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About This Publication

INCOSE’s membership extends to over 18, 000 individual 
members and more than 100 corporations, government 
entities, and academic institutions. Its mission is to share, 
promote, and advance the best of systems engineering from 
across the globe for the benefit of humanity and the planet. 
INCOSE charters chapters worldwide, includes a corporate 
advisory board, and is led by elected officers and directors.

For more information, click here: 
The International Council on Systems Engineering
(www.incose.org)

INSIGHT is the magazine of the International Council on 
Systems Engineering. It is published four times per year and 
features informative articles dedicated to advancing the state 
of practice in systems engineering and to close the gap with 
the state of the art. INSIGHT delivers practical information 
on current hot topics, implementations, and best practices, 
written in applications-driven style. There is an emphasis on 
practical applications, tutorials, guides, and case studies that 
result in successful outcomes. Explicitly identified opinion 
pieces, book reviews, and technology roadmapping comple-
ment articles to stimulate advancing the state of practice. 
INSIGHT is dedicated to advancing the INCOSE objectives 
of impactful products and accelerating the transformation of 

systems engineering to a model-based discipline.
Topics to be covered include resilient systems, model-based 
systems engineering, commercial-driven transformational 
systems engineering, natural systems, agile security, systems 
of systems, and cyber-physical systems across disciplines 
and domains of interest to the constituent groups in the 
systems engineering community: industry, government, 
and academia. Advances in practice often come from lateral 
connections of information dissemination across disciplines 
and domains. INSIGHT will track advances in the state of the 
art with follow-up, practically written articles to more rapidly 
disseminate knowledge to stimulate practice throughout the 
community.
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INSIGHT’s mission is to provide 
informative articles on advancing 
the state of the practice of systems 
engineering. The intent is to acceler-

ate the dissemination of knowledge to close 
the gap between the state of practice and 
the state of research as captured in Systems 
Engineering, the Journal of INCOSE, 
also published by Wiley. INCOSE thanks 
corporate advisory board (CAB) member 
Lockheed Martin for sponsoring INSIGHT 
in 2020 and welcomes additional sponsors, 
who may contact the INCOSE director for 
marketing and communications at mar-
com@incose.org .

The March 2020 issue of INSIGHT ad-
dresses augmented and artificial intelligence 
(AI) for systems engineering (AI4SE) and 
systems engineering for augmented and arti-
ficial intelligence (SE4AI). SE4AI addresses 
the transformation we need in methods, 
procedures, and tools (MPTs) to engineer 
systems with embedded AI to be fit for 
purpose and doing no (unintended) harm. 
AI4SE addresses challenges that have to 
be overcome to leverage AI in the practice 
of systems engineering much as a lever or 
pulley provides mechanical advantage to 
perform work in Newtonian mechanics.

Tenets of systems engineering from 
control systems engineering are that 
engineered systems be observable, 
controllable (to assure system stability with 
tolerable errors), and identifiable (Möller 
2016). AI is in the forefront of technology 
advances with widely publicized innovations 
in image identification, diagnostics, and 
autonomy; AI applications gone awry 
are newsworthy in both the popular and 

scientific/engineering media.
AI methods can be broadly classed as 

rule-based and neural-network based. 
Rule-based methods are relatively mature 
with decades of experience in application 
and are well-understood. In contrast, 
much is unknown of the contextually 
driven behavioral characteristics of neural 
network-based AI, commonly referred to 
as machine learning and deep learning. 
Neural network performance is critically 
dependent on the datasets used to train the 
algorithms and whose actions currently 
cannot be guaranteed to be fit for purpose to 
meet the attributes of elegance that systems 
accomplish their intended purposes, be 
resilient to effects in real-world operation, 
while minimizing unintended actions, side 
effects, and consequences (Griffin 2010).

