" MathWorks

Verification & Validation with Model-Based Design

Lyle Shipton
Application Engineer
MathWorks

Plano, TX

© 2018 The MathWorks, Inc.

&\ MathWorks

Background

= University of lllinois at Urbana-
Champaign
— B.S, M.S. Aerospace Engineering

= SpaceX Rocket Development Facility
— Test Engineer
— Lead Engineer, Integration & Test

= Eaton Aerospace, Fuel and Maotion
Controls
— Lead Aerospace Systems Engineer

- MathWorks, Application Engineering
Group

— Lead Engineer, Aeronautical
applications

4\ MathWorks

MathWorks at a Glance

= Privately held
4000 employees worldwide
More than 3 million users in 180+ countries

Earth’s topography on a Miller cylindrical projection,
created with MATLAB and Mapping Toolbox.

Office locations Distributors serving 16 countries

Core MathWorks Products

MATLAB

Math. Graphics. Programming.

Designed for engineers and scientists
Professionally developed, tested, and documented

Toolboxes for:

— Machine learning, data analytics, deep learning, image
processing and computer vision, signal processing and
communications, computational finance, robotics and control
systems

Interactive apps that automatically generate programs
Easily scales to clusters, GPUs, and clouds

Direct deployment to production enterprise applications
Automatic conversion to embeddable C and CUDA code
Integrates with Simulink to support Model-Based Design

4\ MathWorks

4\ MATLAB R2018a

HOME PLOTS A

<= EAa b C: b MATLAB »

B B Live Editor - CAMATLAB\ExploringExoplanets.mbc
ExploringExoplanets.mix
How Far Away Are these Planets?

There are 90 exoplanets within 50 light-years of earth and
450 exoplanets within 200 light-years

xlim([e 1eee])
ylabel 'Number of Planets’
xlabel 'Light Years from Earth’

Where is the nearest exoplanet?

idx = find(exoplanets.st_distance
name = char(exoplanets{idx, st_r

dist = 3.26%exoplanets{idx, 'st_distance’};
fprintf('The nearest exoplanet is around %s, %

histogram(3.26*exoplanets.st_distance, 'BinWidth’,

What Types of Stars have Planets?

We can look at the exoplanet archive to see what types of

= =
o
200 40 60C 80 1001
Light Years from Earth
The nearest exoplanet is around Proxima Cen, 4.21 lignt years from eartn

- 0o x
FHEE B9 e & @) serh bocumentation o

Comman d Window
st_name

111111
111111
333333
555555

555555
4444444
———————

uuuuuuuu

Core MathWorks Products

SIMULINK

Simulation and Model-Based Design

Model and simulate your system
— Use one multi-domain environment
— Model the system under test and the plant
— Simulate how all parts of the system behave

Test early and often
— Test your system under all conditions
— Validate your design with real-time testing
— Trace from requirements to design to code

Automatically generate code
— Generate production-quality C and HDL code
— Deploy directly to embedded processors or
FPGA's/ASIC’s

L rct_helico - Simulink

File Edit View Display Diagram Simulation Analysis Code Tools Help

-

rct_helico

R MM O

4\ MathWorks

® |["a|rct_helico

lllllll

E 4 E @

O &

CONTROLLER

Vi

resnornse

cdeds

&\ MathWorks

Key capabilities for engineers and scientists

Verification, * Test and * Model checking * Code verification * Test automation
Validation, measurement * Certification kits * Requirements
and Test * HDL verification authoring & mgmt.
Automatic * Rapid *Embedded *Hardware support *PLCcode *MATLAB *HWI/SW
Code prototyping code packages * HDL code to C/HDL co-development
Generation and HIL * GPU code
System : ; *DSPdesigns *State charts *Physical ~ *Discrete-event ~ *Computer ~ *RF * Robotics and
Modeling and I Simulink I « Communications modeling simulation vision *Phased autonomous systems
Simulation systems * Video processing array * WLAN/LTE protocols
Data Analysis * Control design * Optimization ~ *Image * Computational * Computational * Machine * Deep learning
and Algorithm * Signal processing * Statistics processing finance biology learning * Sensor fusion
Development * Text analytics
_ * Application * Student version * Parallel computing * MATLAB Mobile :i\i/%gaéaA "
Technical g n A AT AB I deployment « Instrument and for phones/tablets . AzUre suppo
Computing datab fvit . , Enterprise integration
atabase connectivity MATLAB Online * ThingSpeak for loT
1985 1990 1995 2000 2005 2010 2015
MathWorks
founded
in 1984

