Table Pattern to
display all data and labels dynamically.

3DS.COM © Dassault Systemes | Confidential Information | 10/12/2022 | ref.: 3DS_Documel

L[] ‘7,\
NO Magl C .S BASSAULT | The DEXPERIENCE' Company
21 ‘

Pattern: Tables to Select Report Content (2 of 2)

nt_2015

3DS.COM © Dassault Systemes | Confidential Information | 10/12/2022 | ref.: 3DS_Documel

22

» Advantages:
> Reduce complexity of VTL code because all work is done in model and Table diagram

> Custom columns can be used to generate data via complex query/script but VTL code is just
GenericTable tool

> Data in a table can use scope, or added via drag and drop, and edited to remove rows (Similar
to SmartPackage)

» Disadvantages

> Layout of report using Generic Table may not be easy for certain kinds of data(see Flattened
Table)

> Sorting can become difficult if you are trying to tell a story with elements in a specific order in
document

» Recommendations:
> Mix with other patterns like Report Model and Flattened Table.

» Variation
> Matrix to Select Report Content

.

No Maglc 5.5 2ASSAULT | The 3DEXPERIENCECompany

Pattern: ReoportWizard
Selected Elements

SDEXPERIENCE

7}
DS S4stemes | The 3DEXPERIENCE" Company

Pattern: ReoportWizard Selected Elements

» Pattern: Use ReportWizard, the Selected Elements to filter elements
* Good for: When reporting a catalog of the model elements.

For example, $Class will only have selected scope

Advantages:
» Reports are usually categorized by element type
* Most often used pattern, so many examples

» Can be used to select root objects like Package or SmartPackage that can then be
iterated.

Disadvantages
* Layout of report is fixed and usually by type
Usually recursive, so hard to pick and choose specific content
Difficult to select a meaningful scope
Difficult to tell a story

Recommendations:
* Mix with other patterns

PATTERN: SMART PACKAGE
FOR REPORT CONTENT DATA

2
DS susTeves

Pattern: Smart Package for Report Content
Data

* Need:

* Fine control over what is included in a report

* Model Architecture is in flux

» Selection of data from ReportWizard inadequate or complex

* Not all data is ready for inclusion in reports

» Changing the order or nesting of data in a report often changes

* Solution:
» SmartPackages used to choose data and define section contents
SmartPackage hierarchy used to control nesting of paragraphs.
Independence from Model refactoring
Only selected data appears in report.
Independent model using target model can be used to prevent accidental changes
Can use drag/drop or queries to populate SmartPackage
Other patterns can be used

* Benefits
» Report configuration's is easier to maintain
* Generally immune to refactoring of the model

 Recommendations
* Nested SmartPackage with queries can cause performance issues
» Keep package hierarchy flat! Avoid mirroring deep hierarchies in model
* Avoid complex queries
» Use a report model to limit access to report maintainers
* Use ReportWizard to select SmartPackages to include in report

e
a
A
ms
Ak
~Q
(A

REPORT MODEL

PATTERN

27

T2Z0Z udWN20Q SAE :'4a4 | | uonewuoyuj [eUapyYUO) | saWISAS 3nesseq @

Pattern: Report Model

* Problems:
* Model and report management are mixed into same project

» User accidentally break integrity of the model during refactoring or
changes to tables/matrix diagrams intended for report

* Adding report template data is cut/paste into existing models
» Multiple configurations of reports and types of reports litter the model

e Solution Details:

* Create a model for selecting data and managing control/content
* Multiple report models for different reports
* Report models can be created from model templates

* Ensure consistency

e Can be documented
* Reduce access to SmartPackage, Tables,

Report Model

* Problems:

* Model and report management are mixed into same project

 User accidentally break integrity of the model during refactoring or changes to
tables/matrix diagrams intended for report

* Adding report template data is cut/paste into existing models
» Multiple configurations of reports and types of reports litter the model
 Solution:

* Create a model for selecting data and managing control/content
» Multiple report models for different reports

* Report models can be created from model templates
* Ensure consistency

* Can be documented

* Reduce access to SmartPackage, Tables, Matrix, and diagrams to report model
* Create Template to show user what is expected

e |ssues

 Cost of updating referenced model (switching versions)
* More models to maintain

* Need to ensure compliance to the report model pattern with templates and
examples.

