

Application of Systems Engineering Methods to Expand and Enhance an Earth-sized Telescope

Black Hole Cinema

Outline

- Very brief primer on black holes & VLBI
- What's next for the EHT?
- Unique systems challenge
- Highlighted SE Process & Tools
 - System context diagram
 - Design process flow
 - Science traceability matrix
 - Tradespace model
 - Parameter space visualizations
 - System model, requirements, traceability

About me...

University

Ireland

College Cork,

Garret Fitzpatrick ngEHT Project Engineer Smithsonian Astrophysical Observatory

Indian Institute of

Bangalore, India

Science,

۲

M.S. Science Writing, Massachusetts Institute of Technology

Lead Project Engineer, NASA Ames Research Center

Project Engineer, Next Generation Event Horizon Telescope

Moscow International University, Russia Crew Survival Systems Engineer, NASA Johnson Space Center

Head of Products, Shell TechWorks

Smithsonian Astrophysical Observatory

- Established in 1890 as a research unit of the Smithsonian Institution
- Formalized collaboration with Harvard University in 1973 as the Center for Astrophysics | Harvard & Smithsonian (CfA)
- Today one of the largest, most diverse astrophysical institutions in the world with key research areas in exoplanets, the sun and solar weather, black holes, pulsars, supernovae, white dwarfs, neutron stars and magnetars
- Facilities: Fred Lawrence Whipple Observatory (FLWO); Submillimeter Array Telescope (SMA) on Mauna Kea, Hawaii; Chandra X-ray Observatory

The first image of a black hole appeared on the front page of most major newspapers all over the world

LASTAMP

POLITIKEN

-

- 21

I am sure the spatial resolution of the **#blackhole** images will get better in future.

Why was it such a breakthrough?

- Light can't escape a black hole... so how do you see it?
- A whole new laboratory and a whole new field for astrophysics
- Highest angular resolution of any astronomical facility
- It took a telescope the size of the Earth to make it happen!

How do you see the unseeable? A quick primer on black holes & Very Long Baseline Interferometry!

$\begin{array}{l} \text{Angular} \\ \text{Resolution} \end{array} \approx \\ \end{array}$

 Seeing to the event horizon requires a wavelength of λ ~ 1mm to see through all the clouds of dust and gas

 \square

- Need angular resolution of ~20 µas to resolve the biggest supermassive black holes, which means the diameter of your telescope needs to be ~ 10,000km
- Luckily, there's a technique for this: Very Long Baseline Interferometry (VLBI)

Event Horizon Telescope in 2018

2-6 July 2024

www.incose.org/symp2024 #INCOSEIS

We use the rotation of the Earth and the combination of pairs of telescopes to collect data that can be used to piece together an image

What's the encore?

Goals

- First ever black hole cinema!
- New science goals beyond the horizon

Current EHT Limitations

- Imaging capabilities (resolution, field of view, dynamic range)
- Range of accessible timescales (both long and short)
- Sensitivity to persistent structures (e.g., gravitational features)
- Number of observable sources

Next Generation Array Concept

- New dishes: new antennas to the array at optimized geographic locations
- **Multi-frequency:** simultaneous multi-frequency observations across the 86/230/345 GHz bands (i.e. new receiver subsystems)
- Wider bandwidth: increasing the recorded data rates across the array to capture wide bandwidths (16 GHz per polarization) (i.e. new backend subsystems)
- Multi-epoch: opening a new "monitoring" operating mode and associated data pipeline that will enable observations to be carried out for multiple months of the year (i.e. new operating modes and data pipeline)

Collectively, these upgrades will double the instantaneous sensitivity per baseline, triple the frequency coverage of the array, increase the effective number of baselines by a factor of ~5, and expand the range of accessible timescales by multiple orders of magnitude compared to optimal EHT capabilities as of 2024

Next Generation Telescopes

Challenges

Technical

- Unconstrained system boundaries
- Complex system optimization problem
- Simultaneous tri-band observing
- 4x increase in observing time
- 4x increase in recording bandwidth
- 10x increase in data throughput
- Bottlenecks in existing data pipeline
- Interoperability with legacy systems
- Robustness over longer durations to the loss of any given station throughout an observation
- System of systems (system of array as a whole + system of each individual station)

Non-Technical

- Managing an engineering design and construction project within an academic environment
- Coordinating construction and logistics in multiple countries simultaneously
- Structure of international collaboration and operating model
- Complex stakeholder landscape
- Desire to take advantage of the "splash" momentum of the first black hole image
- Politics...

