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Overview and Purpose 

• Accept an invitation 

• Examine systems engineering as applied 
to science missions 

– Discipline 

– Art 

• A few lessons learned 

• Infotainment 

• Questions 
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What is Systems Engineering? 
• Use the dictionary and combine system and 

engineering…. 

• Systems Engineering is focused on considering the 
whole job or problem 
– Global or universal optimization 

– Finding the “best” answer 

– Make the “best” plans 

– Start with your eyes on the finish 

– Telling the complete story 
• At the appropriate level 

• For the right audience 

Before a system is optimized (designed), 

the objectives must be known 

What Does “Best” Mean 

• Best Performance? 

─ or just meeting requirements? 

• Lowest cost? 

• Fastest delivery? 

• Lowest risk (performance, cost, 
schedule)? 

• Best Value? 

• Longest lived? 

• Balancing “all of the above”? 



Big Picture View of SE For Science 

• Systems Engineering 
should be thought of as 
guidelines 

–  Not a hard one size fits 
all recipe 

• This is especially true for 
large space astronomical 
systems 

– For new systems there is 
no book 

Systems Engineering is both Science and Art 



Central Problem of System Design For Science 
• To design and execute a system capable of producing worthy 

(new) science, with constraints 
– Under-defined or improperly defined problem 
– New designs or technology  
– Complexity  
– Imperfect parts 
– Finite funds 
– Finite time 

• Celestial schedule 
• Graduation (or Retirement) 

• Is SE job for astronomical (scientific) instruments special? 
– Generally scientific instruments are aimed at doing something 

new or better than previously achieved 
• “there is no book for this” 

– Lots of “new” (non-recurring) engineering means this may be 
harder than incremental improvements in other areas of 
engineering 



Process, Orthodoxy, Imagination and Rigor 

• Much is said of process 
• Process is important but it is never a substitute for 

doing the right work at the right time 
• Many SE processes are aimed to apply to all 

situations and by necessity very general 
– Typically don’t always apply well to developmental 

activities 

• These processes are good guidelines, but should not 
be taken as inviolate, guidelines or statute 

• One need be aware of these processes, but be ready 
to deviate along your own lines if needed 
– Be able to defend you position with a well presented 

argument 

 
 
 



To get the right answer you must ask 
the correct question 

• Many problems confronting the systems engineer, 
especially on very complex systems are posed with 
the best knowledge at the time they are asked 
– Knowledge advances 

• Fundamental science questions 
• How the system operates 
• Assume learning 

• As you work through problems you should always 
reconsider, “are we solving the right problem in light 
of what we NOW know?” 
– Applies at all phases of a program or project 

• It is more than ok, it is required, that question being 
addressed be reconsidered if new information 
demands it 
 



What makes a good System Engineer? 
• Has intellectual curiosity 

– Multidisciplinary 
• Has wide range of technical skills 

– Enjoys interdisciplinary problems 

• Has a “Big Picture” view 
– Is conversant with fundamental questions; “science smart” 
– Comprehensive understanding of the system and how it operates 

• Sees connections 
– N2 view 
– Knows              for all i 

• Uses the power of approximations anchored to  
underlying physics 

• Is comfortable with change & uncertainty 
– Knowledge of probability & statistics is essential 
– Understands how to handle “uncertain” uncertainties 
– Can juggle chaos and options 
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What makes a good System Engineer? 

• A visionary skeptic 
– Active imagination with proper paranoia 
– Multi-dimensional risk analyst 
– Fault Tolerance management is a key experience/skill set 
– Failure Modes and Effects analysis experience 

• Pays attention to resources, margins, and reserves 
– Capabilities beyond requirements 
– Partials for science return and for cost 

• Appreciates the art of systems engineering 
• Appreciation of process 

– Understanding the tool kit (But tools do not make the artist) 

• Self-confidence & energy 
– Hard working & not easily discouraged 

• Self motivated 
– It is the SE’s job to turn over the rocks!! 

• Likes people  
• Good communications skills 

 - Gentry Lee, JPL & Kossiakov, et. al. 



Keys to System Design 
• Know how the system works 

– Be able to explain the concept  

– Know the Big Fundamental Problem of the design 
• Make it central or paramount 

– Learn how the system fails 
• Design should mitigate failure 

• Have a performance model and keep it current 
– Know the assumptions and approximations 

• Relax them or test to validate 

• Have budgets for all the key performance metrics 

• Understand allocations 
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Tools of the Trade 

• Budgets and allocation 
• N2 diagrams 

• Requirements traceability 

• ad infinitum….. 
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Derivation of the Law of Error Propagation 

• Consider a process with the outcome, z 

 

 

• The ideal outcome is z=mz 

 

• For small deviations, from the ideal set of parameters, mi, z is 
given by the Taylor Series expansion  

 

 

