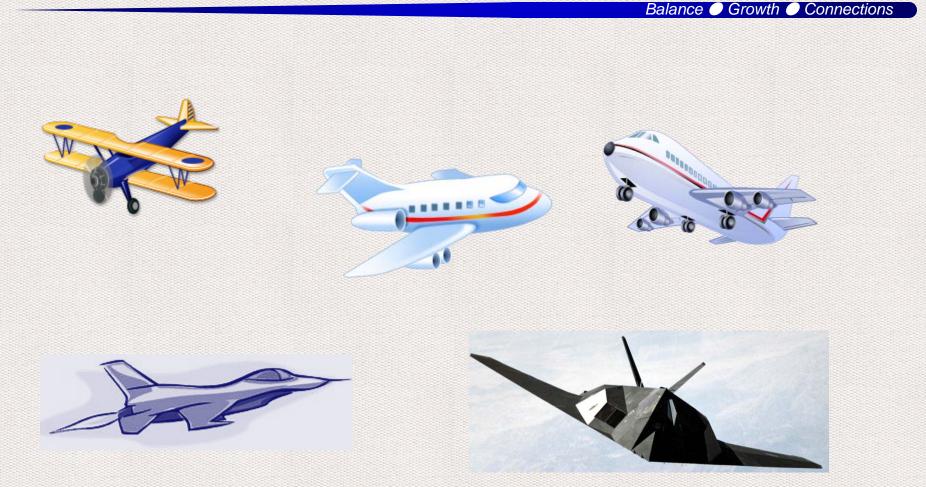
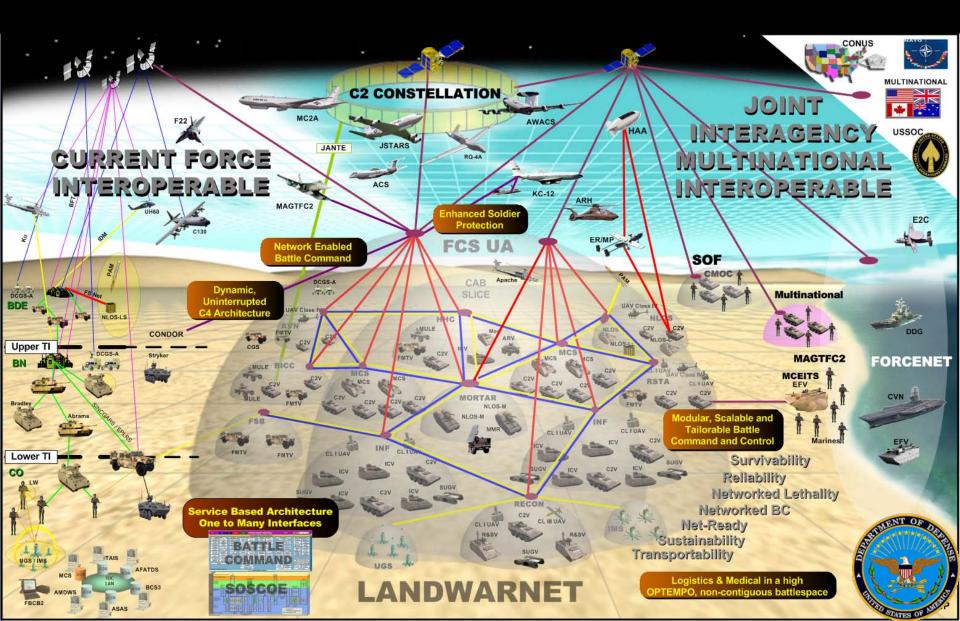
Complexity Measurement Results

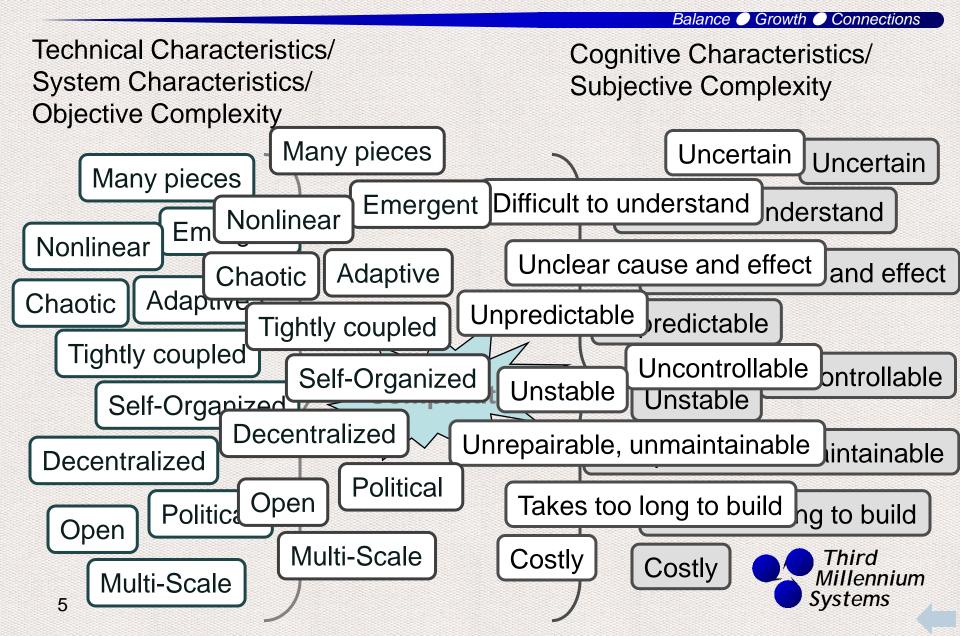
2012 Sarah Sheard



Balance
Growth
Connections

MOTIVATION


Systems Have Evolved



Source: Monica Farah-Stapleton, IEEE SOS conference, 2006 Used with permission

Army SOS perception

Complexity Characteristics

Assessing the Impact of Complexity Attributes on System Development Project Outcomes

Ph. D. Dissertation of Sarah Sheard

Doctoral Advisory Committee

Dr. Ali Mostashari, School of Systems and Enterprises, Chairman

Dr. Dinesh Verma, Dean, School of Systems and Enterprises

Dr. Arthur Pyster, School of Systems and Enterprises

Dr. Brian Sauser, School of Systems and Enterprises

Dr. Tal Ben-Zvi, Howe School of Technology Management

Goal: Use Complexity Measurement on SE Projects

Balance O Growth O Connections

 Determine which measures of complexity might matter to program outcomes

- ♦ How can we tell if measures matter?
 - Methodology

But first:

- How measure complexity?
 - Types
- What things could be complex?
 Entities

6 Types of Complexity

From science literature

- Structural: Size, Connectivity, Inhomogeneity (SS,SC,SI)
- Dynamic: Short-term (Operational);
 Long-term (Evolution) (DS, DL)
- Socio-Political (SP)
 - Organizational instability
 - Organizational structure
 - Stakeholder
 - Test & Operations
 - Management philosophy

- Combinatorial (Size)
- Requirements
- Performance
- Skills gap
- Technical feasibility
- Technology maturity
- Intrinsic, Uncertainty, Other

Balance 🥥 Growth 🔘 Connections

Many Entities

Complexity Types and Entities

Balance O Growth O Connections

Systems

Entity:	Project	System	Environment	Cogniti∨e
Туре г		C	1	ſ
SS	Project is constructed of many tasks and teams	System is constructed of many elements	En∨ironment includes by many elements in many structures	Mind is taxed by many elements and many problems
SC	Project outcomes emerge from connected tasks and teams	System behavior emerges from connected elements	Environmental behavior results from interacting elements	Mind has difficulty predicting emergence from many interactions
sı	Project has diverse and inhomogeneous tasks and teams	System structure has diversity and inhomogeneity	Environmental structures are diverse and inhomogeneous	Mental models are simpler without diversity and inhomogeneity
DS	Project behavior can change rapidly	System behavior can change rapidly	Environmental behavior can change rapidly	Mind has difficulty predicting nonlinear and rapid change
DL	Project and its behavior can evolve significantly over time	System and its behavior can evolve significantly over time	Environment and its behavior evolve significantly over time	Human mind has difficulty envisioning evolution to different forms
SP	Project is greatly influenced by socio- political factors	System may have socio-political factors	Environment is heavily influenced by socio- political factors	Engineers frequently are not strong in sociopolitical areas

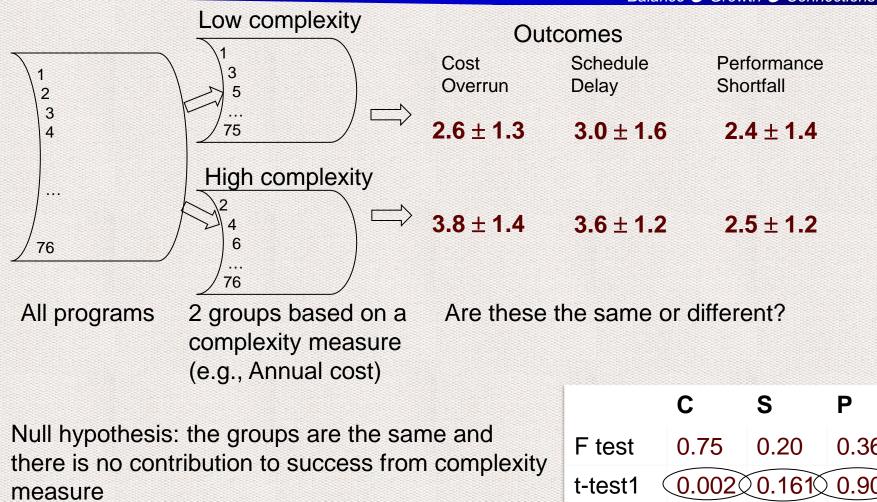
10

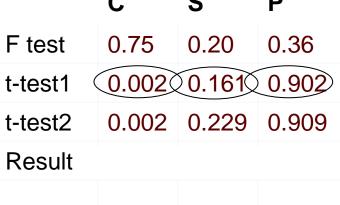
Typical questions

15. At the system level, how many subsystems were there? (count the major pieces into which the system was divided, whether they were called subsystems, elements, components, or other terms) (1) 1 (2) 2-3 (3) 4-6 (4) 7-10 (5) >10

> 38. Where did your project fit, on a scale of Traditional, Transitional, or Messy Frontier in the following eight attributes?
> a ESEP1 Mission environment:
> 1:Stable mission;
> 2:Mission evolves slowly;
> 3:Mission very fluid, ad-hoc

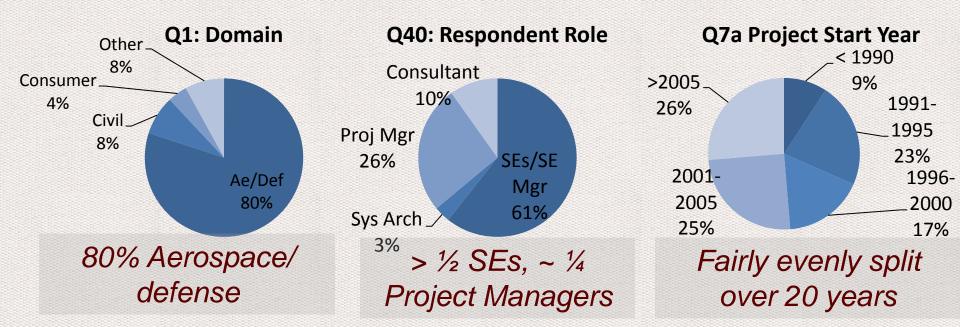
25. "If one task slipped, this would cause problems with another task."Do you agree with this statement?(1) SA (2) A (3) N (4) D (5) SD


Balance 🕖

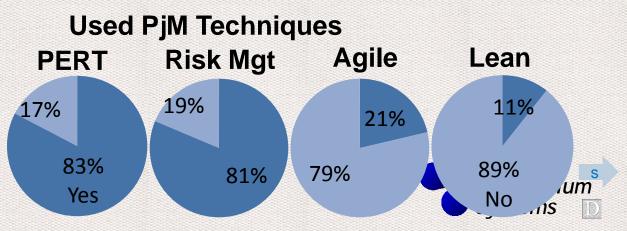

Growth Connections

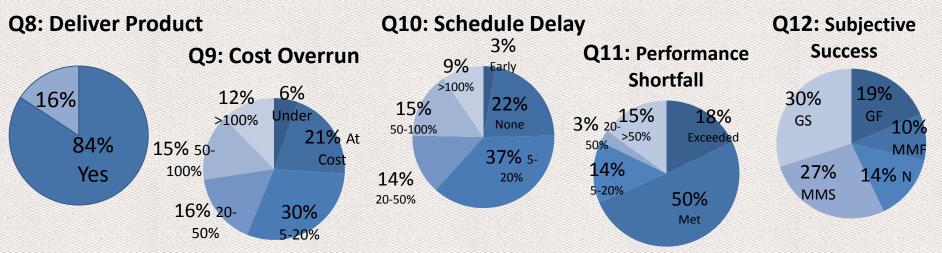
t-test Analysis

- If t-test shows probability of difference occurring by chance is <0.05 (2-tail), there is significance</p>
- 13 to tests; which is chosen depends on F-test.



