
A Curated View of Systems Engineering

for Science Missions as Science and

Practical Art

INCOSE

8 November 2018

Jonathan Arenberg, PhD
Chief Engineer

Space Science Missions

Northrop Grumman Aerospace Systems

@JonArenberg

The opinions expressed in this presentation are my own and do not necessarily reflect the views of my
employer, Northrop Grumman. NG Clearance Case #16-0621 30 March 2016 and Case #15-XXXX Aug 2015

Overview and Purpose

• Accept an invitation

• Examine systems engineering as applied
to science missions

– Discipline

– Art

• A few lessons learned

• Infotainment

• Questions

2

What is Systems Engineering?
• Use the dictionary and combine system and

engineering….

• Systems Engineering is focused on considering the
whole job or problem
– Global or universal optimization

– Finding the “best” answer

– Make the “best” plans

– Start with your eyes on the finish

– Telling the complete story
• At the appropriate level

• For the right audience

Before a system is optimized (designed),

the objectives must be known

What Does “Best” Mean

• Best Performance?

─ or just meeting requirements?

• Lowest cost?

• Fastest delivery?

• Lowest risk (performance, cost,
schedule)?

• Best Value?

• Longest lived?

• Balancing “all of the above”?

Big Picture View of SE For Science

• Systems Engineering
should be thought of as
guidelines

– Not a hard one size fits
all recipe

• This is especially true for
large space astronomical
systems

– For new systems there is
no book

Systems Engineering is both Science and Art

Central Problem of System Design For Science
• To design and execute a system capable of producing worthy

(new) science, with constraints
– Under-defined or improperly defined problem
– New designs or technology
– Complexity
– Imperfect parts
– Finite funds
– Finite time

• Celestial schedule
• Graduation (or Retirement)

• Is SE job for astronomical (scientific) instruments special?
– Generally scientific instruments are aimed at doing something

new or better than previously achieved
• “there is no book for this”

– Lots of “new” (non-recurring) engineering means this may be
harder than incremental improvements in other areas of
engineering

Process, Orthodoxy, Imagination and Rigor

• Much is said of process
• Process is important but it is never a substitute for

doing the right work at the right time
• Many SE processes are aimed to apply to all

situations and by necessity very general
– Typically don’t always apply well to developmental

activities

• These processes are good guidelines, but should not
be taken as inviolate, guidelines or statute

• One need be aware of these processes, but be ready
to deviate along your own lines if needed
– Be able to defend you position with a well presented

argument

To get the right answer you must ask
the correct question

• Many problems confronting the systems engineer,
especially on very complex systems are posed with
the best knowledge at the time they are asked
– Knowledge advances

• Fundamental science questions
• How the system operates
• Assume learning

• As you work through problems you should always
reconsider, “are we solving the right problem in light
of what we NOW know?”
– Applies at all phases of a program or project

• It is more than ok, it is required, that question being
addressed be reconsidered if new information
demands it

What makes a good System Engineer?
• Has intellectual curiosity

– Multidisciplinary
• Has wide range of technical skills

– Enjoys interdisciplinary problems

• Has a “Big Picture” view
– Is conversant with fundamental questions; “science smart”
– Comprehensive understanding of the system and how it operates

• Sees connections
– N2 view
– Knows for all i

• Uses the power of approximations anchored to
underlying physics

• Is comfortable with change & uncertainty
– Knowledge of probability & statistics is essential
– Understands how to handle “uncertain” uncertainties
– Can juggle chaos and options

j

i

x
x

i

z

w

What makes a good System Engineer?

• A visionary skeptic
– Active imagination with proper paranoia
– Multi-dimensional risk analyst
– Fault Tolerance management is a key experience/skill set
– Failure Modes and Effects analysis experience

• Pays attention to resources, margins, and reserves
– Capabilities beyond requirements
– Partials for science return and for cost

• Appreciates the art of systems engineering
• Appreciation of process

– Understanding the tool kit (But tools do not make the artist)

• Self-confidence & energy
– Hard working & not easily discouraged

• Self motivated
– It is the SE’s job to turn over the rocks!!

• Likes people
• Good communications skills

 - Gentry Lee, JPL & Kossiakov, et. al.