Report Model Example

» Subject model is referenced

* Report model is configuration of report
* SmartPackage Report Data to scope what is shown in report

 SmartPackage is section name

* Note that this example limits the scope to only part of the sujext
model that needs to be in the report

Report Model Example Using

SmartPackage
Model of Interest Report Model
=1-[&] Model
EE Model E_% Em;:;: i ;Tl;:ﬂ Model. mdzip]
B E Design B}/ Relations
‘“D structure EE?'Esigrl
8- D Unwanted E;
- | Stuff we do not want in report // BB system
E E|D Unwanted
Unwanted Class 1 Stuff we do not want in report

..... E Unﬂ érﬂ.f_d
+-[] Report Data
EI ﬁi Structme «SmartPackages

'T'

l /" Relations
@ Use Cases

aaaaa

| = E}i Use Cases «SmartPackages

e =k L.) Use Case One

B} E UML Standard Profile [UML_Standard_Pr oﬁiq,smd ip]

Reported EHC U%e Cases [Smple Moder mazip]
Model =~ | -4 Relations

...... @ Use Cases

- User
Report Model Reported i é ,_F;'Cm i

111111

Conﬁguration Model k(D) Use Case Two

PATTERN: USE TABLES TO
DRIVE REPORTS

2
DS susTeves

Pattern: Use Tables to Drive Reports

* Generic Table tool can be used to display any table

* Replicates columns and headers

 Simplifies formatting

* Can be extended for specific types

* Most a simple use of the same text in the document

* New headers and column data can be created with Create Custom

* Advantages
* Reduced formatting
* Data alignment in table is easier to read
 Edit table in the model, not the table in the report
» What you see is what you get (mostly), so few surprises

* Disadvantages
* Wide tables won't fit (See flattened table pattern)
* One-to-many relationships may need special handling

34

PATTERN: FLATTEN TABLES

Y

DASSAULT
SYUSTEMES

Pattern: Flatten Tables
Reporting via Flattening of Tables

* Problem: Reports are usually a collection of characteristics of a
subject that require many steps:
* Need to collect subject elements
* Navigation from subject to characteristics
» Paragraph headers need to be built
 Create labels for characteristics to be displayed.
» Format of each characteristic

* Disadvantages:

* Difficult to maintain formatting versus content
* Add or remove subject elements
* Add/ or remove characteristic

» Complex navigation of relationships from subject to related characteristic
targets (for example requirements of a block)

* Format of each characteristic is duplicated for each characteristic which can
cause formatting to become out of synch.

* Bottom line: This brute force approach is costly to create and
maintain.

Flattening of Tables

» Table becomes driver of all or part of a report

» Less need for editing of the report, just edit scope and columns of table
» Dynamically control scope of report by controlling scope of the table

» Dynamically control characteristics by controlling the columns in the table
» Commoditized and simplified formatting for a wider range of data

» Custom Column used to add new data and/or change the label or paragraph
name

» Custom columns instead of pre-processing in template
» Users can see what will be reported in the tool prior to report generation.

» Disadvantages:
> Complex template, but less complex than brute force methods.
> Must have tables for the data
> Tables and Columns need to be managed to ensure reports are compliant

nt_2015

3DS.COM © Dassault Systemes | Confidential Information | 10/12/2022 | ref.: 3DS_Docume

No Maglc 55 2ESSAULT The SDEXPERIENCE Company
36 ‘

Improvements to Flattened Tables

* Formatting can be commoditized by type (current example is based
on strings)

» Table to Table relationships (via type or other method).

* Current template is just one table

* Could associate a table with a feature (Element type) and use another table
and template. For example, a column type is requirement, another table
and template can be used to render the data. This allows requirements to
be flat or a table and to control the details of a usually one to many set of

content.
* Lookups mapping columns to label/paragraphs can be used versus
creating a new column for just that purpose.

A Flat Example: Setup

Import the GenericTableTool
#import('generic','com.nomagic.reportwizard.tools.GenericTableTool')

example shows how the GenericTable view allows us to create a table based on an existing
table ##diagram and dynamically fill in the header and rows of data.

Hit

Create an array to store our data from the table (we are using a variety for the example.
#set(StableTypes = ["Generic Table","Requirement Table","Glossary Table", "Instance Table"])
#set(SgenericTableArray = Sarray.createArray())

Get each of the tables that are of type "Generic Table"

#foreach(Sdiagram in SDiagram)

#if(StableTypes.contains(Sdiagram.diagramType))

Assignment to temp is needed because add returns a boolean.