Balance
Growth
Connections


RESULTS AND DISCUSSION


Survey Characteristics

Over 80% used PERT-type planning and used Risk Management; only 10-20% used 15Agile or used Lean

Outcomes

Only about ¼ met cost and schedule, but 70% met performance; > ½ a success

Independent (39 Questions)

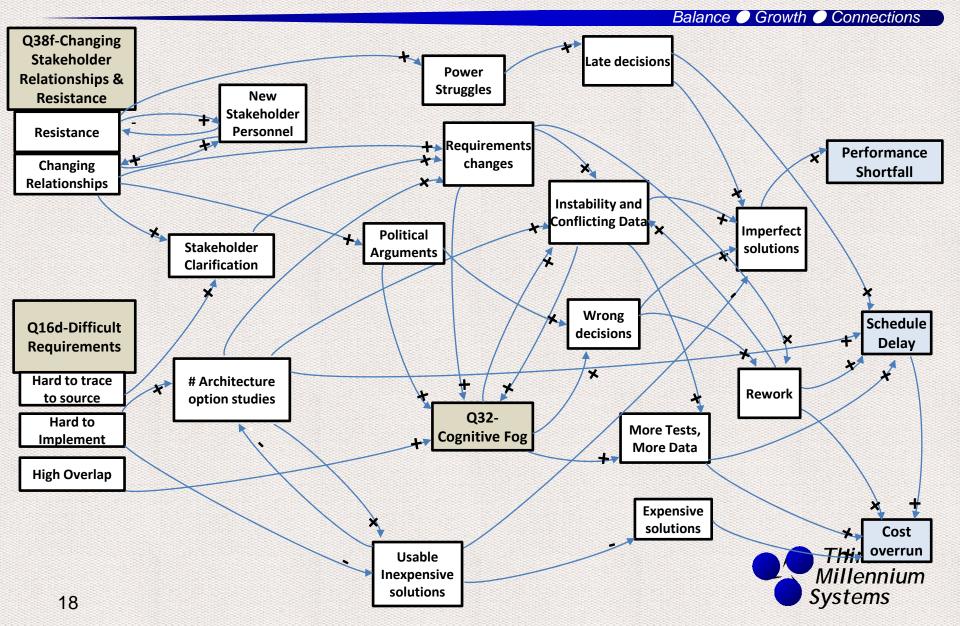
- Project Characteristics (17)
- System Characteristics (10)
- Environment Characteristics (11)
- Cognitive characteristics (1)

Dependent

- (5 questions: Project Outcomes)
- Cost
- Schedule
- Performance
- Deliver product
- Subjective Success

Results

Balance
Growth
Connections

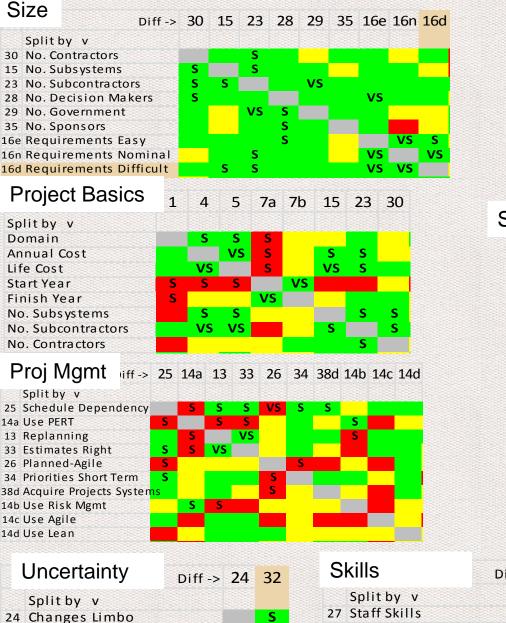

Svstems

p-values	Product	Cost	Schedule	Perf.	Subj Succ	Reping	ReqDif	CogFog	Stk Rels
Diff ->	8	9	10	11	12	13	16d	32	38f
Split by v									
8 Delivered Product				0.01106	4.2E-06		0.03762	0.00029	0.03167
9 Cost Overrun			2.6E-10			0.00021		0.01001	
10 Schedule Delay		1.4E-11			0.0228	5.1E-06	0.02194	0.00361	
11 Performance Shortfall	0.0063				9.7E-13	0.01038	0.02625	3.1E-06	0.01082
12 Subjective Success	0.00281	0.02908	0.00059	1.1E-05		0.0054	0.01975	0.00077	
13 Replanning		1.5E-05	5E-07		0.0182			0.001	0.00192
16d Requirements Difficult		0.00027	0.00165	0.00163	0.00115	0.02594		0.00892	0.00244
32 Cognitive Fog	0.00789	0.03948	0.012	0.00074	0.00088	0.0095			
38f Stakeholder Relations	nips	0.02093	0.02429	0.0245	0.03361	0.00028	0.00272	0.03238	
Dia ali taviti (<u>, 'r</u> ' '	1 0.004	× × × × × × × ×	· · · · · ·		0.05)			

Black text: Significant (p<0.001). White text: Significant (p<0.05).

Three top variables strong predictors of Cost, Schedule, Performance shortfall.

Top Complexity Variables Influence Outcomes


^{Two} Outcome Groups

19

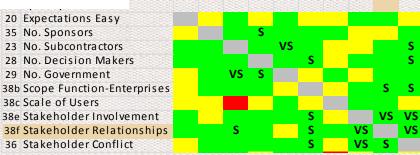
		Delivered Product	Performance Shortfall	Subjective Success	Replanning	Cost Overrun	Schedule Delay
		8	11	12	13	9	10
14d				Sig			
29	No. Government		Sig				
38h	System Behavior Known		Sig	Sig			
31	Experience Level	Sig	Sig	Sig			
38f	Stakeholder Relationships		Sig	Sig	Very Sig.	Sig	Sig
32	Cognitive Fog	Sig	Very Sig.	Very Sig.	Sig	Sig	Sig
16d	Requirements Difficult		Sig	Sig	Sig	Very Sig.	Sig
33	Estimates Right		Very Sig.	Sig	Very Sig.	Very Sig.	Very Sig.
36	Stakeholder Conflict	Sig		Sig	Sig		Sig
14a	Use PERT		Sig -		Sig -		
38e	Stakeholder Involvement			Sig	Sig	Sig	Sig
18	Technical Rqts Conflict			Sig	Sig		Sig
1	Domain			Sig	Sig	Sig	
16n	Requirements Nominal				Sig	Sig	Sig
19	Tech-C&S Rqts Conflict				Very Sig.	Sig	Sig
16e	Requirements Easy				Sig	Sig	
25	Schedule Dependency				Sig	Sig	
4	Annual Cost				Sig	Sig	
23	No. Subcontractors				Sig	Sig	
38b	Scope Function-Enterprise				Sig	Sig	
6	Relative Size				Sig		Sig
27	Staff Skills				Sig		Sig
14b	Use Risk Mgmt				Sig -		Sig -
37	Needs Changed				Very Sig.		Sig
28	No. Decision Makers				Sig		
5	Life Cost					Sig	Sig
24	Changes Limbo					Sig	Sig
26	Planned-Agile					Sig -	

Sig: p<0.05; Very sig: p<0.001

32 Cognitive Fog

S

31 Experience Level


Subsets

Requirements Diff -> 16e 16n 16d 18 19 37 38a 20

Diff -> 20 35 23 28 29 38b 38c 38e 38f 36

Stakeholders

Q1—Domain Beginning Q4—Annual cost of Program Q6—Relative Size Q7a—Start Year Q15—No. Subsystems Q16e—Requirements Easy Q16n—Requirements Nominal Q16d—Requirements Difficult Q17—Architecture Precedence Q18—Technical Rqts Conflict Q19—Tech-C&S Rgts Conflict Q20—Expectations Easy Q23—No. Subcontractors Q25—Schedule Dependency Q27—Staff Skills Q29—No. Government Q30—No. Contractors Q31—Experience Level Q38b—Scope Function-Enterprises Q38d—Acquire Projects Systems Q38h—System Behavior Known

Beginning to Middle

Q14a—Use PERT Q14b—Use Risk Mgmt Q14c—Use Agile Q14d—Use Lean Q21—TRLs Q28—No. Decision Makers Q35—No. Sponsors Q38a—Mission Environment Q38c—Scale of Users Q38q—New Capability

Q5—Life Cost Q24—Changes Limbo Q26—Planned-Agile Middle Q32—Cognitive Fog Q34—Priorities Short Term Q36—Stakeholder Conflict Q38e—Stakeholder Involvement Q38f—Stakeholder Relationships Q37—Needs Changed Q13—Replanning

Q7b—Finish Year End Q8—Deliver Product Q9—Cost Overrun Q10—Schedule Delay Q11—Performance Shortfall Q12—Subjective Success Q22—Operational Evolution Q33—Estimates Right

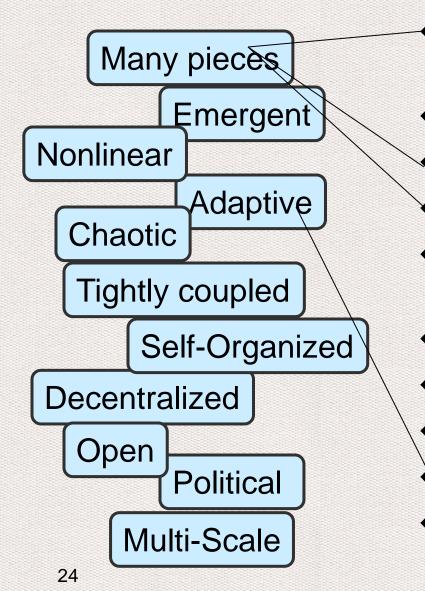
Balance
Growth
Connections

NEXT STEPS

Potential Future Work

Application of results to projects

- Identify ways to reduce complexity
- Develop heuristics for "enough reduction"
- Architecture complexity, requirements complexity, stakeholder complexity, test complexity, etc. measures can be identified and tested
- Build a "complexity referent" to compare a program to...how much complexity is typically reduced at what points


