
1© 2018 The MathWorks, Inc.

Verification & Validation with Model-Based Design

Lyle Shipton

Application Engineer

MathWorks

Plano, TX

2

Background

▪ University of Illinois at Urbana-
Champaign

– B.S, M.S. Aerospace Engineering

▪ SpaceX Rocket Development Facility

– Test Engineer

– Lead Engineer, Integration & Test

▪ Eaton Aerospace, Fuel and Motion
Controls

– Lead Aerospace Systems Engineer

▪ MathWorks, Application Engineering
Group

– Lead Engineer, Aeronautical
applications

3

MathWorks at a Glance

● Office locations ● Distributors serving 16 countries

 Privately held

 4000 employees worldwide

 More than 3 million users in 180+ countries

Earth’s topography on a Miller cylindrical projection,

created with MATLAB and Mapping Toolbox.

4

Core MathWorks Products

Math. Graphics. Programming.

▪ Designed for engineers and scientists

▪ Professionally developed, tested, and documented

▪ Toolboxes for:

– Machine learning, data analytics, deep learning, image

processing and computer vision, signal processing and

communications, computational finance, robotics and control

systems

▪ Interactive apps that automatically generate programs

▪ Easily scales to clusters, GPUs, and clouds

▪ Direct deployment to production enterprise applications

▪ Automatic conversion to embeddable C and CUDA code

▪ Integrates with Simulink to support Model-Based Design

5

Core MathWorks Products

Simulation and Model-Based Design

Model and simulate your system
– Use one multi-domain environment

– Model the system under test and the plant

– Simulate how all parts of the system behave

Test early and often
– Test your system under all conditions

– Validate your design with real-time testing

– Trace from requirements to design to code

Automatically generate code
– Generate production-quality C and HDL code

– Deploy directly to embedded processors or

FPGA’s/ASIC’s

6

Key capabilities for engineers and scientists

MathWorks

founded

in 1984

1985 1990 1995 2000 2005

• Rapid
prototyping
and HIL

• DSP designs • State charts • Physical
modeling

• Discrete-event
simulation
• Video processing

•Model checking• Test and
measurement

• Code verification

• Embedded
code • HDL code

MATLAB

Simulink

• Control design

• Signal processing

• Image
processing

• Computational
finance

• Computational
biology

• Application
deployment

• Parallel computing• Student version

•Optimization

• Statistics

Technical

Computing

Data Analysis

and Algorithm

Development

System

Modeling and

Simulation

Automatic

Code

Generation

Verification,

Validation,

and Test

• Instrument and
database connectivity

• Hardware support
packages

• Communications
systems

2010

• Certification kits

• PLC code

•MATLAB Mobile
for phones/tablets

•MATLAB
to C/HDL

• Computer
vision

• RF
• Phased

array

•Machine
learning

2015

•GPU code

• Deep learning
• Sensor fusion
• Text analytics

• Big data
• AWS & Azure support
• Enterprise integration
• ThingSpeak for IoT

• Test automation
• Requirements

authoring & mgmt.

• Robotics and
autonomous systems
•WLAN/LTE protocols

•MATLAB Online

• HDL verification

• HW/SW
co-development

7

MathWorks Product Overview

8

Model-Based Design Workflow

INTEGRATION

IMPLEMENTATION

C, C++ VHDL, Verilog SPICE

MCU DSP FPGA ASIC
Analog

Hardware

DESIGN

Environment Models

Physical Components

Algorithms

RESEARCH REQUIREMENTS

TEST

AND

VERIFICATION

9

Key Takeaways

1. Find bugs early, develop high

quality systems

2. Replace manual verification tasks

with workflow automation

3. Learn about reference workflow that

conforms to safety standards

High Level

Design

Detailed

Design

Coding

Integration

Testing

Unit

Testing

Verified & Validated

System
System

Requirements

“Reduce costs and project risk through early

verification, shorten time to market on a certified

system, and deliver high-quality production code that

was first-time right” Michael Schwarz, ITK Engineering

12

Safety of Electronic Systems

▪ Critical functionality in industries such as Aerospace,

Automotive, and Industrial Automation

▪ Real-time operation

– Compute time lag cannot be tolerated

▪ Predictable behavior

– No unintended functionality

▪ Must be robust

– Program crash or reboot not allowed

!