It all adds up to...

... an amazingly interesting systems challenge!

2-6 July 2024

System Context

- US-driven upgrade with multiple partners for separate design and implementation projects
- Stakeholders include:
 - Funding organizations
 - EHT Collaboration Board, Management Team, members
 - Existing observatories and their funding / operating institutions
 - New sites and their local and national construction / environmental permitting agencies
 - Correlation centers

Design Process Flow

- 8 international science working groups
- 3 ngEHT collaboration meetings

Organize

community &

science themes

Model cost, site

selection, identify

stakeholders

25 papers in special issue of *Galaxies*

Science Working Groups

Iterative and parallel design process with close collaboration between science and engineering to assess feasibility and priority

Identify key

science goals

array

2-6 July 2024

Ryan Chaves Systems Engineer & Software Architect

Education

- B.S. Computer Engineering Georgia Institute of Technology
- M.S. Electrical Engineering Northeastern University

Experience

- Joined the CfA and the ngEHT project in 2021
- 22 years of experience developing novel, complex products in the medical, automotive, and consumer industries
- On the ngEHT Project, responsible for the overall requirements and system architecture as well as leading the Monitoring & Control subsystem
- Staunch advocate and practitioner of MBSE and modern systems & software engineering best practices with a proven record of delivering high-quality, standards-compliant software

System modeling goals

- Provide Authoritative Source of Truth (ASoT) for project that objectively demonstrates a sciencebased rationale for technical designs and decisions
- Right-size MBSE approach to
 - Ensure value-add and avoid "over-modeling"
 - Facilitate document generation

MBSE toolchain

Methodology – MagicGrid (Dassault Systèmes)

Aiste Aleksandravičiene

S CATIA

Aurelijus Morkevičius, PH.D.

MagicGrid® BOOK OF KNOWLEDGE

A Practical Guide to Systems Modeling using MagicGrid from Dassault Systèmes 2nd edicon

					Pillar		
			Requirements	Structure	Behavior	Parameters	Safety & Reliability
	blem	Black Box	Stakeholder	System Context	Use Cases	Measures of Effectiveness (MoEs)	Conceptual and Functional Failure Mode & Effects Analysis (FMEA)
i	Pro	White Box	Needs	Conceptual Subsystems	Functional Analysis	MoEs for Subsystems	Conceptual Subsystems FMEA
Doma			System Requirements	System Structure	System Behavior	System Parameters	System Safety & Reliability (S&R)
	Colution	lionnios	Subsystem Requirements	Subsystem Structure	Subsystem Behavior	Subsystem Parameters	Subsystem S&R
			Component Requirements	Component Structure	Component Behavior	Component Parameters	Component S&R
	Implementa-	tion	Implementation Requirements				
						100	

Pillar / Activity	Implemented?	Comments
Requirements	Yes	Discussed next
Structure	Yes	Discussed next
Behavior	Partially	Functional analysis currently a mix of diagrams (uc & act) and written scenarios. Desire is to model key functions such that allocations to subsystems are traceable
Parameters	Minimally	Key moes are captured as properties, but very few modeled with par ametric diagram. Most parametric analysis is done with custom simulation tools https://github.com/Smithsonian/ngeht-arrayperformance- sims
Safety & Reliability	No	Relevant requirements captured but analyses not integrated into model

From model to documents

Document type	Source data	Tool generated?	Comments
Requirements specification	Jama	Yes	Basic reports, not Velocity- based
Architecture / Design specification	Teamwork Cloud	No	Diagrams manually imported as needed from Cameo Systems Modeler
Interface Control Document (ICD)	Teamwork Cloud	Yes	Report Wizard and custom Velocity template
Other (risk register, schedule, etc.)	n/a	No	Not modeled

