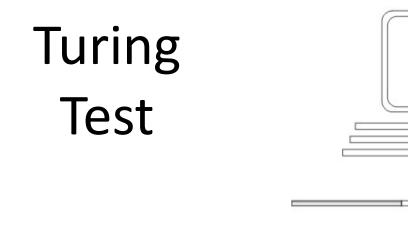
Autonomous Systems Complexity Assessment Day 1 Intro Workshop

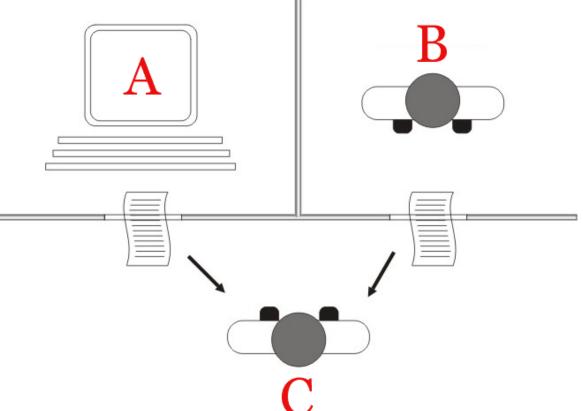
Facilitator: Eric Smith, UTEP Professor Assistant: William Hale, NMT Student

Participants:

- Griselda Acosta
 UTEP Student
- Randy Anway
 New Tapestry, LLC
- John Brtis
- Sergio De La Rosa
- Jim Larkin
- Ron Lyells
- Tim Marks
- Tim Wiseley

New Tapestry, LLC MITRE Corp UTEP Student MEI Technologies, AFRL Contractor Retired Honeywell Sandia National Labs Sandia National Labs

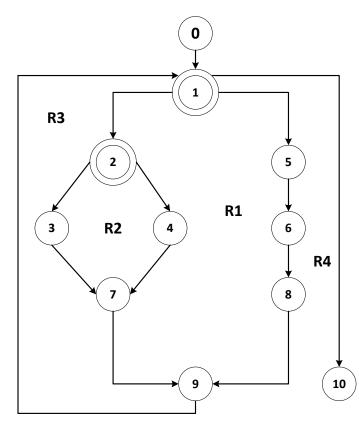



Industrial • Manufacturing • Systems Engineering

R1: Doctoral University: Very High Research Activity

Autonomous Systems Complexity Assessment

Eric Smith



- Alan Turing 1950
- machine's ability to exhibit human-like intelligent behavior
- natural language conversations

Cyclomatic Complexity (McCabe, 1976)

- CC = E N + 2P
- C = # Edges # Nodes + 2(Components)
- **C** = 13 edges 11 nodes + 2 = 4
- Path 1: 0-1-10
- Path 2: 0-1-5-6-8-9-1-10
- Path 3: 0-1-2-4-7-9-1-10
- Path 4: 0-1-2-3-7-9-1-10

8 Strategies

Helle, Strobel & Schamai, Testing of Autonomous Systems, 26th INCOSE Symposium, 2016

- Knowledge (Wirsing, Hölzl, Koch, & Mayer, 2011)
- Adaptation
- Self-Awareness
- Emergence
- Complex Environment, Complex Software, Nondeterministic Behavior
- System Trust; Operational Trust
- Fault Avoidance; Fault Removal; Fault Tolerance