The articles represent ongoing research 
in the Systems Engineering Research 
Center (SERC), a university-affiliated 
research center (UARC) of the US Depart-
ment of Defense, in addressing the AI4SE 
and SE4AI challenges as stated in their 
research roadmap for AI and autonomy 
(SERC 2019). The SERC (www.sercuarc.org), 
operated by Stevens Institute of Technology 
with the University of Southern California 
(USC) as principal collaborator, leverages 
the research and expertise of faculty and re-
searchers from 22 collaborator universities 
throughout the US. The INSIGHT editorial 
staff and SERC theme editors Dinesh Ver-
ma, Tom McDermott, and Kara Pepe thank 
the authors for their contributions. The lead 
article by Tom McDermott, Dan DeLau-
rentis, Peter Beling, Mark Blackburn and 
Mary Bone overviews the AI and autonomy 

research roadmap and maps the subsequent 
articles to the parts of the roadmap.

The SERC articles are within the scope 
of the systems community initiative on the 
future of systems engineering (FuSE) that 
has AI4SE and SE4AI as an initial project. 
The May 2019 INSIGHT addressed other 
FuSE projects on systems engineering 
principles and foundations for systems 
engineering (F4SE). INSIGHT intends 
to report on FuSE related topics on an 
ongoing basis.

We hope you find INSIGHT, the prac-
titioners’ magazine for systems engineers, 
informative and relevant. Feedback from 
readers is critical to the quality of INSIGHT. 
We encourage letters to the editor at 
insight@incose.org . Please include “letter to 
the editor” in the subject line.  INSIGHT 
also continues to solicit contributions for 
special features, standalone articles, book 
reviews, and op-eds. For information about 
INSIGHT, including upcoming issues, see 
https://www.incose.org/products-and-publica-
tions/periodicals#INSIGHT .  ¡
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AI4SE and SE4AI: A 
Research Roadmap

INTRODUCTION

Systems engineering is undergoing 
a digital transformation that will 
lead to transformational advances 
facilitating systems engineering use 

of artificial intelligence (AI) and machine 
learning (ML) technology to automate many 
routine engineering tasks. At the same time 
applying AI, ML, and autonomy to complex 
and critical systems encourages new 
systems engineering methods, processes, 
and tools. A 2019 future of systems 
engineering (FuSE) workshop, hosted 
by the International Council on Systems 
Engineering (INCOSE), first used the terms 
AI for systems engineering and systems 
engineering for AI to describe this dual 
transformation (Miller 2019). The “AI4SE” 
and “SE4AI” labels have become metaphors 
for an upcoming rapid evolutionary phase 
in the systems engineering Community. 
AI4SE applies augmented intelligence and 
machine learning techniques to support 
systems engineering practices. Goals in 
such applications include achieving scale 
in model construction and confidence in 
design space exploration. SE4AI applies 
systems engineering methods to learning-
based systems’ design and operation. 
Key research application areas include 
developing principles for learning-based 
systems design, life cycle evolution models, 
and model curation methods.

To better understand and focus on 
this evolution, the Systems Engineering 
Research Center’s (SERC) research council, 

Figure 1. SERC research areas and missions

a US Defense Department sponsored uni-
versity affiliated research center (UARC), 
developed a roadmap to structure and 
guide research in Artificial Intelligence 
(AI) and autonomy. This paper presents 
that roadmap. The SERC research strategy 
aligns three mission areas supported by 
four research areas, shown in Figure 1.

The research areas are enterprises and 
systems of systems (ESOS), trusted systems 
(TS), systems engineering and systems 
management transformation (SEMT), and 
human capital development (HCD). The 

mission areas the SERC is addressing are:
■	 Velocity: Developing and sustaining 

timely capabilities supporting emergent 
and evolving mission objectives (deter 
and defeat emergent and evolving 
adversarial threats and exploit oppor-
tunities affordably and with increased 
efficiency).

■	 Security: Designing and sustaining 
the demonstrable ability to safeguard 
critical technologies and mission capa-
bilities in the face of dynamic (cyber) 
adversaries.