13

Role of Certification Standards

▪ DO-178 (Avionics)
– Guidelines for the safety of software in certain airborne systems

– Level A to E (most critical to least)

– Verification activities include review of requirements and code, testing of software, code coverage

▪ ISO 26262 (Automotive)
– Defines functional safety for automotive electronic systems

– Automotive Safety Integrity Level ASIL QM, A to D (least to most; derived from severity, controllability,
probability)

– ISO 26262-6 pertains to software development, verification, and validation

▪ IEC 61508 (Industrial Automation & Machinery)
– General functional safety standard, originally for process control industry

– Safety Integrity Level SIL 1 to 4 (least to most; derived from exposure to demand needs and probability
of failure)

– Defines the software requirements and lifecycle for software, that includes validation and verification

14

Reference Verification and Validation Workflow

15

Development Process and Workflow

System of Systems

SoS

Verification

SoS

Description/

Architecture

SoS

Analysis

SoS

Requirements

(CONOPS)

Validation

A Systems of Systems (SoS) is

comprised of Operational

Deliverables, e.g.:

• Ground Station

• Aircraft

• Communications Relay

• etc

System

C

16

Development Process and Workflow

System

AircraftAircraft

Requirements

Validation

Item

Item C

System

Verification

Aircraft

Verification

System

Requirements

Validation

An Operational Entity (e.g.

an Aircraft) is comprised of

Systems:

• Vehicle Management

System

• Payload

• Electrical Power A System (e.g. Vehicle

Management) is comprised

of Items:

• Flight Control Computer

• Sensors

• Actuators

17

Development Process and Workflow

Source Code Code on

Target

Model

Model

Conformance
Source Code

Verification

Compliance

Design

Verification

Compliance

Source Code

Conformance

Object

Code

Requirements

Validation

Object Code

Verification

Compliance

Each Software Module is

Embedded Object Code that

satisfies the Requirement(s)

allocated to that Module

24

Verification and Validation

Tasks and Activities

25

Verification and Validation Tasks and Activities

Source Code Code on

Target

Model

Model

Conformance
Source Code

Verification

Compliance

Model

Verification

Compliance

Source Code

Conformance

Object

Code

Requirements

Validation

Object Code

Verification

Compliance

• Simulink Requirements*

• Simulink

• Stateflow

• Simulink Report Generator:

System Design Description*

▪ Find missing or incomplete requirements

▪ Are requirements sufficiently specified

▪ Identify requirements inconsistencies

▪ Product: Simulink Requirements*

27

Simulink Requirements

Work with requirements and design together

• Author, edit and organize requirements

• View and link requirements within the

Simulink graphical editor

• Track status and manage requirement

changes

• Trace requirements to models,

generated code, and test cases
Requirements Perspective

28

Verification and Validation Tasks and Activities

Source Code Code on

Target

Model

Model

Conformance
Source Code

Verification

Compliance

Model

Verification

Compliance

Source Code

Conformance

Object

Code

Requirements

Validation

Object Code

Verification

Compliance

• Simulink: Model Advisor

• Simulink Check: DO-178C/DO-331

Checks*

▪ Check design for various standards

– DO-178, MAAB, ISO 26262, …

▪ Ensure design consistency

– Between Teams, Suppliers, …

▪ Product: Simulink Check*

30

Example

Is there a potential error in this model? It depends…

31

Example

How about now?

When generating code:
• Floating-point precision

issues may lead to

incorrect comparison

results

Is this a production

model?
• Implementation requires

a fixed-step, discrete

solver

• Ports do not follow

established naming

conventions

32

Simulink Check

Automate verification and correct models to improve design

Model Refactoring

• Find clones and

modeling patterns.

