

Foundations Work Stream

Overall Documentation IW Working Sessions

Oli de Weck FuSE Foundations Lead

Table of Contents.

- Keynote "1st Law on System Science and Engineering" at a Glance
- Takeaways from "Complexity"
 Experiment
- Takeaways from Case Study on "Technical Complexity"
- Takeaways from Case Study on "Organizational Complexity"

Table of Contents.

- Keynote "1st Law on System Science and Engineering" at a Glance
- Takeaways from "Complexity"
 Experiment
- Takeaways from Case Study on "Technical Complexity"
- Takeaways from Case Study on "Organizational Complexity"

Keynote "Law of Complexity Conservation" at a Glance

Audience survey result "Where are we on our SE journey?"

Table of Contents.

- Keynote "1st Law on System Science and Engineering" on SAT at a Glance
- Takeaways from "Complexity" Experiment on SAT
- Takeaways from Case Study on "Technical Complexity" on SUN
- Takeaways from Case Study on "Organizational Complexity" on MON

Test the (proposed) 1st Law of Systems Science & Engineering

Conservation of Complexity:

The change in complexity C of the system is equal to a proportional change in expected performance P minus the change in effort E expended by the enterprise

$$\Delta C = \mu \Delta P - \varepsilon \Delta E$$

Hypotheses tested:

- •Effort E (time) increases superlinearly with Complexity (C)
- •The more effort a team spends the better the solution will be (P)
- •There are diminishing returns for P with increasing C
- •As E increases, C can be reduced for the same P

Impressions on "Complexity Experiment"

60 participants. Session A: 40 Participants. Session B: 20 Participants.

Details from "Complexity" Experiment

- Observations from the experiment:
 - Teams used different approaches which used more/less Effort E (time)
 - Teams produced different designs for each node network using more/less Effort
 - Teams developed different heuristics on their initial designs that they used in later sheets
- Post Processing to be done at MIT:

Performance P

minimum average path length

Complexity C

normalized graph energy of network

Effort

Time spent designing the system

Details from "Complexity" Experiment

Feedback and Suggested Improvements

- Making the experiment more realistic to real SE tasks:
 - Make the task more complex
 - More constraints: e.g Time limits
 - Add uncertainty by mid task: Introduce/Eliminate new nodes, Change team members, Change requirements, Pass partial solution to new team.
 - Team adjustments: Larger team sizes, Peer review, Assigned roles in teams.
 - Focused on defined SE tasks e.g. Requirements Analysis.
 - Introduce legacy: Existing network to modify
 - Learning: Get a score after each submission
 - Tools: Provide/Don't Provide support tools and compare benefits

Details from "Complexity" Experiment

Feedback and Suggested Improvements

- Some **difficulty understanding** the **task**. Especially what a success looks like. Improve instructions (perhaps printed and distributed to the team):
 - Show examples of optimal solution (minimum spanning tree) and worst solution (fully connected)
 - Walk through an example to start with
- Don't provide all the sheets at start. Once a sheet is complete, submit and collect a new one.
- Record abilities of participants before starting the task

Table of Contents.

- Keynote "1st Law on System
 Science and Engineering" at a
 Glance
- Takeaways from "Complexity"
 Experiment
- Takeaways from Case Study on "Technical Complexity"
- Takeaways from Case Study on "Organizational Complexity"

Takeaways from Case Study on "Technical Complexity"

- Approx. 60 participants in 6 groups
- Shared case study on Aviation Engines and evolution of their technical complexity
- Discussed proposed definition of "technical complexity", key aspects being confirmed (e.g. #nodes, #interactions), and additional aspects (e.g. predicatibility, context, characteristics of nodes) to consider within definition being proposed
- Identified areas for case studies to generate additional data on the evolution of technical complexity to verify or falsify the definition of technical complexity

Key note 1 on "Technical Complexity" at a Glance

Results on "Technical Complexity" - Group breakout 1

Some details on "Technical Complexity" - Group breakout 1

Group feedback **confirming** key aspects of proposed definition of technical complexity...