VELOCITY
Developing and sustaining capabilities that support emergent and evolving mission 
objectives (deter and defeat emergent and evolving adversarial threats and exploit  
opportunities, affordably and with increased efficiency)

SECURITY
Designing and sustaining the demonstrable ability to safeguard critical technologies and 
mission capabilities in the face of dynamic (cyber) adversaries

AI & AUTONOMY
Developing and supporting system engineering MPTs to understand, exploit, and 
accelerate the use of AI and autonomy in critical capabilities

TRUSTED 
SYSTEMS

ENTERPRISES 
AND SYSTEMS 
OF SYSTEMS

SYSTEMS 
ENGINEERING AND 

MANAGMENT 
TRANSFORMATION

HUMAN CAPITAL 
DEVELOPMENT

Mission Engineering

Digital Engineering

SERC Technical 
Plan Roadmaps

S
V

A

  ABSTRACT
In 2019, the Research Council of the Systems Engineering Research Center (SERC), a US Defense Department sponsored Univer-
sity Affiliated Research Center (UARC), developed a roadmap structuring and guiding artificial intelligence (AI) and autonomy 
research. This paper presents that roadmap and key underlying Digital Engineering transformation aspects both enabling tradi-
tional systems engineering practice automation (AI4SE), and encourage new systems engineering practices supporting a new wave 
of automated, adaptive, and learning systems (SE4AI).

  KEYWORDS:  systems engineering, artificial intelligence, machine learning, automation, research

Tom McDermott, tmcdermo@stevens.edu; Dan DeLaurentis, ddelaure@purdue.edu; Peter Beling, beling@virginia.edu;  
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■	 Artificial Intelligence (AI) and 
Autonomy: Developing and supporting 
system engineering methods, processes, 
and tools to understand, exploit, and 
accelerate AI and autonomy use in 
critical capabilities.

Digital engineering, which transforms 
systems engineering from document-based 
methods and artifacts to linked digital data 
and models, enables these.

The SERC technical plan, which outlines 
a 5-year vision for each research area, guides 
the mission and research areas (Systems 
Engineering Research Center 2019). Four 
roadmaps, developed collaboratively by 
the SERC research council over a 5-month 
effort in 2019, provide crosscutting mission 
area details (Systems Engineering Research 
Center 2019). Each roadmap has a set of ver-
ticals leading to a visionary outcome or set 
of outcomes, and a set of capabilities needed 
to meet those long-term outcomes. The 
listed capabilities reflect SERC research and 
other research, both active and prioritized 
by our sponsors and the systems engineering 

community in general. By sharing this work, 
we hope to guide both SERC research and 
systems engineering transformations.

DIGITAL ENGINEERING AS THE ENABLER
Digital engineering forms the basis for 

all three SERC crosscutting missions and 
resulting research roadmaps. Systems engi-
neering is in a transformation process based 
on the data use (an authoritative source 
of truth) and collaboration using models 
(collaborative integrated modeling envi-
ronments). The SERC developed a digital 
engineering research roadmap which aligns 
with the five goals of our DoD sponsor’s 
strategy: 1) model use for decision making; 
2) the authoritative source of truth (AST); 
3) technological innovation; 4) collaborative 
environments; and 5) workforce and cultur-
al evolution (Zimmerman 2017). Figure 2 
shows this roadmap.

Digital engineering’s progression begins 
with data integration in the AST, then 
semantic model integration. We expect to 
see advances in Augmented Intelligence – 
model use and “big data” bringing auto-

mation to engineering processes, system 
quality, and certification. Augmented 
Intelligence forms the fourth “wave” of the 
digital engineering transformation in our 
roadmap and is AI4SE’s core. There are 
multiple ongoing developmental efforts in 
this roadmap (yellow circles) and a few sol-
id transition areas (blue circles). Summa-
rized below are those relevant to AI4SE:

■	 Tool and Domain Taxonomies and 
Ontologies: we look to underlying 
engineering and programmatic data 
interoperability through future ontol-
ogies. Graph databases for linked data 
are becoming more prominent in mod-
el-based systems engineering (MBSE). 
Taxonomies provide the starting point 
for building ontologies, ultimately 
enabling AI-based reasoning on the 
underlying data. This is the transforma-
tional infrastructure in AI4SE.