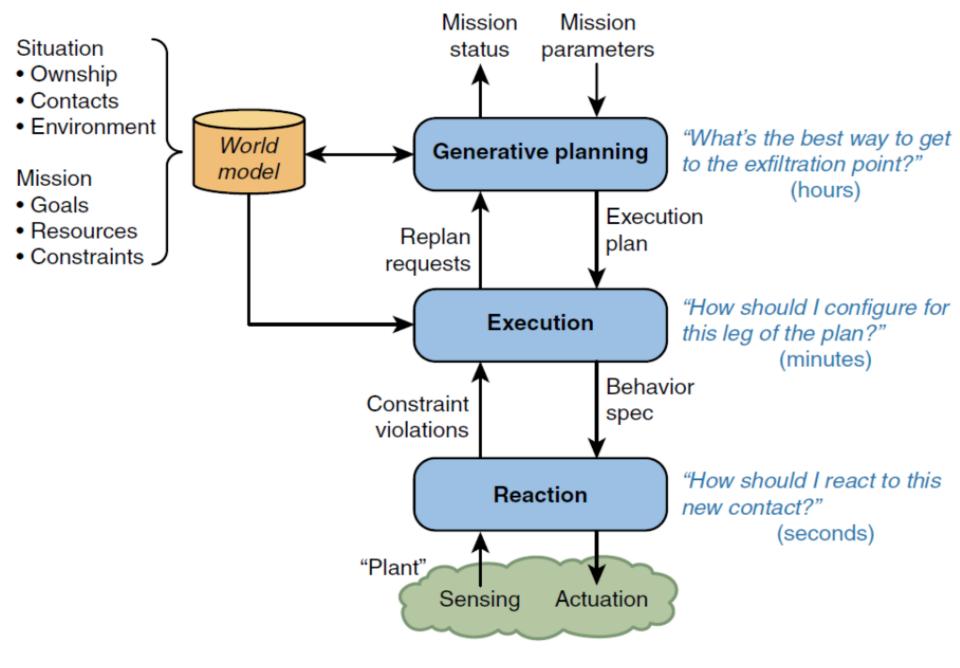


Figure 1. Layered Autonomy Model (Watson & Scheidt, 2005)

8 Strategies

Helle, Strobel & Schamai, Testing of Autonomous Systems, 26th INCOSE Symposium, 2016

- 1. Use Models
- 2. Be **Formal**
- 3. Automate
- 4. Test Early
- 5. Test Continually
- 6. Test Virtually
- 7. Test the Correctness of the Autonomy Capability
- 8. Think Ahead

SAE level	Name	Narrative Definition	Execution of Steering and Acceleration/ Deceleration	<i>Monitoring</i> of Driving Environment	Fallback Performance of Dynamic Driving Task	System Capability (Driving Modes)
Huma	<i>n driver</i> monito	ors the driving environment				
0	No Automation	the full-time performance by the <i>human driver</i> of all aspects of the <i>dynamic driving task</i> , even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
1	Driver Assistance	the <i>driving mode</i> -specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the <i>human driver</i> perform all remaining aspects of the <i>dynamic driving task</i>	Human driver and system	Human driver	Human driver	Some driving modes
2	Partial Automation	the <i>driving mode</i> -specific execution by one or more driver assistance systems of both steering and acceleration/ deceleration using information about the driving environment and with the expectation that the <i>human</i> <i>driver</i> perform all remaining aspects of the <i>dynamic driving</i> <i>task</i>	System	Human driver	Human driver	Some driving modes
Automated driving system ("system") monitors the driving environment						
3	Conditional Automation	the <i>driving mode</i> -specific performance by an <i>automated driving system</i> of all aspects of the dynamic driving task with the expectation that the <i>human driver</i> will respond appropriately to a <i>request to intervene</i>	System	System	Human driver	Some driving modes
4	High Automation	the <i>driving mode</i> -specific performance by an automated driving system of all aspects of the <i>dynamic driving task</i> , even if a <i>human driver</i> does not respond appropriately to a <i>request to intervene</i>	System	System	System	Some driving modes
5	Full Automation	the full-time performance by an <i>automated driving system</i> of all aspects of the <i>dynamic driving task</i> under all roadway and environmental conditions that can be managed by a <i>human driver</i>	System	System	System	All driving modes

1)	The computer offers no assistance, human must do			
	it all.			
2)	The computer offers a complete set of action			
	alternatives, and			
3)	narrows the selection down to a few, or			
4)	4) suggests one, and			
5)	5) executes that suggestion if the human approves, or			
6)	allows the human a restricted time to veto before			
	automatic execution, or			
7)	executes automatically, then necessarily informs			
	the human, or			
8)	8) informs him after execution only if he asks, or			
9)	informs him after execution if it, the computer,			
	decides to.			
10)	The computer decides everything and acts			
	autonomously, ignoring the human.			
-				

Table 1. Sheridan's scale of degrees of automation [5]

Boyd's OODA "Loop" Sketch Observe Orient Decide Act Implicit Guidance Implicit Guidance Unfolding & Control & Control Circumstances Geneti Heritas Inalyses Decision Freed Action Feed Observations mhesis Food Forward Hypothesis (Test) Unfolding Ontside Information. Interaction With Unfolding Environment Interaction Web Environment Econolimari

Note how orientation shapes observation, shapes decision, shapes action, and in turn is shaped by the feedback and other phenomena coming into our sensing or observing window.