• Refactor to improve

maintainability

Clones

Model Metrics

• Analyze your model

for complexity, size,

reusability

• Assess design quality

Edit Time Checking

• Find and fix

compliance issues

while you design

Standards &

Guidelines Checks

• Automate compliance

to standards

• Create custom checks

33

Verification and Validation Tasks and Activities

Source Code Code on

Target

Model

Model

Conformance
Source Code

Verification

Compliance

Model

Verification

Compliance

Source Code

Conformance

Object

Code

Requirements

Validation

Object Code

Verification

Compliance

• Simulink Test*

▪ Does design meet requirements

▪ Confirm correct design behavior

▪ Verify no unintended behavior

▪ Product: Simulink Test

35

Functional Testing Process

▪ Author test-cases that are derived from requirements

– Use test harness to isolate component under test

– Test Sequence to create complex test scenarios

▪ Manage tests, execution, results

– Re-use tests for regression

– Automate in Continuous Integration

systems such as Jenkins

36

Test Harness

✓ Harnesses contained in the

model file or external

✓ Build harness at unit

(subsystem) or system level

✓ Synchronized test environment

(harness  model)

✓ Enables unit testing without

requiring new model

✓ Configure harness input and

output blocks

✓ Supports SIL, PIL, HIL

Main Model

Test Harness

37

Test Sequence/Assessment Block

✓ Reactive and/or time based test cases

✓ Easier translation of test procedures

✓ Built on top of Stateflow with extensions

for testing (SF license not required)

✓ Subset of MATLAB language

✓ Steps are temporal or logic-based

✓ Create complex test inputs and

assessments

✓ Supports debugging (breakpoints)

38

Test Manager

✓ Create test cases

✓ Group into suites and

test files

✓ Execute individual or

batch

✓ View result summary

✓ Analyze results

✓ Archive, export, report

39

Verification and Validation Tasks and Activities

Source Code Code on

Target

Model

Model

Conformance
Source Code

Verification

Compliance

Model

Verification

Compliance

Source Code

Conformance

Object

Code

Requirements

Validation

Object Code

Verification

Compliance

• Simulink Design Verifier

▪ Prove design meets requirements

– Formally verify requirements and safety

– Test case generation for functional testing

▪ Prove that the design is robust

– Check that the design does not contain errors
such as overflow, divide by zero, dead logic,
…

▪ Product: Simulink Design Verifier

41

Formal Verification with Simulink Design Verifier

Checks that design meets requirements

• Gear 2 always engages when speed ≥ 5 and ≤ 25

• Gear 2 never engages when speed < 5 or > 25

Test Condition

Test Objective

Automatically generate functional test case

• Custom objectives signals must satisfy in tests

• Constraints on signal values for test generator

Detect overflows, divide by zero, and other robustness errors

• Proven that overflow does NOT occur

• Proven that overflow DOES occur

42

Verification Task

Source Code Code on

Target

Model

Model

Conformance
Source Code

Verification

Compliance

Model

Verification

Compliance

Source Code

Conformance

Object

Code

Requirements

Validation

Object Code

Verification

Compliance

• Simulink Coverage: Model Coverage*

▪ Coverage metric

– Measure of how much system has been
tested

▪ Identify testing gaps to find

– Untested design elements

– Dead logic and unreachable states

▪ Identify requirement issues

– Missing or inconsistent functional
requirements

– Discover requirement problems early

▪ Product: Simulink Coverage*

44

Simulink Coverage
Measure test coverage in models and generated code

▪ Structural coverage analysis and reports from
tests performed on Simulink® models
(including C/C++ S-functions)

▪ Coverage metrics including decision,
condition, MC/DC, relational boundary, and
signal range

▪ Coverage analysis of C/C++ code generated
by Embedded Coder®

▪ Coverage result highlighting in blocks,
subsystems, and state charts

▪ Tool qualification support (with DO
Qualification and IEC Certification Kits)

