
Welcome!

We’re glad you’re here.

INCOSE Enchantment Chapter Monthly Meeting

We respectfully request:
• Mute your audio when you are not speaking
• *6 toggle or in GlobalMeet left-side, your name

Discussion and questions are encouraged!

Put questions in the chat box or unmute yourself to speak up.

Meeting Materials

Slide presentations can be downloaded prior to start of the meeting
from the Meeting Materials page of our website:

https://www.incose.org/incose-member-resources/chapters-
groups/ChapterSites/enchantment/resources/meeting-materials

If recording is authorized by speaker, the video will be posted at the link
above within 24 hours.

https://www.incose.org/incose-member-resources/chapters-groups/ChapterSites/enchantment/resources/meeting-materials

SEP Training

CSEP Courses by Certification Training International:
CTI currently is offering online course offerings, see
https://certificationtraining-int.com/incose-sep-exam-prep-course/

Our chapter has two SEP mentors:
Ann Hodges alhodge@sandia.gov
Heidi Hahn drsquirt@outlook.com

https://certificationtraining-int.com/incose-sep-exam-prep-course/
mailto:alhodge@sandia.gov
mailto:drsquirt@outlook.com

Upcoming meetings
• July 14, 2021: Dr. Dave Peercy, Education as a System of Systems
• August 11, 2021: Pat Foley, WBS Integration with an Effective

Schedule
• September 8, 2021: Brian Kennedy, Leveraging Set-Based Practices to

Enable Efficient Concurrency in Large Systems and Systems-of-
Systems Engineering

Introductions

• Please type your name, position,
and organization in the Chat
window

Photo by Adam Solomon on Unsplash

https://unsplash.com/@solomac?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/introduction?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Survey

The link for the online survey for this meeting is
• www.surveymonkey.com/r/2021_06_MeetingEval

Your feedback is important!

Enchantment Chapter Monthly Meeting

Interface Management, The Neglected Orphan of Systems Engineering

Abstract: Every Interface is an opportunity to lose information, time, control and / or money
through contention between stakeholders at either end. There are many issues surrounding
Interface management, which are relatively unexplored in the engineering literature.
Interface management is perceived as a critical skill in the engineering of successful systems
(INCOSE TP-2018-002-01.0), but finding useful material on the subject proves elusive. It is not
that there is a gap in the collective Body of Knowledge (BoK) – but there is definitely a gap in
the documented BoK. This paper explores some of the characteristics of this gap, and
outlines some of the key concepts in best practice. Along the way, the differences between
best practice for interfaces and best perceived practice for architecting systems are noted,
and recommendations for changes in approach are given.

Download recording from the Library at www.incose.org/enchantment

NOTE: This meeting will be recorded

Speaker Bio

Paul Davies supposedly retired in early 2014, but soon realized he
needed to give something back to the systems engineering
community and help mentor the next generation of practitioners. An
experienced systems engineer with a sound track record in delivering
successful projects over thirty years in the defense and aerospace
industry, six years in the nuclear industry, and a couple of years in rail,
he has a wealth of diverse experience to call on. Paul has conducted
training courses and workshops in requirements, interface
management, verification and validation, systems engineering
management, competence assessment, and SE return on investment,
with very positive feedback.

Interface Management –
The Neglected Orphan of

Systems Engineering

Paul Davies
paul@thesystemsengineer.uk

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

Aims and Outline

• To challenge the perception
of an engineer as someone
who ignores the world
outside their System Element

• To remove the excuse
“There’s no training or
guidance on interfaces”

• To left-shift the consideration
of interfaces in architecting

1. What’s in the literature
2. The SEP field
3. Elements of best practice
4. Left-shifting – an example
5. Common problems
6. Lifecycle considerations
7. Conclusions and questions

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

What’s in the Literature

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

The “Somebody Else’s Problem” field

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

7 Samurai battle the SBS

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

Why does it matter?
System of Interest A System B

IFAB IFAB

ICAB

Mandated Interface
Bearer X

“System A shall interface to System B via bearer X”

System
Req’m’t

s

Sub-
System

1
Req’m’t

s

Sub-
System

2
Req’m’t

s

Sub-
System

3
Req’m’t

s

External
Interfaces

External
Interfaces

External
Interfaces

External
Interfaces

Interfaces
1 <> 2

Interfaces
2 <> 3

Interfaces
1 <> 3

Change
Control

Design

Requirements Test

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

Electrical voltage + current (+ spikes)
Vertical forces (time-varying)
Longitudinal forces due to friction
Heat
Flash arcing
Electromagnetic field flux (+RFI)
Vibrational forces (resonance?)
Shock (at joints)

Moisture & salt deposition
Carbon deposits, rust, crud

It’s not just software

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

Best Practice 1: the Separation Principle

Notional ‘Plane
of the interface’