■	 Semantic Rules: based on knowledge 
representations such as ontologies, 
semantic rules provide the basis for 
reasoning (AI) about completeness and 
consistency.

Figure 2. SERC digital engineering roadmap
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In their article “Knowledge Representa-
tion with Ontologies and Semantic Web 
Technologies to Promote Augmented 
and Artificial Intelligence in Systems 
Engineering,” Blackburn et al. provide a 
detailed discussion of the importance of 
a semantic basis for engineering as an 
enabler for AI.

■	 Inter-Enterprise Data Integration: 
data/information seamlessly update/
exchange continuously in “real-time” 
cutting across the entire enterprise 
(technical, manufacturing, cost, risk).

■	 Automated Decision Frameworks: com-
bining ontologies, descriptive models, 
and analytics provide a decision making 
framework related to alternative analy-
sis across any decision type, character-
ized by an objective hierarchy (basis for 
decision) and the underlying data.

■	 Authoritative Data Identification: au-
tomating how to find the “authoritative 
data,” assisted by AI/ML, and under-
standing what the user is looking for.

■	 Digital Assistants: trusted and automat-
ed AI guidance in engineering design 
and decision-making processes.

■	 Digital Twin Automation: this is the 
“end game” – fully dynamic virtual 
system copies built from the same 
models as the real systems running 
in parallel to physical systems and 
updating from the same data feeds as 
their real counterparts. This leads to 
opportunities for parallel learning in 
the real and simulated environments.

A FRAMEWORK FOR AI AND AUTONOMY 
RESEARCH

The SERC goal in artificial intelligence 
and autonomy is to lead the systems 
engineering transformation to dynamic 
processes leveraging the speed and rigor 
of rapidly evolving modeling, simulation, 
and analysis. Computational technologies 
and computational intelligence enable this 
tranformation. The technical domain of AI, 
ML, and autonomy encompasses a broad 
range of emerging methods, processes, tools, 
and technologies. Although the technology 
will pass through “waves” led by digital data 
integration, semantic integration, and aug-
mented engineering, we cannot yet define a 
concrete roadmap leading toward a central 
outcome. We can categorize research areas 
in an evolutionary framework expected to 
transform the engineering domain. Techno-
logical innovation’s “double S” curve (Figure 
3) provides an effective categorization of sys-
tems engineering research contributions to 
emerging technology and their application. 
These include abstraction and high-level 
design methods, design for “X”, and design 
for test and certification, leading to ability 

to specify the technology into requirements, 
tools to accelerate and scale design, model-
ing and simulation at the mission level, and 
finally to operational test and incorporation.

This domain’s advance, measured by the 
levels in our framework, form emergence 
“waves” as research transitions to practice. 
In the AI and autonomy roadmap, shown 
in Figure 4, green circles identify mature 
research areas where transition into the 
systems engineering domain is possible 
today, the yellow circles are ongoing systems 
engineering research activities, and the white 
circles are areas where systems engineering 
research should begin. The roadmap centers 
around four major verticals: 

■	 AI/ML Technology – technological 
advances supporting use in systems; 

■	 Automation and Manned/Unmanned 
Teaming – methods and tools ensuring 
beneficial and safe use of resulting 
automation; and

■	 Systems Engineering Process Evolution 
through Digital Engineering – the 
evolution of systems engineering 
process to learning technologies and 
automation and the transition to a 
digital engineering data driven basis for 
engineering which allows automation 
and learning.

Described below, organized by the four 
verticals, are the research areas:

AI and Machine Learning Technology
A continuing set of research needs in the 

basic technologies of AI/ML and autonomy 
both enabling AI4SE and evolving SE4AI 
processes are:

■	 Multi-Modal AI: holistic multi-mod-
al data analysis (sensed, discussed, 
written, social, environmental) aiming 
to produce actionable intelligence for 
human decisions (systems engineering 
design decisions in this case). Most ML 

applications today are narrow, focus-
ing on single modalities. However, AI 
applications fusing multiple modalities 
have been in service for years. Linking 
ML-based learning to AI-based decision 
support algorithms provides one founda-
tion of AI4SE.

