INCOSE

Welcome to SysML, the Language of MBSE

Paul White

October 8, 2019
Brief Introduction About Myself

- **Work Experience**
 - 2015 – Present: KIHOMAC / BAE – Layton, Utah
 - 2011 – 2015: Astronautics Corporation of America – Milwaukee, Wisconsin
 - 2001 – 2011: L-3 Communications – Greenville, Texas
 - 1999 – 2000: Raytheon – Greenville, Texas

- **Education**
 - 2019: OMG OCSMP Model Builder—Fundamental Certification
 - 2011: Graduate Certification in Systems Engineering and Architecting – Stevens Institute of Technology
 - 1999 – 2004: M.S. Computer Science – Texas A&M University at Commerce

- **INCOSE**
 - CSEP: (2017 – Present)
 - 2019 INCOSE Outstanding Service Award
 - 2019 INCOSE Wasatch -- Most Improved Chapter Award & Gold Circle Award

- **Utah Engineers Council (UCEC)**
 - 2019 & 2018 Engineer of the Year (INCOSE) for Utah Engineers Council (UEC)
 - Vice Chair

- **Family**
 - Married 14 years
 - Three daughters (1, 12, & 10)
Introduction
Our Topics

• Definitions and Expectations
• SysML Overview
• Basic Features of SysML
• Modeling Tools and Techniques
• Next Steps
What is Model-based Systems Engineering (MBSE)?

Model-based systems engineering (MBSE) is

“the formalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases.”

-- INCOSE SE Vision 2020
What is Model-based Systems Engineering (MBSE)?

“Formal systems modeling is standard practice for specifying, analyzing, designing, and verifying systems, and is fully integrated with other engineering models. System models are adapted to the application domain, and include a broad spectrum of models for representing all aspects of systems. The use of internet-driven knowledge representation and immersive technologies enable highly efficient and shared human understanding of systems in a virtual environment that span the full life cycle from concept through development, manufacturing, operations, and support.”

-- INCOSE SE Vision 2025
MBSE & System Models

System Models

Structure
(Systems, Subsystems, Components, & Interfaces)

Behavior
(Activities, States, Functions, & Use Cases)

Requirements
(Specifications, Tests, TOs, V&V, & Business Requirements)

Parametrics
(Constraints & Mathematical Equations)
Why is this important?

2018 Department of Defense (DoD) Digital Engineering Strategy (DES)*

*MBSE is necessary to effectively design and develop a modern system.
Benefits of MBSE

• Models and diagrams vs. documents
 • Enhance systems visualization
 • Foster stronger knowledge and understanding of the system
• Traceability and relationships among system elements
• Tailor presentation based on target audience
• Enforce consistency across diagrams
• Assess impact of changes to a system
• Improve communication among system stakeholders
• Strengthen a team’s collaboration
Target Audience for this Presentation

- Are you a systems engineer, or interested in systems engineering?
- Are you customers interested in MBSE or SysML?
- Have you modeled in other disciplines?
- Have you been exposed to MBSE?
- Are you interested in learning more about SysML?
- Are you currently using SysML in your daily job?
Expectations for This Presentation

• You will have enough information to start working with SysML.
• You will understand how SysML can be part of your MBSE toolkit.
• You will know where to go to learn more about SysML.
SysML Overview
History of SysML

• 2003 – Sanford Friedenthal & Cris Kobryn organized and co-chaired SysML Partners to develop SysML.

• Sept. 2007 – OMG SysML v. 1.0 specification was released.

• May 2017 – SysML v. 1.5 issued by OMG.

• 2017 – SysML published by International Organization for Standardization (ISO) as a full International Standard (IS)

• Dec. 8, 2017 – Work began on SysML v. 2.0.
SysML & UML
SysML Diagram Types

- Modified from UML
- New to SysML
Basic Features of SysML
Source of the Diagrams

• Lenny Delligatti – OCSMP Accelerator™ SysML Training Course
• DellSat-77 Satellite System Example
Package Diagrams

Package diagrams convey information about the structure of the model.

Package – Namespace that may contain model elements

Model Library – Model elements that are intended for reuse across multiple projects

Dependency – Change to one packet may result in change to other packet.

Containment (Nested Packages)
Block Definition Diagrams

Block definition diagrams display system structure, decomposition, and type classification.