ICD generation overview

2-6 July 2024

www.incose.org/symp2024 #INCOSEIS

Top-level system-of-systems model

- The Array is one of four L1 systems within the EHT SoS
- Allows scope of Array development effort to be precisely defined in large stakeholder landscape

Sc	ience	requi	rem	e	nt	s n	nodel	ind	a		«Jama_Ro Observatio (Fundame	equirement» on Frequency ntal Physics)	Br	«Jar ightness (Func	requireme na_Requir Temperati lamental I	ent» ement» ure Sensitivi Physics)	ty Inverse ba	«Jama «Jama s shortest seline (Fu	_Requirem projecte	nent» d non-intrasite al Physics)	«Jam: Polarizat
		•		« 0	«requiren Jama_Requ bservation	nent» iirement» Targets			«Jar	requirement» na_Requirement» nfiguration (Fundamenta		«r «Jam Frequen	equiremer a_Require cy Phase	nt» ment» Transfer		«re «Jama nverse longe	equirement» a_Requirement	nt» baseline	Mir	«requireme «Jama_Require	nt» ment» RMS noise
nent» lirement» quirements			Science Okiesti	(F	andamental	I Physics)	Lines Moving and Devicing of			Physics)		(Funda	imental P	hysics)		(Funda	mental Phys	ics)		(Fundamental P	hysics)
		Version 7	Key Science Goal	Priority	Other herizon a clift targets Tansient	Physical Paramete	r Observable	ngEHT Array Phase Configurati	on Observation Mode	Cadence	Duration	External Dependencies	Observation Freq (GHz)	Frequency Phase Transfer	Brightness Temperature Sensitivity (K)	Inverse longest projected baseline (µas)	Inverse shortest projected non- intrasite baseline (µas)	Minimum baseline RMS noise (mJy)	Point Source Sensitivity (mJy)	Polarization	
	«requirement» «Jama_Requirement»	7.0 Fundamental Physics 1a.1 Black hole horizons (M87*) 1a.2 Black hole horizons (SgrA*)	Establish the existence and properties of black hole horizons	Threshold Threshold	x x	Lensed image of the horizon	Measure brightness and shape of the dimmest region of the apparent shadow	1 Full 2 Full	Single Observation	0nos	Full track None	2	230+345 230+345	Yes	5×10/8	20	80 µas (20 MD to capture both n = 0 and n = 1) 100 µas (20 MD to capture both n = 0 and n = 1)	N/A.	NA NA	Stokes I Stokes I	
	Fundamental Physics	1b.1 SMBH spin measurement (M87*) 1b.2 SMBH spin measurement (SgrA*) 1c.1 Photon ring (M27)	Measure the spin of a SMBH	Threshold Threshold	x x	SMBH spin	Average poterization spimi (beta_2 phase) over 10 epochs at 230 and 345 GHz. Statistically significant detection of pensistent thin ring	2 Full 2 Full 1 Full	Multiple Observations Multiple Observations Multiple Observations	At least matches photon ring detection goal, but requires more independent spochs (precise cadence is insignificant) Winimum codence: At least 3 observations seemanties fuel or code	Full track None Full track None Full track	3 9	230+345 230+345 230+946	No Yes	N/A N/A	N/A N/A	80 µas (20 MD to capture both n = 0 and n = 1) 100 µas (20 MD to capture both n = 0 and n = 1) 80 µas (20 MD to capture both n = 0 and	5 mJy on longest baselines 10 mJy on longest baselines 5 mJy on longest	N/A N/A	Stokes I Stokes I	
		1c.2 Photon ring (SgrA*) 1c.Axions	Constrain the properties of a black hole's photon ring	Objective Objective	× × ×	Photon ring Supervatience from clouds of sub-eV ultralight bosonic	Instance Statistical and the state of the st	2 Full	Multiple Observations Multiple Observations	At least 2 epochs of single 2-week campaigns over 2 years Sequence of 3 observations within 20 days (expected oscillation period)	Full track None	2	230+345	Yes	N/A 5×10*8	N/A 20	100 µss (20 MID to capture both n = 0 and n = 1) 50	5 mJy on longest baselines	N/A N/A	Stokes I, Q, U Stokes I, Q, U	