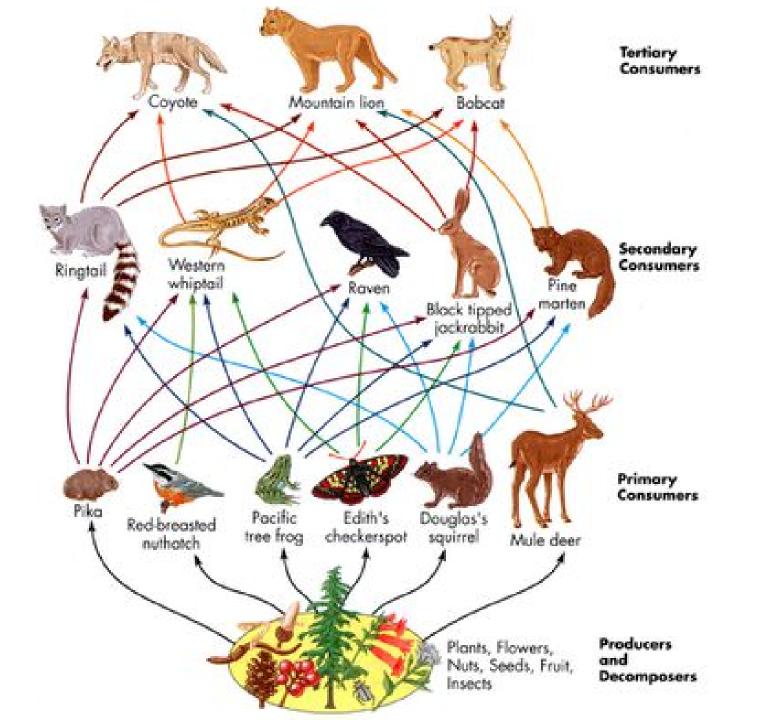
Also note how the entire "loop" (not just orientation) is an ongoing many-sided implicit cross-referencing process of projection, empathy, correlation, and rejection.

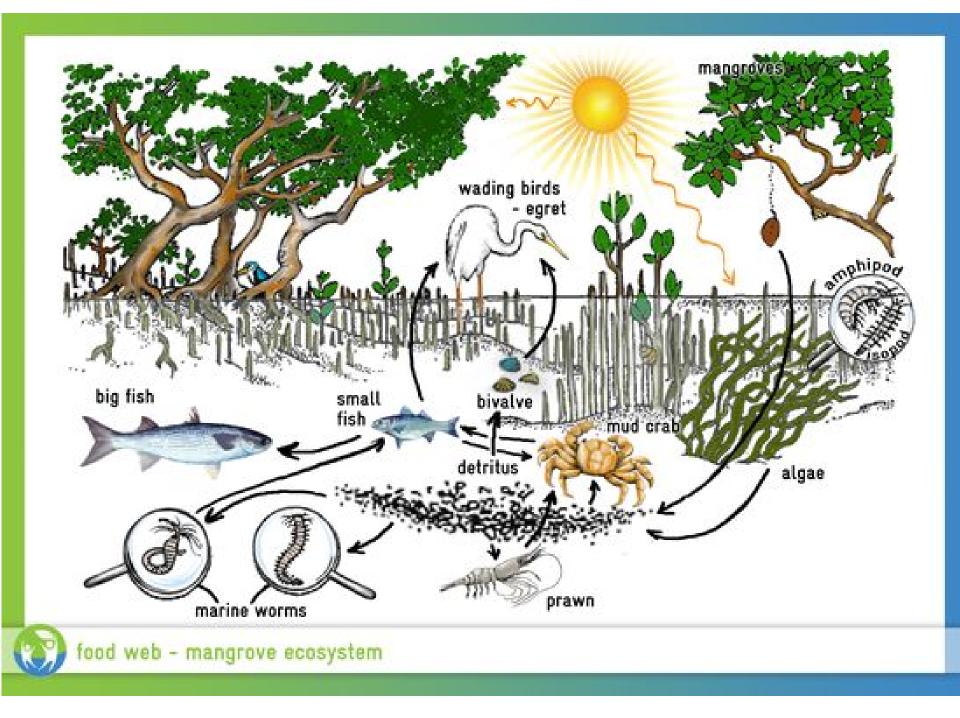
From "The Essence of Winning and Losing," John R. Boyd, January 1996.