#set(Stemp = SgenericTableArray.add($Sdiagram))

#end

#end

sault Systemes | Confidential Information | 10/12/2022 | ref.: 3DS_Document_2015

3DS.COM © Das:

No Magic 55 RESTEYAT The SDEXPERIENCE'Company
38

A Flat Example: Table Processing

#it For each table, show the flattened data

#iforeach(St in SgenericTableArray)

=== St.diagramType ====

#end

#Hforeach(Sgt in Ssorter.humanSort(SgenericTableArray))
Print the name of the Table

Sgt.name

get the reference to the generic table

f#set(Stable = Sgeneric.getTable(Sgt))

Get the visible columns

f#set(Scols = Stable.getVisibleColumnlds())

Remove column zero because this has the row counter
#set(Stemp = Scols.remove(0))

A Flat Example: Row/Column

tHt For each row/column get the contents (note: not using forrow/forcol
because there is no table object).

#Hforeach(Srow in Stable.getRows())

#iforeach(Scol in Scols)
#if(Stable.getColumn(Scol)==Stable.getColumn(1))

Column zero is used as the paragraph name
Stable.getValueAsString(Srow, Scol)
t#telseif(Stable.getColumn(Scol[1])==Stable.getColumn(Scol))

Column one is used as the name documenting the element
##tStable.getValueAsString(Srow, Scol)

#else

Print the column header as the label, then the data of the cell.
Note: we may need to handle collections for columns that are
one to many relationships.

Stable.getColumn(Scol): Stable.getValueAsString(Srow, Scol)#end

#end#i#col
#end##row
#end## End of the loop for each Generic Table

PATTERN: PREPROCESS
COMPLEX DATA

2
DS susTeves

Pattern: Preprocess complex data

* Problem: Need to pre-process data prior to use in template.
* Symptoms:

* Data and VTL to process data can is complicated

* Complex VTL in line with template

* Templates are fragile and hard to debug
* Examples:

* Most templates that are not table-based have this issue
 Solution(s):

» Use scripting to pre-process

* Preprocess data into arrays and hash maps then use the simplified
structure in body of template (use macros to isolate)

* Use table or flattened table

* Benefits:

* Decouples processing from formatting tasks
» Simplifies complex formatting like that used for tables

* Disadvantages
* VTL for pre-processing is harder to manage (use tables instead)

Output of Improved Flat Table

* Note that formatting the table contents would be much harder in
prior example.

Amplified Audio (Block)

Namespace | Interfaces
Documentation
Part | Audio Signal : dbV

Owned Attribute | Audio Signal : dbV

Amplified Audio IF (Interface Block)

Namespace | Interfaces
Documentation
Part

Owned Attribute | out AudioSignal : Amplified Audio

Analog Audio IF (Interface Block)

Namespace | Interfaces
Documentation
Part

Owned Attribute | out AudioSignal : Line Audio

READING WRITING JSON
(CODE OR DATA GENERATION)

2
DS susTeves

ault Systémes | Confidential Information | 10/12/2022ef.: 3DS_Document_2021

© Dass

45

PATTERN: READING AND WRITING SCHEMAS

Problem: Generation of code, schemas, or complex configuration data

Solution: Use templates to transform a model to code or config file

Example: Read and write JSON

JSON can be read or written via many open source libraries for Java or JS-233
The following example is written to load a JSON file for APACHE AVRO

Apache Avro is a data serialization framework that is used for many different
applications

The code only covers some of the core data model, but can be expanded.

Note that this application requires that datatypes be created with the same names
as the Avro types.

* Also include is a test file to read, a Report Wizard Template to write the model to
JSON and an example output.

 Warning: This is just an example and not a complete solution.

g g & & 75 passu

Avro Schema.mdzip AvroRead.rb avro_test,json AvroTemplateFile.json test_out.avro.json

:3DS_Document_2021

© Dassault Systémes | Confidential Information | 10/12/20232ef.

