
Causal Inference: 
Key for Opening the 

AI Black Box for 
Systems Engineering

Terril N Hurst, PhD
Scott A Goodman, PhD
Lawrence A Schneider

Raytheon Missiles & Defense

Copyright © 2021 by INCOSE – reuse permitted by INCOSE

Virtual Mini Event, November 2021
Systems Engineering Pathways to AI Now!



2 of14Causal Inference: AI for Systems Engineering

Objectives of Presentation

• Reflect briefly on the boom/bust history of AI/ML  
• Introduce causal inference, including examples that employ causal diagrams (CDs) and 

Bayesian Networks (BNs) 
• Describe conditions necessary for adopting technologies/methods within systems engineering  

Bottom Line Up Front: Causal inference reduces the hazard of poor decision-making 
due to spurious correlations, which can occur using black-box AI/ML techniques 
The price: building a full probability model in order to answer a precise query
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The boom/bust history of AI/ML – see AI Winter

Awareness of the history of the science of AI is essential for recognizing when/where its 
technologies can be beneficial. We focus on causal inference, which augments conventional 
AI methods with Bayesian analysis. When combined with with AI’s contributions based on 
formal logic, this provides a holistic, probabilistic decision-support paradigm

Arguments and debates on past and future of AI
“Several philosophers, cognitive scientists and computer scientists have speculated on 
where AI might have failed and what lies in its future. Hubert Dreyfus highlighted flawed 
assumptions of AI research in the past and, as early as 1966, correctly predicted that the 
first wave of AI research would fail to fulfill the very public promises it was making. Other 
critics like Noam Chomsky have argued that AI is headed in the wrong direction, in part 
because of its heavy reliance on statistical techniques. Chomsky's comments fit into a larger 
debate with Peter Norvig, centered around the role of statistical methods in AI.” [Wikipedia]

https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/Hubert_Dreyfus
https://en.wikipedia.org/wiki/Hubert_Dreyfus%27s_views_on_artificial_intelligence
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Peter_Norvig
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Pearl’s work on the Science of Causality

Pearl’s Book of Why made causal inference accessible to a broader audience

A simple causal 
Bayesian Network

2008 2018

http://bayes.cs.ucla.edu/BOOK-2K/
http://bayes.cs.ucla.edu/WHY/
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Origins of automated reasoning for AI/ML
 In 1959, John McCarthy coined the term artificial 

intelligence (AI), and Arthur Samuel the term 
machine learning – 16 years(!) after neural 
networks were first proposed by McCulloch & Pitts
 Original AI proposal called for a 2-component 

system, separating what we know from how we 
think (Fig. 1.1):  
• Knowledge base KB  
• Inference engine IE (“reasoner”) 
• KB is domain-specific; IE is very general and therefore 

usually fixed  

 Later, a more specific, 2-component system blurred 
this separation (Fig. 1.2):   
• Statements in logic
• Logical deduction

Bayes nets adopt the original idea (Fig 1.1), but they incorporate probabilistic reasoning

Logic 
Statements

Logical 
Deduction

Observations

Conclusions

Fig. 1.2

Knowledge 
Base

Inference 
Engine

Observations

Conclusions

Fig. 1.1

http://jmc.stanford.edu/artificial-intelligence/index.html
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Arthur_Samuel
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Artificial_neural_network
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Reasoning with Causal Diagrams (CDs) & Bayes Nets (BNs)

 A graph G consists of a set V of vertices (or nodes) and a set E of edges 
(or links) connecting some pairs of vertices. CDs and BNs are comprised 
of directed acyclic graphs, (DAGs).  In this DAG G, {A, B, C, D} ∈ V 

 A path p in DAG G is a sequence of edges (e.g., p: ((B, A),   (A, C), (C, 
D)) in G 

 A directed path in DAG G is a sequence of edges, each commencing with 
an arrow tail and ending with a head (e.g., p: ((C, B), (B, A)) in this DAG)

DAG G

The power of CDs & BNs lies in their ability to reject spurious correlations, given 
evidence at specific nodes, which distinguishes them from neural networks 
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Wikipedia’s introductory BN: Wet Grass, G; Sprinkler On S, Raining, R

Sprinkler Rain

Grass

Directed Acyclic Graph (DAG)

F T
F 0.6 0.4
T 0.99 0.01

SR

CPTS (1 parent)
CPTR (0 parents)

F T
0.8 0.2

R

CPTG (2 parents)

F T
F F 1 0
T F 0.2 0.8
F T 0.1 0.9
T T 0.01 0.99

GR S

BNs employ the logic of probability to compute answers to specific questions, e.g., 
“What’s the probability it’s raining given that my grass is wet?”  Pr(R = T | G = T)

BNs employ 3 different types of 
probability distributions:

• Joint Probability Distribution JPD,  
f (x1 , x2 , … , xn)

• Conditional Probability 
Distributions CPDs (as listed in 
these CPTs), f (x1 | x2 , x3)

• Marginal Probability Distributions 
MPDs, f (x1), i.e., “averaging out” 
other variables

Conditional 
Probability 

Tables (CPTs)

https://en.wikipedia.org/wiki/Bayesian_network
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Search

Detect1 Detect2

TrkGuide

Damage

F T

0.1 0.9

Search

F T
F 1 0
T 0.1 0.9

Detect1
Search

None Disable Kill
F 1 0 0
T 0.03 0.02 0.95

Damage
TrkGuide

F T
F F 0.55 0.45
F T 0.12 0.88
T F 0.4 0.6
T T 0.1 0.9

Detect1 Detect2 TrkGuide

F T
F 1 0
T 0.4 0.6

Detect2
Search

BN for allocating/verifying algorithm requirements
Weapon kill-chain model for anti-aircraft missile*

Conditional 
Probability 

Tables (CPTs)

Directed Acyclic 
Graph (DAG)

*Based on Ball’s example 
in The Fundamentals of 
Aircraft Combat 
Survivability Analysis & 
Design (AIAA, 2nd ed., 
2003)

The DAG creates the structure for populating CPTs 
with values using available data and SME knowledge
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SamIam demo: Prior & Posterior Marginal Probabilities
Once populated with data/knowledge, we use BN logic to answer a query, e.g., 
“what is the probability that Detector1 failed given that we missed the target?”