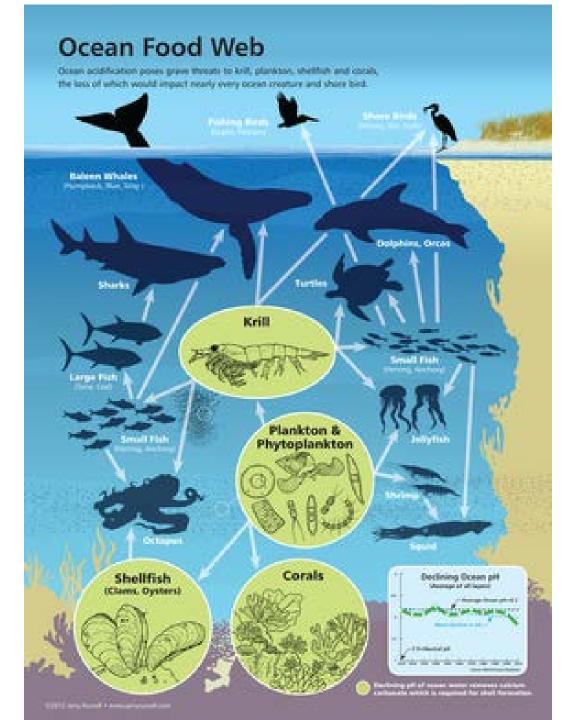
Defense and the National Interest, http://www.d-n-i.net, 2001

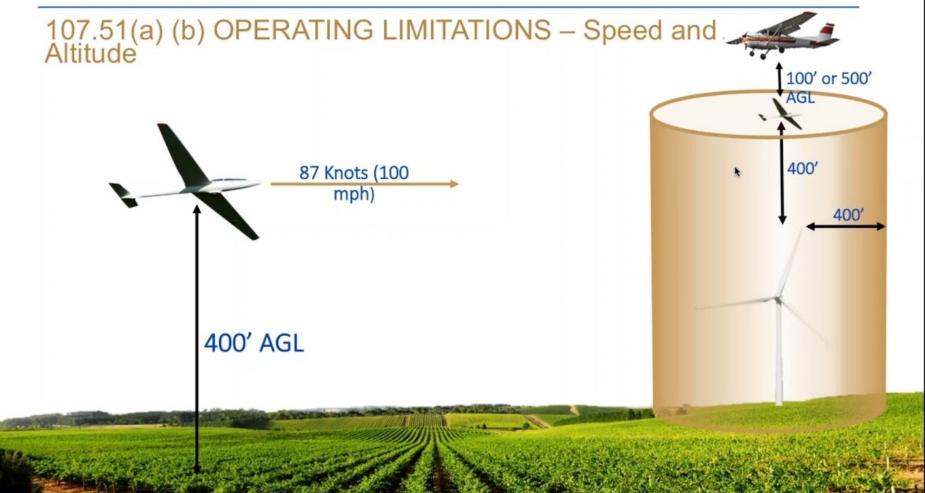
Level	Observe	Orient	Decide	Act
8	prioritizes data without	The computer predicts, interprets, and integrates data into a result which is not displayed to the human.	The computer performs ranking tasks. The computer performs final ranking, but does not display results to the human.	Computer executes automatically and does not allow any human interaction.
7	The computer gathers, filters, and prioritizes data without displaying any information to the human. Though, a "program functioning" flag is displayed.	The computer anlayzes, predicts, interprets, and integrates data into a result which is only displayed to the human if result fits programmed context (context dependant summaries).	The computer performs ranking tasks. The computer performs final ranking and displays a reduced set of ranked options without displaying "why" decisions were made to the human.	Computer executes automatically and only informs the human if required by context. It allows for override ability after execution. Human is shadow for contingencies.
6	The computer gathers, filters, and prioritizes information displayed to the human.	The computer overlays predictions with analysis and interprets the data. The human is shown all results.	The computer performs ranking tasks and displays a reduced set of ranked options while displaying "why" decisions were made to the human.	Computer executes automatically, informs the human, and allows for override ability after execution. Human is shadow for contingencies.
5	The computer is responsible for gathering the information for the human, but it only displays non- prioritized, filtered information.	The computer overlays predictions with analysis and interprets the data. The human shadows the interpretation for contingencies.	The computer performs ranking tasks. All results, including "why" decisions were made, are displayed to the human.	Computer allows the human a context-dependant restricted time to veto before execution. Human shadows for contingencies.
4	The computer is responsible for gathering the information for the human and for displaying all information, but it highlights the non-prioritized, relevant information for the user.	The computer analyzes the data and makes predictions, though the human is responsible for interpretation of the data.	Both human and computer perform ranking tasks, the results from the computer are considered prime.	Computer allows the human a pre-programmed restricted time to veto before execution. Human shadows for contingencies.
3	The computer is responsible for gathering and displaying unfiltered, unprioritized information for the human. The human still is the prime monitor for all information.	Computer is the prime source of analysis and predictions, with human shadow for contingencies. The human is responsible for interpretation of the data.	Both human and computer perform ranking tasks, the results from the human are considered prime.	Computer executes decision after human approval. Human shadows for contingencies.
2	Human is the prime source for gathering and monitoring all data, with computer shadow for emergencies.	Human is the prime source of analysis and predictions, with computer shadow for contingencies. The human is responsible for interpretation of the data.	The human performs all ranking tasks, but the computer can be used as a tool for assistance.	Human is the prime source of execution, with computer shadow for contingencies.
1	Human is the only source for gathering and monitoring (defined as filtering, prioritizing and understanding) all data.	Human is responsible for analyzing all data, making predictions, and interpretation of the data.	The computer does not assist in or perform ranking tasks. Human must do it all.	Human alone can execute decision.