45

Model Elements That Receive Coverage

Simulink models MATLAB function blocks Stateflow charts

C/C++ code S-Functions Generated code

46

Verification and Validation Tasks and Activites

Source Code Code on

Target

Model

Model

Conformance
Source Code

Verification

Compliance

Model

Verification

Compliance

Source Code

Conformance

Object

Code

Requirements

Validation

Object Code

Verification

Compliance

• Simulink Design Verifier: Property Proving

▪ Automate manual task of writing
test-cases and test inputs

– Intelligent determination of input
combinations for high coverage

▪ Formal methods based test
generation

– Analyze design, states, logic
paths in the design model

▪ Product: Simulink Design Verifier

48

Addressing Missing Coverage

Design
Model

Functional
Tests

Coverage Analysis
Coverage

Report
Partial Coverage

(less than 100%)

Test Generator
(Simulink Design Verifier)

Additional
Tests

Step 1

Step 2

Step 3 Coverage Analysis
Coverage

Report
Full Coverage

(100%)

49

Verification and Validation Tasks and Activities

Source Code Code on

Target

Model

Model

Conformance
Source Code

Verification

Compliance

Model

Verification

Compliance

Source Code

Conformance

Object

Code

Requirements

Validation

Object Code

Verification

Compliance
• Polyspace Bug Finder*▪ Checks conformance to

coding standards
– MISRA (Motor Industry

Software Reliability
Association)

▪ Finds bugs
– In the integrated code

▪ Products: Polyspace Bug
Finder

50

Verification and Validation Tasks and Activities

Source Code Code on

Target

Model

Model

Conformance
Source Code

Verification

Compliance

Model

Verification

Compliance

Source Code

Conformance

Object

Code

Requirements

Validation

Object Code

Verification

Compliance

• Polyspace Code

Prover*

▪ Proves absence of run-

time errors

– In the integrated code

▪ Products: Polyspace Code

Prover

52

Static Code Analysis Techniques Supported by Polyspace

▪ Code metrics and standards

– Comment density, cyclomatic complexity,…

– MISRA and Cybersecurity standards

▪ Bug finding

– Data and control flow of software

– Check code for security vulnerabilities

▪ Code proving

– Formal methods with abstract interpretation

– No false negatives

Results from Polyspace Code Prover

53

Traceability from Code to Model

Polyspace Bug Finder and Polyspace Code Prover verification results,

including MISRA analysis can be traced from code to model

54

Verification and Validation Tasks and Activities

Source Code Code on

Target

Model

Model

Conformance
Source Code

Verification

Compliance

Model

Verification

Compliance

Source Code

Conformance

Object

Code

Requirements

Validation

Object Code

Verification

Compliance

• Embedded Coder: SIL/PIL

• Simulink Test*

• Simulink Coverage: SIL/PIL Code

Coverage*

56

Software In the Loop (SIL) Testing

Test
Vectors

Desktop Simulation
(on PC)

Results

Model

Object Code
Execution (on PC)

Results

Generated
Code

Object File

Embedded
Coder

PC
Compiler

== ?

Compare

▪ Show equivalence, model to code

▪ Assess code execution time

▪ Collect code coverage

57

Processor In the Loop (PIL) Testing

Test
Vectors

Desktop Simulation
(on PC)

Results

Model

Object Code
Execution (on target)

Results

Generated
Code

Object File

Embedded
Coder

Cross
Compiler

== ?