4\ MathWorks

MathWorks Product Overview

Event-Based Modeling Physical Modeling Applications

Real-Time Simulafion and Verification, Validation, Simulation Graphics and

Testing and Test Reporting

SIMULINK"

Simulation and Model-Based Design

Control Systems

Signal Processing and Communications

Image Processing and Computer Vision

Test and Measurement

Computational Finance

MATLAB

The Language of Technical Computing

Computational Biology

Math, Statistics, and Application Deployment Database Access and
Optimization Reporting

Model-Based Design Workflow

RESEARCH REQUIREMENTS

4 4

r

DESIGN

Environment Models

Physical Components

Algorithms

.

.

|

IMPLEMENTATION

C, C++ VHDL, Verilog SPICE

wou| [os | [reen)[asc] | Aon |

J

INTEGRATION

TEST
AND
VERIFICATION

4\ MathWorks

4\ MathWorks

Key Takeaways

1. Find bugs early, develop high System Verified & Validated
Requirements
Soimcahe e Sy

quality systems =

2. Replace manual verification tasks

with workflow automation _ Integration
High Level Testing
Design
3. Learn about reference workflow that
conforms to safety standards Detailed Unit
Design Testing

“Reduce costs and project risk through early

verification, shorten time to market on a certified Coding
system, and deliver high-quality production code that

was first-time right” Michael Schwarz, ITK Engineering

4\ MathWorks

Safety of Electronic Systems

= Critical functionality in industries such as Aerospace,
Automotive, and Industrial Automation

- Real-time operation
— Compute time lag cannot be tolerated

= Predictable behavior
— No unintended functionality

= Must be robust
— Program crash or reboot not allowed

12

&\ MathWorks:

Role of Certification Standards

= DO-178 (Avionics)
— Guidelines for the safety of software in certain airborne systems
— Level Ato E (most critical to least)
— Verification activities include review of requirements and code, testing of software, code coverage

= SO 26262 (Automotive)

— Defines functional safety for automotive electronic systems

— Automotive Safety Integrity Level ASIL QM, A to D (least to most; derived from severity, controllability,
probability)

— 1S0O 26262-6 pertains to software development, verification, and validation

= |EC 61508 (Industrial Automation & Machinery)

— General functional safety standard, originally for process control industry

— Safety Integrity Level SIL 1 to 4 (least to most; derived from exposure to demand needs and probability
of failure)

— Defines the software requirements and lifecycle for software, that includes validation and verification

13

Reference Verification and Validation Workflow

4\ MathWorks

14

'Development Process and Workflow

Validation

System of Systems

A Systems of Systems (SoS) is
comprised of Operational
Deliverables, e.g.:

* Ground Station

« Aircraft

« Communications Relay

« etc

4\ MathWorks

15

'Development

Process and Workflow

Aircraft
Requirements

Validation

System

An Operational Entity (e.g.

an Aircraft) is comprised of

Systems:

* Vehicle Management
System

» Payload

» Electrical Power

Requirements System
Verification
Validation

Aircraft
Verification

A System (e.g. Vehicle
Management) is comprised
of Items:

* Flight Control Computer
« Sensors

* Actuators

4 MathWorks'

16

4\ MathWorks

'Development Process and Workflow

Source Code

Requirements
—— Design
Validation Verification

Compliance Object Code
Verification

Model
Source Code

Conformance Verification

Compliance

Source Code Compliance

Each Software Module is
Conformance Embedded Object Code that
satisfies the Requirement(s)
allocated to that Module