- **Block** – Basic unit of structure
- **Constraint Block** – Defines a constraint for a system
- **Reference Association** – Connection can exist between blocks
- **Composite Association** – Conveys structural decomposition
Internal Block Diagrams

Internal block diagrams show connections; types of matter, energy, or data that flow; and services provided or required.

Usage of a block

Connector – Conveys that two structures will have a way to access each other

Ports – Conveys interfaces between structures
Parametric Diagrams

Parametric diagrams express information about a system’s constraints.

Value Property – Value in your model

Constraint Parameter – Variable of expression

Usage of constraint block
Requirements Diagrams

Requirements diagrams display requirements and their relationships to other model elements.

- **Trace Relationship** – Modification may result in change
- **Derive Relationship** – Requirement is derived from another requirement
- **Refine Relationship** – Provides more detail for a requirement
- **Containment** – Shows hierarchy of requirements
- **Verify Relationship** – Shows that a test case verifies a requirement
- **Satisfy Relationship** – Shows how requirements are satisfied by system structure
Requirements Matrix

<table>
<thead>
<tr>
<th>Test Cases</th>
<th>Requirements</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hohmann Transfer Simulation, Main Success Scenario</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Reliability Test Cases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Sequence Test 1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Long Sequence Test 2</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Requirement Table

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Id</th>
<th>Text</th>
<th>Satisfied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Altimetry</td>
<td>D-F-2</td>
<td>The satellite shall autonomously measure its altitude at intervals of 500 ms or less with an accuracy of 1 km or better.</td>
<td>Microcosm Autonomous Navigation System (MANS)</td>
</tr>
<tr>
<td>2</td>
<td>DellSat-77 System Requirements Specification</td>
<td>P-F-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hohmann Transfer</td>
<td>P-F-1</td>
<td>The DellSat-77 satellite shall execute a Hohmann Transfer to maneuver from its parking orbit to its final orbit.</td>
<td>DellSat-77 Satellite</td>
</tr>
<tr>
<td>4</td>
<td>Mission Requirements Specification</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Propulsion Subsystem Requirements Specification</td>
<td>D-F-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sensor Payload Requirements Specification</td>
<td>D-F-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>System Availability</td>
<td>P-NF-2</td>
<td>The system shall have an availability greater than or equal to 0.999.</td>
<td>DellSat-77 Satellite</td>
</tr>
<tr>
<td>8</td>
<td>System MTTF</td>
<td>P-NF-1</td>
<td>The system shall have a mean-time-to-failure (MTTF) greater than or equal to 4,400 hours.</td>
<td>DellSat-77 Satellite</td>
</tr>
<tr>
<td>9</td>
<td>Thruster Burn</td>
<td>D-F-1</td>
<td>The propulsion subsystem shall fire thrusters continuously for a minimum duration of 2</td>
<td>Propulsion Subsystem</td>
</tr>
</tbody>
</table>
Use Case Diagrams

Use case diagrams show externally visible services that a system provides.

- **Actor** – Invokes a use case
- **Base Use Case** – Connected to a Primary actor
- **Include Relationship** – Included use cases are executed whenever source use case is executed
- **Use Case** – Behavior from stakeholders’ point of view
- **Generalization** – Shows subtypes of use cases
Activity Diagrams

Activity diagrams show sequence of behaviors and flow of objects.

- **Wait Time Action** – Actions that wait for events to occur
- **Control Flow** – Depicts transfer of control between actions
- **Send Signal Action** – Generates and sends a signal
- **Object Flow** – Depicts transfer of matter, data, or energy between actions
- **Action** – Basic unit of functionality
Sequence Diagrams

Sequence diagrams show the order of behaviors, which structures perform behaviors, and which structures invoke behaviors.

- **Message** – Communication between lifelines
- **Create Message** – Communication that Creates new instances within a system
- **Synchronous Message** – Sender sends message and waits for reply
- **Reply Message** – Marks end of synchronous behavior (showing reply messages is optional)
State Machine Diagrams

State machine diagrams focus attention on how a structure within a system changes state in response to events.