Compare

▪ Verify numerical equivalence

▪ Assess target execution time

▪ Collect on target code coverage

58

MathWorks V&V Solution Summary

Author, manage, and trace requirements
Requirements

Verify compliance with standards and guidelines
Standards Compliance

Develop, manage, execute simulation-based tests
Testing

Prove design meets requirements, prove robustness
Formal Verification

Measure model and generated code coverage
Coverage Analysis

Check bugs, MISRA compliance, prove code
Static Code Analysis

Perform back-to-back testing
SIL, PIL

59

MathWorks V&V Product Capabilities

Simulink Requirements* (New in R2017b)
Requirements

Simulink Check* (New in R2017b)
Standards Compliance

Simulink Test
Testing

Simulink Design Verifier
Formal Verification

Simulink Coverage* (New in R2017b)
Coverage Analysis

Polyspace Bug Finder, Polyspace Code Prover
Static Code Analysis

Simulink Test
SIL, PIL

60

Workflows for Certification Standards

Other code

Textual

Requirements

Executable

Specification

Modelling

Object

code

Compilation

and Linking

Generated

C/C++ code

Code

Generation

Model used for

production code

generation

Review and

static analysis

Equivalence

testing

Equivalence

checking

Component and system

testing

Source Code Code on

Target

Model

Design

Conformance
Source Code

Verification

Compliance

Design

Verification

Compliance

Source Code

Conformance

Object

Code

Requirements

Validation

Object Code

Verification

Compliance

IEC 61508

ISO 26262

IEC 62405

EN 50128

DO-178C

DO-331

DO-333

61

Bell Helicopter Develops World’s First Commercial Fly-by-

Wire Helicopter

Challenge
Develop flight software for the first commercial fly-by-

wire helicopter and certify it to DO-178B Level A

Solution

Use Model-Based Design to model and simulate the

control laws, trace requirements to the model, and

generate and verify 16,000 lines of code

Results
▪ Integration time cut by 90%

▪ Development iterations reduced from weeks to

hours

▪ Confidence in code quality maintained

▪ Simulink Code Inspector Qualified by FAA for DO-

178B Level A

“With Model-Based Design we had a successful first flight; there

were no issues from a control or integration standpoint.

Generating the control law code from our Simulink model with

Embedded Coder eliminated the slowdowns caused by manual

code generation and freed the team to work on meeting the

broader program goals.”

- Mike Bothwell, Bell Helicopter

Link to user story

The Bell 525 Ships 1 and 2 over the Palo Duro

Canyon.

http://www.mathworks.com/company/user_stories/bell-helicopter-develops-worlds-first-commercial-fly-by-wire-helicopter.html

62

BAE Systems Delivers DO-178B Level A Flight Software

on Schedule with Model-Based Design

Challenge
Develop flight-critical software for a midsized

business jet in compliance with DO-178B Level A

standards

Solution
Use Model-Based Design to model the software and

systems, run simulations with customer-provided test

vectors, trace requirements to model elements, and

generate 200,000 lines of certified code

Results
▪ Development efficiency doubled

▪ Certification schedule maintained

▪ Communication between teams facilitated

“When we generated code from our Simulink models with

Embedded Coder, the team we handed it off to knew it was

gold—that it was debugged and fully met the requirements—

because we had run it through the Simulink test vectors supplied

by our customer. That was a huge advantage on this program.”

- Maria Radecki, BAE Systems

Link to user story

Primary flight control computers from BAE

Systems.

http://www.mathworks.com/company/user_stories/bae-systems-delivers-do-178b-level-a-flight-software-on-schedule-with-model-based-design.html

63

ESA and Airbus Create Upper-Stage Attitude Control

Development Framework Using Model-Based Design

Challenge
Speed the development of software for controlling

complex launcher upper stage missions including the

attitude of satellite payloads after they separate from

ESA launch vehicles

Solution
Use Model-Based Design to develop controller

models and multidomain physical models, run

closed-loop simulations, and generate code for PIL

testing

Results
▪ Design iterations reduced from one week to one

day

▪ Failure modes modeled and eliminated

▪ Comprehensive design framework established

“Model-Based Design multiplies the range of capabilities that I

have as an engineer. As an individual control engineer I can do

what previously took a handful of engineers, because I can

create and simulate my own multidomain models. I don’t have a

wall around me anymore; I am able to better communicate and

contribute across disciplines.”

- Samir Bennani, ESA

Link to user story

Propellant motion in spinning upper stages at 46, 350, and

600 seconds. Distribution after 350 seconds becomes

uneven

http://www.mathworks.com/company/user_stories/esa-and-airbus-create-upper-stage-attitude-control-development-framework-using-model-based-design.html

64

Contact Us

508-647-7000

Monday - Friday

08:30-17:30 ET

08:30-20:00 ET

Customer Support

Technical Support

65© 2018 The MathWorks, Inc.