Balance

(irowth

Connections

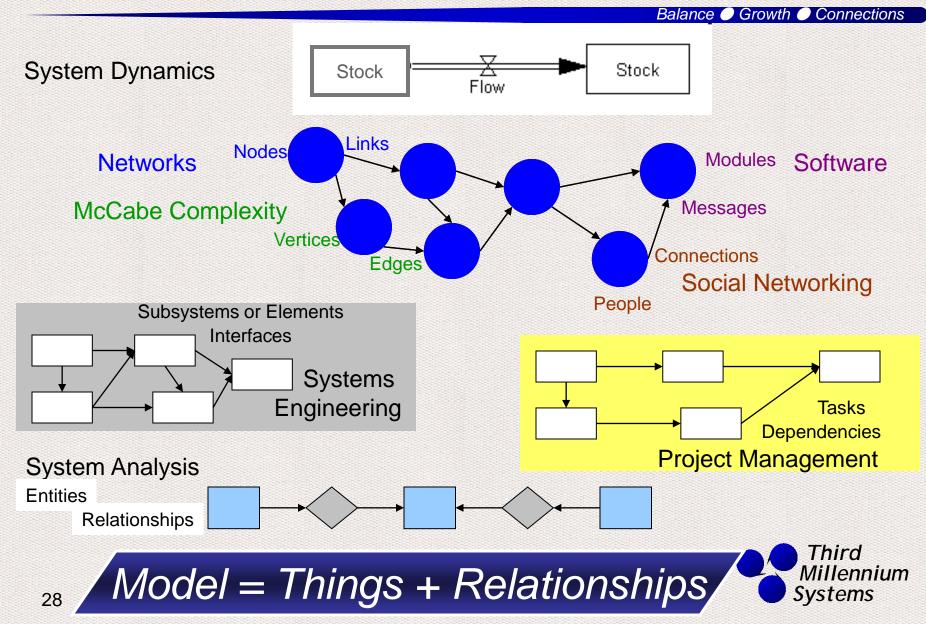
Manage Complexity: SE and Complexity

- Planning, and monitoring to ensure compliance
- Control
- Hierarchy and modularization
- Decomposition (Reductionism)
- Order...predicting and avoiding chaotic regimes
 - Gaussian distributions
 - Trade Studies
- Requirements
- Architecture, Stable intermediates
- Vanquish complexity

Third Millennium Systems

How SE Could Better Address Complexity

Balance O Growth O Connections


- Planned co-evolution with environment
- Managing the boundaries of safe state spaces
- Understand decentralized control
- Use modularity and hierarchy along with networks
- Decomposition (Reductionism) where appropriate
- Intensive modeling and simulation
 - Predicting ordered and chaotic regimes in technological systems and development systems
- Power-law distributions as well as Gaussian
- Trade Studies, Requirements, Architecture, Stable intermediates
- Invoke social sciences
- Manage complexity as risk

Balance O Growth O Connections

"Atomic Pieces" of Complexity Representation

Problems with measuring complexity

- Measuring=counting
- Measuring=simplification
- Things that used to be very complex (e.g. airplane) are not now
- It depends on purpose: is a small circuit (resistor+capacitor) complex?
- For systems engineering: Complexity of what? Various views and representations
- How do tools vary from standard SE repertoire?

Complexity is the inability to predict behavior due to nonlinearity, emergent behavior and chaotic principles.

- Characterizes systems, projects, and the external environment.
- Has structural (size, connectivity, and inhomogeneity), dynamic, and socio-political factors,
- Manifests as spectra, from less complex to more complex, in a large number of variables
- Displayed by a system, its representation, and the interpretation of the variables by humans

Balance 🕖

Growth

Connections

Research Methodology: Method's Validity

Balance
Growth
Connections

Empirical

- Calibration... Difficult; used bins.
- Measures what it purports to measure...Difficult: many definitions of complexity...Literature taxonomy, respondent roles

Content

- Face...Delphi group
- Sampling...Broad variety and moderately large number of programs; used INCOSE

Model

- Internal...Ask questions in unbiased manner. Verify whether other explanations are possible. Example: Estimates good, Replanning
- Internal consistency...separate questionnaire into sections for "system", "project", and "environment"
- External...Tested for stability of linear correlations; backed off. Domain is aerospace/defense and may be extensible
- Theoretical...Literature review
- Pragmatic...Designed around usability and practicality

Research Limitations

Limitations

Systems & Enterprises

chool of

33

- Correlation is not causation...no guarantee that changing these variables will improve success rate.
- Results are qualitative, not quantitative
- Retrospective surveys and data categories; survey did not also interview participants to tease out their meanings of ambiguous terms
- Small numbers of non-aerospace/defense, and failed projects
- May have been confusion about some questions, e.g., "doubleloop learning/set-based engineering"; operational evolution; meaning of "performance."
- Did not address how complexity of different aspects of systems and projects might differ (management vs technical experience level, technical vs programmatic estimates, e.g.)

Research Methodology: Measurement criteria

Real

- Reproducible
 - Equivalence
 - Stability
- Predictive
- Usable
 - Convenient data (
 - Interpretable dat
- Robust
- Complete
- Individual
- Orthogonal
- Valid

{Entire research question}

Careful phrasing and testing of questions After 1 year (4): 64% same, 93% nearly. {Point of research question} Feedback from surveys and interviews...no problems filling them out; also data stability Careful phrasing, measures selection Lit. review, grouping, correlation Measures selection Measures selection, some analysis See separate chart

6 Types of Complexity

From science literature

- Structural: Size, Connectivity, Inhomogeneity (SS,SC,SI)
- Dynamic: Short-term (Operational);
 Long-term (Evolution) (DS, DL)

Socio-Political (SP)

- Organizational instability
- Organizational structure
- Stakeholder
- Test & Operations
- Management philosophy

Balance O Growth O Connections

- Combinatorial (Size)
- Requirements
- Performance
- Skills gap
- Technical feasibility
- Technology maturity
- Intrinsic, Uncertainty, Other

Complexity Types and Entities

Balance O Growth O Connections

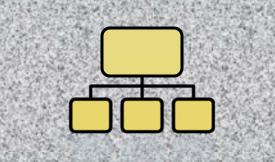
Systems

Entity:	Project	System	Environment	Cogniti∨e
Туре г		C	1	ſ
SS	Project is constructed of many tasks and teams	System is constructed of many elements	En∨ironment includes by many elements in many structures	Mind is taxed by many elements and many problems
SC	Project outcomes emerge from connected tasks and teams	System behavior emerges from connected elements	Environmental behavior results from interacting elements	Mind has difficulty predicting emergence from many interactions
sı	Project has diverse and inhomogeneous tasks and teams	System structure has diversity and inhomogeneity	Environmental structures are diverse and inhomogeneous	Mental models are simpler without diversity and inhomogeneity
DS	Project behavior can change rapidly	System behavior can change rapidly	Environmental behavior can change rapidly	Mind has difficulty predicting nonlinear and rapid change
DL	Project and its behavior can evolve significantly over time	System and its behavior can evolve significantly over time	Environment and its behavior evolve significantly over time	Human mind has difficulty envisioning evolution to different forms
SP	Project is greatly influenced by socio- political factors	System may have socio-political factors	Environment is heavily influenced by socio- political factors	Engineers frequently are not strong in sociopolitical areas

Measures, Types, and Entities

Balance 🥏	Growth	Connections

How many pieces?	5, 15, 16	4, 6, 28, 29, 30	35
How many connections?	16,18, 19	25	36, 38e,
What kind of structure?	17	23	38d
(32 addresses cognitive entity)	System	Project	Environ- ment
How rapidly must react to changes?	21	24	38f
g			
How much evolving?	22	26	38a, 38g, 38h
How much socio- political complexity?	20	27, 31	38b, 38c
38			Systems


Complexity

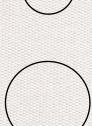
Balance Growth Connections

Simple systems

Systems using systems engineering

Complex systems

MITRE's ESE Profiler (Renee Stevens)


Balance O Growth O Connections

Traditional program domain Well-bounded problem Predictable behavior Stable environment

Transitional domain Systems engineering across boundaries Influence vs. authority

Messy frontier Political engineering (power, control...) High risk, potentially high reward Foster cooperative behavior

Typical questions

15. At the system level, how many subsystems were there? (count the major pieces into which the system was divided, whether they were called subsystems, elements, components, or other terms) (1) 1 (2) 2-3 (3) 4-6 (4) 7-10 (5) >10

> 38. Where did your project fit, on a scale of Traditional, Transitional, or Messy Frontier in the following eight attributes?
> a ESEP1 Mission environment:
> 1:Stable mission;
> 2:Mission evolves slowly;
> 3:Mission very fluid, ad-hoc

25. "If one task slipped, this would cause problems with another task."Do you agree with this statement?(1) SA (2) A (3) N (4) D (5) SD

Balance 🕖

Growth Connections

42

- Projects must be finished (so result is known)
- Project questions (characteristics of project, when was it, size)
- Success and management (how successful, cost overrun, schedule overrun, performance, replanning, management techniques used)
- System questions (# subsystems, # and difficulty of requirements, precedence of architecture, requirements conflict, ease of meeting requirements, tech maturity, evolution)
- Organizational effort (project) questions (structure, # changes in limbo, tightly connected project network, management agility, skills, # signatures, # government organizations, # contractors, cognitive fog, estimates, short-term vs long-term focus)
- Environment questions (# stakeholders, # sponsors, conflict, changes in needs, ESE profiler)
- Biographical questions about responder (name, contacting Howd Millennian 42 knowledgeable)
 Systems

Wording of Questions

Balance O Growth O Connections

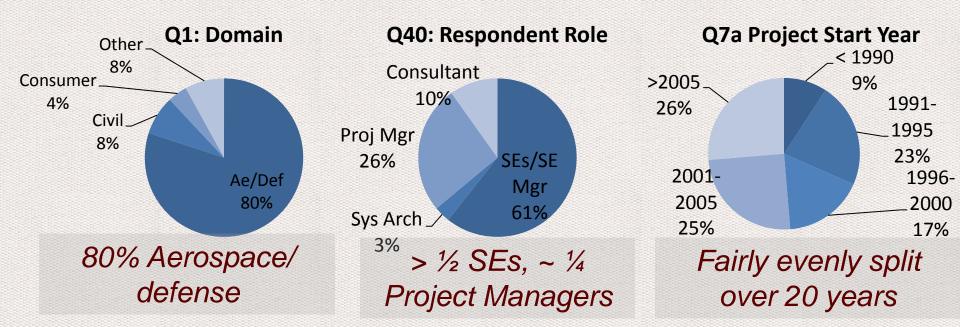
Q32 'The project frequently found itself in a fog of conflicting data and cognitive overload.' Do you agree with this statement?(1)Strongly Agree (2)Agree (3)Neutral (4)Disagree (5)Strongly Disagree

Q16d. "Approximately how many system-level requirements did the project have initially? Difficult requirements are considered difficult to implement or engineer, are hard to trace to source, and have a high degree of overlap with other requirements. How many system requirements were there that were Difficult? (1)1-10 (2)10-100 (3)100-1000 (4)1000-10,000 (5)Over 10,000

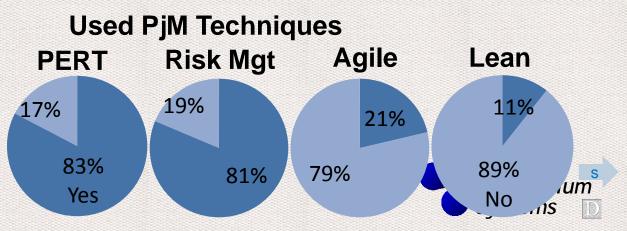
Q38. "Where did your project fit, on a scale of Traditional, Transitional, or Messy Frontier, in the following eight attributes?"

38f. Stakeholder relationships: (1) Relationships stable; (2) New relationships; (3) Resistance to changing relationships.