	«requirement» «Jama Requirement»	20 Black Holes & their Cosmic Context 2a. SMBH assembly	Reveal Black Hole-Galaxy Formation, Growth and Coevolution	Threshold	x x x	SMBH masses and indirect estimates of th spins	ir SMBH emission ring and its polarized structure in a sample of >10 sources	1 Full	Multiple Observations	One observation (~one night) per target, repeated twice	Full track is ideal Cand surve	didates identified by ETHER ay	230	No	N/A	N/A	NA	1	1	Stokes I, Q, U	
	Black Holes and their Cosmic Context	2b. SMBH binaries 2c. MMUMM Studies of BH and Jets	Determine how SMBHs merge through observations of sub-parsec binaries Connect SMBHs to high-energy and neutrino events within their jets	Objective Objective	x x >	X SMBH binary orbit, masses, (and indirect estimates of spins) X X Neutrinos produced in regions with PaV proto	SMBH spatial separation & evolution of that spatial separation Mapping of the jet (imaging), neutrino emission location	1 Full 1 Partial	Periodic Monitoring Multiple Observations	the obtail period (-months to years). Examples: 1) 6-month period = observations monthly. 2) 5-year period = observations every year. -Monthly observations of >20 bright blazars and those with neutrino triggers	Full track is ideal None Full track is ideal None	,	230 86+230+345	No Yes	N/A 5×10/8	N/A 20	1000	1	1 N/A	Stokes I Full Stokes polarization	
	«requirement» «Jama_Requirement»	3.0 Black Hole Accretion 3a.1. Accretion (M87*) 3a.2. Accretion (SgrA*)	Reveal how black holes accrete material using resolved movies on event harizon scales	Threshold	x x	Accreting plasma onto M87* Accreting plasma onto	Surface brightness and spectral index of the direct image near the photon ring Surface brightness and spectral index of the direct image near the hoton ring.	1 Partial 2 Full	Periodic Monitoring Multiple Observations	Every 3 days for 3 months (250M) One full night at least 3 times	Full track None Full track None	2	86+230+345 230+345	Yes	10*9	20	100	10	N/A N/A	Stokes I Stokes I	
	Black Hole Accretion	3b.1. Electron heating (M87*) 3b.2. Electron heating (SgrA*)	Observe localized heating and acceleration of relativistic electrons on astrophysical scales	Threshold Threshold	x x	Time-dependent temperature, magnetic field strength, and dem Time-dependent temperature, magnetic field strength, and dem	Spatially and time-resolved compact flaring structures in sub-mm movies Spatially and time-resolved compact flaring structures in sub-mm movies	1 Partial 2 Full	Periodic Monitoring Multiple Observations	Every 3 days for 3 months (250M) One full night at least 3 times	Full track None Full track None	,	88+230+345 230+345	Yes Yes	10*9 10*9	20 20	200	10	NA NA	Full Stokes polarization Full Stokes polarization	
		3c.1. Frame dragging (M87*) 3c.2. Frame dragging (SgrA*) 4.0 Jet Launching	Detect frame dragging within the ergosphere of a rotating black hole	Objective Objective	x	Sign of accretion flow angular velocity on scs of a few to 10M Sign of accretion flow angular velocity on scs of a few to 10M	Radial evolution of resolved polarization structure and dynamics on scales of a few to 10M Radial evolution of resolved polarization structure and dynamics on scales of a few to 10M	2 Partial 2 Full	Periodic Monitoring Multiple Observations	Every 3 days for 3 months (250M) One full night at least 3 times	Full track None	2	86+230+345 230+345	Yes	5×10/8 5×10/8	20 20	100	10	N/A N/A	Stokes I, Q, U Stokes I, Q, U	