■	 Cognitive Bias: a need to counter 
intentional or unintentional misled 
decision-making in AI systems, 
caused by the training data, adaptative 
learning over time, or intentional 
misinformation. Current narrow ML 
applications are subject to such biases. 
Augmented intelligence algorithms for 
SE must be trustworthy.

■	 Hybrid Human/AI Systems: automated 
machine reasoning agents helping 
humans understand complex data. 
Current AI/ML applications work well 
with human reasoning in narrow well-
defined contexts. Highly automated 
complex systems (self-driving vehicles) 
face human versus machine control 
challenges. Both the AI4SE process, 
and new systems engineering processes 
defining interactions in SE4AI evolution 
require seamlessly integrating human 
and machine tasking and learning. In 
future systems engineering practice, 
human systems integration will no 
longer be a specialty area but will be 
front and center to system definition.

In his article “As Smart as a Human? 
Leveraging models of human intelligence 
to assess the intelligence of systems,” 
Brown provides a thoughtful approach 
to evaluate human and machine system 
“intelligence.”

■	 Contextual Sensemaking: research into 
AI perceiving and learning context, 
such as DARPA’s Third Wave initiatives 
(Launchbury 2015), will provide 
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foundational platforms for future hybrid 
human/AI systems.

■	 Life-Cycle Ready AI: the technology devel-
opment vertical outcome is a body of new 
systems engineering methods and tools 
addressing increasingly complex learning and 
adapting systems with the rigor traditional to 
the systems engineering domain. We are be-
ginning to see system level issues addressed 
in basic AI/ML applications research. Figure 
5 details multiple research topics addressing 
dependable/safe AI produced by DeepMind, 
a leading company in basic AI research, (Or-
tega Maini and DeepMind 2018). AI safety 
researchers can categorize key topics in terms 
of traditional systems engineering and con-
trol areas, such as system modeling, stability, 
and resilience. However, SE4AI processes 
specific to the management and control AI/
ML system life cycles remain lacking.

Automation and Manned-Unmanned Teaming
Most AI/ML application’s goals are automating 

previously manual or partially automated 
human processes. Thus, automation and human 
interaction research (manned-unmanned 
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Figure 5. SE practices influencing current AI/ML research (adapted from 
(Ortega Maini and DeepMind 2018))
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teaming) is an essential part of the systems 
engineering of these systems. Systems 
engineering included automation for many 
years, but systems adapting and learning in 
their deployment, particularly at scale, are 
a challenge for current systems engineering 
processes. Research will help develop the 
methods, processes, and tools that ensure 
these systems are trustworthy.

■	 AI Risk Analysis: methods, processes, 
and tools need to connect system 
risk analysis results with AI software 
modules related to those risks. A 
fundamental risk ontology for AI/ML 
systems needs development.

■	 AI Resilience: future systems should 
include resilience capabilities address-
ing AI related failure modes. This will 
involve system level behavior monitor-
ing preventing the AI algorithms from 
performing operations outside pre-
defined boundaries. research includes 
methods to evaluate AI/ML predictive 
algorithm generation (generally part of 
“explainable AI” research).

■	 AI Test and Evaluation: methods for 
addressing AI-related system test and 
evaluation addressing these systems’ 
ability to adapt and learn from chang-
ing deployment contexts.

In her article “Test and Evaluation 
for Artificial Intelligence,” Freeman 
reviews the challenges facing the test 
and evaluation community to evaluate 
learning systems.

■	 Adaptive Simulation: computer-based 
simulation and training supporting 
non-static objectives and/or goals (pick-
up games, course of action analysis) 
necessary to provide contextual learning 
environments for these systems. Most 
simulations today derive from static 
decomposition and will evolve to 
include learning agents which evolve the 
simulation over time. Real and simulated 
co-learning (digital twins) will be a 
standard systems development form.