Keys to System Design
• Know how the system works

– Be able to explain the concept

– Know the Big Fundamental Problem of the design
• Make it central or paramount

– Learn how the system fails
• Design should mitigate failure

• Have a performance model and keep it current
– Know the assumptions and approximations

• Relax them or test to validate

• Have budgets for all the key performance metrics

• Understand allocations

10

Tools of the Trade

• Budgets and allocation
• N2 diagrams

• Requirements traceability

• ad infinitum…..

11

Derivation of the Law of Error Propagation

• Consider a process with the outcome, z

• The ideal outcome is z=mz

• For small deviations, from the ideal set of parameters, mi, z is
given by the Taylor Series expansion

• Ignoring terms of greater than linear order in (wi-mi) gives the
expression for the expected outcome in the case of a non-ideal
process

1 2(, ,)Nz f w w w

1 2(, ,)z Nfm m m m

 2

1

N

z i i i i

i i

f
z w O w

w
m m m

1

N

z i i

i i

f
z w

w
m m

 [2]

[1]

Derivation of the Law of Error Propagation

• Consider a process with the outcome, z

• The ideal outcome is z=mz

• For small deviations, from the ideal set of parameters, mi, z is
given by the Taylor Series expansion

• Ignoring terms of greater than linear order in (wi-mi) gives the
expression for the expected outcome in the case of a non-ideal
process

1 2(, ,)Nz f w w w

1 2(, ,)z Nfm m m m

 2

1

N

z i i i i

i i

f
z w O w

w
m m m

1

N

z i i

i i

f
z w

w
m m

 [2]

 f is the system model f is the system model

 Here are the partials
 we spoke of earlier

Derivation of the Law of Error Propagation

• Subtracting mz from both sides gives

• Squaring gives

• Taking the expectation value, E(x)=xp(x)dx, of both sides

1

N

z i i

i i

f
z w

w
m m

2

1
2 2

1 1 1

2
N N N

z i i i i j j

i i j ii i j

f f f
z w w w

w w w
m m m m

2

1
2 2

1 1 1

2
N N N

z i i i i j j

i i j ii i j

f f f
E z E w w w

w w w
m m m m

Derivation of the Law of Error Propagation
• Since the expectation value of a sum is the sum of the expectations and where left

hand side has been re-written since E[(z-mz)
2]=sz

2

• Rewriting the right hand side gives

• Where the covariance of i and j, sij is given by

• rij is the correlation coefficient between wi and wj

– rij can vary between –1 and 1

2

1
22

1 1 1

2
N N N

z i i i i j j

i i j ii i j

f f f
E w E w w

w w w
s m m m

2
1

2 2

1 1 1

2
N N N

z i ij

i i j ii i j

f f f

w w w
s s s

ij i j ijs s s r

[3]

Derivation of the Law of Error Propagation

• Using the definition of covariance gives

• When all the parameters are independent, rij=0 which gives the traditional
result

2
1

2 2

1 1 1

2
N N N

z i ij i j

i i j ii i j

f f f

w w w
s s r s s

2

2 2

1

N

z i

i i

f

w
s s

 [4]

We have [4], what could possibly go
wrong?

• As more is learned, which we KNOW will
happen…

– f might be modified

• Design changes

• Improved understanding
– Missing physics

– N might increase

– Sensitivities change

17

We have [4], what could possibly go
wrong?

• As more is learned, which we KNOW will
happen…

– f might be modified

– N might increase

– Sensitivities change

18

Add Reserve

19

2

2 2

1

N

z i

i i

f

w
Rs s

 [5]

Add Reserve

20

2

2 2

1

N

z i

i i

f

w
Rs s

 [5]

Why is Adding Reserve Hard???

• Looks like padding

• Makes the lower level tolerances tighter

• The job of systems engineer is to explain why this
reserve is necessary and will lower program risk
(cost, schedule and performance)

• The more rigor and thought into this the greater the
chances of success

• How do you know how big to make R?

21

2

2 2

1

N

z i

i i

f

w
Rs s

 [5]

How are σi assigned?

• [5] is an underdetermined system

• The σi are the system tolerances

– This is where success or failure lurk…..