17

Verification and Validation
Tasks and Activities

4\ MathWorks

24

'Verification and Validation Tasks and Activities

Source Code Code on
Target

Requirements

Model
Verification
P Compliance

',
S
Co

Validation

Object Code

Verification
Model

Source Code
Conformance s T
N < o Simulink

» Stateflow
« Simulink Report Generator:
System Design Description*

2 Complii
’«909

Source Code

Conformance

« Simulink Requirements*

4\ MathWorks

= Find missing or incomplete requirements
= Are requirements sufficiently specified

= ldentify requirements inconsistencies
= Product: Simulink Requirements* 25

Simulink Requirements

Author, edit and organize requirements

View and link requirements within the
Simulink graphical editor

Track status and manage requirement
changes

Trace requirements to models,
generated code, and test cases

4\ MathWorks

2017

crs_controller * - Simulink prerelease use

File Edit View Display Diagram

Simulation

Analysis

Code Tools Help

crs_controller

®

|P|crs_controller b

[

enbl

I

[#1: Driver Switch Request Handling
Handle switch operations by driver to determine
the command to be operated by the cruies control

@
3
=

B WE R
?

5]
E]
Q

B

.

2
z
3
3

inc

T

T

Isystem.

encl

reqOrv
resume

inc

dec E]
reqDry

DriverSwRequest

g
o
£
3
o

B

O?

=<
il
=
@
©

g

=
o
<

4

=)
]
g

CruiseControlMode

requirements

’—D wehy

5
ET
a@
3

(@
-H]
» |2

thro| LZ‘

Targe,

Requirements

tacaniSn

| [[|
crs_controller

]

Interface

Requirements - crs_controller

View: | Requirements ~

3 EN P

~ % ers_req func_spec

v [E1

Driver Switch Request Handiing

& 11
2 12
E 13
2 14

Switch precedence
Avoid repreading commands
Long Switch recognition

Cancel Switch Detection

Property Inspector
Requirement: #1
Details

~ Properties
Index: 1

Custom ID: |

Summary: | Driver Switch Request Handling

Description

Rationale

B 5 U Nl

Handle switch operations by driver to determine the

command to be operated by the cruies control system.

Keywords:

 Revision information:
SID: 1
Revision: 21
Created by: itoy
Created on: 27-Feb-2017 10:15:38
Modified by: itoy
Modified on: 31-May-2017 12:16:18

¥ Links

B 4= implemented by:

o DriverSwRequest
Bl 4= verified by:

=1 unit tests for DriveSwRequest @

Requirements Perspective

27

4\ MathWorks

'Verification and Validation Tasks and Activities

Source Code

Requirements

\Y[eYe[=]
Verification

Compliance Object Code
Verification

Validation

Model

Conformance

* Simulink: Model Advisor
OLindl - Simulink Check: DO-178C/DO-331

Checks*
Source Code

Conformance

Check design for various standards
— DO-178, MAAB, ISO 26262, ...

= Ensure design consistency

— Between Teams, Suppliers, ...

= Product: Simulink Check*

28

Example

W patternl =n BTl
File Edit View Simulation Format Tools Help
O = HE £2 b = [100 |Nomal
1) +, » lul
In1
—h. _
T /(1)
1_0Out
(2
InZ
Threshaold
Ready 100% oded5

Is there a potential error in this model? It depends...

4\ MathWorks

30

How about now?
W patternl E=E EOR XS
File Edit View Simulation Format Tools Help
O =EEE £2 b = [100 |Nomal
dE}IJI}|E double double
= |ul
Ir'|'1
\ — ~— |boolean n
1_0Out
double
In2
Threshold |22l
Ready 100% oded5 /
N\~

When generating code:

Floating-point precision
Issues may lead to
iIncorrect comparison
results

Ports do not follow
established naming
conventions

Is this a production
model?

