

Verification & Validation with Model-Based Design

Lyle Shipton Application Engineer MathWorks Plano, TX

Background

- University of Illinois at Urbana-Champaign
 - B.S, M.S. Aerospace Engineering
- SpaceX Rocket Development Facility
 - Test Engineer
 - Lead Engineer, Integration & Test
- Eaton Aerospace, Fuel and Motion Controls
 - Lead Aerospace Systems Engineer
- MathWorks, Application Engineering Group
 - Lead Engineer, Aeronautical applications

MathWorks at a Glance

Office locations

Distributors serving 16 countries

- Privately held
- 4000 employees worldwide
- More than 3 million users in 180+ countries

MathWorks[®]

Core MathWorks Products

MATLAB

Math. Graphics. Programming.

- Designed for engineers and scientists
- Professionally developed, tested, and documented
- Toolboxes for:
 - Machine learning, data analytics, deep learning, image processing and computer vision, signal processing and communications, computational finance, robotics and control systems
- Interactive apps that automatically generate programs
- Easily scales to clusters, GPUs, and clouds
- Direct deployment to production enterprise applications
- Automatic conversion to embeddable C and CUDA code
- Integrates with Simulink to support Model-Based Design

MathWorks[®]

Core MathWorks Products

SIMULINK[®]

Simulation and Model-Based Design

Model and simulate your system

- Use one multi-domain environment
- Model the system under test and the plant
- Simulate how all parts of the system behave

Test early and often

- Test your system under all conditions
- Validate your design with real-time testing
- Trace from requirements to design to code

Automatically generate code

- Generate production-quality C and HDL code
- Deploy directly to embedded processors or FPGA's/ASIC's

Key capabilities for engineers and scientists

Verification, Validation, and Test				Test and measurement		Model checking	 Code verifica Certification HDL verifica 	kits	 Test automation Requirements authoring & mgmt.
Automatic Code Generation			 Rapid prototyping and HIL 	• Embedded code	 Hardware s packages 	support	PLC code HDL code	MATLAB to C/HDL	• HW/SW co-development • GPU code
System Modeling and Simulation		Simulink	 DSP designs Communications systems 	State charts	 Physical modeling 	 Discrete-event simulation Video processing 	Computer vision	• RF • Phased array	 Robotics and autonomous systems WLAN/LTE protocols
Data Analysis and Algorithm Development	 Control design Signal processing 	OptimizationStatistics	 Image processing 	 Computational finance 		 Computational biology 		Machine learning	 Deep learning Sensor fusion Text analytics
Technical Computing	MATLAB		 Application deployment 	 Student version Instrument and database conn 		Parallel computing	 MATLAB Mc for phones/ta MATLAB On 	ablets	 Big data AWS & Azure support Enterprise integration ThingSpeak for IoT
	1985	1990	1995	2000		2005	2010		2015
	MathWorks founded								

in 1984

MathWorks Product Overview

Event-Based Model	ling	Ρ	hysical Modeling	Applications
Real-Time Simulation and Testing		Validation, Test	Simulation Graphics and Reporting	Control Systems
	SIN AT I	LINK [®]		Signal Processing and Communications
Si	Image Processing and Computer Vision			
Parallel Comput	ing	Code G	Generation	Test and Measurement
				Computational Finance
The		LAB®	ing	Computational Biology
Math, Statistics, and Optimization	Application	Deployment	Database Access and Reporting	

Model-Based Design Workflow

Key Takeaways

- Find bugs early, develop high quality systems
- 2. Replace manual verification tasks with workflow automation
- 3. Learn about reference workflow that conforms to safety standards

"Reduce costs and project risk through early verification, shorten time to market on a certified system, and deliver high-quality production code that was first-time right" Michael Schwarz, ITK Engineering

Safety of Electronic Systems

- Critical functionality in industries such as Aerospace, Automotive, and Industrial Automation
- Real-time operation
 - Compute time lag cannot be tolerated
- Predictable behavior
 - No unintended functionality
- Must be robust
 - Program crash or reboot not allowed

Role of Certification Standards

- DO-178 (Avionics)
 - Guidelines for the safety of software in certain airborne systems
 - Level A to E (most critical to least)
 - Verification activities include review of requirements and code, testing of software, code coverage
- ISO 26262 (Automotive)
 - Defines functional safety for automotive electronic systems
 - Automotive Safety Integrity Level ASIL QM, A to D (least to most; derived from severity, controllability, probability)
 - ISO 26262-6 pertains to software development, verification, and validation
- IEC 61508 (Industrial Automation & Machinery)
 - General functional safety standard, originally for process control industry
 - Safety Integrity Level SIL 1 to 4 (least to most; derived from exposure to demand needs and probability of failure)
 - Defines the software requirements and lifecycle for software, that includes validation and verification