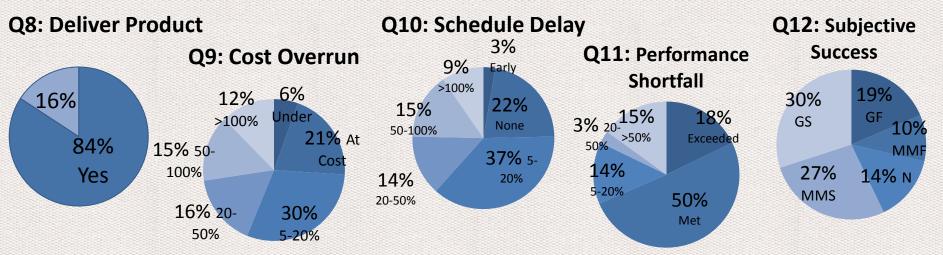
Which Complexity Measures Predict Problems?


Balance O Growth O Connections

Identify measures Draft survey Survey 75 programs Values of measures Outcomes Analyze statistics •t-test for difference of means Find measures that predict differences in


outcomes

Survey Characteristics



Over 80% used PERT-type planning and used Risk Management; only 10-20% used 46Agile or used Lean

Outcomes

Balance Growth Connections

Only about ¼ met cost and schedule, but 70% met performance; > ½ a success

Independent (39 Questions)

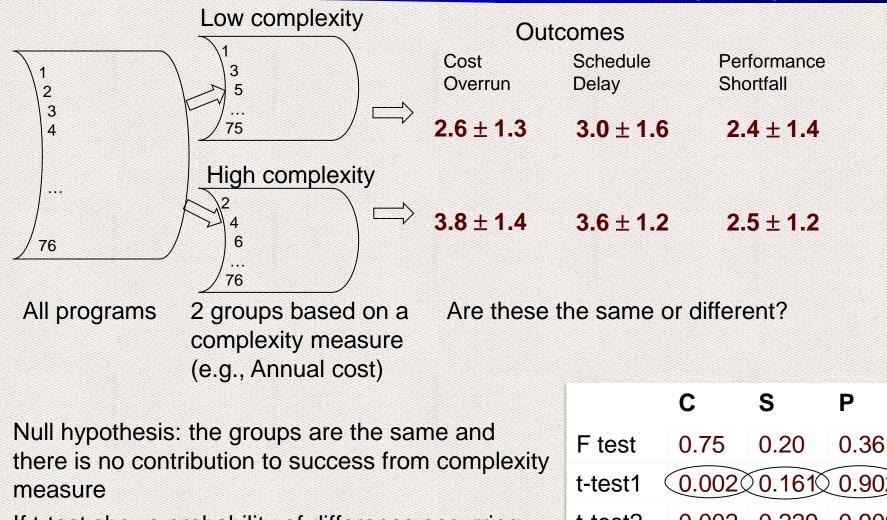
- Project Characteristics (17)
- System Characteristics (10)
- Environment Characteristics (11)
- Cognitive characteristics (1)

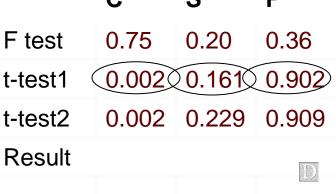
Dependent

- (5 questions: Project Outcomes)
- Cost
- Schedule
- Performance
- Deliver product
- Subjective Success

Research Question Does complexity predict program failure?

Hypothesis


Programs characterized by higher numbers of "difficult" * requirements, higher cognitive overload and more complex stakeholder relationships demonstrate significantly higher performance issues (cost overrun, schedule delay, and performance shortfall).


⁴⁹/_{*}"Difficult" is defined by COSYSMO (Valerdi 2008)

t-test Analysis

- If t-test shows probability of difference occurring by chance is <0.05 (2-tail), there is significance
- Two tests; which is chosen depends on F-test.

Results

-	p-v	alues	Product	Cost	Schedule	Perf.	Subj Succ	RepIng	ReqDif	CogFog	Stk Rels
>	13	Diff ->	8	9	10	11	12	13	16d	32	38f
		Split by v									
	8	Delivered Product				0.01106	4.2E-06		0.03762	0.00029	0.03167
	9	Cost Overrun			2.6E-10			0.00021		0.01001	
	10	Schedule Delay		1.4E-11			0.0228	5.1E-06	0.02194	0.00361	
	11	Performance Shortfall	0.0063				9.7E-13	0.01038	0.02625	3.1E-06	0.01082
	12	Subjective Success	0.00281	0.02908	0.00059	1.1E-05		0.0054	0.01975	0.00077	
	13	Replanning		1.5E-05	5E-07		0.0182			0.001	0.00192
	16d	Requirements Difficult		0.00027	0.00165	0.00163	0.00115	0.02594		0.00892	0.00244
	32	Cognitive Fog	0.00789	0.03948	0.012	0.00074	0.00088	0.0095			
	38f	Stakeholder Relationsl	nips	0.02093	0.02429	0.0245	0.03361	0.00028	0.00272	0.03238	

Black text: Significant (p<0.001). White text: Significant (p<0.05).

• Three top variables strong predictors of Cost, Schedule, Performance shortfall.

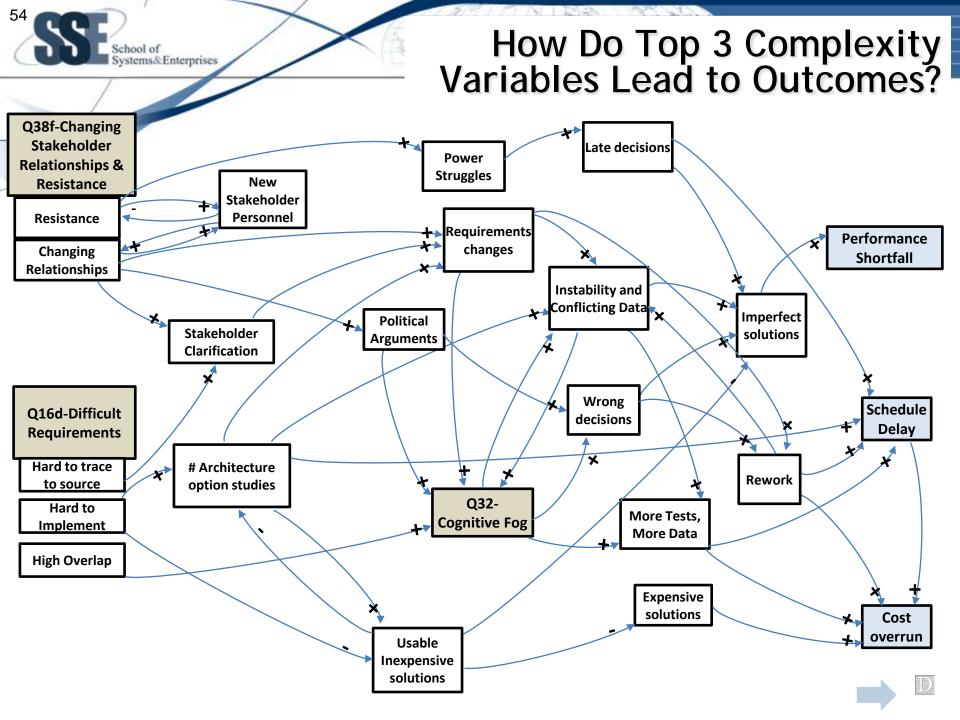
52 School of Systems&Enterprises

Hypothesis Variables vs. Outcomes

1			Outcome Variable		
		Cost	Schedule	Performance	
Complexity Variable	Ν	Overrun	Overrun	Shortfall	
Q16d—Requirements Difficult					
Low (Under 100) mean	57	3.37	3.30	2.26	
High (Over 100) mean	12	5.00	4.64	3.60	Means:
p-value		0.00027	0.00165	0.00163	1 = better
Significance		Very (p<0.001)	Significant	Significant	2 = +/- 5% 3 = worse 5
					4 = worse 2
Q32—Cognitive Fog					5 = worse 5
Low (D-SD) mean	33	3.03	2.97	2.00	c&s only: 6 = worse >
High (A-SA) mean	19	3.89	4.11	3.53	
p-value		0.0395	0.0120	0.00074	
Significance		Significant	Significant	Very (p<0.001)	
Q38f—Stakeholder Relationships					
Low (Stable) mean	20	3.30	3.11	2.15	
High (Resistance) mean	16	4.50	4.19	3.27	
p-value		0.0209	0.0243	0.0245	
Significance		Significant	Significant	Significant	

5-20% 20-50% 50-100%

>100%

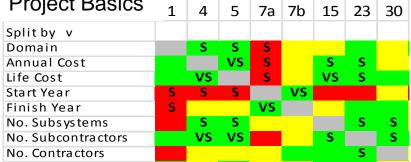

Two Outcome Groups

And I starting

1			_		1		
/		Delivered	Performance	Subjective	Replanning	Cost	Schedule
-		Product	Shortfall	Success		Overrun	Delay
		8	11	12	13	9	10
-	Use Lean			Sig			
29	No. Government		Sig				
38h	System Behavior Known		Sig	Sig			
31	Experience Level	Sig	Sig	Sig			
38f	Stakeholder Relationships		Sig	Sig	Very Sig.	Sig	Sig
32	Cognitive Fog	Sig	Very Sig.	Very Sig.	Sig	Sig	Sig
16d	Requirements Difficult		Sig	Sig	Sig	Very Sig.	Sig
33	Estimates Right		Very Sig.	Sig	Very Sig.	Very Sig.	Very Sig.
36	Stakeholder Conflict	Sig		Sig	Sig		Sig
14a	Use PERT		Sig -		Sig -		
38e	Stakeholder Involvement			Sig	Sig	Sig	Sig
18	Technical Rqts Conflict			Sig	Sig		Sig
1	Domain			Sig	Sig	Sig	
16n	Requirements Nominal				Sig	Sig	Sig
19	Tech-C&S Rqts Conflict				Very Sig.	Sig	Sig
16e	Requirements Easy				Sig	Sig	
25	Schedule Dependency				Sig	Sig	
4	Annual Cost				Sig	Sig	
23	No. Subcontractors				Sig	Sig	
38b	Scope Function-Enterprise				Sig	Sig	
6	Relative Size				Sig		Sig
27	Staff Skills				Sig		Sig
14b	Use Risk Mgmt				Sig -		Sig -
37	Needs Changed				Very Sig.		Sig
28	No. Decision Makers				Sig		
5	Life Cost					Sig	Sig
24	Changes Limbo					Sig	Sig
26	Planned-Agile					Sig -	Ū.