Implementation requires
a fixed-step, discrete
solver

4\ MathWorks

31

4\ MathWorks

Simulink Check R2017b

Standards &

N Edit Time Checkin Model Metrics Model Refactorin
Guidelines Checks J J
« Automate compliance -+ Find and fix * Analyze your model * Find clones and
to standards compliance issues for complexity, size, modeling patterns.
* Create custom checks while you design reusability « Refactor to improve
* Assess design quality maintainability
. ol S o 38

L =
=

&= Modeling Standards for IEC 62304 High Integrity
= Modeling Standards for ISO 26262

2 Modeling Standards for IEC 61508 n m l70 5% W | [Loy

= Modeling Standards for MAAB 1 X2 1 3 1
[Modeling Standards for MISRA C:2012 + E E — iy
[Modeling Standards for Secure Coding (CERT C, ni

32

4\ MathWorks

'Verification and Validation Tasks and Activities

Source Code

Requirements

Model
Verification

Compliance Object Code
Verification

Validation

Model
Source Code

Conformance Verification

Compliance

Source Code Compliance

Conformance

Does design meet requirements
= Confirm correct design behavior
= Verify no unintended behavior

= Product; Simulink Test
33

Functional Testing Process

= Author test-cases that are derived from requirements
— Use test harness to isolate component under test
— Test Sequence to create complex test scenarios

= Manage tests, execution, results
— Re-use tests for regression

— Automate in Continuous Integration
systems such as Jenkins

g e)

TestHarness

L escauence |

nnnnn

4\ MathWorks

(oo I

T A P LT

= PP

VAN

35

4\ MathWorks

Test Harness

v Harnesses contained in the — | Test Harness E—
model file or external PR e e eI B]

v Build harness at unit
(subsystem) or system level

DR IEB | e

v Synchronized test environment
(harness €<-> model)

v Enables unit testing without —_—
requiring new model |
v' Configure harness input and =
output blocks = e | T o
v Supports SIL, PIL, HIL R
“| Main Model |

36

Test Sequence/Assessment Block

v

v

Reactive and/or time based test cases

Easier translation of test procedures

Built on top of Stateflow with extensions
for testing (SF license not required)

Subset of MATLAB language

Steps are temporal or logic-based

Create complex test inputs and
assessments

Supports debugging (breakpoints)

gesr

1
2
3

Speed —

Test Sequencel

["& DoubleSTdriven/Test Sequencel - Test Sequence Editor == &
B¢ @Ees 0w O @-
Data Symbols step Transition Next Step i
Input .
e init_step 1. after (2, sec) step_2
gear speed = ramp (t); -
e throttle = ramp (t);
speed =
throttle step_2 1. gear==3
speed = 2* ramp (1): J step_3
Local Add throttle = 2* ramp (t);
peak_speed

peak_throttle Edlit - Delete
Constant
Parameter

Data Store Memory

BN

peak_speed = speed;
peak_throttle = throttle;

step_3

if speed =0

speed = peak_speed - €
throttle = peak_throttle -
else

speed = 0;

throttle =N-

4\ MathWorks

37

Test Manager

Create test cases

Group into suites and
test files

Execute individual or
batch

View result summary

Analyze results

Archive, export, report

A\ Test Manager

TESTS.

S [L |

Copy
New Open Save Delete Run Siop
>~ v v | [Beeste ~

FiLe | o | T

RCEE ST Results and Artifacts

= B] Lo

Report Visualize Highlight ", Export Help
~ inliodel -

RESULTS |RESOURGES |

A startPage x [2] SlowAccel

[
4 =] ComponentTesting
» [General Performance Test
[Functional and Regression tests
4 [signal Builder Baseline examples
=] Slow Accel
5] Fastaccsl
5 Decsl
» [ExcelDrivenExamples
» [Software-in-the-loop Testing
4 T SystemTesting
» [3) ExampleBaselineTesting

Name El Slow Accel

Type Baseline Test

Location CiUsersimoneiiDeskto
Enabled v

Hierarchy CompenentTesting = Fu...
Hodel Sf_car

Simulation Mode [Model Settings]