What is passed
across the interface,

the form
of the interface

AB Interface doc
System A Spec

System A behaviour

What System A
has to do in
response to the
interface

System B Spec

System B behaviour

What System B
has to do in
response to the
interface

System A System B

IFAB IFAB

ICAB

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

Best Practice 2: the Context Diagram

ATC SystemAir Traffic
Control System

ADS-B

Aircraft

Emergency
Services

Heat/Dust

Power

Weather

Air Ops
Command

EM Signals

2

3

4
56

7

8

9 1

WAN

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

Best Practice 3: the Sequence Diagram

SystemExt Sys 3Ext Sys 2Ext Sys 1

Mass, energy or
information exchanges
across nominal planes
of each interface, in
logical sequence

time

System BoundaryCopyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

Best Practice 4: layered models as patterns

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link

1. Physical

High-level Applications I/F

Character encoding, encryption

Manage connections

Quality of Service, error control

Addressing, routing, traffic control

Flow control protocol

Pins, voltages, impedance, modes

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link

1. Physical

High-level Applications I/F

Character encoding, encryption

Manage connections

Quality of Service, error control

Addressing, routing, traffic control

Flow control protocol

Pins, voltages, impedance, modes

Load balancing

Power switching

Safety trips

Wiring/connectors

Power delivery

Load balancing

Power switching

Safety trips

Wiring/connectors

Power usage

Electrical
Power System

Train Electro-
Motive System

Overhead
Lines

Cabling +
Power bus

Pantograph
Arm etc

means an Interface
to be documented

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

Best practice 5: black box N2 chart

IN

IN

OUT

OUT

A -System
Of Interest

B requires of A
A provides to B

C requires of A
A provides to C

D requires of A
A provides to D

E requires of A
A provides to E

A requires of B
B provides to A B - Users C requires of B

B provides to C
D requires of B
B provides to D

E requires of B
B provides to E

A requires of C
C provides to A

B requires of C
C provides to B

C - Physical
Environment

D requires of C
C provides to D

E requires of C
C provides to E

A requires of D
D provides to A

B requires of D
D provides to B

C requires of D
D provides to C

D - External
System 1

E requires of D
D provides to E

A requires of E
E provides to A

B requires of E
E provides to B

C requires of E
E provides to C

D requires of E
E provides to D

E External
System 2

…etc
Copyright © 2019 by Paul Davies. Published and used by

INCOSE UK Ltd and INCOSE with permission.

Best practice 6: white box N2 chart

Control Inputs

(e.g.) HCI O
utputs

Consider only inputs
To System Elements
From the outside world

Consider only outputs
From System Elements
To the outside world

Don’t
care

Don’t
care

Consider
Cell by Cell

Consider
Cell by Cell

Don’t
care

Don’t
care

Don’t
care

Don’t
care

Don’t
care

Don’t
care

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

Best practice 7: optimised N2 chart

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

Best practice 8: phased implementation N2

Time

Le
ga

cy

Sy
st

em

De
pl

oy
ed

Sy
st

em
M

od
es

CS1 CS2 CS3 CS4
Intermediate configuration states

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

Left-shifting…

Requirements Physical DesignLogical / Functional
DesignArchitecting

{Interface design at successive levels of analysis}

Requirements Physical DesignLogical / Functional
DesignArchitecting

Interface
constraints

{Interface analysis feedback loops}

Becomes…

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

Pantograph example again
Electrical voltage + current (+ spikes)
Vertical forces (time-varying)
Longitudinal forces due to friction
Heat
Flash arcing
Electromagnetic field flux (+RFI)
Vibrational forces (resonance?)
Shock (at joints)
Moisture & salt deposition
Carbon deposits, rust, crud

The flows across the interface drive extra functional
and non-functional requirements on the System Elements
at each endCopyright © 2019 by Paul Davies. Published and used by

INCOSE UK Ltd and INCOSE with permission.

Residual architecting decision patterns for interfaces

Power

Control

Comms BIT

Resiience

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

Lifecycle of interface-based architecting
Draw the
context

Identify the
external I/Fs

Current vs
Future

Agree way
forward

Trial decomposition
into subsystems

Evaluate effect on
interface decompositionsOK?

N

Y

Generate
Specification tree

Get on
with it!

Organisations
Complexity
Number
Risk

Phased
testing

Subsystem
A

B requires of A
A provides to B

C requires of A
A provides to C

D requires of A
A provides to D

X requires of A
A provides to X

A requires of B
B provides to A

Subsystem
B

C requires of B
B provides to C

D requires of B
B provides to D

X requires of B
B provides to X

A requires of C
C provides to A

B requires of C
C provides to B

Subsystem
C

D requires of C
C provides to D

X requires of C
C provides to X

A requires of D
D provides to A

B requires of D
D provides to B

C requires of D
D provides to C

Subsystem
D

X requires of D
D provides to X

A requires of X
X provides to A

B requires of X
X provides to B

C requires of X
X provides to C

D requires of X
X provides to D

External
Systems

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

The requirement from hell, and future-proofing
System of Interest A System B

IFAB IFAB

ICAB

Mandated Interface
Bearer X

“System A shall interface to System B via bearer X”

Bearer X in service;
System B to be

accepted

System A
envisaged

, with
interfaces

IDD
published

for X;
IRS created
for A<->B

System B
accepted; ITT
for System A

uses IRS + IDD

System A
procured at
lower cost

& risk

Negotiations
between suppliers

for A and B brokered
-> ICD

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

Conclusions

• We have looked at gaps in the literature,
and started to overcome the lack of a
lifecycle-oriented view of interface
evolution.

