

The Future of Systems Engineering: Systems Engineering Application Extensions

A Systems Community Initiative

EMEA WSEC workshop: SE and Climate Change, 26 April 2023

Tom Strandberg Systems Engineering Application Extensions Stream Lead FuSE Workshop: Extending SE to address climate change

- FuSE Application Extensions
- Introduction to the Topic: Gerhard Krinner
- Workshop
- Next steps

Systems Engineering Vision 2035

Executive Summary

- The Global Context for Systems Engineering
- The Current State of Systems Engineering
- The Future State of Systems Engineering
- Realizing the Vision

SYSTEMS ENGINEERING VISION 2035

ENGINEERING SOLUTIONS FOR A BETTER WORLD

https://www.incose.org/about-systems-engineering/se-vision-2035

The world is coming to a conclusion that we need to take a systems approach to solve our challenges.

INCOSE A better world through a systems approach

However, the world's recognition of Systems Engineering and **INCOSE** is still very limited.

incose.org | 4

Industry adoption of SE

Competencies

9. Systems engineering education is part of the standard engineering curriculum, and is supported by a continuous learning environment.

incose.org | 6

2025

Goal: Expand domain application: Address growing societal challenges Influence policy across enterprises.

2030

Goal: Impactful application across domains underpinned by SE foundations and best practices supported by education and research.

2035

discipline across domains

to solve engineering and

societal grand challenges.

Goal: SE is the 'go to'

Synthesizing cross

models and tools.

disciplinary practices,

影

FuSE Application Extensions Stream Output

- Identify topics that can mobilize initiatives that can contribute to the realization of the SE Vision 2035 Roadmap.
 - Existing, e.g. Smart Cities Initiative
 - Potential new ones, e.g. Sustainability
- Stimula and support to initiatives
 - Typically, cross-WG, cross-organization
- Coordination and collaboration
 - products, papers, workshops, lobbying

How?

DEFINE TOPICS THAT DE CAN SUPPORT GRO EXTENDING THE MESS APPLICATION OF SE

0

DEFINE TARGET GROUPS AND THE MESSAGE REQUIRED

DEFINE HOW TO APPROACH THE TARGET GROUP

STIMULATE AND SUPPORT JOINT INITIATIVES

IDENTIFY THE RESOURCES REQUIRED, INTERNAL AND EXTERNAL TO INCOSE

┍╂┑

Initial Selection of Topics.

Smart Cities

Innovation

Asset Management Grand Challenges FuSE Workshop: Extending SE to address climate change

- FuSE Application Extensions
- Introduction to the Topic:
 Gerhard Krinner
- Workshop
- Next steps

A look at systems transitions in the IPCC AR6

Gerhard Krinner, IGE Grenoble gerhard.krinner@cnrs.fr

A look at the very long term

Strong correlation between CO₂ concentration and global temperature

The current Andalusian heatwave

Record hot temperatures (for April) will likely be exceeded on Thursday

The global ocean

60°S-60°N average temperature above 21°C for the first time

>4**o** above the 1982-2011 mean

Ocean is currently transitioning from La Niña to El Niño state – 2024 will likely be a new record year

Humanity is not on a trajectory towards 1.5 or 2°C warming by 2100

Reductions in GHG emissions in industry, transport, buildings, and urban areas:

Combination of energy efficiency and conservation and a transition to low-GHG technologies and energy carriers

End-use sectors:

- Socio-cultural options and behavioural change
- Most of the potential in developed countries (if combined with improved infrastructure design and access)

Energy:

- Transitioning from fossil fuels without carbon capture and storage (CCS) to very low- or zero-carbon energy sources
- Demand-side measures and improving efficiency
- CDR

Urban sector:

Deep emissions reductions and integrated adaptation actions are advanced by:

- integrated, inclusive land use planning and decision-making
- compact urban form by co-locating jobs and housing
- reducing or changing urban energy and material consumption
- electrification in combination with low emissions sources
- improved water and waste management infrastructure
- enhancing carbon uptake and storage in the urban environment