53

School of Systems&Enterprises



School of Systems&Enterprises

Si	Ze Diff->	30	15	23	28	29	35	16e	16n	16d
	Splitby v									
30	No. Contractors			S						
15	No. Subsystems	S		S						
23	No. Subcontractors	S	S			VS				
28	No. Decision Makers	S						VS		
29	No. Government			VS	S					
35	No. Sponsors				S					
16e	Requirements Easy				S				VS	S
16n	Requirements Nominal			S				VS		VS
16d	Requirements Difficult		S	S				VS	VS	

Project Basics

55

P	Proj Mgmt	iff ->	25	14a	13	33	26	34	38d	14b	14c	14d
	Splitby v											
25	Schedule Depen	dency		S	S	S	VS	S	S			
14a	Use PERT		S		S	S				S		
13	Replanning			S		VS				S		
33	Estimates Right		S	S	VS							
26	Planned-Agile		S					S				
34	Priorities Short T	erm	S				S					
38d	Acquire Projects	Systen	าร				S					
14b	Use Risk Mgmt			S	S							
14c	Use Agile											
14d	Use Lean											
									-			

	Uncertainty _{Diff->}	24	32
	Splitby v		
24	Changes Limbo		S
32	Cognitive Fog	S	

S	kills Diff	-> 27	31	
	Splitby v			-
27	Staff Skills		S	
31	Experience Level	S		

Subsets

	Re	qui	irem	ents	Diff	: ->	16e	16n	16d	18	19	37	38a	20
		Spl	itby v											
	16	Se Re	quirem	ents Eas	sy			VS	S		S			
	16	5n Re	quirem	ents No	mina	al	VS		VS	S				
	16	d Re	quirem	ents Dif	ficul	t	VS	VS		S	S	S		
	1	8 Te	chnical	Rqts Co	nflic	t			S		S	S		
				Rqts Cor	nflict		S			VS		S		
			eds Cha	0					S	S	S		S	
				nvironm								S		
	2	0 Exp	ectatio	ns Easy	/									
01-1	ا م ام م			Diff ->	20	35	23	28	29	38b	38c	38e	38f	36
Stal	keho	ae	rs –											
20	Expecta	tions	Fasy											
	No. Spo							S						
	No. Sub								vs					S
28	No. Dec	ision	Makers	5						S				S
29	No. Gov	/ernm	ent				VS	S						
	Scope F			rprises									S	S
	Scale o													
	Stakeho									S			VS	VS
	Stakeho						S			S		VS		VS
36	Stakeho									S		VS	S	
		Cl	hang	es			Di	ff ->	24	21	. 2	2 3	37 3	88h
			Splitk	by v										
		24	Chang	es Lim	bo									
		21	TRLs											S
		22	Opera	tional	Evo	luti	on							S
		37	Needs	S Chang	ged									
		38h		n Beha		Kn	owr	۱			S	5		
		L	, -	-							_			

С	onflict Dif	f _>	18	19	32	36
_	Splitby v		10	15	52	50
18	Technical Rqts Conflict			S	S	S
19	Tech-C&S Rqts Conflict		VS		S	S
32	Cognitive Fog		S	S		VS
36	Stakeholder Conflict		S	S	VS	

Complexity Variables and Spectra

• Desire: Determine whether complexity is correlated with problems

56

chool of

stems & Enterprises

- Each question becomes a variable with a spectrum of answers: one end of which is assumed to be more complex; test that hypothesis
- Bigger: Higher annual cost, more decision makers, more stakeholders, more requirements
- Other reasons to consider one end of the spectrum to be more complex are on next slide

Assumptions of "More Complex"

Each variable needed a polarity. Must define "more complex" for every variable:

- Anything larger (dollars, numbers, ...)
- More conflict or more unprecedented
- More change
- Lower technology maturity
- Not using project management methods, or prioritizing short-term over long-term*
- Agile/incremental rather than planned/controlled*
- Later programs*
- Fewer skills or less experience, more confusion
- More failure (more overrun, performance shortfall, not delivering a product, subjective failure...)

58 School of Systems&Enterprises

Additional analysis: Coherence

No difference in means

• Do two variables go up together or opposite?

Opposite

Coherence conclusions

Together

- 22 variables have high coherence with outcome variables (upper left)
- Several variable together are likely to be better indicator than any one variable
- No variables were unanimously opposite
- Project Management and Start Year were somewhat red
 - Polarity likely wrong; explanations speculative

Significance, Unsorted

			/						-	_			-											
Diff->	1 4 5 6	7a 7b	8 9 10	11 12	13 14a 14b	14c 14d	15 16e	16n 16d 🖸	.7 18	19 2	0 21 2	2* 23*	24 25 2	26 27	28 29	30 31	32 3	3 34	35	36 37	38a 38b	38c 38c	1 38e 38f	38g 38h
Split by v			_																					
1 Domain	<u> </u>	S	S	S	S						_												S	
4 Annual Cost	VS	S	S		S S	S		VS S		5	5	S	VS		S						S			
5 Life Cost	VS S	S	S S			S	VS S	S S		5		S	VS		S									
6 Relative Size	S S		S		5 5	_	S	5 5					S		5		5			S			S	
7a Start Year	5 5 5	VS															-					5		
7b Finish Year		VS		6 NG			C	6							5	6			~				S	
8 Delivered Product				s vs			S	S	5	6				5	<u> </u>	5	VS S		5	S	-	_	5 5	
9 Cost Overrun 10 Schedule Delay	S S						5	S		<u></u> с с		-	VS S	2	5 6		S V S V	-	5	5	5			
11 Performance Shortfall	S VS S		vs c				ç	S C C		<u>з</u>	, 	<u> </u>	v 5		3	VC	VS V	<u> ۲</u>		5 5				
12 Subjective Success	S S		s SSVS		3 3		S	5 5 6 6	s r			5 5				v 5	VS V VS S			<u>د</u>	c		<u>د</u>	6
13 Replanning	S S S S		S S VS VS VS	v s				s s	s c	VS	-				c		VS V VS V			s s s	S C	_	s c c	
14a Use PERT					ς ς		VS	C C	_	V S					<u>з</u>		V3 V	5		3 3	5			
14b Use Risk Mgmt				5			V 3	S C				-	5											
140 Use Agile								5																
14d Use Lean		_		ç						-	,	_											• =	
15 No. Subsystems												S	_	s		S								
16e Requirements Easy	S S		s		s vs			vs s		S		- U	S S	s Č	s	Š	VS				S		S S	
16n Requirements Nominal	vs s s		s s		S S S		VS	VS	s			s					1						S S	
16d Requirements Difficult	VS VS S		VS S	S S	S		s vs	VS	S S	S		S	s s	S			S			S	S	S	S S	
17 Architecture Precedence																	S				S			S
18 Technical Rgts Conflict			S	S	S			s		S					S		S			s s				
19 Tech-C&S Rgts Conflict			S S		VS		S		VS				S S	S	S		S S	S S		S S				
20 Expectations Easy									S															
21 TRLs																						S		S
22 Operational Evolution	VS																							S
23 No. Subcontractors	VS VS		S		S		S		S						VS	i S				S S	S			
24 Changes Limbo	VS VS S		S S				S	S	S	S					VS	S	S S	5						
25 Schedule Dependency			S		S S		S			S				/S	S		S	5 S				S S		
26 Planned-Agile			S				S						S S					S						
27 Staff Skills	S S		S		S		S						S			S	S V	S		S			S	S
28 No. Decision Makers	S S				S	S	VS		S	S			VS			S	S	S		S	S			
29 No. Government				S		S						VS	S		S	S								
30 No. Contractors										5	5	S	S				. –	S						
31 Experience Level			S	S S						S				S	S		VS V	-		S S			S S	
32 Cognitive Fog			S S S	VS VS	S		S	S	S S	S			S	S	S	VS		S		VS S	S		S	
33 Estimates Right			VS VS	VS S	VS S	_	_	_	_	S			S S	VS		VS	VS			S		_	<u> </u>	
34 Priorities Short Term										S	_		S	S	S	S								S
35 No. Sponsors	S S		_						_				S		S			_						
36 Stakeholder Conflict			S S	S	S				S	S		_		S		VS	VS S	5		VS	S S		VS S	
37 Needs Changed	S		S		VS	S		S	S	S						S	S			S	S		S S	
38a Mission Environment							-	ς ς		<u> </u>										5 5	S			S
38b Scope Function-Enterprises	S S S	3	5		3		5	5 5		2						5	2			5 5	S	VS	5	5
38c Scale of Users		5 5						c	-										c					5
38d Acquire Projects Systems 38e Stakeholder Involvement			<u> </u>	c	c		VC	5 5 VS 5				c					VS S	5 S	5		VS		110	5
386 Stakeholder Involvement 38f Stakeholder Relationships	5		5 5	s s	S VS				5 S			с С		3		5	v 5 - 5	5 5		VSS VSS	S		VS	
38 Stakeholder Relationships 38g New Capability			5 5	3 3			5	5 5	5			5					З	C		vs s	5	c	VS	1/5
38h System Behavior Known				s s					s c	c		s 🛛					s c				с с	5		
Son System benavior Known				5 5					5 3								- J - J				5 5	5 5		V S

S=significant; VS=very significant

60

Coherence

	-		-																																												
Diff ->	22	12	22	160	1 10	۵	12	36	280	160	5 1	6n 3	20 20	2h A	10	28	F 11	21	28 3	27	6 1	2 7	2 29	2h Q	27	25	17		1 3	2d 1	5 20	2 20	1 25	2/	282	20	22	284	280	21	7:	- 7h	14a	1/h	1/c1	1d 2	5
	52	13	55	100	1 10	9	12	50	206	106	J .		.4 50	50 4	1.5	50	11	21	20 .	,,	1	.0 2	.5 50	511 0	21	2.	, 1/		1 30	JUI	J Z:	5 50	, ,,	54	1 300	20	22	JOE	500	21	70	3 70	140	140	1401	4u 2	-
Split by v																																									_						
 32 Cognitive Fog 		S			S	S	VS	VS	S	S		S	S S	5	S		VS	vs		S		S		S	S		S			_													<mark>.</mark>				
13 Replanning	VS		VS			VS		S	S	S	S	S		s s	VS	5 S			S	S	S :	S							S														S	S			
33 Estimates Right		VS			vs	VS	S	S					S		S			vs							VS	S S																_	S				
16d Requirements Difficult	S	S			S	vs	S		S	VS	vs	VS	S S	5 V.	s s	S	S			S	S :	S S	S		_	S	S			S S	S		_													5	
10 Schedule Delay		VS		S		VS	S	S			vs	_ \	/S	S	S				S	S	S											_				S								S			
9 Cost Overrun		VS	VS		VS			S	_	S	S	S \	/S 5	s s	S				S							S			_				S														
12 Subjective Success	VS		S	S	vs	S		S	S	S		S		5			VS							S S		_	S		S																_	_	
36 Stakeholder Conflict	VS		S	_	S	_	S		VS					5	S	S		VS	<u>۱</u>	/S		S		S	S								_		S							_					
38e Stakeholder Involvement	VS		S	S	S	S	S	VS		VS		VS		5		VS		S	_	S	S :	S			S		S							S			S				_						
16e Requirements Easy	VS	S		S	_	S			S		S	VS		5		S		S	S		S	_				S																	VS		_		
5 Life Cost				S	S	S				S		s١	/S	V.					S		S		S _				_			v	S				_	S					5				5		
16n Requirements Nominal		S		vs	S	S		_	S	VS				V.		S					S :	s s	S _			_																	S	5			
24 Changes Limbo	S	~	S		S	S				S	vs	S		V.					vs	~	S :	S										S								_							
38b Scope Function-Enterprises	S	S		S		S	_	S		S	S	5		S	S	S	_	_	~	S	5	_					S		V	'S		5	_		S			5				_			_		
4 Annual Cost		S		S		S		_		S	vs	vs ۱	15 3	`					S	_			5							_	>					S				_	3		1 3 1		5		_
19 Tech-C&S Rqts Conflict		VS	S		S	S		S		S		~	s _						S	5	V	S			S	S							-	S													
38f Stakeholder Relationships	S VS		ve	5	5	S	5	vs	vs	S		S		·			5	NC		5		53	S														~						. . 1				
				S			vs	~	~	S		S				S		vs		~	5	5 :	5	5									L _				S				_		<u> </u>				
31 Experience Level	VS		vs				3	<u> </u>	5		<u> </u>		, , ,		Š	5	<u> </u>			2		~		3	5	_					5		5	<u> </u>							_				_		
28 No. Decision Makers	S	S			~		_	S	~	VS	5	``	/S S	s s	5	~			_			S										5		5	L			_		_					5	~	
37 Needs Changed6 Relative Size	2	VS S	s		S S			3	S	s		s	,		5	5		5		<u> </u>	5	S													5						_					5	
18 Technical Rgts Conflict	s	S	3	<u>د</u>	S				3	з	3	3	3	3	- C				<u>з</u>	s c																		_			_			3			
23 No. Subcontractors	. . .	s S		З	3		S	3 6	_		vs			M	3				3	s c		_									s v										_				_		
38h System Behavior Known		з				3	_	3		_	vs			, V.	>					<u>з</u>	_	2						-			5 V:	<u> </u>		_	S		<u> </u>	VS	<u> </u>	_							
8 Delivered Product	vs		3 6	c			s VS	c						, 		c	 	c			_	3 C					3			• _			<u>،</u>		з	3	3	vs	3		_				_		
27 Staff Skills	S	s	VS	3	c		v 3	S	3 6	з			c .			3	3	3 6			۰ د	3											3											_			
25 Schedule Dependency	3	3 c	v 3 c		3	c		3	3	c	3		3		c			3			3										، ر										_						
17 Architecture Precedence	S	3	3			3				3		_			3														-	,	3			3					3					_		v	<u> </u>
17 Architecture Frecedence	3		_						_					·				_		-				,																		-					4
1 Domain		c			_	c	c				•					c																															
38d Acquire Projects Systems		3		c		3	3				3	c	v	с С		3								-			c						c														
15 No. Subsystems				3							c	3	v	з с									с -		c		3						3												_		
29 No. Government											3			-			ç	ç	c			- v	5 /S		3	s					_												-		C.		
30 No. Contractors													c				3	3	3			Ľ,	с –			3								5		s							_		-		
35 No. Sponsors																			s		s					c			S																		
34 Priorities Short Term															s				s							s						s															
38a Mission Environment								S												s				S																							-
20 Expectations Easy																											S																				
22 Operational Evolution																				١	vs			s																							
38g New Capability																							v	s			s							5					S							s	
38c Scale of Users																								s –																	5	s					
21 TRLs																								S															S								
																																															1
7a Start Year											S			S															S										S			VS					
7b Finish Year									S																				S		S										V	S					
14a Use PERT		S	S							VS	S	S		S			S						S			S																		S			
14b Use Risk Mgmt		S			S							S									S																						S				
14c Use Agile														S																						S											
14d Use Lean							S														S																										1
26 Planned-Agile						S				S			S													S								S													