	«requirement» «Jama_Requirement»	4a. Energy extraction 4b.1 Jet formation (M87*)	Determine whether relativistic jets are powered by energy extraction from rotating black holes Determine the physical conditions and	Threshold Threshold	x x	Magnetic flux threading BH, spin, and kinetic je power Jet/counter-jet composition, B-field	Polarized, multi-frequency images on horizon scales and SMBH spin estimate Full polarization, multi-frequency movies with spectral	2 Partial 1 Partial	Periodic Monitoring Periodic Monitoring	Every 3 days for 3 months (250GM/e ^s) One full night at least 3 times	Full track None	3	88+230+345 86+230+345	Yes Yes	5×10^8 5×10^8	20 20	500	10	NA NA	Full Stokes Stokes I, Q, U	
		4b.2 Jet formation (SgrA*) 5.0 Transients	Measure the inner lat shurture and	Threshold	x	field on scales of 5-100	Incase and rotation measure Motion, brightness, and size of size to overcoverone.	1 Full	Multiple Observations	Every 3 days for 3 months (250M) 2-3 targets per year. Single long observation for tracking of features (could be resolved out on -9	Full track, response within	e urrent observations (e.g., VLBI,	230+345	Yes	5×10/8	20	500	10	NA	Stokes I, Q, U	
	«requirement» «Jama_Requirement» Transients	5a. XRB dynamics 5b. Extragalactic transients	dynamics in black hole X-ray binaries Detect the kinetic power, physical structure, and velocity in extragalactic	Objective	· · · · ·	x x velocity at 10°-10°M x X Kinetic power, physical x X atructure, and velocity	during theres during theres	1 Partial	Target of Opportunity	hour time scales), ideally will be one night-long triggered doesenition with 1-2 follow ups on ~days timescale if there is continued activity. 2-3 targets per year with ~monthly observations following initial detection for 1-2 years (though this is	-10 to 80 minutes single would be available would b	e-dish) monitoring at <100 GHz d be beneficial urrent observations (e.g., VLBI, e-dish) monitoring at <100 GHz	86+230	Yes	N/A N/A	25	1000	10	1	Full Stokes Stokes I	
		6.0 New Horizons	Detect proper motions and secular (CMB parallaxes of AGN up to 140 Mnn	Otiective		x Proper motions	Mubi-year tracking of many sources across the sky with 1ps (~5 µas) delay fidelity	2 Partial	Multiple Observations	nergen-dependenti: urbo = days, 10ts = years) Multiple observations spread over >3 years per	2 hours per nicht	s un Skitkeliski	86+230	Yes	N/A	25	NIA	100	10	Stokes I	
	«requirement» «Jama_Requirement» New Horizons	Bb. Megamasers	distances Leverage AGN socretion disk meganisaers to measure that AGN host properties	Objective		Secular (CMB) parallat Black hole masses Geometric distances Hightile containt Physical conditions (bemparauric, density) AGN accretion distances	Requires access to sublicitle sublex of array to revisit sources at different sky locations multiple times per year Spectral lines of megamapers	1 Partial	Multiple Observations	- Masses: Single observation per source - Masses: Single observation per source - Distances: Far each source, must clearre - monthly for one year lead separation is - Hubble Constant: Typical distance uncontrinte - Hubble Constant: Typical distance uncontrinte - Masses: Single characteristic per source - Mysical Constitute: Single characteristic per source - Mysical Constitute: Single characteristic per source	2 hours per night mass physic	tirated observations of 22 GHz ar linas will help constrain the ical conditions (within -1 week)	Covering a redshift range from 0-0.05 requires a frequency coverage of 300- 325 GHz	No	NA	NIA	NA	10 mJy per 1 MHz channel	10 mJy per 1 MHz channel	Stokes I	
2-6 J	ulv 2024				W	ww.in	cose.ora/s	symp	2024	#INCO	SEIS										4