Reference Verification and Validation Workflow

Development Process and Workflow

Development Process and Workflow

Development Process and Workflow

Verification and Validation Tasks and Activities

Verification and Validation Tasks and Activities

Simulink Requirements Work with requirements and design together

- Author, edit and organize requirements
- View and link requirements within the Simulink graphical editor
- Track status and manage requirement changes
- Trace requirements to models, generated code, and test cases

Requirements Perspective

Verification and Validation Tasks and Activities

Example

Is there a potential error in this model? It depends...

Example

How about now?

R2017**b**

Simulink Check Automate verification and correct models to improve design

Standards & Guidelines Checks	Edit Time Checking	Model Metrics	Model Refactoring
 Automate compliance to standards Create custom checks 	 Find and fix compliance issues while you design 	 Analyze your model for complexity, size, reusability Assess design quality 	 Find clones and modeling patterns. Refactor to improve maintainability
 Modeling Standards for DO-178C/DO-331 Modeling Standards for EN 50128 Modeling Standards for IEC 61508 Modeling Standards for IEC 62304 Modeling Standards for ISO 26262 Modeling Standards for MAAB Modeling Standards for MISRA C:2012 Modeling Standards for Secure Coding (CERT C, 	Usage of prohibited block $ \begin{array}{c} $	METROS DAGROMO MODELING GUIDELINE COMPLIANCE	image: content of the second secon

Verification and Validation Tasks and Activities

Functional Testing Process

- Author test-cases that are derived from requirements
 - Use test harness to isolate component under test
 - Test Sequence to create complex test scenarios
- Manage tests, execution, results
 - Re-use tests for regression
 - Automate in Continuous Integration systems such as Jenkins

Test Harness

- Harnesses contained in the model file or external
- Build harness at unit (subsystem) or system level
- ✓ Synchronized test environment (harness ←→ model)
- Enables unit testing without requiring new model
- Configure harness input and output blocks
- ✓ Supports SIL, PIL, HIL

Test Sequence/Assessment Block

- ✓ Reactive and/or time based test cases
- Easier translation of test procedures
- Built on top of Stateflow with extensions for testing (SF license not required)
- ✓ Subset of MATLAB language
- ✓ Steps are temporal or logic-based
- Create complex test inputs and assessments
- ✓ Supports debugging (breakpoints)

		• 🕞 🕞 🕐	
Data Symbols	Step	Transition	Next Step
Input gear Output speed	init_step speed = ramp (t); throttle = ramp (t);	1. after (2, sec)	step_2 ▼
throttle Local Add peak_speed peak_throttle Edit - Delete Constant	step_2 speed = 2* ramp (t); throttle = 2* ramp (t); peak_speed = speed; peak_throttle = throttle;	1. gear == 3	step_3 ▼
Parameter Data Store Memory	■ step_3 if speed >0 speed = peak_speed - 6 throttle = peak_throttle - else speed = 0; throttle = 0:		

Test Manager

- ✓ Create test cases
- ✓ Group into suites and test files
- Execute individual or batch
- ✓ View result summary
- ✓ Analyze results
- ✓ Archive, export, report

Verification and Validation Tasks and Activities

Formal Verification with Simulink Design Verifier

42

Verification Task

Simulink Coverage

Measure test coverage in models and generated code

- Structural coverage analysis and reports from tests performed on Simulink® models (including C/C++ S-functions)
- Coverage metrics including decision, condition, MC/DC, relational boundary, and signal range
- Coverage analysis of C/C++ code generated by Embedded Coder®
- Coverage result highlighting in blocks, subsystems, and state charts
- Tool qualification support (with DO Qualification and IEC Certification Kits)

R2017h

MathWorks[®]

Model Elements That Receive Coverage

MATLAB function blocks

Stateflow charts

C/C++ code S-Functions

Generated code

	*/	
8	<pre>rtb_inputGElower = (rtb_input >= slvnvdemo_counter_U.lowe</pre>	r);
9		
9	<pre>/* Switch: '<u><root>/Switch</root></u>' incorporates:</pre>	
1	* Inport: ' <u><root>/ upper</root></u> '	
2	* Logic: ' <u><root>/And</root></u> '	
3	* RelationalOperator: ' <u><root>/upper GE input</root></u> '	
20 C		
4	*/	
4 5	<pre>*/ if (!((slvnvdemo_counter_U.upper >= rtb_input) && rtb_inp</pre>	utGElow
5 D	<pre>if (!((slvnvdemo_counter_U.upper >= rtb_input) && rtb_inp ecisions analyzed: ((slvnvdemo_counter_U.upper >= rtb_input) && rtb_inputGElower)</pre>	50%
5 D	<pre>if (!((slvnvdemo_counter_U.upper >= rtb_input) && rtb_inp ecisions analyzed: ((slvnvdemo_counter_U.upper >= rtb_input) && rtb_inputGElower)</pre>	1