61 School of Systems&Enterprises

Potential Future Work

- Research use in developing a program of research
 - Complexity can be correlated with risk, cost, skills, customer
 - Architecture complexity, requirements complexity, stakeholder complexity, test complexity, etc. can be measured
 - Could build a "complexity referent" to compare a program to...how much complexity is typically reduced at what points

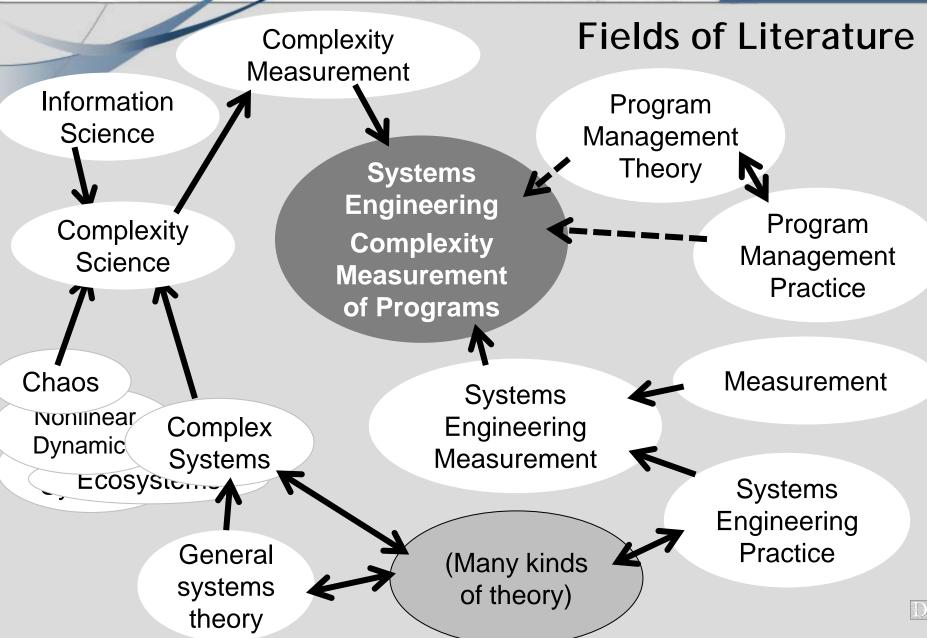
- Intent after PhD
 - Possible: Profess, Consult, DARPA, FFRDC, Lab, Industry?

Potential Areas of Future Inquiry

	Project manageme	ent	Socio-political complexity		ngeability	Benet Comp			Model stability	
	surprises		complexity	The	ory	Comple reductio	•		Terminology	
Additior measur		Maint and	enance	com	cation of plexity to nical		Allocation complexity	-	Represent of complex	
Quar	ntification		vement	syst peoj	em vs ole		complexity	,	Complexity Referent	
Measure specification	on	С	conway's law		Guided		Inherent Models			
	iristics	eng	tems ineering cess	Relation comple	evolution nship of xitv to				Kinds of systems engineerin complexity	•
Knee of curve	f the			causes effects	•		ducible mplexity	U	Incertainty	
and	oundaries d spatial nomogeneity	,	Interdepende	ncies	Entropy	/		Uninter conseq	nded uences	-

01–Domain Beginning O4–Annual cost of Program **Q6**—Relative Size 07a—Start Year Q15–No. Subsystems Q16e—Requirements Easy Q16n—Requirements Nominal Q16d—Requirements Difficult **O17**—Architecture Precedence Q18—Technical Rqts Conflict Q19—Tech-C&S Rqts Conflict Q20—Expectations Easy 023–No. Subcontractors Q25—Schedule Dependency **Q27–Staff Skills** 029–No. Government Q30–No. Contractors Q31—Experience Level Q38b—Scope Function-Enterprises Q38d—Acquire Projects Systems Q38h—System Behavior Known

Early and Late Indicators


Q5—Life Cost Q24—Changes Limbo Q26—Planned-Agile Middle Q32—Cognitive Fog Q34—Priorities Short Term Q36—Stakeholder Conflict Q38e—Stakeholder Involvement Q38f—Stakeholder Relationships Q37—Needs Changed Q13—Replanning

Q7b—Finish Year End Q8—Deliver Product Q9—Cost Overrun Q10—Schedule Delay Q11—Performance Shortfall Q12—Subjective Success Q22—Operational Evolution Q33—Estimates Right

Beginning to Middle

Q14a–Use PERT Q14b–Use Risk Mgmt Q14c–Use Agile Q14d–Use Lean Q21–TRLs Q28–No. Decision Makers Q35–No. Sponsors Q38a–Mission Environment Q38c–Scale of Users Q38g–New Capability

Definition of Complexity

Complexity is the inability to predict behavior due to nonlinearity, emergent behavior and chaotic principles.

65

chool of vstems&Enterprises

- Characterizes systems, projects, and the external environment.
- Has structural (size, connectivity, and inhomogeneity), dynamic, and socio-political factors,
- Manifests as spectra, from less complex to more complex, in a large number of variables
- Displayed by a system, its representation, and the interpretation of the variables by humans

 Previous definitions of complexity are difficulty to measure on real projects or are difficult to trace to complexity literature

ems&Enterprises

- Assess a large number of potential complexity measures for projects and narrow to small set
- Survey a large number of development programs to see whether any of the measures correlates to program outcomes
- Identify the complexity measures that can be taken early in a program and correlate to program outcomes
- These should be refined in follow-on work

Types and Entities

- Complexity has six types
 - Structural* (Size, Connectivity, Inhomogeneity)
 - Dynamic (Short-term or Operational; Long-term or Evolutionary)
 - Sociopolitical

Systems & Enterprises

68

- Complexity of what? Entities
 - System being built (usually technical, sometimes socio-technical)
 - Program building system (usually socio-technical)
 - Environment (usually socio-political)
 - Cognitive (mental limitations; also frustration, subjective complexity)
- Measured 1st 3 kinds of entities, +1 cognitive measure
- "Sociopolitical" used questions from SE literature

69 School of Systems&Enterprises

Publications

Title	Publication Venue	Date
A Framework for Systems Resilience Discussions	INCOSE symposium	July 2008
Principles of Complex Systems for Systems Engineering	Systems engineering	November 2009
Complexity in Large-Scale Technical Project Management	International Journal of Complexity in Leadership and Management	2011
Proposed: Complexity Attributes Impacting Program Outcomes	IEEE	2012
Proposed: Congruence in complexity factors in system development programs	TBD	2012
Proposed: Early, mid-program, and late complexity factors predicting outcomes	TBD	2012

Other Questions

• Perform t-tests of every variable with every other

ms&Enterprises

- Example: Do large and small programs (cost) have a statistically significant different number of requirements? (ans. yes).
- Example: Do programs that meet cost targets also meet schedule targets? (ans. yes, not so much for performance)
- Coherence: In what direction is this statistically significant difference: are programs that are more complex in one variable more or less complex in others?

Assessing the Impact of Complexity Attributes on System Development Program Outcomes

Ph. D. Dissertation of Sarah Sheard

Doctoral Advisory Committee

Dr. Ali Mostashari, School of Systems and Enterprises, Chairman

Dr. Dinesh Verma, Dean, School of Systems and Enterprises

Dr. Arthur Pyster, School of Systems and Enterprises

Dr. Brian Sauser, School of Systems and Enterprises

Dr. Tal Ben-Zvi, Howe School of Technology Management

Research Limitations

Limitations

vstems& Enterprises

chool of

72

- Correlation is not causation...no guarantee that changing these variables will improve success rate.
- Results are qualitative, not quantitative
- Retrospective surveys and data categories; survey did not also interview participants to tease out their meanings of ambiguous terms
- Small numbers of non-aerospace/defense, and failed projects
- May have been confusion about some questions, e.g., "doubleloop learning/set-based engineering"; operational evolution; meaning of "performance."
- Did not address how complexity of different aspects of systems and projects might differ (management vs technical experience level, technical vs programmatic estimates, e.g.)