• We have outlined some key principles
associated with interfaces, and looked at
some best practice methods of representing
and elaborating them.

• We have stressed the use of interface
analysis in architecting Systems throughout
their lifecycle.

• We have encouraged engineers to look
outside the box.

Copyright © 2019 by Paul Davies. Published and used by
INCOSE UK Ltd and INCOSE with permission.

-	1	-	
Copyright	©	2019	by	Paul	Davies.	Published	and	used	by	INCOSE	UK	Ltd	and	INCOSE	with	permission.	

Interface	Management	–	the	Neglected	Orphan	of	
Systems	Engineering	

Paul	Davies,	paul@thesystemsengineer.uk	

Categorisation	

• Accessibility:	PRACTITIONER	
• Application:	GOOD	PRACTICE	
• Topics:	Architecture,	Systems	Engineering	Management	

Abstract	

Every	Interface	is	an	opportunity	to	lose	information,	time,	control	and	/	or	money	through	contention	
between	stakeholders	at	either	end.	There	are	many	issues	surrounding	Interface	management,	which	
are	relatively	unexplored	in	the	engineering	literature.	Interface	management	is	perceived	as	a	critical	
skill	in	the	engineering	of	successful	systems,	but	finding	useful	material	on	the	subject	proves	elusive.	
It	is	not	that	there	is	a	gap	in	the	collective	Body	of	Knowledge	(BoK)	–	but	there	is	definitely	a	gap	in	
the	documented	BoK.	This	paper	explores	some	of	the	characteristics	of	this	gap,	and	strings	together	
some	of	the	key	concepts	in	best	practice.	Along	the	way,	the	differences	between	best	practice	for	
interfaces	and	best	perceived	practice	for	architecting	systems	are	noted,	and	recommendations	for	
changes	in	approach	are	given.	

Introduction	

Typically,	it	is	an	unpopular	task	on	a	project	to	be	asked	“Just	resolve	the	interfaces”;	and	whatever	
effort	is	allocated,	it	generally	happens	too	late	and	is	seen	to	be	a	root	cause	of	project	failures.	These	
are	of	course	sweeping	generalisations,	yet	there	 is	a	grain	of	truth	here;	and	it	becomes	a	vicious	
circle	of	blame	waiting	for	the	next	project	to	do	the	same.	

Aims	of	the	paper	

• To	challenge	 the	perception	of	an	engineer	as	 someone	who	concerns	himself	 (or	herself)	
solely	with	the	realisation	of	the	functionality	of	their	element	of	the	system,	to	the	exclusion	
of	all	interactions.	Good	systems	engineers	don’t	do	this.	

• To	 remove	 the	 excuse	 “I’ve	 never	 been	 trained	 on	 this,	 and	 there	 is	 no	 useful	 reference	
material	on	how	to	do	it.”	

• To	change	the	way	we	go	about	architecting	systems;	left-shifting	the	treatment	of	interfaces	
rather	than	leaving	it	until	after	the	physical	design	needs	integrating.	

Literature	Survey	

We	 start	 with	 a	 survey	 of	 what	 is	 documented.	 Mostly	 this	 consists	 of	 the	 usual	 standards	 on	
structuring	interface	documentation,	some	process	standards,	plus	there	are	a	few	good	books	on	the	
architecting	of	systems	with	at	least	some	relevant	content.		

-	2	-	
Copyright	©	2019	by	Paul	Davies.	Published	and	used	by	INCOSE	UK	Ltd	and	INCOSE	with	permission.	

Standards	

• One	 of	 the	 first	 standards	 on	 Systems	 Engineering,	 [IEEE	 1220]	 starts	 with	 a	 System	
Breakdown	Structure	(SBS)	devoid	of	interfaces	as	early	as	page	3.	Admittedly	there	are	better	
figures,	and	process	requirements	to	specify	interfaces	at	each	level	of	system	decomposition,	
later	in	the	standard,	but	in	each	case	the	treatment	of	interfaces	is	as	an	adjunct	to	the	act	
of	specification	at	that	level.	No	“how-to”	process	detail	is	offered.	

• A	more	useful	standard,	[EIA-632]	contains	a	grand	total	of	7	lines	on	interface	definition,	one	
of	 which	 is	 now	 generally	 agreed	 to	 be	 bad	 practice;	 plus	 one	 table	 on	 recommended	
processes	for	system	decomposition	which	is	almost	a	copy	of	the	process	in	[IEEE	1220].	

• Further	domain-specific	standards,	[DI-IPSC-81434],	[DI-IPSC-81436],	[FAA-STD-025e],	[NASA	
1997]	 and	 [NIST	 2002]	 are	 significantly	 better,	 and	 for	 some	 types	 of	 interface	 (mainly	
software	and	communications)	give	good	guidance	on	interface	specification	content	–	but	
still	have	shortcomings	in	other	engineering	fields	and	domains.	

• The	INCOSE	Systems	Engineering	Handbook	(SEH)	[INCOSE	TP-2003-002-04],	in	turn	based	on	
ISO15288,	 is	 better	 still,	 and	 considers	 interface	analysis	 as	part	of	 the	process	on	 system	
architecture	definition.	There	is	another	short	section	on	Interface	Management	as	a	cross-
cutting	technology,	but	detail	is	light.		