Prior marginal 
probabilities, 

given no evidence

Ability to condition on evidence blends formal logic with the 
reality of real-world uncertainty for credible decision-making

Posterior marginal 
probabilities, given 

evidence

Evidence has
“causally upstream”

influence

http://reasoning.cs.ucla.edu/
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BNs can blend available data with SME knowledge to compensate for missing or noisy data

Simple BN: Unit Under Test (UUT) in Test Equipment (TE)
Node States Data Source

funcCPU Yes; No longTextDB

pwrState inSpec; outSpec longTextDB

Clocking inSpec; outSpec longTextDB

connsUUT OK; notOK longTextDB

devIO OK; notOK longTextDB

miscBad No; Yes SME Estimate

swTE OK; notOK SME Estimate

connsTE OK; notOK SME Estimate

setupUUT OK; notOK SME Estimate

stateUUT OK; notOK onlineDB

testUUT Pass; Fail onlineDB Conditional Probability Tables not shown
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Pearl’s Causal-Model Inference Engine unlocks the black box
Example Query: “What is the effect of including 
Subsystem S on System Effectiveness E?”    
1. Knowledge: Traces of the reasoning agent’s past experience, 

e.g., observations, actions, education, culture, etc.  
2. Explicit, simplifying Assumptions
3. CD (other causal model forms exist, but this is Pearl’s favorite) 
4. Testable implications; data contradictions modify the CD  
5. Causal Query: the question we wish to answer; it must be 

formulated using the causal* vocabulary – e.g., P(E | do(S))
6. Estimand: from Latin, “that which is to be estimated”; the 

recipe for answering the Causal Query, e.g., P(E | E, Z) x P(Z) 
7. Data (observations): Ingredients going into the Estimand 

recipe, e.g., P(E | S, Z)  
8. Estimation: Based upon finite data  
9. Answer to Query; example: “Including subsystem S increases 

System Effectiveness E by 30% ± 20%.” If correct, add to Box 
1; else re-do Step 3 (CD)  

“Notice that, unlike traditional statistical 
inference, we collect data only after we 
posit the causal model, and after we state 
the query we wish to answer, and after
we derive the estimand.”

- Pearl 2018

Knowledge1

Background

Assumptions2

Inputs “Inference Engine” Outputs

Causal model3 Testable 
implications4

Query5 Can the query 
be answered?

Return to 
boxes 2 & 3

Data7 Statistical 
estimation8

Estimand6 

(recipe for 
answering query)

Estimate9 

(Answer to Query)

NO

YES

*If observational (not DOE) data, use 
do-calculus to convert S to do(S)

https://ftp.cs.ucla.edu/pub/stat_ser/r402.pdf
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The Three P’s of Successful Systems Engineering
Any technology for systems engineering must support People, Pipes, & Protocols
 People: “You are smarter than your data” (Judea Pearl, The Book of Why) 

• Neural networks can help users to perform causal reasoning, but causal models do that at the outset
• Since the causal inference engine (earlier slide) provides testability prior to collecting any data, it is 

extremely adaptable. It is not fitting a function to data

 Pipes: networks, connecting both people and linked data  
• Causal models naturally accommodate the ontologies used in systems engineering
• The Bayesian analysis protocol opens clear communication channels for system stakeholders

 Protocols: Organized, pre-planned ways of generating/sending/receiving credible data at 
the right time for decision-making. The iterative Bayesian analysis protocol (from Gelman):
1. Build a full probability model, describing the nature of the sample and prior (external) knowledge
2. Collect data (see Pearl’s inference engine); then update the probability model (Bayes’ Theorem)
3. Critically evaluate sensitivity of conclusions to assumptions made in probability model; then iterate  

Causal inference aids understanding & applying AI/ML in all three P’s

https://arxiv.org/abs/1707.04327
https://users.aalto.fi/%7Eave/BDA3.pdf
https://en.wikipedia.org/wiki/Bayes%27_theorem
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Facilitating adoption of AI into engineering workflows

 Adopting both “hard technologies” (e.g., hardware/algorithms/software) and “soft 
technologies” (e.g., protocols, rewards/measurements) require awareness of people’s 
talent, motivation and willingness to teach/learn new ways of doing things   

 Empowering causal inference within decision-making requires commitments to    
• apply credible modeling, simulation, & analysis (MSA) of (sub)systems & components 
• place observational data (e.g., reliability) on the same causal grounds as data from 

designed experiments via the do-calculus
• quantify uncertainty at each decision-making point 

Pearl: “Data do not understand causes and effects; humans do. I hope that the 
new science of causal inference will enable us to better understand how we do it.”

https://ftp.cs.ucla.edu/pub/stat_ser/r402.pdf
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