■	 Adaptive Cyber-Physical-Human 
Systems: future systems will employ 
different types of human and machine 
learning to flexibly respond to unexpect-
ed or novel situations, using plan and 
goal adjustment and adaptation, learning 
from experience, and continuous task 
adaptation. Research challenges in the 
area include simulations reflecting hu-
man behavior and learning, and meth-
ods to address different time domains in 
the real and machine worlds.

In his article “Exploiting Augmented 
Intelligence in Systems Engineering and 
Engineered Systems,” Madni discusses a 

framework for incorporating Augmented 
Intelligence in both engineered systems 
and systems engineering processes.

■	 Trustworthy AI: resulting AI systems 
that self-adapt while maintaining 
rigorous safety and security and policy 
constraints are this research vertical’s 
primary outcome. Trust includes the 
machine’s ability to meet human behav-
ior standards and the impact to human 
situational awareness as trust is turned 
over to the machine.

■	 System Architecting of AI: the system 
architecting process may change as 
automation grows into more complex 
systems. System architectures must 
support learning and adaptation, and 
more agile change processes. A primary 
component of future architecting will 
be parallel development and com-
parison of in vivo (real) and in silico 
(virtual) deployments.

In their article “Motivating a Systems 
Theory of AI,” Cody, Adams, and Beling 
discuss a system theoretic approach for 
architecting AI/ML systems.

Systems Engineering Process Evolution
Both AI/ML technology development 

and the needs to manage and control the 
resultant automation will drive Systems En-
gineering evolution. The following are some 
critical research areas driving the systems 
engineering disciplines.

■	 AI Abstraction: achieving AI4SE at 
scale will require library tools and 
methods abstracting AI algorithms 
and programming modules to 
engineering’s general use. Developing 
such abstractions transformed the 
microelectronics industry. Similar 
developments will bring AI/ML to a 
broader engineering domain.

In their article “A Systems Engineering 
Approach for Artificial Intelligence: 
Inspired by the VLSI Revolution of 
Mead & Conway,” Wade and Buenfil 
discuss a model using abstraction to 
bring AI/ML to the systems engineering 
community based on similar experience 
in the VLSI revolution.

■	 AI specification: a requirements 
specification and management process 
for adaptation and learning in systems 
does not exist today and needs 
developing. Coding environments 
will integrate much of this, building 
from today’s Devops environments to 
systems models. Static requirements 
specification will only partially support 
future systems.

■	 Evidence-based Design and Test: SE4AI 
requires formal methods and processes 
moving from explicit composition ver-
ification to evidence building strategies 
focusing on adaptation acceptance or 
prevention. The SE4AI domain needs 
assurance methods linked to valida-
tion methods. In the AI4SE practice, 
ML based tools to find and reason on 
evidence will be a key enabler.

In their article “Validation of AI-
Enabled and Autonomous Learning 
Systems,” Collopy and Sitterle discuss 
the challenges of AI/ML system 
validation and suggest a framework for 
formal validation.

■	 Conversational Data Entry: human- 
computer interaction processes to con-
vert natural language and other media 
to formal models will greatly improve 
knowledge transfer and consistency in 
future systems engineering tools.

■	 The systems engineering Advisor: we 
envision, as an outcome, a conversational 
system automating many mundane data 
entry, exploration, engineering calculation 
tasks, and many workflows.

In his article “AI as SE: Augmented 
Intelligence for Systems Engineers” 
Rouse reviews what this advisor might 
do and an architectural framework for 
its development.

■	 Autonomy Enabled Systems Engineers: 
in the long-term, system engineers be-
come masters at deploying autonomy as 
a design variable and AI/ML as a design 
tool. Although not listed as a vertical in 
this roadmap, autonomy and AI skillset 
development in the engineering domain 
is quickly becoming a need.