• The	INCOSE	Systems	Engineering	Body	of	Knowledge	(SEBoK)	[SEBoK	2018]	has	some	good	
content,	 particularly	 in	 the	 sections	 on	 “Synthesizing	 possible	 solutions”,	 “System	
architecture”,	 “Logical	 and	 Physical	 architecture	 model	 development”,	 and	 “System	
Integration”.	There	are	also	several	 interesting	examples	and	case	studies	of	good	and	bad	
practice	and	outcomes.	Taken	as	a	whole,	 it	avoids	most	of	 the	 shortcomings	 listed	under	
“Gap	analysis”	below,	but	it	lacks	an	integrated	lifecycle-based	treatment	of	interfaces.	

• The	INCOSE	Competency	Frameworks	[INCOSE	TP-2018-002-01.0]	and	its	2010	predecessor	
identify	Interface	Management	as	an	essential	competency	in	its	own	right.	There	are	some	
brief	points	on	good	practice,	and	how	to	spot	it,	but	no	end-to-end	narrative.	

Books	on	system	architecting	

[Hitchins	1992],	[Grady	1994]	and	[Sillitto	2014]	all	have	good	treatments	on	N2	charts	(or	“Coupling	
Matrices”	as	used	by	Grady	and	by	the	SEH),	and	on	their	use	in	changing	or	optimising	architectures.	
However,	they	are	quite	hard	to	follow	in	some	cases,	and	are	not	fully	integrated	with	other	interface	
concepts	described	below.	All	are	recommended	reading	anyway,	for	the	aspiring	system	architect!	

Gap	analysis	

In	summary,	the	documented	body	of	knowledge	is	deficient	in	the	following	areas:	

• It’s	all	about	the	“what”	must	be	done,	and	in	what	format,	but	there	is	not	enough	useful	
instruction	on	the	“how”.	

• It	mostly	concerns	software	and	communications	interfaces,	particularly	the	Standards.	
• It	is	focused	on	decomposition	of	systems	into	system	elements	in	the	strictly	functional,	then	

physical	order,	with	interfaces	as	adjuncts	at	each	level.	Very	little	consideration	is	given	to	
architecting	by	minimisation	of	interface	complexity,	or	to	using	interface	analysis	iteratively	
with	other	architecting	methods.	

-	3	-	
Copyright	©	2019	by	Paul	Davies.	Published	and	used	by	INCOSE	UK	Ltd	and	INCOSE	with	permission.	

• Interface	analysis	at	each	level	of	decomposition	is	treated	as	a	snapshot	activity,	with	no	end-
to-end	timeline	of	project	practices	in	interface	management.	

The	“Somebody	else’s	problem”	field	

Douglas	 Adams,	 in	 his	 novel	 “Life,	 the	 Universe,	 and	 Everything”	 [Adams	 1982]	 described	 the	
Somebody	Else’s	Problem	(SEP)	field	as	“something	we	can't	see,	or	don't	see,	or	our	brain	doesn't	let	
us	see,	because	we	think	that	it's	somebody	else's	problem.	The	brain	just	edits	it	out,	it's	like	a	blind	
spot.”	 Interfaces	can	easily	be	subject	to	the	SEP	field,	as	engineers	are	pre-programmed	to	worry	
about	internal	functionality	of	a	system	or	system	element.	

Consider	 the	 Seven	 Samurai	model	 of	 a	 system	 development	 –	 see	 Figure	 1,	 reproduced	 by	 kind	
permission	of	 James	Martin	 [Martin	2004].	 It	 implies	 the	 interaction	between	 the	 system	and	 the	
problem	space,	and	there	are	interactions	with	all	other	systems	depicted,	over	a	timeline.	And	yet,	
the	temptation	for	an	engineer	is	to	leap	straight	to	solution	space,	and	at	least	mentally	to	draw	a	
System	Breakdown	Structure,	see	Figure	2,	within	a	few	seconds.		

Comparing	Figure	1	with	Figure	2	–	
where	 have	 all	 the	 interfaces	
gone?	 In	 the	 SBS,	 we	 cannot	 see	
the	black-box	external	interfaces	at	
system	 level,	 nor	 the	 white-box	
interfaces	 between	 system	
elements.	 We	 have	 successfully	
created	 the	 SEP	 field.	 And	 now	 a	
Work	Breakdown	 Structure	 (WBS)	
will	 be	 created	 to	match	 the	 SBS,	
again	 deferring	 any	 consideration	
of	interfaces.		

	

Does	 it	 really	 matter?	 Can’t	 we	
allocate	 responsibility	 for	 the	
interfaces	 to	 the	 engineer	
responsible	 for	 each	 system	
element?	 Here	 are	 some	 reasons	
why	not:	

• Every	 interface	 connects	 at	
least	 two	 systems	 or	 system	
elements.	In	the	majority	of	cases,	
there	 is	 no	 single	 span	 of	 control	
over	both	ends	–	so	the	interaction	
between	them	needs	at	least	two-
party	negotiation	and	agreement.	

Figure	1	-	Seven	Samurai	

Figure	2	-	System	Breakdown	Structure	

-	4	-	
Copyright	©	2019	by	Paul	Davies.	Published	and	used	by	INCOSE	UK	Ltd	and	INCOSE	with	permission.	