Research Methodology: Measurement criteria

Real

- Reproducible
 - Equivalence
 - Stability
- Predictive
- Usable
 - Convenient data (
 - Interpretable dat
- Robust
- Complete
- Individual
- Orthogonal
- Valid

{Entire research question}

Careful phrasing and testing of questions After 1 year (4): 64% same, 93% nearly. {Point of research question} Feedback from surveys and interviews...no problems filling them out; also data stability Careful phrasing, measures selection Lit. review, grouping, correlation Measures selection Measures selection, some analysis See separate chart

Assumptions of "More Complex"

Balance O Growth O Connections

Each variable needed a polarity: "more complex" is: Anything larger (dollars, numbers, ...) More conflict or more unprecedented More change Lower technology maturity Fewer skills or less experience, more confusion More failure (more overrun, performance shortfall, not delivering a product, subjective failure...) Not using project management methods, or prioritizing short-term over long-term* Agile/incremental rather than planned/controlled* Later programs*

Research Methodology: Method's Validity

Empirical

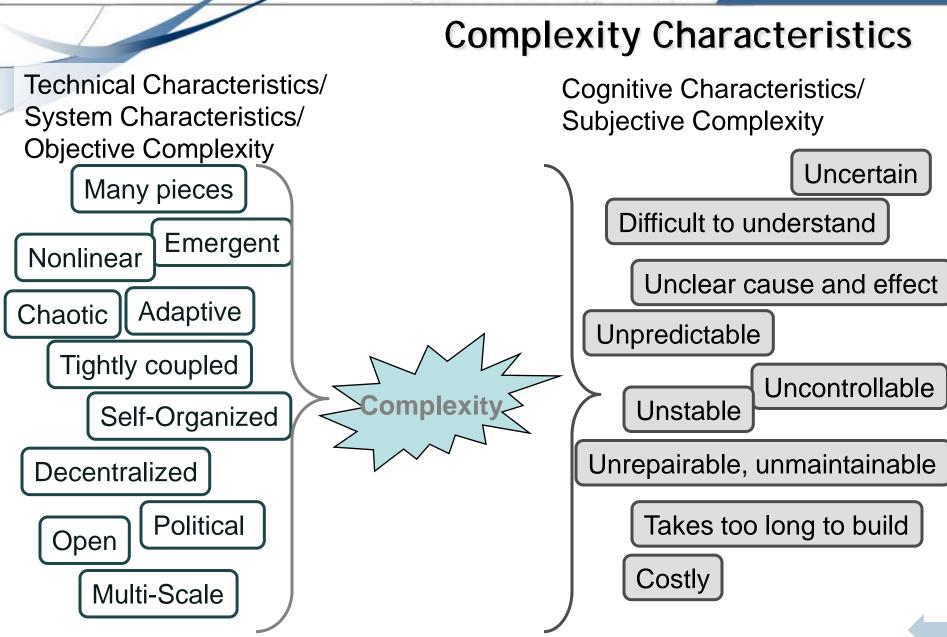
- Calibration... Difficult; used bins.
- Measures what it purports to measure...Difficult: many definitions of complexity...Literature→taxonomy, respondent roles
- Content
 - Face...Delphi group
 - Sampling...Broad variety and moderately large number of programs; used INCOSE
- Model
 - Internal...Ask questions in unbiased manner. Verify whether other explanations are possible. Example: Estimates good, Replanning
 - Internal consistency...separate questionnaire into sections for "system", "project", and "environment"
 - External...Tested for stability of linear correlations; backed off.
 Domain is aerospace/defense and may be extensible
 - Theoretical...Literature review
 - Pragmatic...Designed around usability and practicality

Related Dissertation, David J. Williamson

- Oct. 2011, Capella University
- Advisor Lawrence R. Ness
- "IT Project Complexity, Complication, and Success"
- Correlated IT Project Complexity (ITPCx) and IT ProjectComplication (ITPCn) with IT Project Success (ITPS)
- Complication: Size, detail, number of parts; linearity and predictability; can be managed with rational systems (r²=0.12, -) approaches
- Complexity: Interaction between the parts; nonlinearity, unpredictability, evolution; cannot be managed directly, can only be accommodated or mitigated $(r^2=0.05, -)$

13 Cx Factors: Objectives **Opportunity** Solution **Team Ability** Methodology Schedule Requirements Environment IT Complexity Tech Change Org Change Staffing $(r^2=0.28, +)$ **IT** Integration Change, Unknowns Size, Familiarity

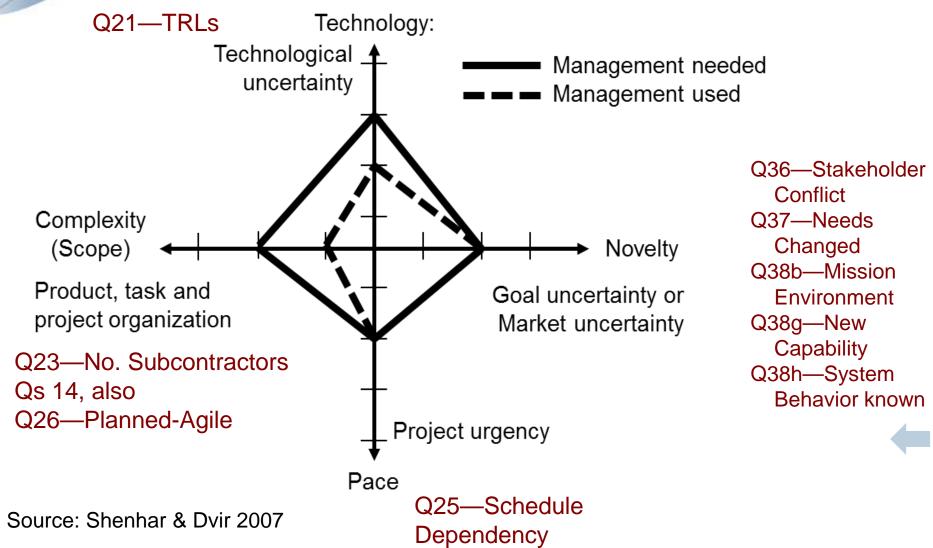
9 Cn Factors: Leadership Schedule Duration Team Size Cost Scope Flexibility Tech. Content Org. Support Org. Units Contractors



77

Outcome Variables

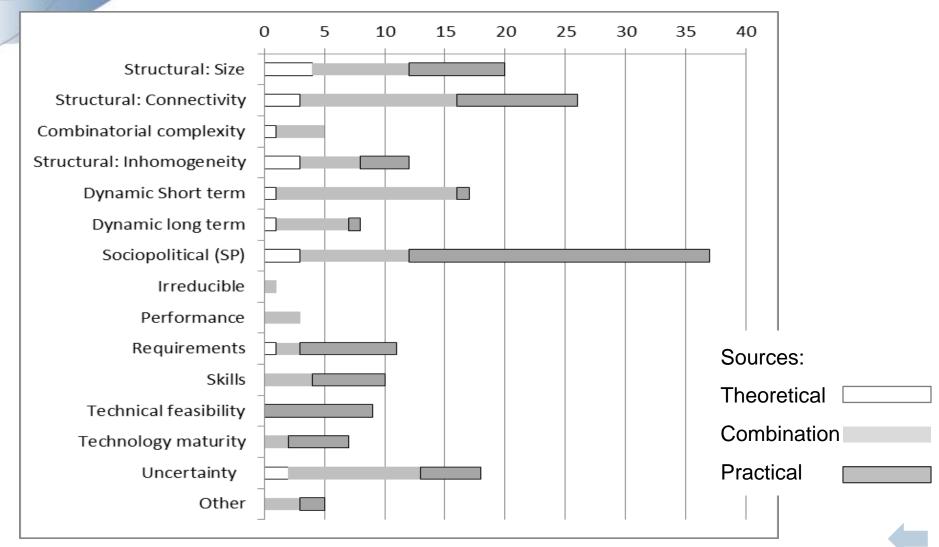
#	Variable	Low Complexity	High Complexity	Pol	Split (N of split variable)
8	Delivered Product: Assume more complex projects less likely to deliver	1 Yes	2 No	1	Choice 1 yes (64) vs. Choice 2 no(12)
9	Cost Overrun	1 Below cost	6 >100% over plan	1	Choices 1-2 <under budget to within 5% (19) vs. Choices 4-6 >20% over (32)</under
10	Schedule Delay	1 Early	6 > 100% late	1	Choices 1-2 On time or early (18) vs. Choices 4-6 Over 20% late (28)
11	Performance Shortfall	1 Higher than spec	5 < 50% of spec or cancelled	1	Choices 1-2 Per spec or better (50) vs. Choices 4-5 More than 20% shortfall (13)
12	Subjective Success: Assume complexity = failure.	5 Great Success	1 Great Failure	-1	Choices 1-2 Failure (20) vs. Choices 4-5 Success (40)



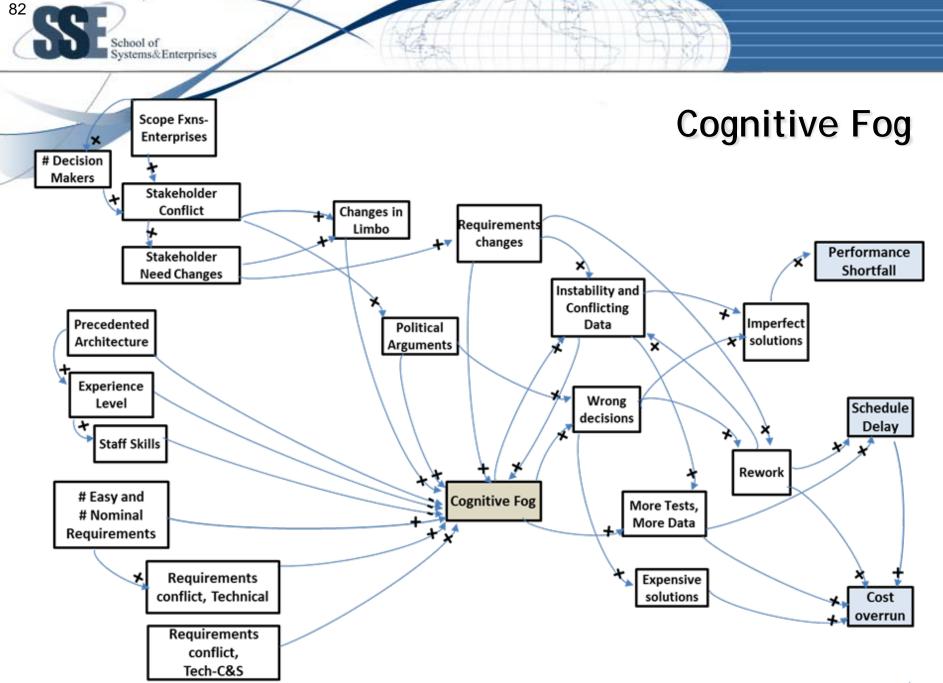
Shenhar/Dvir Adaptive Diamond

Q12—Subjective Success

School of Systems&Enterprises


80

Arguable Polarity


#	Variable	Low	High	Pol	Split (N of split variable)
		Complexity	Complexity		
7a	Start Year:	1 Earlier	5 Later	1	Choices 1-3 Up to 2000
	Systems getting				(37) vs. Choices 4-5 2001
	more complex?				and later (39)
14	Used PERT	1 Use	0 No use	-1	Choice 1 yes (62) vs.
a					Choice 0 no (13)
26	Planned-Agile	1 Very Planned/	5 Very	1	Choice 1 Very PC (16) vs.
		Controlled	Incremental/		Choices 4-5 Somewhat or
			Agile		very I&A(18)
22	Operational	3 Essentially as	5 Became a	1	Choices 3-4 (41) vs.
	Evolution:1 and 2	delivered	different		Choice 5 (10)
	were "did not start		system		
	therefore did not				
	evolve"; n/a				
34	Priorities Short	5 SD	1 SA	-1	Choices 1-2 Agree (32) vs.
	Term				Choices 4-5 Disagree (23)

Types of Measures from Sources

Number of Measures in Each Category

Research Impact

- How does this research complement the existing body of knowledge?
 - Interprets scientific definitions of complexity, as organized into a taxonomy, for engineering use
 - Identifies which measures work well to measure complexity on practical programs
 - Identifies those entities whose complexity must be measured, and identifies measures of complexity for them, that can be measured early- and mid-program
 - Identifies which measures of complexity actually track together and which seem to be opposite the others
- What has this research demonstrated?