EXAMPLE: READ AVRO JRUBY

Files provided

HEHE R R R R R R R R R R R R R R 4 =begin if enum nil
E3EE3 2332231 Get elements from a root (including root) enum = $factory.createEnumerationInstance()
Created by Daniel Brookshier (Daniel.Brookshier@3ds.com, parent Scope element under which you search for the indicated element enum.setName(field["name"])
Daniel.Brookshier@gmail.com) =end enum.setOwner (pack) ;
Read Avro Schema JSON files def getElements(parent) # todo: Need to synch the literals. Right now only creates if new
Warning, model must be writable! elements = Array.new field["symbols"].each do |sym|
Current capabilities: elements << parent; literal = $factory.createEnumerationLiteralInstance()
Assumes that Avro type names are available in the datamodel (mostly extended elements.concat(parent.getOwnedElement()); literal.setName(sym)
datatypes and a few that need to be created). literal.setOwner (enum)
Assume schema namespace is a packege under root model. for current in elements end
Does not care where existing enumes are, but will creat in same package as if current.hasOwnedElement() end
Record owned = current.getOwnedElement();
Todo: Array for elm in owned property.setType (enum)
Alias if (!elements.contains(elm)) elsif $avroType[field["type"]] nil
Union elements.concat(elm); $log.log("set type of field");
Need to synch the enumeration literals. Right now only creates if new end property.setType($avroType[field["type"]])
Better annotation to support round trip and compatibility with Avro Report end # set default todo
Template end literalString =
Currently the type of the field is not synchronized on second read. end $project.getElementsFactory().createLiteralStringInstance();
Need to set default value return elements; literalString.setValue(field["default"]);
R R R R R R R R R Y end
HREFARRREEAR AR SEEEEEE SRS E s EEEEs sttt istsssiststsisisisis] #property.setDefault(literalString);
require 'java' def findPackage(packageName) else#nested class
require 'json' return getElement("Package", pack , ge 1Root()) $log.log("Nested class found")
AutomatonMacroAPI = com.nomagic.magicdraw.automaton.AutomatonMacroAPI end clazzz = readAvro(field["type"],parsed["namespace"])
Application = com.nomagic.magicdraw.core.Application def readAvro(parsed, namespaceDefault) property.setType(clazzz)
SessionManager = com.nomagic.magicdraw.openapi.uml.SessionManager case parsed["type"] end
ParameterDirectionKindEnum = when "record" end
com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ParameterDirectionKindEnum # create a package for the name space (need to refine and find, not just else
VisibilityKindEnum = create) end
com.nomagic.uml2.ext.magicdraw.classes.mdkernel.VisibilityKindEnum # use default for the namespace if none exists return clazz
$log = Application.getInstance().getGUILog() if parsed["namespace"] == nil end
parsed["namespace"] = namespaceDefault ittt sttt tstststatasstststssssssssssssssssssssssssss
FREFEHERE R A BB BRI AR R R R R R R R R R R R R R R R R end pack = getElement("Package", parsed["namespace"], # Main Application
Get model root element. getModelRoot ()) HHH R R
def getModelRoot() if pack == nil begin
return Application.getInstance().getProject().getPrimaryModel(); pack = s$factory.createPackagelInstance(); #SessionManager.getInstance().closeSession();
end pack.setName (parsed["namespace"]); SessionManager.getInstance().createSession("Automaton_Macro_Script_Execute")
=begin pack.setOwner ($project.getModel()); $log.log("- - initializing logging script! ")

Find the first occurrence of the listed element under the supplied owner, end $log.log("Ruby Version: " +RUBY_VERSION)
inclusive of the owner (basically one level? Hard to tell...) # create a class for the name space (need to refine and find, not just $log.log("JRuby Version: " +JRUBY_VERSION)
create) string =
type Type of desired element clazz = getElement("Class", parsed["name"], pack) '{"desc someKey": "someValue", "anotherKey":"value"}, "main_item":{"stats":

name Name of desired element if clazz == nil b":12,"c":10}}}"
owner Element under which you search for the indicated element clazz $factory.createClassInstance(); parsed = JSON.parse(string) # returns a hash
=end clazz.setName(parsed["name"]);
def getElement(type, name, owner) clazz.setOwner (pack); # Read JSON-based Avro schema from a file, iterate over objects
if (owner == nil) end $project = Application.getInstance().getProject();
owner getModelRoot () ; parsed["fields"].each do \ field| $factory = $project.getElementsFactory();
end $log.log("Creating field:"+field["name"]); ## Here we are getting the primitive types from the model to type the items read.
elements = Array.new property = getElement("Property", field["name"], clazz) $avroType = { "null" => getElement("Data Type", "null", getModelRoot()),
elements << owner;## the '<<' adds an element to an array. if property == nil "boolean" => getElement("Data Type", "boolean", getModelRoot()),
elements.concat (owner.getOwnedElement()); property = $factory.createPropertylInstance() ; > getElement("Data Type", "int", getModelRoot()),
current = nil; property.setName(field["name"]); > getElement("Data Type", "long", getModelRoot()),
for current in elements property.setOwner(clazz); > getElement("Data Type", "float", getModelRoot()),
#Application.getInstance().getGUILog().log(current.getHumanName()) end => getElement("Data Type", “double", getModelRoot()),
if (current.getHumanName() == (type + (name.empty? 2 "" : " " + name))) #set the type for the field > getElement("Data Type", "btyes", getModelRoot()),
return current; if field["type"] "enum" => getElement("Primitive Type", "string", getModelRoot())}
end $log.log("enu +field["name"]) file = File.read('C:/Users/DBR2/Documents/Example Models/Data Modeling and
if current.hasOwnedElement () enum = getElement("Enumeration", field["name"], getModelRoot())#we SQL/Avro Schema/avro_test.json')
elements.concat(current.getOwnedElement()); don't care where enums are stored parsed = JSON.parse(file)
end readAvro(parsed, "avroNamespace")
end if enum != nil ensure
return nil; $log.log(enum.getName) SessionManager.getInstance().closeSession()
end end end