• Integrating	 across	 interfaces	 takes	 longer	 than	 integrating	 the	 functionality	 of	 a	 system	
element.	So	designing	and	testing	the	interfaces	has	to	happen	earlier.	

• As	systems	are	decomposed	into	system	elements,	the	number	of	potential	interfaces	grows	
much	 faster	 than	 the	number	of	elements.	 In	 the	SBS	example	at	Figure	2,	 if	 each	 system	
element	is	connected	to	every	other,	and	to	2	external	systems,	that’s	potentially	14	interfaces	
to	manage.	And	there	will	be	many	more	at	the	next	 level	of	decomposition.	The	numbers	
may	be	an	exaggeration,	but	the	principle	holds	true.	

• Traceability	–	interface	requirements	may	need	to	trace	to	the	specifications	at	each	end,	as	
well	as	to	the	parent	system.	

Hence	the	effort	needed	is	seen	to	outstrip	the	effort	allocated	to	a	single	system	element,	in	a	non-
linear	manner.	Systems	engineers	need	to	focus	attention	on	interfaces,	particularly	in	early	planning	
and	estimating	stages	of	projects,	to	overcome	the	SEP	field.	

Elements	of	best	practice	

In	this	section,	the	key	concepts	of	interface	management	are	briefly	described,	and	logically	chained	
together.	Space	here	does	not	allow	this	paper	to	provide	full	explanations,	and	architecting	involving	
interfaces	does	take	significant	time	to	master.	It	is	hoped	that	the	systems	engineers	will	mostly	be	
familiar	with	all	these	concepts,	but	repeated	deliveries	by	the	author	of	a	tutorial	on	this	topic	would	
suggest	that	this	may	not	be	the	case.	If	the	reader	is	indeed	unfamiliar,	try	reading	[Davies2019]	for	
help.	See	Figure	3	for	the	key	concepts.	

	
Figure	3	-	Useful	concepts	in	Interface	Management:	Separation	principle	(top	left),	Context	diagram	(top	right),	Sequence	
diagram	(bottom	left),	layered	instantiation	of	interfaces	(bottom	right).	

The	separation	principle	simply	says	that	interface	specifications	should	not	contain	descriptions	of	
interaction	functionality.	They	should	go	in	the	functional	specifications	of	the	interacting	entities;	the	
bounds	of	exchange	sequences	could	go	in	a	higher-order	(e.g.	containing	system)	specification.	

-	5	-	
Copyright	©	2019	by	Paul	Davies.	Published	and	used	by	INCOSE	UK	Ltd	and	INCOSE	with	permission.	

Black-box	and	white-box	models	are	essential	items	in	any	systems	engineer’s	armoury.	Black	box	-	
the	view	of	the	system	functions	and	interaction	observable	at	the	system	boundary,	without	knowing	
anything	about	its	internals.	White	box	–	extending	the	model	to	include	the	system	internals	and	all	
their	interactions.	

Context	diagrams	are	a	convenient	representation	of	a	black	box	model,	showing	a	system	boundary	
separating	what	is	inside	the	scope	of	the	system	from	what	is	outside;	the	external	systems,	actors	
and	environments	with	which	it	interacts;	and	enumerating	those	interactions.		

Scenarios	&	 sequence	 diagrams	 are	 helpful	 pictures	 in	 eliciting	 interface	 requirements,	 by	 turning	
stakeholder	 descriptions	 of	 interaction	 sequences	 into	 pictorial	 sequences	 of	 exchange	 of	 mass,	
energy	and	information.	First	at	black	box	level,	then	extending	to	white	box.	

Layered	models	of	interfaces,	for	example	the	“OSI	7-layer”	model	for	systems	interconnection,	is	a	
useful	metaphor	for	dealing	with	the	migration	from	black	box	to	white	box	level.	System-to-system	
interaction	 can	 be	 represented	 as	 an	 interface	 at	 the	 “application”	 layer,	 which	 can	 later	 be	
instantiated	by	‘interactions”	downwards	into	the	system	element	hierarchy	and	then	between	the	
various	white	box	elements;	even	when	the	interaction	is	not	just	software	or	communications.	

The	final	key	weapon	in	the	systems	engineer’s	armoury	is	the	N2	chart	(see	Figure	4).	This	paper	does	
not	provide	full	explanations	–	see	[Davies	2019],	or	indeed	[SEBoK	2018],	[Sillitto	2014],	[INCOSE	UK	
w2	2012]	or	[Grady	1994]	which	all	give	at	least	partial	coverage.	

	
Figure	 4	 -	 Uses	 of	 N-squared	 charts	 in	 interface	 management:	 Black	 box	 (top	 left),	 white	 box	 (top	 right),	 optimal	
architecture	(bottom	left),	phased	timeline	(bottom	right).	