- **State** – A condition that a system can exist in
- **Initial State** – Starting condition for a system
- **Final State** – Ending condition for a system
- **Transition** – Change from one state to another
- **Composite State** – State with nested states
- **Pseudostate** – Intermediate states that can be used to impose control logic on state transitions
Modeling Tools and Techniques
Cameo Systems Modeler

- Manufactured by NoMagic / Dassault Systemes
- Supports SysML, UML, DoDAF, MODAF, UPDM, BPMN, & others
 - Cameo supports many languages without plugins.
 - NoMagic offers suite of tools, many of which implement a single modeling languages (with plugins available to support more languages).
- MagicDraw Teamwork Cloud Server
- Trial Version – Available for download
- Architect & Enterprise Editions
- https://www.nomagic.com/products/cameo-systems-modeler#intro
MBSE Benefits Realized

• Owning the technical baseline
• Knowledge Management (KM) and Knowledge Transfer (KT)
• Systems and Mission Engineering Processes
Organization Vision

- Organizations often publish long-term visions.
- Short term strategy
 - What are the near-term objectives necessary to achieve that long-term vision?
 - What are the metrics necessary to assess the organization’s progress?
 - What is the right approach to a modeling project?
- Small victories can lead to large gains.
MBSE Transition

• Not instantaneous
• Structure of organization – Transition from legacy processes & people (a.k.a. culture)
• Training is important
• Start small and increase scope
Lessons Learned

• Every modeling effort must have a purpose.
• Carefully analyze stakeholder needs.
• Verify approach with tool prior to applying the approach.
• Regularly assess state of the model.
• Verify model content with subject matter experts (SMEs) and other stakeholders.
• Provide training as needed.
Modeling is a science and an art!

SysML Syntax & Semantics
Tool Usage

Standards & Conventions
Verification & Validation
Next Steps
Lenny Delligatti

- SysML Distilled: A Brief Guide to the Systems Modeling Language
 - Great for beginners!
 - https://www.amazon.com/gp/product/0321927869/ref=dbs_a_def_rwt_bibl_vppi_i0

Lenny Delligatti – OCSMP Accelerator™ SysML Training Course

• 35 hours of MBSE and SysML online instruction
• 14 unlimited access, on-demand modules
• Covers all nine types of SysML diagrams
• 95 OCSMP certification exam sample questions
• Certificate of completion – Good towards Professional Development Units (PDUs)
• Course syllabus & Module 1 available for download for free
• $449.00
• https://ei194.infusionsoft.app/app/storeFront/showProductDetail?productId=6
NoMagic Quick Reference Guide to SysML

Sanford Friedenthal – A Practical Guide to SysML

- 3rd Edition
- Sanford Friedenthal, Alan Moore, & Rick Steiner
- Part I – MBSE & SysML Overview
- Part II – SysML Language Description
- Part III – SysML Examples
- Part IV – Transitioning to MBSE
- Ideal for intermediate & advanced users of SysML
- https://www.amazon.com/Practical-Guide-SysML-Modeling-Language/dp/0128002026/ref=pd_lpo_sbs_14_t_0?_encoding=UTF8&psc=1&refRID=S81VX56RD56Z3TX2T4TS
Object Management Group (OMG) Certifications

- OCSMP Model User
- OCSMP Model Builder - Fundamental
- OCSMP Model Builder - Intermediate
- OCSMP Model Builder - Advanced
Object Management Group (OMG) Certifications

- OCSMP Model User
- OCSMP Model Builder - Fundamental
- OCSMP Model Builder - Intermediate
- OCSMP Model Builder - Advanced

10-15 Recommended Resources on OMG website
 + Advanced Experience (~5 years)

Sanford Friedenthal – A Practical Guide to SysML
 + Intermediate Experience (1-2 years)

Lenny Delligatti –
 OCSMP Accelerator™ SysML Training Course
 + Beginning Experience (6 months)
Object Management Group (OMG) Certifications

• OMG provides certificate of completion for each level
• Complements INCOSE SEP program
• OCSMP Website: https://www.omg.org/ocsmp/
• Pearson Vue Test Centers – Many throughout DFW
• Certification does not expire
• Cost: $200 per level
Conclusion
Concluding Thoughts

• MBSE is necessary to effectively design and develop a modern system.
• MBSE will play a greater role in the future of systems engineering.
• We should learn more about SysML.
• Plenty of resources are available for learning and training.
• SysML will help develop and enhance your systems engineering career.
• You should leave with a desire to learn more and apply SysML to your systems engineering work.
Contact Information

• Paul White
 • BAE/KIHOMAC
 • E-mail: paul.white@kihomac.com
 • Phone: 385-393-2137