Verification and Validation Tasks and Activites

Addressing Missing Coverage

Verification and Validation Tasks and Activities

Verification and Validation Tasks and Activities

Static Code Analysis Techniques Supported by Polyspace

- Code metrics and standards
 - Comment density, cyclomatic complexity,...
 - MISRA and Cybersecurity standards
- Bug finding
 - Data and control flow of software
 - Check code for security vulnerabilities
- Code proving
 - Formal methods with abstract interpretation
 - No false negatives

Results from Polyspace Code Prover

Traceability from Code to Model

Polyspace Bug Finder and Polyspace Code Prover verification results, including MISRA analysis can be traced from code to model

Verification and Validation Tasks and Activities

MathWorks V&V Solution Summary

Requirements	Author, manage, and trace requirements
Standards Compliance	Verify compliance with standards and guidelines
Testing	Develop, manage, execute simulation-based tests
Formal Verification	Prove design meets requirements, prove robustness
Coverage Analysis	Measure model and generated code coverage
Static Code Analysis	Check bugs, MISRA compliance, prove code
SIL, PIL	Perform back-to-back testing

MathWorks V&V Product Capabilities

Requirements	Simulink Requirements* (New in R2017b)
Standards Compliance	Simulink Check* (New in R2017b)
Testing	Simulink Test
Formal Verification	Simulink Design Verifier
Coverage Analysis	Simulink Coverage* (New in R2017b)
Static Code Analysis	Polyspace Bug Finder, Polyspace Code Prover
SIL, PIL	Simulink Test

MathWorks

Workflows for Certification Standards

IEC 61508 ISO 26262 IEC 62405 EN 50128

DO-178C DO-331 DO-333

Bell Helicopter Develops World's First Commercial Fly-by-Wire Helicopter

Challenge

Develop flight software for the first commercial fly-bywire helicopter and certify it to DO-178B Level A

Solution

Use Model-Based Design to model and simulate the control laws, trace requirements to the model, and generate and verify 16,000 lines of code

Results

- Integration time cut by 90%
- Development iterations reduced from weeks to hours
- Confidence in code quality maintained
- Simulink Code Inspector Qualified by FAA for DO-178B Level A

The Bell 525 Ships 1 and 2 over the Palo Duro Canyon.

"With Model-Based Design we had a successful first flight; there were no issues from a control or integration standpoint.
Generating the control law code from our Simulink model with Embedded Coder eliminated the slowdowns caused by manual code generation and freed the team to work on meeting the broader program goals."
Mike Bothwell, Bell Helicopter

BAE Systems Delivers DO-178B Level A Flight Software on Schedule with Model-Based Design

Challenge

Develop flight-critical software for a midsized business jet in compliance with DO-178B Level A standards

Solution

Use Model-Based Design to model the software and systems, run simulations with customer-provided test vectors, trace requirements to model elements, and generate 200,000 lines of certified code

Results

- Development efficiency doubled
- Certification schedule maintained
- Communication between teams facilitated

Primary flight control computers from BAE Systems.

"When we generated code from our Simulink models with Embedded Coder, the team we handed it off to knew it was gold—that it was debugged and fully met the requirements because we had run it through the Simulink test vectors supplied by our customer. That was a huge advantage on this program." - Maria Radecki, BAE Systems

ESA and Airbus Create Upper-Stage Attitude Control Development Framework Using Model-Based Design

Challenge

Speed the development of software for controlling complex launcher upper stage missions including the attitude of satellite payloads after they separate from ESA launch vehicles

Solution

Use Model-Based Design to develop controller models and multidomain physical models, run closed-loop simulations, and generate code for PIL testing

Results

- Design iterations reduced from one week to one day
- Failure modes modeled and eliminated
- Comprehensive design framework established

Propellant motion in spinning upper stages at 46, 350, and 600 seconds. Distribution after 350 seconds becomes uneven

"Model-Based Design multiplies the range of capabilities that I have as an engineer. As an individual control engineer I can do what previously took a handful of engineers, because I can create and simulate my own multidomain models. I don't have a wall around me anymore; I am able to better communicate and contribute across disciplines."

Contact Us