• A set of σ must be determined or “entropy” will
find one for you….

22

2

2 2

1

N

z i

i i

f

w
Rs s

 [5]

Objective Function, U
• An objective function embodies a cost (benefit) to be minimized

(maximized) and depends on all the variables of the problem,
namely all the µi and σi

• We can write the objective function (assuming the cost
(benefits) of the ith parameter are independent of all others as
ui

• Then the apportionment problem is a simple matter of
minimizing (maximizing) U while still satisfying

• That is all great but in the real world……..

 ,i i i

i

U u w s

2

2 2

1
i i

N

z i

i i w

f

w
m

s s

Objective Function, U
• An objective function embodies a cost (benefit) to be minimized

(maximized) and depends on all the variables of the problem,
namely all the µi and σi

• We can write the objective function (assuming the cost (benefits)
of the ith parameter are independent of all others as ui

• Then the apportionment problem is a simple matter of minimizing
(maximizing) U while still satisfying

• That is all great but in the real world…….. the ui are not completely
known, so what is a systems engineer to do?

 ,i i i

i

U u w s

2

2 2

1
i i

N

z i

i i w

f

w
m

s s

Objective Function, U
• An objective function embodies a cost (benefit) to be minimized

(maximized) and depends on all the variables of the problem,
namely all the µi and σi

• We can write the objective function (assuming the cost (benefits)
of the ith parameter are independent of all others as ui

• Then the apportionment problem is a simple matter of minimizing
(maximizing) U while still satisfying

• That is all great but in the real world…….. the ui are not completely
known, so what is a systems engineer to do?

 ,i i i

i

U u w s

2

2 2

1
i i

N

z i

i i w

f

w
m

s s

One more thing….there can be

more than one objective function

Think cost and schedule

Remember when I said, SE is art???
• Construct U-somehow, any how

– Lots of ways to do this
• Use the pieces that are known

– Go get some help
– Guess and test your guess

• Understanding U even emotionally is KEY to the
design process

– Keep in mind that is no one has a clue about the ui at
some level, your program is likely very badly priced or
estimated in some way!!!

• If you don’t think this through and just
allocate by other means the resulting design
is most likely optimized for something the
customer doesn’t care about
– Who you work for
– Who yells loudest
– Who you like

• Telling the story of the performance budget
is the sine qua non of a review
– Why does the system look like it does

Technical Skills Are Not Enough
• Communication

– Written
• Reports and documents
• Specifications

– Requirements
– Interfaces

• Email

– Verbal
• Presentations

• Organization
– Set the right priorities for

the SE team
– Library design

• How are important
decisions recorded and
found

• Meetings

– Right cadence for the problem

– Know how to run a meeting

• Do keep minutes

• Do record action items

– Review actions and retire
those that are OBE

» Have a known policy

– Do make sure all are heard

– Make sure you invite everyone

• When in doubt over invite

• Teamwork

– Big teams will not meet often
face to face

• Cultural Issues

– Different organizations do good
work differently

They never told me about this in
engineering school: lessons from the

front line

28

Bad Ideas are Hard to Kill

Beam combination
interface

29

Be Prepared, For Anything

30

Be Prepared, For Anything

31

Communication is Key

32

Some Problems are NOT Technical.

33
MCC

Some Are Very Technical

34

Don’t Prejudge Ideas

Original Pinhole Camera Concept

35

Don’t Prejudge Ideas

 Starshade

36

Challenge tight
Requirements

37

Respond Overwhelmingly

38

Solve problems by thinking all the way
to the end

39
MELIOS

Lessons Below the Line

• Meet face to face
– Problem of the “Mute Button Tough Guy”

• New ≠ Better
• Never say no to work
• Learn how to name things

– Call things by correct names, saga of the AAS

• If you get a formulated problem it is probably
wrong
– AXAF Magnetic broom

• When challenged, respond overwhelmingly
– APD error bar

• Sometimes the dragon wins….
40

One Final Thought

It is not a sin to make mistake, it is a sin to
repeat one

41

One Final Thought

It is not a sin to make mistake, it is a sin to
repeat one

Make a new mistake

42

43

Thanks for listening.