Hamess Name SigBdriven

4\ MathWorks

Slow Accel | Enavled
ComponentTesting > Functional and tests > Sianal Builder Baseling examoles »
Base
» D RIPTION
» REQUIREMENTS
» TEM UNDER TEST
» PARAMETE]
A Test Manager
» CALLBACK
» INPUTS TESTS VISUALIZE FORMAT
» OUTPUTS
2 b
» conriaur| @ @ G 4
~ BASELINE Clear Plot El H Fﬁ\ Data Cursors Hichlicht Send to Figure
- - - in Model
EDIT__ [ZOOM & PAN| MWEASURE & TRACE | SHARE |
Results and Artifacts [l StatPage x [5) SlowAccel x| [Comparison
Baseline == Compare To
fourth
4 Results : 2015-Jan-12 17:35:31
4 Signal Builder Baseline examples
third
+ (5] Slow Accel]
4 |5| Fast Accel]
5 . . d
4 [lz| Baseline Criteria Result (] s=en '
gear L] i
() throttle —_— O =S
() wvehicle speed — O
v Pl Sim Cutput (sf_car : normal) None
+ |=| Decel] 0 2 4 [10 12 14 18 18 20 22 24 26 28 30
== Tolerance = Difference
1.0 !
0.8
Name [&] gear 0e
Status (]
Absolute Tolerance 0 o
Relative Tolerance 0.00 %
Block Path SigBdrivenishift_logic 3
]
0 2] [10 12 14 18 18 20 22 24 26 23 20
—

38

4\ MathWorks

'Verification and Validation Tasks and Activities

Source Code

Requirements

\Y[eYe[=]
Verification

Compliance

Validation
« Simulink Design Verifier

Verification
Model
Source Code

Conformance Verification

Compliance

Source Code Compliance

Conformance

Prove design meets requirements
— Formally verify requirements and safety
— Test case generation for functional testing
Prove that the design is robust

— Check that the design does not contain errors
such as overflow, divide by zero, dead logic,

Product: Simulink Design Verifier

39

4\ MathWorks

Formal Verification with Simulink Design Verifier

@ speed > . -
&D Checks that design meets requirements
o [. Gear 2 always engages when speed = 5 and < 25

shift_logic

« Gear 2 never engages when speed <5 or > 25

gear

speed

V 4

Safety Properties

Test Objective
2
0,1) -~ 2 \ True / Automatically generate functional test case
— "0 *)« Custom objectives signals must satisfy in tests
T debounce . = L — Constraints on signal values for test generator
Test Condition |

Overflow VALID

Masked Objective

Overflow ERROR - View test case

Derived Ranges: ..
Outport 17[-128..127] Detect overflows, divide by zero, and other robustness errors

Derived Ranges:
Outport [-128..127]
N
int8
s

 Proven that overflow does NOT occur
 Proven that overflow DOES occur

41

- : 4\ MathWorks
'Verification Task

Source Code

Requirements
Model
Verification
Compliance » Simulink Coverage: Model Coverage*

Validation

veritication
Model
Source Code

Conformance Verification

Compliance

Source Code Compliance

Conformance

Coverage metric

- Measure of how much system has been
tested

Identify testing gaps to find

— Untested design elements

— Dead logic and unreachable states
Identify requirement issues

— Missing or inconsistent functional
requirements

— Discover requirement problems early
Product: Simulink Coverage* 42

Simulink Coverage

= Structural coverage analysis and reports from
tests performed on Simulink® models
(including C/C++ S-functions)

= Coverage metrics including decision,
condition, MC/DC, relational boundary, and
signal range

= Coverage analysis of C/C++ code generated
by Embedded Coder®

= Coverage result highlighting in blocks,
subsystems, and state charts

= Tool qualification support (with DO
Qualification and IEC Certification Kits)

+1 Code Coverage Report for Genera

4 = || @ | Location: [paddbac

&\ MathWorks’

2017

< |
[z 4
w o d "
&

imulation I Code ool I
| = " =
g B-E® @' Pl e
Softwvar h (SIL)
=

upper]

