

ngVLA: Project Technical Overview

Robert Selina ngVLA Project Engineer

ngVLA.nrao.edu

Theory of Operation (1)

Single Dish: Resolution proportional to dish diameter and frequency. Sensitivity proportional to area.

BG: 160 MHz, 9.5m Dish, G. Reber, 1944 FG: 1400 MHz, 100m Dish, W. Reich

Reber 9.5m

4

Effelsberg 100m

Theory of Operation (3)

Interferometer: Resolution proportional to dish <u>spacing</u> (aka "baseline") and frequency.

5000 MHz, 38 km Interferometer, R. Perley, 1983.

Theory of Operation (3)

The next-generation Very Large Array (ngVLA)

A transformative new facility that will replace the VLA and VLBA to tackle a new Scientific Frontier:

Thermal imaging at milli-arcsec scales.

ngVLA Concept:

10x the sensitivity of the JVLA/ALMA
10-100x higher resolution than the JVLA/ALMA
1.2 - 116 GHz Frequency Coverage
244 x 18m + 19 x 6m offset Gregorian Antennas
Centered at VLA site and concentrated in SW US.
Fixed antenna locations across North America.

ngvla

ngvla.nrao.edu

Ricci et al. (2018)

ngvla.nrao.edu

NRAO/AUI/NSF B. Saxton, J. Hellerman

Astro2020 identified the ngVLA as a high-priority large, groundbased facility whose construction should begin this decade.

Tech. Scope

- **Parametric** model: informed facility concept & architecture.
- Bottom-up Scope:
 - Science Requirements flow-down to System Requirements, Architecture & Sub-System Designs...
 - Full life-cycle, with supporting "concepts" for AIV, CSV, OPS...
 - End-2-End Architecture informed WBS.
- **Risk-assessment** at system and sub-system level.

- 1.2 116 GHz Frequency Coverage
- Array Design: 244 x 18m offset Gregorian Antennas
 - Core: 114 fixed antennas; B_{max} = 4.3 km
 - Spiral: 54 fixed antennas; B_{max} = 39 km
 - Mid: 46 fixed antennas spread into NM, AZ, TX, MX; B_{max} = 1070 km
 - Long: 30 x 18m antennas located across continent; B_{max} = 8860 km
- Short Baseline Array: 19 x 6m offset Greg. Antennas
 - Use $4 \times 18 \text{m}$ in **TP mode** to fill in (u, v) hole.

Band #	Dewar	f _L GHz	f _M GHz	f _H GHz	f _H : f _L	BW GHz
1	А	1.2	2.35	3.5	2.91	2.3
2	В	3.5	7.90	12.3	3.51	8.8
3	В	12.3	16.4	20.5	1.67	8.2
4	В	20.5	27.3	34.0	1.66	13.5
5	В	30.5	40.5	50.5	1.66	20.0
6	В	70.0	93.0	116	1.66	46.0

Long Baseline Antenna Locations

Location	Location Notes		Location	Notes	
Puerto Rico	Arecibo Site	3	Green Bank, WV	GBO	
St. Croix	VLBA Site	3	Brewster, WA	VLBA Site	
Kauai, HI	Kokee Park Obs.	3	Penticton, BC	DRAO	
Hawaii, HI	Not MK Site	3	North Liberty, IA	VLBA site	
Hancock, NH	VLBA Site	3	Owens Valley, CA	VLBA site	

Antenna Optics

- 18m dual-offset Gregorian w secondary extension
- 110° subtended angle at focus
- Optically shaped, for optimum Aeff/Tsys at 30 GHz (Band 4)
- Illumination efficiency ~96% at 30 GHz; > 93% for all of Band 4

17

mtex ngVLA 18m Antenna Design

mtex | antenna technology

Key Specifications				
18m Aperture	Offset Gregorian			
Shaped Optics	3° Slew & Settle in 7 sec			
Surface: 160 µm rms	Referenced Pointing: 3" rms			

Ray trace of 18m Optics - side and front view

FEA <-> RF Simulations

-5

y [m]

15

10

x [m]