4	human and for displaying all	The computer analyzes the data and makes predictions, though the human is responsible for interpretation of the data.	ranking tasks, the results from the computer are considered prime.	Computer allows the human a pre-programmed restricted time to veto before execution. Human shadows for contingencies.
3	The computer is responsible for gathering and displaying unfiltered, unprioritized information for the human. The human still is the prime monitor for all information.	Computer is the prime source of analysis and predictions, with human shadow for contingencies. The human is responsible for interpretation of the data.	ranking tasks, the results from the	Computer executes decision after human approval. Human shadows for contingencies.
2	Human is the prime source for gathering and monitoring all data, with computer shadow for emergencies.	2 A A A A A A A A A A A A A A A A A A A	tasks, but the computer can be used	Human is the prime source of execution, with computer shadow for contingencies.
1	Human is the only source for gathering and monitoring (defined as filtering, prioritizing and understanding) all data.	Human is responsible for analyzing all data, making predictions, and interpretation of the data.	▲	Human alone can execute decision.


Table 2. Level of Autonomy Assessment Scale


Level	Observe	Orient	Decide	Act
8	prioritizes data without	The computer predicts, interprets, and integrates data into a result which is not displayed to the human.	The computer performs ranking tasks. The computer performs final ranking, but does not display results to the human.	Computer executes automatically and does not allow any human interaction.
7	displaying any information to the	interprets, and integrates data into a	ranking and displays a reduced set of	Computer executes automatically and only informs the human if required by context. It allows for override ability after execution. Human is shadow for contingencies.
6	• • · · · ·	The computer overlays predictions with analysis and interprets the data. The human is shown all results.		Computer executes automatically, informs the human, and allows for override ability after execution. Human is shadow for contingencies.
5	gathering the information for the human, but it only displays non-	The computer overlays predictions with analysis and interprets the data. The human shadows the interpretation for contingencies.	decisions were made, are displayed to	Computer allows the human a context-dependant restricted time to veto before execution. Human shadows for contingencies.


Bio-Mimicry



FAA Regulation of Drones

UNMANNED SAFETY INSTITUTE

FDA Regulation of Medical Devices

WAYMO by Google

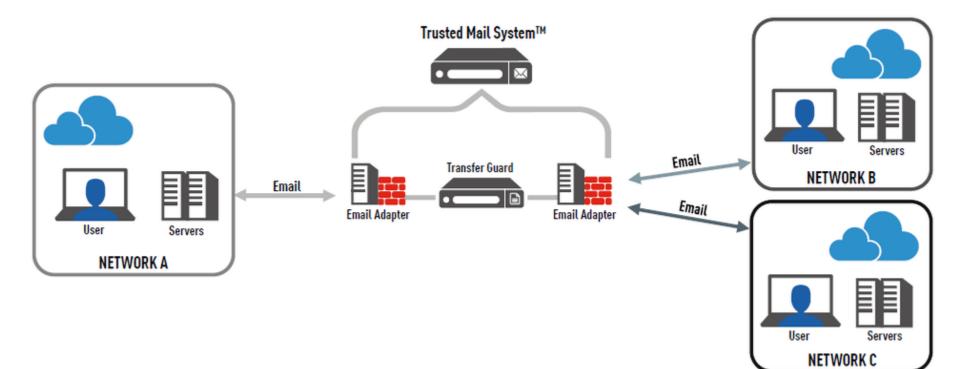
CA DMV Autonomous Vehicle Testing Permits