83

school of

Systems& Enterprises

- Difficult requirements, stakeholder relationships, and amounts of confusion and conflicting data influence all outcomes: cost, schedule, and performance
- 20-25 other variables also support the evaluation of complexity of systems, development programs, and the environment

Thanks to My Committee

Dr. Ali Mostashari Stevens School of Systems and Enterprises

Dr. Brian Sauser Stevens School of Systems and Enterprises

Dr. Tal Ben Zvi Howe School of Technology Management

Dr. Art Pyster, Stevens School of Systems and Enterprises

Dr. Dinesh Verma, Stevens School of Systems and Enterprises

Problems with measuring complexity

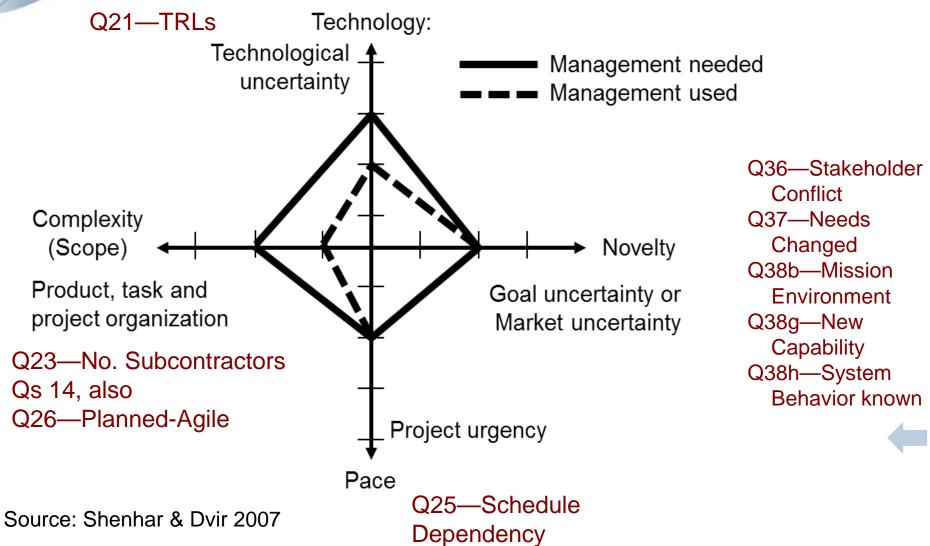
- Measuring=counting
- Measuring=simplification
- Things that used to be very complex (e.g. airplane) are not now
- It depends on purpose: is a small circuit (resistor+capacitor) complex?
- For systems engineering: Complexity of what? Various views and representations
- How do tools vary from standard SE repertoire?

Problem

86

Balance O Growth O Connections

- Larger, more complex systems and development efforts
 - Interconnected software, multiple sources, interoperability
 - Larger and more distributed programs
 - Even constituent systems are complex
- Acquisition and development program failures often attributed to complexity
- Enterprises want to know risks and mitigations early
- Systems engineering measures to date do not include complexity measures; Gaps:
 - Divergent definitions of complexity
 - Scattershot approach to managing
 - No consistent way to measure



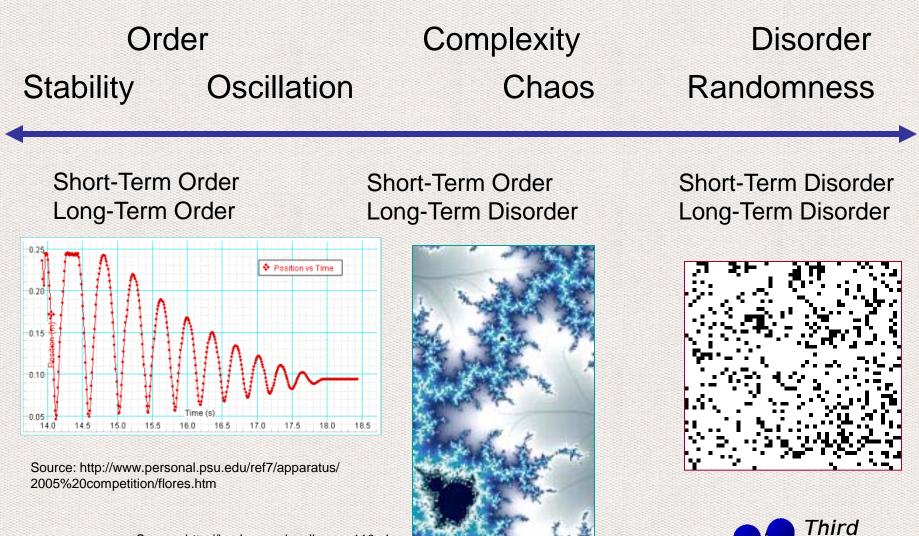
86

Shenhar/Dvir Adaptive Diamond

Q12—Subjective Success

Balance O Growth O Connections

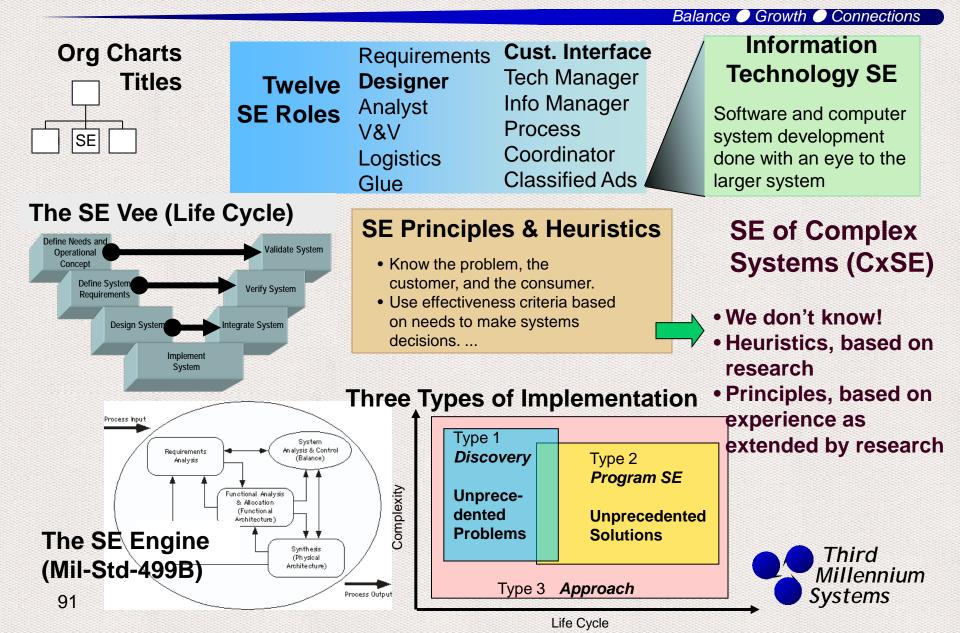
Balance O Growth O Connections



A View of the Spectrum

Balance O Growth O Connections

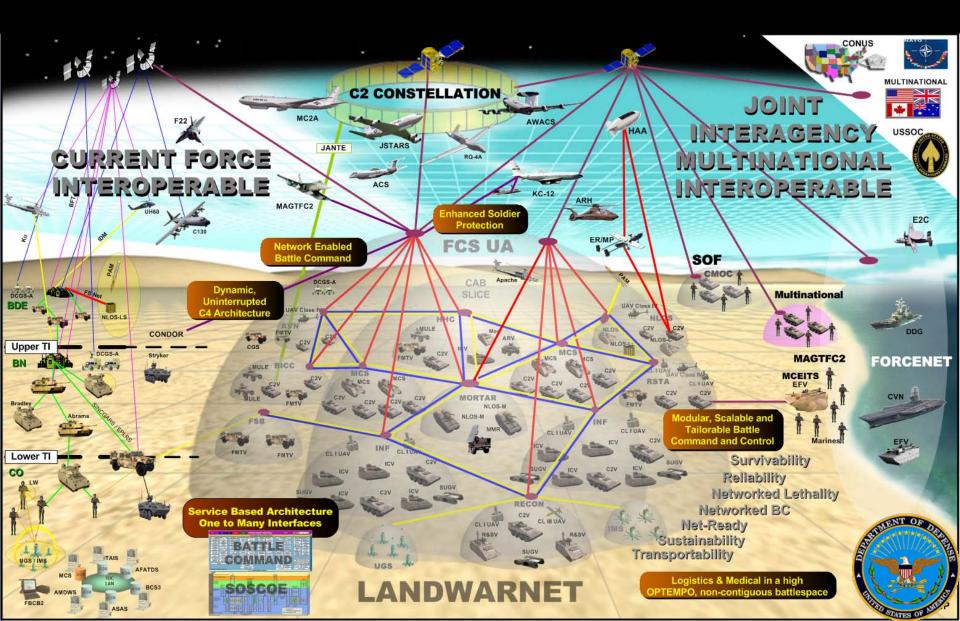
Millennium


Systems


Source: http://background-wallpaper.110mb. com/background-wallpaper-fractals2.php

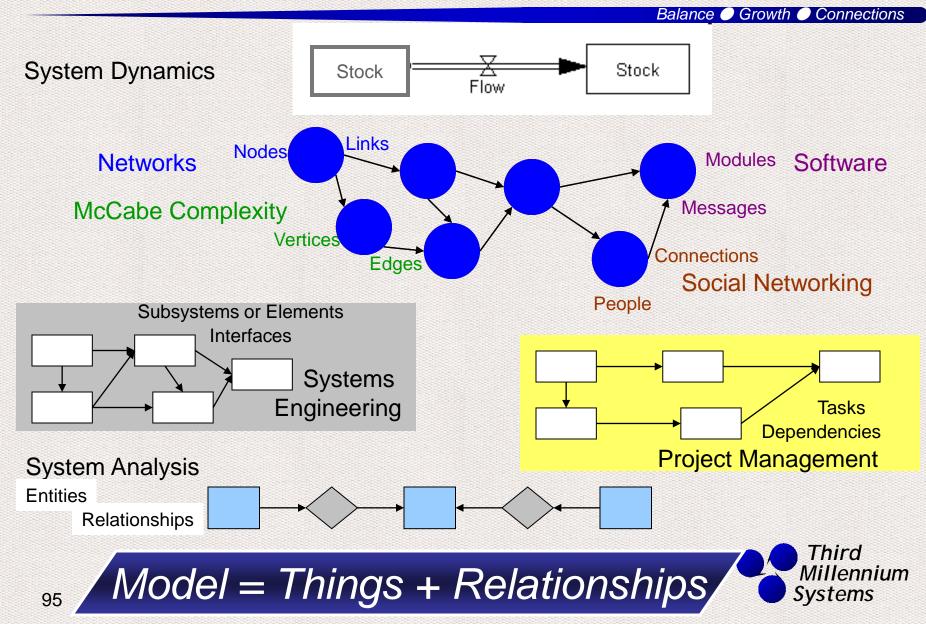
90

Multi-Discipline Systems Engineering (vs. IT SE)


Systems Have Evolved

Source: Monica Farah-Stapleton, IEEE SOS conference, 2006 Used with permission

Army SOS perception


Quotations

Balance
Growth
Connections

Svstems

- It is a magnificent feeling to recognize the unity of complex phenomena which appear to be things quite apart from the direct visible truth.
 Albert Einstein
- The capacity to tolerate complexity and welcome contradiction, not the need for simplicity and certainty, is the attribute of an explorer. - Heinz Pagels
- I know that most men, including those at ease with problems of the greatest complexity, can seldom accept even the simplest and most obvious truth if it be such as would oblige them to admit the falsity of conclusions which they have delighted in explaining to colleagues, which they have proudly taught to others, and which they have woven, thread by thread, into the fabric of their lives. -Leo Nikolaevich Tolstoy
- Abandon the urge to simplify everything, to look for formulas and easy answers, and begin to think multidimensionally, to glory in the mystery and paradoxes of life, not to be dismayed by the multitude of causes and consequences that are inherent in each experience—to appreciate the fact that life is complex. - M. Scott Peck
- Three reasons problems are inevitable: first, we live in a world of growing complexity and diversity; second, we interact with people; and third, we cannot control all the situations we face. -John C. Maxwell
- Some problems are so complex that you have to be highly intelligent and well informed just to be undecided about them.
 Dr. Laurence J. Peter
- I think the next century will be the century of complexity. We have already discovered the basic laws that govern matter and understand all the normal situations. We don't know how the laws fit together, and what happens under extreme conditions. But I expect we will find a complete unified theory sometime this century. There is no limit to the complexity that we can build using those basic laws.
 Stephen Hawking

"Atomic Pieces" of Complexity Representation