N2	charts	may	be	used	successively	at	black	box	 level,	white	box	 level,	and	 iteratively	with	system	
architecting	to	minimise	number	and	complexity	of	 interfaces	 in	trial	decompositions.	Some	of	the	
texts	quoted	call	this	“reorganisation	of	coupling	matrices”,	but	those	treatments	do	not	attempt	to	
re-define	system	elements	to	change	 the	entries	 in	 the	N2	charts.	Finally	 in	Figure	4,	we	note	that	
there	is	not	just	one	N2	chart	in	the	life	of	a	project,	there	are	many:	for	as-is	and	to-be	systems,	phased	

-	6	-	
Copyright	©	2019	by	Paul	Davies.	Published	and	used	by	INCOSE	UK	Ltd	and	INCOSE	with	permission.	

integration	 setups,	 intermediate	 delivery	 configuration	 states,	 and	 configurations	 to	 support	
deployment,	maintenance,	in-service	test,	replacement	and	upgrade.	

Left-shifting	in	architecting	systems	

The	use	of	interface	analysis	as	an	up-front	tool	in	architecting,	rather	than	as	a	capture	mechanism	
for	 managing	 a	 design	 that	 has	 already	 been	 decomposed,	 is	 illustrated	 with	 several	 recurrent	
architecting	problems	requiring	this	modified	approach.	Thus	we	achieve	better	integration	of	logical	
and	physical	architecture.	

Example	-	Overhead	Line	Electrification	(OLE)	in	rail	

Consider	a	pantograph	arm	mounted	on	top	of	an	electric	train	(Figure	5).	 Its	mechanical	 interface	
with	the	overhead	line	electrification	cable	may	be	moving	at	more	than	100mph,	sliding	from	side	to	
side	of	the	pantograph	arm,	and	electrical	connectivity	may	be	interrupted	for	short	periods	of	time.	
And	yet	we	can	still	think	of	it	as	a	single	plane	of	the	interface,	across	which	a	number	of	mass,	energy	
and	information	flows	take	place.	

Some	 of	 these	 are	 interfaces	
with	 other	 systems	 or	 system	
elements;	 some	 are	 interfaces	
with	 the	 environment.	
However,	 in	 each	 case	 our	
system	 (the	 train)	 must	 do	
something	 in	 response	 to	what	
is	 happening	 across	 the	
interface.	

If,	 at	 the	 requirements	 and	
architecting	stages,	we	were	 to	
focus	 only	 on	 the	 intended	
usage	of	the	interface	(electrical	
energy	 transfer),	 we	 would	
miss	 all	 the	 (undesirable)	

aspects	of	the	other	issues	in	the	interaction.	By	the	time	these	were	considered,	we	might	already	
have	made	design	 choices	which	made	 the	handling	of	 the	undesirable	 characteristics	 impossible,	
over-expensive	or	unmaintainable.	So,	by	consideration	of	the	effects	of	the	interface	at	the	physical	
instantiation,	 we	 collect	 a	 set	 of	 additional	 system	 requirements	 and	 design	 drivers,	 in	 a	 timely	
manner.	Incidentally,	in	an	exercise	left	to	the	reader,	this	is	also	an	excellent	example	of	the	use	of	a	
layered	model	of	interfaces	in	resolving	the	transfer	of	electrical	power	from	generation	capability	to	
electromotive	capability	of	the	train.	

Common	residual	architecting	problems	involving	interfaces	

There	 are	 some	 recurring	 patterns	 in	 system	 design	 that	 impact	 on	 architecting	 decisions	 about	
interfaces,	all	adding	to	the	case	for	including	interface	issues	much	earlier	than	in	common	practice.	

Power	–	Assuming	there	is	a	single	external	source	of	power	for	the	system,	whether	it	be	generator,	
mains,	or	aircraft	high-voltage	DC,	how	best	to	supply	power	to	our	system	elements?	Should	each	

Figure	5	-	Overhead	Line	Electrification	

-	7	-	
Copyright	©	2019	by	Paul	Davies.	Published	and	used	by	INCOSE	UK	Ltd	and	INCOSE	with	permission.	

unit	do	its	own	conversion	from	the	external	source	(so	multiple	external	interfaces),	or	have	a	single	
power	 supply	 unit	 downconverting	 to	 the	 voltages	 and	 currents	 required	 by	 all	 the	 other	 units	
(multiple	 internal	 interfaces)?	 The	 former	may	 be	 harder	 to	 organise,	 and	 carries	 potential	 safety	
issues.	The	latter	is	“easier”,	in	the	sense	that	the	multiple	Interfaces	are	under	single	span	of	control,	
but	gives	a	single	point	of	failure.	

Communications	–	Likewise,	is	each	system	element	going	to	communicate	with	external	systems,	or	
will	there	be	a	single	“concentrator”	system	element	or	nodal	point?	The	former	allows	design	teams	
to	 proceed	 independently	 –	 perhaps	 faster	 to	 implement,	 but	 potentially	 leading	 to	 integration	
headaches.	 The	 latter	 allows	 a	 global	 overview	 of	 all	 the	 external	 interfaces,	 but	 centralises	 a	
potentially	heavy	workload.	