SYUSTEMES

D7S DASSAULT

SETUP FOR JRUBY FOR JSON

Files provided

* These are instructions for installing the latest
version of Jruby for use in the tool

« Similar instructions can be used for other JSR-
233 scripting languages.

Document_2021

© Dassault Systémes | Confidential Information | 10/12/2022ef.: 3DS,

47

Introduction

These are instructions for setting up CATIA Magic tools (MagicDraw, Cameo, Magic Cyber, etc. to have
JSON capability.

The reason that this is installing a separate instance for JRuby is to make it easier to add Gem files.
Normally the tool is installed in a read only directory which can cause issues. With this method one file is
changed and then we can add Gem files without further read access to the installation files.

Setup Steps

Install the latest JRuby

Please see the latest instructions for your version. These are based on 2021x, MagicDraw MacroEngine
UserGuide.pdf, section 3.4 Installing Gems for JRuby.
https://www.magicdraw.com/files/manuals/MagicDraw MacroEngine UserGuide.pdf

Change the Plugin.xml to point to the installed JRuby.
Edit <Intstall Dir> \plugins\com.nomagic.magicdraw.automaton\plugin.xml
For example, given install of Jruby 9.3.1 in E directory:
Change default:
<library name="lib/engines/jruby-9.2.14.0/lib/jruby.jar"/>
To (note the use of forward slash):
<library name="e:/jruby-9.3.1.0/lib/jruby.jar"/>
Install the json-jruby Gem by opening the command console and running:
jruby -S gem install json-jruby

Add the following (based on your installation) to the JAVA_ARGS in your application properties file
(cameoea.properties, magicdraw.properties, etc.). The application properties are in the bin directory of
your CATIA Magic installation directory. For example, given install of Jruby 9.3.1 in E directory:

-Djruby.home\="e:/jruby-9.3.1.0" -Djruby.lib\="e:/jruby-9.3.1.0/lib"

Relaunch the tool and test your Ruby script

SYUSTEMES

975 DASSAULT

Document_2021

© Dassault Systémes | Confidential Information | 10/12/2022ef.: 3DS,

48

OUTPUT OF AVRO WITH REPORT WIZARD TEMPLATE

Files provided

Simporter indicates the context to print. #if(Sprop.type.class.name == #if(Ssize.size()>0),

Create Avro schema from UML-based schema ‘com.nomagic.uml2.ext.magicdraw.classes.mdker "size":$size[0].replace('[',"").replace(']’,"")#end
Created by Daniel Brookshier nel.impl.LiteralStringlmp’) #if('Slist.isEmpty(Saliases))

daniel.brookshier@3ds.com. "Sprop.defaultValue.value"#elseSprop.defaultVal , "aliases": [#foreach(Salias in
daniel.brookshier@gmail.com ue.value#end Saliases)"Salias"#if(Sforeach.hasNext),
Note that this is a work in progress and is not #end #end#end

yet complete. #else]#end

Partially completed: Record, Enum "NONE"#end #end## end of macro

H# #end## macro HHEHHHHBHAHHHHBHHHHHHHEHHHA
Todo HEBHHBHHGHHGRHFRHGHHERHEHHESHES #H# Write record schema

#+#fixed, array, needs to be based on selected. #####H#HHH#H# HHHHHHHHHHHRHHHHBHHBHEHHHHY
Return the assigned type or union. ## H##

list of standard types HBHBHUHH RS BHBHBHBH G HGH R FHF#H##H# #macro(record Sclass)