- # of components, interactions, and functions
- # of diversity of patterns
- # of nodes and relations known as a base

Term "simplexity" discussed, defined as "achievement of complexity but simple"

Group feedback indicating aspects to be considered within definition of technical complexity

- predictability and non-linearity
- effect of context and perception
 - person looking at system
 - context the system is put into
- size of system
- characteristics of nodes and relationships (e.g. uncertainty on nodes, nature of interactions)
- maturity level of system, system elements

Key note 2 on "Technical Complexity" at a Glance

Results on "Technical Complexity" - Group breakout 2

Some details on "Technical Complexity" - Group breakout 2

Potential areas to look at for additional case studies to generate data on evolution of technical complexity being useful to verify or falsify the proposed definition of technical complexity

- Radar
- Radio
- Programming languages
- Mobile Phones
- Automotive
- Space
- Telecom
- Power Systems
- Internet
- ...

Impressions on "Technical Complexity"

Table of Contents.

- Keynote "1st Law on System Science and Engineering" at a Glance
- Takeaways from "Complexity" Experiment
- Takeaways from Case Study on "Technical Complexity"
- Takeaways from Case Study on "Organizational Complexity"

Takeaways from Case Study on "Org Complexity"

- Approx. 50 participants in 6 groups
- Shared update of Systems Science WG on current state of their work
- Shared case study on SLS vs. Space X Falcon 9 regarding their org complexity
- Generated **potential drivers** of "org complexity" during group breakout discussion, key aspects being e.g. #people, #roles, #channels of interaction, etc. ...
- ... but also admitting **challenges** in measuring org complexity due to its fuzziness, people being in multiple roles, and individual agendas
- Discussed drives for increased org complexity and potential levers to manage
- Identified virtues and demerits of strong vertical org integration

Key note 1 on "Organizational Complexity" at a Glance

Results on "Organizational Complexity" - Group breakout 1

How to define and quantify "organizational complexity"?

Basically the same way as technical complexity, i.e. # nodes, # interactions, etc.

What are **potential drivers** to consider:

- # people
- # roles / job descriptions
- # channels of interaction
- # levels of hierarchy / approval
- # scope of authority (for roles / for teams)
- # cultures
- # span of controls
- # transactional cost

Challenges in measuring organizational complexity

- much more fuzziness
- individual agendas don't line up with organizational agenda
- many people in multiple roles
- end up with much more emergence

What are drivers for increased "organizational complexity"?

- more complex problems to solve
- culture shift how we work
- grown educational level
- grown specialization
- increase of collaboration tools
- grown formality, e.g. reviews, etc., working on artifacts that are not solving the problem
- increased agency complexity

What are levers to manage "organizational complexity"?

- w/ clarity on vision, mission, and focus
- w/ communication btw disciplines and new comm paths as means to prune organization
- w/ architecture, i.e. functional cohesion, minimization of silos
- w/ knowledge, i.e. understand & distribute knowledge
- w/ MBSE, is like using a bulldozer, i.e. more powerful, but brings own complexity

Key note 2 on "Organizational Complexity" at a Glance

Results on "Organizational Complexity" - Group breakout 2

What are virtues and demerits of vertical integration?

Virtues of vertical integration

- NASA has knowledge dissemination as core function
- Vertical integration reduces org complexity
- Profit motive helps focus
- Is efficient for decisions, is decisive
- Less uncertain integration
- Private company can be more risk tolerant
- Direct control and lower cost of org comm
- Flexibility / Agility

Demerits of vertical integration

- Regulatory for government
- Political process in engineering design
- Scaling bigger rocket isn't just zooming in out
- Requirements for single launch for large payload
- Is not resilient
- SLS affected by funding mechanism complexity
- SLS is not just horizontally distributed
- Higher risk if wrong, risk all on yours
- Less perspectives, less diversity
- Susceptible to personnel instability

How to compare organizational complexity of SLS vs. F9?

- Number of decision makers
- Cost of a variability point
- Size, interaction and controls
- Org cost drivers (COSYSMO)

Impressions on "Organizational Complexity"

Let's connect.

Or find us on www.incose.org/fuse

Bill Miller FuSE Program Lead

e William.Miller@incose.net

Paul Schreinemakers
Stream Lead "SE Vision & Roadmaps"

e paul.schreinemakers@incose.net

Stephan Finkel PMO Contractor | 3DSE

e Stephan.Finkel@incose.net

Oli de Weck Stream Lead "SE Foundations"

e deweck@mit.edu

Martina Feichtner PMO Contractor | 3DSE

e Martina.Feichtner@incose.net

Chris Hoffman Stream Lead "SE Methodologies"

e christopher.hoffman@incose.net

Tom StrandbergStream Lead "SE Application Extensions"

e tom.strandberg@incose.net

The FuSE Program is organized in 4 streams.

Extensions