AFOLU mitigation options:

- Can deliver large-scale GHG emission reductions and enhanced CO₂ removal if sustainably implemented
- Reduced deforestation in tropical regions: highest total mitigation potential
- Many barriers to implementation and trade-offs: impacts of climate change, competing demands on land, conflicts with food security and livelihoods, complexity of land ownership and management systems, cultural aspects

There are multiple opportunities for scaling up climate action

Feasibility of climate responses and adaptation, and potential of mitigation options in the near-term

Insufficient evidence

20-50 (USD per tCO₂-eq)

100–200 (USD per tCO₂-eq) Cost not allocated due to high variability or lack of data

There are multiple opportunities for scaling up climate action

Feasibility of climate responses and adaptation, and potential of mitigation options in the near-term

Feasibility level and synergies with mitigation

Low

Medium

Insufficient evidence

Confidence level in potential feasibility and in synergies with mitigation

••• High •• Medium • Low

Net lifetime cost of options:

Costs are lower than the reference 0–20 (USD per tCO₂-eq) 20–50 (USD per tCO₂-eq) 50–100 (USD per tCO₂-eq) 100–200 (USD per tCO₂-eq) Cost not allocated due to high variability or lack of data

The pace of the transition to net zero CO_2 depends on the sector

Technology transfers allow to accelerate transitions (leapfrogging)

Non-CO₂ emissions
 Transport, industry and buildings
 Energy supply (including electricity)
 Land-use change and forestry

Strong and rapid action is possible, including demand-side mitigation

Demand-side mitigation can be achieved through changes in socio-cultural factors, infrastructure design and use, and end-use technology adoption by 2050.

¹The presentation of choices to consumers, and the impact of that presentation on consumer decision-making.

² Load management refers to demand-side flexibility that cuts across all sectors and can be achieved through incentive design like time of use pricing/monitoring by artificial intelligence, diversification of storage facilities, etc.

³ The impact of demand-side mitigation on electricity sector emissions depends on the baseline carbon intensity of electricity supply, which is scenario dependent.

FuSE Workshop: Extending SE to address climate change

- FuSE Application Extensions
- Introduction to the Topic: Gerhard Krinner
- Workshop
- Next steps

Workshop

Extending SE to address climate change

FuSE Workshop Summary

Extending SE application to address climate change

Photo Documentation

Team 1

incose.org | 32

Workshop: Extending SE to address climate change

Team 2 (1/2)

Workshop: Extending SE to address climate change

Team 2 (2/2)

Fuse Future of Systems Engineering

INCOSE

Workshop a Sevilla, Spain

Photo Documentation

Team 2

incose.org | 36

Workshop: Extending SE to address climate change

Team 2

Photo Documentation

Team 3

incose.org | 38

Workshop: Extending SE to address climate change

Team 3

FuSE Workshop: Extending SE to address climate change

- FuSE Application Extensions
- Introduction to the Topic: Gerhard Krinner
- Workshop
- Next steps

Follow up

Documentation will be sent to all the registered for the event with notes on how to stay in touch

FuSE Targeted Events in 2023

Where to engage

Let's connect.

Or find us on <u>www.incose.org/fuse</u>

Email fuse@incose.net

Bill Miller FuSE Program Lead

e William.Miller@incose.net

Stephan Finkel PMO Contractor | 3DSE

e Stephan.Finkel@incose.net

Martina Feichtner PMO Contractor | 3DSE

e Martina.Feichtner@incose.net

Paul Schreinemakers Stream Lead "SE Vision & Roadmaps"

e paul.schreinemakers@incose.net

Oli de Weck Stream Lead "SE Foundations"

e deweck@mit.edu

Chris Hoffman Stream Lead "SE Methodologies"

e christopher.hoffman@incose.net

Tom Strandberg Stream Lead "SE Application Extensions"

e tom.strandberg@incose.net

Future of Systems Engineering

fuse@incose.net

© 2022 INCOSE, LLC. All rights reserved.