#set(SavroTypes = HEBHHHH#HH {
['null’,’boolean’,'int’,'long’,'float’,'"double’,'bytes’, #macro(typeOrUnion Sprop) "type":"record",

'string']) #set(Saliases=Sreport.getStereotypeProperty(Sp "namespace": "Sclass.namespace.name”,
BHUBHBHBEHBH ARG RS HFRHBHBHBHHH##H#H rop, 'Union’, 'aliases’)) "name":"Sclass.name”,

#set(Ssize=Sreport.getStereotypeProperty(Sprop "doc" : "Sclass.documentation”,

Macro for default values. ## , 'typeMoadifier’, 'typeModifier")) "fields":[
BHU#HBHBEHBHGH GRS HHRHBHBHBH S H#HBH#H# #if(SavroTypes.contains(Sprop.type.name)) #foreach(Sprop in Sclass.ownedAttribute)
"Sprop.type.name"##print normal type "name":"$Sprop.name”,"type":
#macro(defaultValue Sprop) #elseif(Sprop.type.humanName.contains("Enume#typeOrUnion(Sprop),"default”:
#if(Sprop.defaultValue) ration"))## contain needed on humanName #defaultValue(Sprop)}#if(Sforeach.hasNext),
When the default value is the Enumeration because it includes class. #end

Literal element. "enum", "symbols" : [#foreach(Slit in #end

#if(Sprop.defaultValue.class.name == Sprop.type.ownedLiteral)"Slit.name" #if(]
‘com.nomagic.uml2.ext.magicdraw.classes.mdker $foreach.hasNext), #end#end]##Enumeration }

nel.impl.InstanceValuelmpl') print #end## macro

##Get the literal value #else ## This runs the template
"Sprop.defaultValue.instance.name"#else #record(Sprop.type)##Nested Type #record(Simporter)

##When String, Integer, real, etc. #end

D7S DASSAULT

SYUSTEMES

Anti-patterns

"Seemed like a good idea at the time."
— Architect of the Titanic

Why Anti-patterns?

* Create an understanding of a what can go wrong
* Avoid the anti-pattern versus a better pattern

* Recognize anti-patterns in existing templates

* Avoids making the error as your first step.

* Includes pattern used to recover from anti-pattern

Anti-pattern: Monolithic Template

* A template for a large document with many sections and formats

* Symptoms:
* Single template file
* Hard to read
 Embedded VTL code everywhere

* Examples:
* Everywhere!

» Recovery from Monolithic Templates
* May be easier to start over
* Any report pattern will be better
* Possibly refactor to macros or section includes

Anti-pattern: Too Many Macros

e Symptoms:
* Macros are dominant in template
* Hard to read intent of template
* Difficult to debug
* Macros are a fix between pre-processing, formatting, and template

* Disadvantages:
» Takes longer to write a good macro

* Because macros are parameterized templates, they are not functions and thus
not easily used as functions in a library

* Reusable macros are hard to write
* Formatting and processing are usually wildly different depending on use

* Recovery from Too Many Macros Anti-pattern
* Use recommended patterns
* Avoid deep call depth of macros

* Eliminate the need for pre-processing
* Flattened Tables
* Report Model

Anti-pattern: Hard coded references

* Problem: Direct references used to locate data to be included in
report

* Examples:
» Report uses search of named elements
* Report uses URI to locate elements

e Symptoms:
* Report breaks after refactoring
* Report does not work for different models
* Report must be edited often
* There is no effect from changing the data scope of the report

 Solution Patterns:
* Use Selected Elements
* Smart Packages
* Flattened Tables
* Report Model

Anti-pattern: Expected Data

* Problem: Report looks incomplete or fails for incomplete data

* Examples:
* Template relies on elements that may not be complete or do not exist
* Related anti-pattern: Hard coded references

 Symptoms:
* Report works for example, but not current state of project
* Project is agile
* Report does not work for different models
* Report must be edited often

* Solution Patterns:

* Ensure only completed elements are reported
* Use Selected Elements
* Smart Packages
* Flattened Tables
* Report Model

* Rewrite report to call out incompleteness (expensive)

Summary

* Recognizing Patterns and anti-patterns are a good way to design
reports

* These patterns are only the beginning
* If you have a pattern, let me know

Questions?

3DS.COM © Dassault Systemes | Confidential Information | 10/12/2022 | ref.: 3DS_Document_2015

No Maglc 75 2B3SAUT The SDEXPERIENCE Company

57