30 GHz, $\delta z = 0$ mm

ngVLA#7

0.1 Evv

19

Main Reflector Panels

- 76 panels (68 rect.)
- ~2.5m x 2.1m
- 20 μm RMS Surface
- Diffusive surface treatment

Main Reflector Backup Structure

Subreflector Assembly

Sub reflector was adjusted with photogrammetry to <<u>30 µm RMS</u>

Pedestal

Turnhead Assembly

Vendor (mtex) Qualification

- Incremental integration and verification:
- Compliance Matrix: 378 Requirements, 23 verified by FAT, 18 verified by SAT. (Others by design or inspection)
- Only <u>Non-radiometric</u> tests:
 - Servo tuning and preliminary verification of pointing, tracking, slewing by encoder read-out only.
 - Surface setting and optical alignment by photogrammetry.
 - Delay stability tested incrementally with laser metrology.

FATs

Provisional

Site

Acceptance

Customer (NRAO) Qualification

- All radiometric & interferometric tests conducted in this phase.
- Single dish tests limited to early functional tests and accelerated lifetime (MTBF determination, etc).
- All performance tests (Surface, Pointing, Tracking, etc.) are interferometric with the VLA.
- X-band and Q-band receivers installed. VLA signal chain electronics.

NRAO Antenna Testing: Jan 2025+ VLA D-Config: Feb-May 2025 (2025A) Many short baselines for testing!

Site Infrastructure Preparation

Updated medium-voltage electrical services, foundation anchors, grounding, and fiber optics

27

Front End Concept

- 6 Bands in 2 Cryogenic Dewars
- 1.2-3.5 GHz and 3.4-12.3 GHz Quad-Ridge Horns, 3.5:1 bandwidth, coaxial LNAs.
- 12.3-50.5 GHz using three 1.67:1 BW corrugated horns and waveguide LNAs.
- 70-116 GHz 1.67:1 BW corrugated horn and waveguide LNAs.
- Single stage down-conversion to baseband for 5 bands. Direct SSB or IQ sampling (8-bit) using modular devices @ FE.
- Two-stage Gifford-McMahon cryogenic system with variablespeed cryocoolers and compressors.

Feed horn prototypes (Band 1)

Integrated Receiver Digitizers (IRD)

Integrated Receiver Digitizers (IRD)

Data Transmission System

- 720 Gbps per antenna (Typical, sustained)
- 23.7 TB/sec across array
- 800 Gbps fiber optic links.
- Tunable data rates for the most distant antennas; scaleable architecture.

- (263 Ant)
- (20 Ghz)
- (8 bits)
- (2 Nyquist Sampling)
- (9/8 Resampler/Filter)
- (2 Pol)
- 189.4 Tbps or 23.7 TB/s

Time & Frequency References

- 187 Antennas on Plains of San Agustin:
 - Central clock and LO generation. Within 40 km point-to-point.
 - Fiber optic links to Front End.
- 30 Mid-baseline Antennas:
 - Synchronous Time & Frequency Reference Distribution to ~300 km.
 - Repeaters and EDFAs.
- 16 Mid & Long Baseline Antennas:
 - Local primary references (e.g., Active Hydrogen Maser & GPS)

Central Signal Processor

Requirement Description	Specification		
Number of Connected	263 total (minimum)		
Antennas			
Maximum Baseline Length	8,800 km		
Maximum Instantaneous	20 GHz per polarization in interferometric		
Bandwidth	mode concurrent with 8 GHz in beamformed		
	mode.		
Maximum Number of	≥240,000 channels minimum (2M channel		
Channels	goal)		
Highest Frequency	1kHz, goal of 400 Hz, corresponding to 0.1		
Resolution	km/s resolution at 1.2 GHz.		
	(15.625 kHz default resolution at full		
	processed bandwidth)		
Pulsar Search	≥10 beams		
Beamforming	≤700 km diameter sub-array		
Pulsar Timing	≥5 beams		
Beamforming	≤700 km diameter sub-array		

S/W and Computing Considerations

- **Operations Concept**: HLDP (High-Level Data Product) Telescope
 - Both for <u>1st Observations</u> and <u>Archive</u> projects.
- **Post Processing**: Analysis shows that storing the raw visibilities will be tractable when ngVLA goes into operations.
 - Data processing is post-facto, with system sized for average throughput.
 - Average Data Rate 7.6 GB/s. Designed for 320 GB/s peak.
 - 4 hr. observation 109 TB. Requires ~1000 cores to process in a few days.
- Computing: 2B Core-hr: Challenging, but can be met w/ COTS cluster.
 - Set by time resolution, spectral resolution, and multi-faceting in imaging
 - Some low-frequency, full-beam, AW-projection cases restricted in early operations.