OB ELE®| e 5 &2

rtb_inputGElower = (rtb_inp

Switch: '<Root>/Switch'
* Inport: ' Dper
* Logicy 7% d
g wer]
RelationalOperator: '<R{ (@
55 if (!((slvnvdemo_counter_U. [
»
Decisions an alyzed:
Ready
((slvnvdemo_counter_U.upp =
fals: 51/51
true 0/51

Logic block "And"

Software-inthe-Loop (SIL] simulation:

Conditions analyzed:

Description:

True | False

slvnvdemo_counter_U.upper

>= rtb_input | 51 0

rtb_inputGElower

51 0

MC/DC analysis (combinatio

ns in parentheses did not occur)

decision outcomes:

Conditions:

rtb_inputGElower

slvnvdemo_counter_U.uppe

True False
Out Out

r >= rtb_input (Fx) TT
(TF) TT

Condition 50% (2/4) MCDC 0% (0/2)

44

Model Elements That Receive Coverage

Simulink models

MATLAB function blocks

[= R s R 1S N (]

function output
tfcodegen

= myFcn (input,

if (input<0 && sat_enable)

cutput = 0;
else . Yeout
output = i1nput;
end 4 output p
. N=et_enable MyFen
MATLAE Functian

C/C++ code S-Functions

simple_sfun

S-Function

Decisions analyzed: E
e s0% | |
false 101/101 é:
truc o101 |
Conditions analyzed: {
Description: | True | False T
2l01<0 50| 51 E
uil] &11] §
.

zat_enable])

4\ MathWorks

Stateflow charts

lisablec \

[s6t_enable]

[~sat_enabie]

Enabled

[input = 0]

O

" J

O O

Generated code

7

47
48 rtb_inputGElower = (rtb_input >= slvnvdemo_counter U.lower);
49
50 /* Switch: '<Root>/Switch' incorporates:
51 Inport: '<Root>/ upper’
52 Logic: 'sRoot>/And’
53 * RelationalOperator: 'sRoot>/upper GE input’
54 78
55 if (!((slvnvdemo_counter_U.upper >= rtb_input) && rtb_inputGElower)) {
X
Decisions analyzed:
! ((slvnvdemo_counter_U.upper >= rtb_input) && rtb_inputGElower) 50%
false 51/51
true 0/51

45

— : : : — 4\ MathWorks
'Verification and Validation Tasks and Activites

Source Code

Code on

Target
Requirements

\Y[oYe[]
Verification

Compliance - _ y _
« Simulink Design Verifier: Property Proving

Source Coade

Conformance Verification

Validation

Compliance

Source Code Compliance
= Automate manual task of writing
Conformance test-cases and test inputs

— Intelligent determination of input
combinations for high coverage

= Formal methods based test
generation

— Analyze design, states, logic
paths in the design model

= Product: Simulink Design Verifier

46

4\ MathWorks

Addressing Missing Coverage

Step 1

Step 2

Step 3

4 . AN
Functional

Tests

N\

Design
Model

{ Coverage Analysis

)

)

o\IEI-: Partial Coverage
Report (less than 100%)

Test Generator

(Simulink Design Verifier)

Additional
Tests

I

{ Coverage Analysis

Coverage

)
)

Full Coverage
(100%)

Report

48

'Verification and Validation Tasks and Activities

Source Code

Code on

Target
Requirements

\Y[oYe[]
Verification

Compliance

Validation

Object Code
Verification

Source Code

Conformance Verification

Compliance

Source Code :
Checks conformance to » Polyspace Bug Finder*
coding standards —

Conformance
— MISRA (Motor Industry
Software Reliability
Association)

Finds bugs
— In the integrated code

Products: Polyspace Bug
Finder

4\ MathWorks

49

4\ MathWorks

'Verification and Validation Tasks and Activities

Source Code

Code on
Target
Requirements

\Y[oYe[]

Validation Verification

)’}9 Compliance Object Code
Co Verification
Model

Source Code

Conformance Verification

2 Compliance
G
Q -
Source Code Compliance

Proves absence of run- COISTIEIIEE

time errors
— In the integrated code

Products: Polyspace Code « Polyspace Code
Prover Prover*

50

4\ MathWorks

Static Code Analysis Techniques Supported by Polyspace

- Code metrics and standards
— Comment density, cyclomatic complexity,...
— MISRA and Cybersecurity standards