Control	 –	 For	 a	 system	with	 diverse	 functionality	 in	 response	 to	 either	 external	 conditions,	 or	 to	
operator	input,	control	of	the	behaviour	of	each	system	element	can	be	centralised	or	distributed.	If	
distributed,	it	can	be	difficult	to	guarantee	coherence	of	the	integrated	system.	If	centralised,	there	is	
still	a	choice	between	high-level	and	low-level	control	signals	or	messages.	The	former	(“Do	this,	you	
work	 out	 how”)	 makes	 for	 a	 simpler	 interface	 but	 a	 more	 complex	 design	 task	 and	 integration	
sequence.	The	latter	(“Do	exactly	this,	I’ve	worked	out	how,	here	are	the	control	signals”)	makes	for	
more	complex	interfaces,	perhaps	a	simpler	integration	sequence,	and	a	higher	centralised	workload.	
This	is	a	more	acute	problem	if	the	system	has	multiple	states	and	modes.	

Built-In	Test	(BIT)	–	This	 is	exactly	analogous	to	the	control	problem	above.	“Test	yourself,	 tell	me	
whether	or	not	you’re	OK”	(simple	interfaces,	distributed	design,	risky	integration)	or	“Here	are	the	
test	signals,	I’ll	interpret	the	results”	(complex	interfaces,	single	complex	system	element	design)?	

Environmental	and	mechanical	resilience	–	For	a	system	with	groups	of	co-located	system	elements	
exposed	 to	 a	 harsh	 environment,	 should	we	design	 and	 test	 each	 system	element	 to	 survive	 that	
environment?	Or	should	we	design	a	protective	casing	that	insulates	the	contained	system	elements	
from	that	environment?	If	there	are	existing	designs	for	the	former	architecture	that	meet,	or	can	be	
modified	to	meet,	the	environmental	requirements,	that	is	probably	simplest.	However,	if	this	is	not	
the	 case,	 or	 we	 wish	 to	 reduce	 costs	 by	 using	 commercial	 equipment	 not	 designed	 to	 resist	 the	
environment,	then	the	latter	is	probably	best.	Beware,	however,	that	no	protective	casing	is	perfect,	
particularly	for	shock	and	vibration.	We	will	have	a	number	of	derived	environment	and	mechanical	
interfaces	for	each	contained	system	element,	which	may	be	difficult	to	calculate	and	test.	

These	are	all	examples	where	the	impact	of	the	interfaces	needs	to	be	treated	as	a	major	driver	in	
architecting,	rather	than	as	a	follow-on	activity	to	functional	and	physical	decomposition.	

	 	

-	8	-	
Copyright	©	2019	by	Paul	Davies.	Published	and	used	by	INCOSE	UK	Ltd	and	INCOSE	with	permission.	

Lifecycle	considerations	

Having	accepted	the	principle	of	including	black-box	and	white-box	interfaces	in	system	architecting	
choices,	a	flow	diagram	for	the	process	is	suggested	at	Figure	6.	

	
Figure	6	-	Lifecycle	of	interface-based	architecting	

There	is	a	key	architecting	loop	clearly	shown.	Candidate	system	decompositions	are	evaluated	based	
on	 the	 organisations	 involved	 (and	 perceptions	 of	 their	 willingness	 to	 negotiate	 and	 adapt	 to	 a	
satisfactory	interface	agreement),	and	the	number,	complexity	and	risk	of	the	interfaces	derived.	The	
fundamental	change	in	philosophy	from	most	texts	is	that	the	architecting	stage	is	not	concluded	until	
the	interfaces	are	deemed	satisfactory.	Note	again	the	bottom	right-hand	quadrant	of	Figure	4,	and	
its	supporting	description:	the	final	system	configuration	is	not	the	only	set	of	interfaces	to	be	analysed	
and	included	in	the	architecting	loop.	Integration	and	test	setups,	intermediate	configuration	states,	
and	considerations	from	the	Deployment	and	Support	Concepts	[INCOSE	TP-2003-002-04]	all	affect	
the	architecture	acceptability.	

Lastly,	we	look	at	future-proofing	of	interfaces	to	and	from	systems	yet	to	be	implemented,	or	legacy	
systems	not	under	client	control.	

	
Figure	7	-	A	typical	interface	requirement	

This	 is	 a	 requirement	 with	 a	 huge	 hidden	 risk	 attached,	 and	 this	 author	 has	 suffered	 from	 it	 on	
numerous	occasions.	What	if	the	interface	to	Bearer	X	is	unpublished	or	immutable?	What	if	System	
B	has	a	proprietary	interface,	and	its	design	authority	refuses	to	cooperate?	If	the	acquirer	of	System	
A	has	no	authority	over	the	suppliers	of	Bearer	X	or	System	B,	this	requirement	is	asking	the	System	A	
supplier	to	sign	a	blank	cheque.	There	is	a	recommended	method	for	dealing	with	this	situation	given	
in	[Davies	2019],	based	on	foreseeing	the	future	requirement	and	insisting	on	at	least	draft	Interface	
Requirement	Specifications	at	the	time	of	entry	into	operations	of	X	and	B;	or	at	least	agreed	between	
the	acquirer	and	the	owner-operators	of	X	and	B.		

There	may	be	no	truly	optimal	architecture	taking	all	the	foregoing	aspects	into	account,	but	using	the	
principles	outlined,	we	should	at	least	improve	on	common	practice.	Nobody	said	it	would	be	easy.	