2-6 July 2024

Sc	ience req	uir	em	ents	modelir	<pre>«requirement» «Jama_Requirement» Observation Frequency (Fundamental Physics)</pre>	«requirement» «Jama_Requirement» Brightness Temperature Sensitivit (Fundamental Physics)	<pre>«requirement» «Jama_Requirement» / Inverse shortest projected non-intrasite baseline (Fundamental Physics)</pre>	«requirement» «Jama_Requirement» Polarization (Fundamental Physics)
«requirement» «Jama_Requirement» L0 - Science Requirements				«requirement» «Jama_Requirement» Observation Targets (Fundamental Physics)		«requirement» «Jama_Requirement» Operational Configuration (Fundamental Physics)	rrement» equirement» hase Transfer ntal Physics)	uirement» Requirement» it projected baseline iental Physics)	anta ementa RMS noise Physics)
						Operational Configuration			
	«requirement» «Jama_Requirement» Fundamental Physics	ngEHT Phase	Arr	Multi- ray Facilit y	Mode	Cadence	Duration	External Dependencies	
		-							
		1	Full	No	Single Observation	Once	Full track	None	
		2	Full	No	Single Observation	Once	Full track	None	
		2	Full	No	Multiple Observations	At least matches photon ring detection goal, but requires more independent epochs (precise	Full track	None	
		2	Full	No	Multiple Observations	cadence is insignificant)	Full track	None	
		1	Full	No	Multiple Observations	Minimum cadence: At least 3 observations separated by >1 month.	Full track	None	
		2	Full	No	Multiple Observations	At least 2 epochs of single 2-week campaigns o 2 years	^{ver} Full track	None	
		4	Full	No	Multiple Observations	Sequence of 3 observations within 20 days (expected oscillation period)	Full track	None	

2-6 July 2024

www.incose.org/symp2024 #INCOSEIS

Sci	ence	requireme	ents r	nodeli	ing	«requirementa «Jama_Requirem Observation Frequ (Fundamental Phy	«requirement» «Jama_Requirement ency sics) I I I I I I I I I I I I I I I I I I I	t» ensitivity cs) Inverse shortest † baseline (Fun	uirement» Requirement» orojected non-intrasite damental Physics)	«requirement» «Jama_Requirement» plarization (Fundamental Physics)
«requirement» «Jama_Requirement» L0 - Science Requirements			«requirement» «Jama_Requirement» Observation Targets (Fundamental Physics)		«requir «Jama_Re Operational Configu Phy	ament» quirement» ration (Fundamental sics)	«requirement» «Jama. Requirement» requency Phase Transfer (Fundamental Physics)	«requirement» «Jama_Requirement» e longest projected baseline (Fundamental Physics)	≪requirement» ≪Jama_Requirement Minimum baseline RMS n (Fundamental Physic	soise s)
						EHT Array Require	ed Specifications			
	«requirement» «Jama_Requirement» Fundamental Physics		Observation Freq (GHz)	Frequency Phase Transfer	Brightness Temperature Sensitivity (K)	Inverse longest projected baseline (µas)	Inverse shortest projected non- intrasite baseline (μas)	Minimum baseline RMS noise (mJy)	Point Source Sensitivity (mJy)	Polarization
			230+345	Yes	5×10^8	20	80 µas (20 M/D to capture both n = 0 and n = 1)	N/A	N/A	Stokes I
			230+345	Yes	5×10^8	25	100 µas (20 M/D to capture both n = 0 and n = 1)	N/A	N/A	Stokes I
			230+345	No	N/A	N/A	80 µas (20 M/D to capture both n = 0 and n = 1)	5 mJy on longest baselines	N/A	Stokes I
			230+345	Yes	N/A	N/A	100 µas (20 M/D to capture both n = 0 and n = 1)	10 mJy on longest baselines	N/A	Stokes I
			230+345	Yes	N/A	N/A	80 µas (20 M/D to capture both n = 0 and n = 1)	5 mJy on longest baselines	N/A	Stokes I
			230+345	Yes	N/A	N/A	100 µas (20 M/D to capture both n = 0 and n = 1)	5 mJy on longest baselines	N/A	Stokes I, Q, U
			230+345	No	5×10^8	20	50	10	N/A	Stokes I. Q. U
					\square			\square)	\square

www.incose.org/symp2024 #INCOSEIS

Overall logical structural model

bdd [Package] 2 System structure [EHT L0-L3 PBS]