• Ignoring terms of greater than linear order in (wi-mi)  gives the 
expression for the expected outcome in the case of a non-ideal 
process 
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 f is the system model  f is the system model 

 Here are the partials 
 we spoke of earlier 



Derivation of the Law of Error Propagation 

• Subtracting mz from both sides gives 

 

 

• Squaring gives 

 

 

 

• Taking the expectation value, E(x)=xp(x)dx, of both sides 
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Derivation of the Law of Error Propagation 
• Since the expectation value of a sum is the sum of the expectations and where left 

hand side has been re-written since E[(z-mz)
2]=sz

2 

 

 

 

• Rewriting the right hand side gives 

 

 

• Where the covariance of i and j, sij is given by 

 

•  rij is the correlation coefficient between wi and wj 

–  rij can vary between –1 and 1 
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Derivation of the Law of Error Propagation 

• Using the definition of covariance gives 

 

 

 

 

• When all the parameters are independent, rij=0 which gives the traditional 
result 
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We have [4], what could possibly go 
wrong? 

• As more is learned, which we KNOW will 
happen… 

– f might be modified 

• Design changes 

• Improved understanding 
– Missing physics 

– N might increase 

– Sensitivities change 
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18 



Add Reserve 
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Add Reserve 
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Why is Adding Reserve Hard??? 

• Looks like padding 

• Makes the lower level tolerances tighter 

• The job of systems engineer is to explain why this 
reserve is necessary and will lower program risk 
(cost, schedule and performance) 

• The more rigor and thought into this the greater the 
chances of success 

• How do you know how big to make R? 
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How are σi assigned? 

• [5] is an underdetermined system 

 

• The σi are the system tolerances 

– This is where success or failure lurk….. 

 

• A set of σ must be determined or “entropy” will 
find one for you…. 
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Objective Function, U 
• An objective function embodies a cost (benefit) to be minimized 

(maximized) and depends on all the variables of the problem, 
namely all the µi and σi  

• We can write the objective function (assuming the cost 
(benefits) of the ith parameter are independent of all others as 
ui 
 
 

• Then the apportionment problem is a simple matter of 
minimizing (maximizing) U while still satisfying  
 
 
 

• That is all great but in the real world…….. 
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One more thing….there can be 

more than one objective function 

 
Think cost and schedule 



Remember when I said, SE is art??? 
• Construct U-somehow, any how 

– Lots of ways to do this 
• Use the pieces that are known 

– Go get some help 
– Guess and test your guess 

• Understanding U even emotionally is KEY to the 
design process 

– Keep in mind that is no one has a clue about the ui at 
some level, your program is likely very badly priced or 
estimated in some way!!! 

• If you don’t think this through and just 
allocate by other means the resulting design 
is most likely optimized for something the 
customer doesn’t care about 
– Who you work for 
– Who yells loudest 
– Who you like 

• Telling the story of the performance budget 
is the sine qua non of a review 
– Why does the system look like it does 



Technical Skills Are Not Enough 
• Communication 

– Written 
• Reports and documents 
• Specifications 

– Requirements 
– Interfaces 

• Email 

– Verbal 
• Presentations 

• Organization 
– Set the right priorities for 

the SE team  
– Library design 

• How are important 
decisions recorded and 
found 

 

• Meetings  

– Right cadence for the problem 

– Know how to run a meeting 

• Do keep minutes 

• Do record action items 

– Review actions and retire 
those that are OBE 

» Have a known policy 

– Do make sure all are heard 

– Make sure you invite everyone 

• When in doubt over invite 

• Teamwork 

– Big teams will not meet often 
face to face 

• Cultural Issues 

– Different organizations do good 
work differently  



They never told me about this in 
engineering school: lessons from the 

front line 
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Bad Ideas are Hard to Kill 

Beam combination 
interface 
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Be Prepared, For Anything 
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Be Prepared, For Anything 
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Communication is Key 
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Some Problems are NOT Technical.  

33 
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Some Are Very Technical 
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Don’t Prejudge Ideas 

Original Pinhole Camera Concept 
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Don’t Prejudge Ideas 

 Starshade 
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Challenge tight 
Requirements 
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Respond Overwhelmingly 
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Solve problems by thinking all the way 
to the end 
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Lessons Below the Line 

• Meet face to face 
– Problem of the “Mute Button Tough Guy” 

• New ≠ Better 
• Never say no to work 
• Learn how to name things 

– Call things by correct names, saga of the AAS 

• If you get a formulated problem it is probably 
wrong 
– AXAF Magnetic broom 

• When challenged, respond overwhelmingly 
– APD error bar 

• Sometimes the dragon wins…. 
40 



One Final Thought 

It is not a sin to make mistake, it is a sin to 
repeat one 
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One Final Thought 

It is not a sin to make mistake, it is a sin to 
repeat one 

 

Make a new mistake 
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Thanks for listening. 