= Bug finding

— Data and control flow of software
— Check code for security vulnerabilities

= Code proving

— Formal methods with abstract interpretation

— No false negatives

Green: reliable

safe pointer access \

Red: faulty

out of bounds error

Gray: dead

unreachable code \

Orange: unproven
may be unsafe for some

conditions

Purple: violation
MISRA-C/C++ or JSF++

static void pointer arithmetic (void) {

\fo

if (get bus status() > 0) {

a £ e
\\\\\if (get o0il pressure() > 0) {
Xp = 3

\\\\\i‘else {
i++;

1 = get bus status():;

if (i >= 0) {

int array[1l00];
int *p = array;

int i;

r (i = 0; i < 100; i++) {

Fols 0 N

Y., -

BT variable " {int32): [0 .. 99]

t

assignment of ‘I’ (int32): [1 .. 100]

}

(e - iV = 10;

code rules

Range data

tool tip

Results from Polyspace Code Prover

52

Traceability from Code to Model

File fdt Run Review Opticns Window Help

B503H6e/ L al[0 T8 4| swn + 4 Came senstve Whoe nord ™ & Project Manages [/ Resuks Maroger
% BN Sk v @9 G55 legaly dereferenied poresr
e —i. L e ————— A A i
Fle/Tuncon - <“ELUR skidwmo_stttude ¢ | skaderno_stttode steg()
amly ek % Cos | 1089

¥ Noonbalzed ocal varadle o| [Ponter s wehn ts bounds

¥ Nomrntokeed boal varadle deveference of parameter ‘RDWoR” (ponter to structure, se: 64 bis)c

v

v

Polyspace Bug Finder and Polyspace Code Prover verification results,
including MISRA analysis can be traced from code to model

4\ MathWorks

53

'Verification and Validation Tasks and Activities

Code on
Target

Source Code

Requirements

\Y[oYe[]
Verification

Compliance Object Code
Verification

Validation

Source Code

Conformance Verification

Compliance

Source Code Compliance

Conformance

« Embedded Coder: SIL/PIL

» Simulink Test*

» Simulink Coverage: SIL/PIL Code
Coverage*

4\ MathWorks

54

4\ MathWorks

Software In the Loop (SIL) Testing * Show equivalence, model to code
Assess code execution time

((= Collect code coverage
uj Test

Vectors

Embedded PC
Coder 4 Generated @ Compiler

Code

Desktop Simulation Object Code
(on PC) 4 Execution (on PC)

| -
 peans :

Model 4 Object File

)

Results

g

56

Processor In the Loop (PIL) Testing

4\ MathWorks

Verify numerical equivalence

Assess target execution time

,[

W Test
Vectors

Collect on target code coverage

Embedded Cross
Model Coder 4 Generated @ Compiler
Code
Desktop Simulation
(on PC)
4
l Compare ((
m Results

4 Object File

Object Code

{ Execution (on target)

|

g

-

Results

-

57

MathWorks V&V Solution Summary

Requirements

Author, manage, and trace requirements

SIENCENES SR EEE Verify compliance with standards and guidelines

Testing

Develop, manage, execute simulation-based tests

Formal Verification : :
Prove design meets requirements, prove robustness

Coverage Analysis
J y Measure model and generated code coverage

SR BRI Check bugs, MISRA compliance, prove code

SIL, PIL

Perform back-to-back testing

4\ MathWorks

58

4\ MathWorks

MathWorks V&V Product Capabilities

Requirements Simulink Requirements* (New in R2017Db)

SEUCCIEERRBIEUEE] i link Check* (New in R2017b)

flesiing Simulink Test

Formalverification Simulink Design Verifier

COVEIREE ATEEE Simulink Coverage* (New in R2017b)