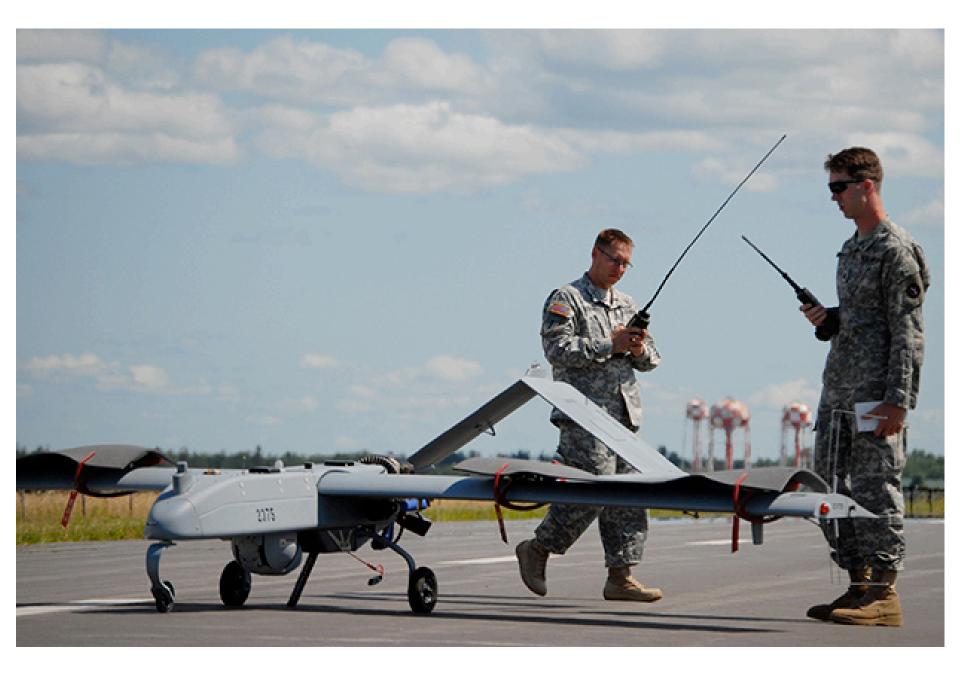
- Volkswagen Group of America
- Mercedes Benz
- Waymo LLC
- Delphi Automotive
- Tesla Motors
- Bosch
- Nissan
- GM Cruise LLC
- BMW
- Honda
- Ford
- Zoox, Inc.

- Zoox, Inc.
- Drive.ai, Inc.
- Faraday & Future Inc.
- Baidu USA LLC
- Valeo North America, Inc.
- NIO USA, Inc.
- Telenav, Inc.
- NVIDIA Corporation
 - AutoX Technologies Inc
- Subaru

•

- Udacity, Inc
- Navya Inc.
- Renovo.auto
- PlusAi Inc
- Nuro, Inc
- CarOne LLC
- Apple Inc.
- Pony.Al
- TuSimple
- Jingchi Corp


- SAIC Innovation Center, LLC
- Almotive Inc
- Aurora Innovation
 I
- Nullmax
- Samsung Electronics
- Continental Automotive Systems Inc
- Voyage
- CYNGN, Inc
- Roadstar.Ai
- Changan Automobile
- Lyft, Inc.
- Phantom AI
- Qualcomm Technologies, Inc.
- SF Motors Inc.