Traceability to requirements

Traceability to requirements

Legend

Lower-level traceability & verification planning

- Shows direct and implied requirements satisfaction by logical architecture and physical system configuration
- Assists in verification planning

Legend		2 St	ation st	ructur	e													4 St	ation	config	uratio	ns																	
	Ė] 📃	Station	archite	ecture		r1	Ġ	86+2	230 sta	ation	ġ		T	тт	·····	Ė			Ē		-, É]	2 MS	RI-2									Ξ.	9	Other	statio	ns	···
, ^{,,,,,,,,} Satisfy (Implied)		fra : Site infrastructure subsystem	tenna : Antenna subsystem	c : Timing and coherence subsystem	ceiver : Receiver subsystem	gility : Agility subsystem	uentization efficiency : Real	es6 : Per-frequency VLBI back end	e230 : Per-frequency VLBI back end-	于D : spectral flux density[mJy] [2] - ntenna : Antenna subsystem	ual-band rx : Receiver subsystem	86 · Dor-frontionev VI B1 hack and	eoo : Per-frequency VLBI back end e230 : Per-frequency VLBI back end	e345:Per-frequency VLBI back end	=ED : spectral flux density[mJy] [3] - ntenna : Antenna subsystem	i-band rx : Receiver subsystem	0 Station archetypes	5+230 ngBackend station	5+230+345 ngBackend station	ew station	ИТ (MSRI-1)	vro (msri-1)	📩 1 New stations 🗓		00	Wc		AY	lpgrad	ed sta E	VRO (MSRI-2)		μ Τ			MT	OBMA	AMAAMA	N
		<u>د.</u>	티미	₩ 22	2 0 9 9	Ē	ि ए म	ם ا		a ∎		ے م	0 9 9	اھ	a R			∞ ∏∏		Z						s						S	S o	2 1					Ť
🗗 🖪 ngEHT-SET-39 L2 - Station requirements				<u> </u>		<u> </u>					<u> </u>																												
ngEHT-FLD-126 Functional requirements																																i 1							
ngEHT-L2R-13 Station Health and Status																																i i							
ngEHT-L2R-17 Monitor site weather																																i i							
🔤 🖳 ngEHT-L2R-305 Perform astronomical observations for simultaneous multi-band VLBI (dual-band station)	10							21	1	1	12	e' 1	14		4	4	16 3	1	1 :	l 1		1 12	2 4	1	1 1	1	8 1	. 1	1	1 1	1	i i	1 1						
🔤 🖳 ngEHT-L2R-306 Perform astronomical observations for simultaneous multi-band VLBI (tri-band station)	6											e' e	14	4	K	4	11 2		1 :	L		9	4	1	1 1	1	5 1		1	1		i i	1 1						
ngEHT-L2R-307 Perform astronomical observations for single-band VLBI (tri-band)	7							e ^r	4			e ^r	4	4	4	4	16 3	1	1 :	l 1		1 12	2 4	1	1 1	1	8 1	. 1	1	1 1	1	i i	1 1						
ngEHT-L2R-308 Perform astronomical observations for spectral line VLBI (goal)	4											e ^r		K	K	~	11 2		1 :	L		9	4	1	1 1	1	5 1		1	1		i i	1 1						
🔤 📧 ngEHT-L2R-309 Perform astronomical observations for single-band non-VLBI observations (dual-band)	6							e ^r		1	1	e ^r			K	2	16 3	1	1 :	l 1		1 12	2 4	1	1 1	1	8 1	. 1	1	1 1	1	i 1	1 1						
ngEHT-L2R-310 Perform astronomical observations for single-band non-VLBI observations (tri-band)	3											e ^r			4	2	11 2		1 :	1		9	4	1	1 1	1	5 1	i T	1	1		i	1 1						
ngEHT-L2R-311 Test readiness to observe	10 🥑	e	11	2	11	2		e ^r			1	e ^r					17 3	1	1 :	12	1	1 12	2 4	1	1 1	1	8 1	. 1	1	1 1	1	i	1 1						
ngEHT-L2R-312 Configure for VLBI observing	7 🥑	e	11	2	1			e ^r				e ^r					17 3	1	1 :	L 2	1	1 12	2 4	1	1 1	1	8 1	1	1	1 1	1	i	1 1						
ngEHT-L2R-313 Configure for non-VLBI observing	6 ピ	e	11		1			e ^r				e ^r					17 3	1	1 :	ι 2	1	1 12	2 4	1	1 1	1	8 1	1	1	1 1	1	i	1 1						
ngEHT-L2R-314 Capture metadata	4 🗠	e	1					e ^r				e ^r					17 3	1	1 :	12	1	1 12	2 4	1	1 1	1	8 1	1	1	1 1	1	i 1	1 1						
ngEHT-L2R-315 E-transfer L0 data	5 🥰	1			1			e ^r				e ^r					17 3	1	1 :	L 2	1	1 12	2 4	1	1 1	1	8 1	1	1	1 1	1	— i	1 1						
R ngEHT-L2R-316 Monitor operating status	10 2	1	11	2.	11	1		e ^r				2					17 3	1	1 :	12	1	1 12	2 4	1	1 1	1	8 1	1	1	1 1	1		1 1						
R ngEHT-L2R-317 Test readiness for software update	4 🛃	2	1					e*				6					17 3	1	1 :	12	1	1 12	2 4	1	1 1	1	8 1	1	1	1 1	1		1 1						
R ngEHT-L2R-318 Update station software	4	1	1					e ^r				2					17 3	1	1 :	ι 2	1	1 12	2 4	1	1 1	1	8 1	1	1	1 1	1		1 1						
			-	<u> </u>				-				-																				_							