Static Code Analysis Polyspace Bug Finder, Polyspace Code Prover

SIL, PIL Simulink Test

59

4\ MathWorks

Workflows for Certification Standards

Component and system Equivalence
testing testing
---------------------- ————_---.----_~--~
IEC 61508 eI Revewand TIneriome Fivalence T
X . \
ISO 26262 ¥ \ static analysis 'X ' N ¥ Y \
Textual Executable - h:lggslctlfzﬁi;%re Generated Object

I EC 62405 Requirements Specification P generation C/C++code code

EN 50128

Modelling

Compilation

Generation and Linking

Requirements

Validation

DO-178C
DO-331
DO-333

Design

Verification
Compliance

Design

Conformance

Code on
Target

Source Code

Object Code
Verification

Source Code

Verif
Com

Source Code
Conformance

Object
Code

ication
pliance

Compliance

60

4\ MathWorks

Bell Helicopter Develops World’s First Commercial Fly-by-
Wire Helicopter

Challenge

Develop flight software for the first commercial fly-by-
wire helicopter and certify it to DO-178B Level A

Solution

Use Model-Based Design to model and simulate the
control laws, trace requirements to the model, and
generate and verify 16,000 lines of code

ReSU ItS 'Cléf;ifoerll. 525 Ships 1 and 2 over the Palo Duro
= Integration time cut by 90% “With Model-Based Design we had a successful first flight; there
= Development iterations reduced from weeks to were no issues from a control or integration standpoint.
hours Generating the control law code from our Simulink model with
= Confidence in code quality maintained Embedded Coder eliminated the slowdowns caused by manual
= Simulink Code Inspector Qualified by FAA for DO- code generation and freed the team to work on meeting the
178B Level A broader program goals.”

- Mike Bothwell, Bell Helicopter

Link to user story 61

http://www.mathworks.com/company/user_stories/bell-helicopter-develops-worlds-first-commercial-fly-by-wire-helicopter.html

&\ MathWorks

BAE Systems Delivers DO-178B Level A Flight Software
on Schedule with Model-Based Design

Challenge

Develop flight-critical software for a midsized
business jet in compliance with DO-178B Level A
standards

Solution

Use Model-Based Design to model the software and
systems, run simulations with customer-provided test
vectors, trace requirements to model elements, and Primary flight control computers from BAE
generate 200,000 lines of certified code Systems.

‘When we generated code from our Simulink models with

Results o Embedded Coder, the team we handed it off to knew it was
= Development efficiency doubled gold—that it was debugged and fully met the requirements—
= Certification schedule maintained because we had run it through the Simulink test vectors supplied
= Communication between teams facilitated by our customer. That was a huge advantage on this program.”

- Maria Radecki, BAE Systems

Link to user story 62

http://www.mathworks.com/company/user_stories/bae-systems-delivers-do-178b-level-a-flight-software-on-schedule-with-model-based-design.html

&\ MathWorks

ESA and Airbus Create Upper-Stage Attitude Control
Development Framework Using Model-Based Design

Challenge

Speed the development of software for controlling
complex launcher upper stage missions including the
attitude of satellite payloads after they separate from
ESA launch vehicles

Solution

Use Model-Based Design to develop controller
models and multidomain physical models, run
closed-loop simulations, and generate code for PIL
testing

Results
= Design iterations reduced from one week to one
day
= Failure modes modeled and eliminated
= Comprehensive design framework established

Link to user story

Propellant motion in spinning upper stages at 46, 350, and
600 seconds. Distribution after 350 seconds becomes
uneven

“Model-Based Design multiplies the range of capabilities that |
have as an engineer. As an individual control engineer | can do
what previously took a handful of engineers, because | can
create and simulate my own multidomain models. | don’t have a
wall around me anymore; | am able to better communicate and

contribute across disciplines.”
- Samir Bennani, ESA

63

http://www.mathworks.com/company/user_stories/esa-and-airbus-create-upper-stage-attitude-control-development-framework-using-model-based-design.html

4\ MathWorks

Contact Us

Monday - Friday

508-647-7000 Customer Support 08:30-17:30 ET

Technical Support 08:30-20:00 ET

x x
Ky %

64

" MathWorks

© 2018 The MathWorks, Inc.