- Toyota Research Institute
- Apex.Al
- Intel Corp
- Ambarella Corporation
- Gatik Al. Inc.
- DiDi Research America LLC
- TORC Robotics Inc
- Boxbot Inc
- EasyMile
- Mando America Corporation
- Xmotors.ai, Inc.
- Imagry Inc.
- Ridecell Inc.
- AAA NCNU
- ThorDrive Inc
- Helm.Al Inc
- Argo Al, LLC

CA DMV Autonomous Vehicle Testing Permits

- Vehicle Code Section 38750:
- <u>CA department will not wait for the federal government</u> sets autonomous technology safety standards.
- <u>CA DMV department is relying on certifications</u> that vehicles meet existing vehicle safety standards and certifications that the vehicles will operate safely on public roads by complying with traffic rules and regulations.
- The manufacturer must also provide a <u>summary of test</u> <u>methods</u> used to validate the performance of the vehicles and <u>certify that the manufacturer is satisfied</u>, based on the results of that testing, that the vehicles are safe for deployment on public roads.


Trust

Zip Line delivery

Autonomous Systems Complexity Assessment Reception Poster

Need

- Future development of services and integration into society
- Autonomous, systems, that includes systems of systems, tend to complex, we need a methodology to address systems complexity to ensure the development of successful autonomous systems
- Need to familiarize with new systems possibilities
- Stake holders
 - Systems Engineers; Government and State regulatory agencies; Businesses; Ecologist; Ethicists; Philosophers

Issues

- Relative complexity of autonomous systems and complexity of interacting with environment
- Complexity of interacting systems on various levels
- Unpredicted or uncertain untested scenarios in emergent systems.
- Systems competition with humans
- Intention and attention with respect to behavior
- Autonomous systems add digital and process logic complexity
- Nonlinear causation
- Ethics and moral code ; Paradigm shift
- No regulatory structure to govern autonomous system testing and behavior
- Environmental Economical and societal testing
- Malicious attacks, security and countermeasures
- Unattended system of systems

Autonomous Systems Complexity Assessment Day 2 Workshop Results

- **Day 2 Participants:**
- Randy Anway
- Aly El-Osery
- Jim Larkin
- Kerry Luney
- Eric Smith

New Tapestry, LLC NMT Professor MEI Technologies, AFRL Contractor Thales Australia UTEP professor

Autonomous Systems Complexity Assessment

Need

- Future development of autonomous services and integration into society
- Autonomous, systems, that includes systems of systems, tend to complex, we need a methodology to address systems complexity to ensure the development of successful autonomous systems
- Need to familiarize with new systems possibilities
- Stake holders
 - Systems Engineers; Government and State regulatory agencies; Businesses; Ecologist; Ethicists; Philosophers; Academics

Issues

- Relative complexity of autonomous systems and complexity of interacting with environment
- Complexity of interacting systems on various levels
- Unpredicted or uncertain untested scenarios in emergent systems.
- Systems competition with humans
- Intention and attention with respect to behavior
- Autonomous systems add digital and process logic complexity
- Nonlinear causation
- Ethics and moral code ; Paradigm shift
- No regulatory structure to govern autonomous system testing and behavior
- Environmental Economical and societal testing
- Malicious attacks, security and countermeasures
- unintended creation system of systems

Impediments to adoption of autonomous systems

- Existing system paradigm
 - Current practices challenged
 - Theory of Warfare
 - Shared ownership
 - Infrastructure
 - Balance and investment in supporting infrastructure
 - System as a service vs. retail
- Complexity Adoption
 - Perceptual concerns
 - Perception of risk and uncertainty
 - Self learning unboundedness
 - Adoption curve and technical readiness
 - Unintended consequences of system of systems

- Government
 - Policy
 - Acquisition frame works
 - Political considerations
- Legal and insurance
 - Regulations and standards
 - Ramifications for unintended consequences
 - Accountability
 - privacy protection
- Culture
 - Social Contract
 - Religion
 - PATH
 - Education
 - Value systems

Consensus requirements

- Assumed to agreed definition of autonomy
- Process replaced by Autonomy as the initial adoption
- Must have an agreed architecture
 - Inclusive of interdependencies and environment
 - Inclusive of interoperability where applicable
- Must have an agreed level of human involvement
 - Consider biomimicry
- Must have an agreed level of environmental and economical interactions
- Must agree upon a risk profile
 - Consensus on the risk involved
 - Consensus on risk reduction strategies
- Consensus of the unintended consequences of a fault resilience
- Change management strategies must be defined

Collaboration actions

- STEAM/PATH education
- Scenario and use case generation of high level relationship model across multiple nontechnical discipline

Consider mind mapping

- Seek INCOSE working groups
- Diversification and inclusion to be addressed