2-6 July 2024

www.incose.org/symp2024 #INCOSEIS

How did we do?

Goal	Evidence
Provide Authoritative Source of Truth (ASoT) for project that objectively demonstrates a science-based rationale for technical designs and decisions	Can answer the question "how is science affected if these aspects of requirements or design are changed?" and vice versa
 Right-size MBSE approach to Ensure value-add and avoid "over- modeling" Facilitate document generation 	 Limited use of some MagicGrid pillars & tool capabilities Auto-generated requirements and interface specifications

Summary

2-6 July 2024

The next step for the EHT is a complex one

Systems engineering tools have helped manage complexity and align the team

Concluding Thoughts

- Scientists and engineers can often be at odds with different approaches and objectives
- When done properly, systems engineering can appeal on common grounds of logic, analysis, and rigor while allowing for experimentation, rapid iteration, and ambitious goals
- Complex science that pushes the limits of an exciting new field requires a system and processes to manage that complexity that is commensurate with the challenge at hand

www.incose.org/symp2024 #INCOSEIS

2-6 July 2024

Data Pipeline Concept of Operations

Credit: Lindy Blackburn

What's happened since the first image?

- Ring features match GR predictions
- Observed ordered magnetic fields seen in GRMHD jet/accretion simulations
- Two sources now conclusively confirm that we have access to the event horizon

M87*

Sgr A*

About the size of our solar system, ~55 million light years away

About the size of Mercury's orbit, 27,000 light years away

$$\begin{split} M &\approx 6.5 \times 10^9 \; M_\odot \\ D &\approx 17 \; Mpc \\ d &\approx 42 \; \mu as \end{split}$$

$$\begin{split} \mathbf{M} &\approx 4.0 \times 10^6 \ \mathbf{M}_\odot \\ \mathbf{D} &\approx 8.2 \ \text{kpc} \\ \mathbf{d} &\approx 52 \ \mu \text{as} \end{split}$$

Recent Science Results: polarized images

66