Post Processing Estimates

Table 6: Measured parameter summary.					
Algorithm	Operations per Visibility (FLOPs/Vis)	Arithmetic Intensity (FLOPs/Byte)			
Standard Gridding	1280.8	40			
A-projection	7472.8	233			
W-projection	21768.4	670			
AW-projection	39704.8	1240			

Science Case	Time	Vis Per Hour	Data Rate	Storage Rate
KSG1 Driving Cont. Band 6 e.g.	9%	73.19 GVis	0.081 GB/s	0.21
Taurus disk				PB/Month
KSG1 Driving Cont. Band 4 e.g.	4%	216.28 GVis	0.240 GB/s	0.63
Taurus disk				PB/Month
KSG2 Driving Line Band 5 e.g.	4%	97241.83 GVis	108.046	284.14
Sgr. B2(N)			GB/s	PB/Month
KSG2 Driving Line Band 4 e.g.	1%	72129.85 GVis	80.144	210.76
Sgr. B2(N)			GB/s	PB/Month
KSG2 Driving Line Band 3 e.g.	1%	119342.01	132.602	348.72
Sgr. B2(N)		GVis	GB/s	PB/Month
KSG3 Driving Line Band 5 e.g.	4%	5985.35 GVis	6.650 GB/s	17.49
COSMOS	10/	2006 02 61/6	2 220 CD/a	PB/Month
KSG3 Driving Line Band 4 e.g.	1%	2996.82 GVIS	3.330 GB/S	8./b
KSG2 Driving Line Band 2 o.g.	1%	2020 45 GV/ic	2 267 GB/s	
COSMOS	170	5050.45 GVIS	5.507 GB/S	0.03 DR/Month
KSG3 Driving Line Band 6 e.g	2%	11 16 GVis	0.012 GB/s	0.03
Spiderweb galaxy	270	11.10 0 13	0.012 00,3	PB/Month
KSG3 Driving Line Band 5 e.g.	1%	11.16 GVis	0.012 GB/s	0.03
Spiderweb galaxy			,-	PB/Month
KSG3 Driving Line Band 4 e.g.	1%	5.58 GVis	0.006 GB/s	0.02
Spiderweb galaxy				PB/Month
KSG3 Driving Line Band 6 e.g.	7%	3232.05 GVis	3.591 GB/s	9.44
Virgo Cluster				PB/Month
KSG3 Driving Line Band 1 e.g.	11%	149.48 GVis	0.166 GB/s	0.44
M81 Group				PB/Month
KSG3 Driving Line Band 1 e.g.	13%	4.66 GVis	0.005 GB/s	0.01
M81 Group				PB/Month
KSG5 Driving Cont. Band 1	7%	7347.53 GVis	8.164 GB/s	21.47
OTF Find LIGO event	70/	1000 00 01 "	1 212 22 (PB/Month
KSG5 Driving Cont. Band 4	7%	1090.82 GVis	1.212 GB/s	3.19
OTF FINd LISA event	40/	2024 17 01/6	2 200 00/-	PB/Month
ASGS+4 Driving Cont. Band 2	4%	2034.17 GVIS	2.260 GB/S	5.94 DR/Month
Pulsars				PB/WORth
KSG5 Driving Cont. Band 3	24%	4 18 GV/is	0.005 GB/s	0.01
Gw170817@200Mpc	2-770	4.10 0 113	0.005 00/3	PB/Month
Avg.:		6898.09 GVis	7.665 GB/s	20.16
				PB/Month

High-Throughput Gridder