-	9	-	
Copyright	©	2019	by	Paul	Davies.	Published	and	used	by	INCOSE	UK	Ltd	and	INCOSE	with	permission.	

Conclusions	

• The	importance	of	looking	beyond	system	element	functionality	to	include	interfaces	has	been	
outlined.	 Those	 interfaces	 need	 to	 be	 resolved:	 lift	 up	 your	 head,	 pick	 up	 the	 phone,	 and	
resolve	them!	

• You	are	now	armed	with	suitable	models	to	deal	with	difficult	interface	scenarios,	covering	
the	whole	lifecycle	of	both	the	system	and	its	interfaces.	

• Arguments	have	been	presented	for	left-shifting	the	treatment	of	interfaces	in	architecting.	

References	

[Adams	1982]	 Adams,	Douglas,	“Life,	the	universe,	and	everything”,	Pan	Books,	1982	

[Davies	2019]	 Davies	 P.R.,	 “Don’t	 Panic!	 The	 Absolute	 Beginner’s	 Guide	 to	 Interface	
Management”,	INCOSE	UK,	2019		

[DI-IPSC-81434]	 US	 Department	 of	 Defense	 ‘Data	 Item	 Description:	 Interface	 Requirements	
Specification’,	US	DoD,	Revision	A,	1999	

[DI-IPSC-81436]	 US	 Department	 of	 Defense	 ‘Data	 Item	 Description:	 Interface	 Design	
Description’,	US	DoD,	Revision	A,	1999	

[EIA-632]	 ‘EIA-632:	 Processes	 for	 Engineering	 a	 System’,	 Electronic	 Industries	 Alliance,	
Philadelphia,	PA,	USA;	2003	

[FAA-STD-025e]	 “Federal	 Aviation	 Administration	 Standard:	 Preparation	 of	 Interface	
Documentation”,	US	Department	of	Transportation,	2002	

[Grady	1994]	 “Systems	Integration”,	Boca	Raton,	FL,	USA,	CRC	Press	Inc.,	1994	

[Hitchins	1992]		 Hitchins,	D.K.	‘Putting	Systems	to	Work’,	John	Wiley	&	Sons,	1992	

[IEEE	1220]	 ‘IEEE	 1220-2005:	 Standard	 for	 Application	 and	Management	 of	 the	 Systems	
Engineering	 Process’,	 Institute	 of	 Electrical	 and	 Electronic	 Engineers,	 2005	
(superseded[?]	by	ISO	24748)	

[INCOSE	TP-2003-002-04]	 INCOSE	Systems	Engineering	Handbook,	Fourth	Edition,	2015	

[INCOSE	TP-2018-002-01.0]	 INCOSE	SE	Competency	Framework,	Issue	01	2018;	a	revised	edition	
superseding	Issue	03	2010	[the	version	originated	by	the	UK	Chapter]	

[INCOSE	UK	w2	2012]	 	 INCOSE	 UK	 Omega	 2	 Guide	 ‘N-Squared:	 brief	 guide’,	 Issue	 1.0,	 2012	 –	
available	online	to	INCOSE	UK	members	only.	

[Martin	2004]	 Martin,	 J.	 ‘The	 seven	 Samurai	 of	 systems	 engineering’,	 Proceedings	 of	 the	
INCOSE	International	Symposium,	2004	

[NASA	1997]	 NASA	Reference	Publication	1370	 ‘Training	Manual	 for	Elements	of	 Interface	
Definition	and	Control’,	1997	

[NIST	2002]	 National	Institute	of	Standards	and	Technology	(NIST)	Technical	Note	1447	‘A	
Functional	 Basis	 for	 Engineering	 Design:	 Reconciling	 and	 Evolving	 Previous	
Efforts’,	2002	

[SEBoK	2018]	 “Guide	to	the	Systems	Engineering	Body	of	Knowledge	(SEBoK)	Version	1.9.1	
[online].	Available	at	sebokwiki.org,	accessed	21st	May	2019.		

[Sillitto	2014]	 Sillitto,	 H.	 ‘Architecting	 Systems:	 Concepts,	 Principles	 and	 Practice’,	 College	
Publications,	2014	

	1 20210609 Electronic Banner Wrapper Slides
	Welcome!
	We respectfully request:
	Meeting Materials
	SEP Training
	Upcoming meetings
	Introductions
	Survey
	Enchantment Chapter Monthly Meeting
	Speaker Bio

	2 Paul Davies INCOSE UK ASEC 2019 Interfaces
	Interface Management –�The Neglected Orphan of Systems Engineering
	Aims and Outline
	What’s in the Literature
	The “Somebody Else’s Problem” field
	7 Samurai battle the SBS
	Why does it matter?
	Slide Number 7
	Best Practice 1: the Separation Principle
	Best Practice 2: the Context Diagram
	Best Practice 3: the Sequence Diagram
	Best Practice 4: layered models as patterns
	Best practice 5: black box N2 chart
	Best practice 6: white box N2 chart
	Best practice 7: optimised N2 chart
	Best practice 8: phased implementation N2
	Left-shifting…
	Pantograph example again
	Residual architecting decision patterns for interfaces
	Lifecycle of interface-based architecting
	The requirement from hell, and future-proofing
	Conclusions

	3 Interface Management - Paul Davies v2.2