Digital Engineering
Systems Engineering’s transformation 

to first a model-based discipline then to a 
data-driven discipline, as discussed in the 
digital engineering roadmap, will enable 
rapid evolution of AI/ML technologies into 
our tools. Some of the critical areas are:

■	 AI Curation: data management and 
digital engineering data and model 
curation is a core transformational need 
for systems engineering. Data curation 
will be necessary to support evolving 
AI capability application, and AI/ML 
tools will see extensive use in managing 
the data sets. Training data curation is 
a new role in systems engineering and 
will be critical to future systems.

■	 Automated search, model-building, and 
cost estimation: applying ML to histor-
ical data and relationships will greatly 
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improve systems engineering process 
speed and consistency. Applying sta-
tistical methods and AI algorithms in 
these activities has been present for a 
number of years, but ML technologies 
will greatly increase these tools’ accessi-
bility and use.

■	 Automated evidence building: 
certification process automation via 
models and quality assurance will be 
a helpful AI/ML evolution outcome, 
particularly for systems-of-systems 
and distributed development and test 
activities.

■	 Anticipatory design: an expected and de-
sired outcome of increasing engineering 
practice automation is a tool anticipating 
system emergence (failures) from design 
& operational data. This should lead to 
more trustworthy systems.

■	 Automated Simulation: simulation use 
to train and evaluate ML in an emerg-
ing research area. This is a generative 
adversary network’s evolution. System 
theoretical methods (system mathe-
matical frameworks) for training AI/
ML algorithms in complex systems is an 
emerging research area.

■	 Digital Twin Automation–Industry 
4.0 initiatives envision real-time 
continuous learning from real system 
and shadow simulations. The digital 
twin evolution from generally static 
models to fully dynamic simulations, 
even at mission level, will transform not 
only the systems engineering process, 
but the products we develop.

VELOCITY 
Velocity and agility are critical future 

system characteristics, both for the deployed 
system and the system developing and main-
taining the deployed system. With the fusion 
of development in operations, DevOps, the 
delineation between these is disappearing. 
A research roadmap for velocity (Systems 
Engineering Research Center 2019) is the 
most difficult to articulate as current organi-
zational practice and methodology imple-
mentations root it. One might ask where is 
the needed research? Velocity, with SERC’s 
defense and other government sponsors, 
centers on three goals: architecting systems 
for continuous development and deploy-
ment, leading an agile transition across large 
government and contractor systems, and 
collaborative integrated modeling environ-
ment role as an enabler. These interweave 
with the AI/autonomy research thrusts (and 
their motivating needs) highlighted earlier.

Overall our vision is to enable sys-
tems engineering’s transformation from 
sequential, document-driven, highly 
constrained practices toward much faster, 
flexible mission and enterprise-orient-

ed approaches enabled by advances in 
modeling, simulation, data-driven analysis, 
and artificial intelligence. This paper does 
not discuss the velocity roadmap in detail, 
but the primary research verticals in this 
area strive for application in two areas: 
improved mission engineering processes 
and adaptive system creation. Research 
areas include rapid development of systems 
as platforms, architecting these platforms 
for DevOps enabled systems and environ-
ments, and DevOps practice execution in 
the systems engineering process.

SECURITY
The SERC security roadmap (Systems 

Engineering Research Center 2019), also not 
presented in detail here, focuses on critical 
engineered systems such as cyber-physical 
systems, embedded systems, and weapon 
systems. These are critical, highly assured 
systems. The roadmap recognizes attributes 
such as security and resilience as critical sys-
tem properties, and assurance as a process 
that yields an evidentiary case that a system 
is trustworthy with respect to the proper-
ties its stakeholders legitimately rely upon. 
Ongoing SERC security research focuses on 
three areas: (1) prevent, detect, and mitigate 
security vulnerabilities; (2) design, model, 
and conduct analysis of trustworthiness (safe 
and secure aspects) of complex cyber-phys-
ical system capabilities and behaviors; and 
(3) develop models, processes, and tools 
to assure the trustworthiness of system 
behaviors/ performance evolves increasingly 
driven by machine learning, autonomous ca-
pabilities, and manned-unmanned teaming.

Systems based on AI/ML are vulnerable 
to adversarial attacks on the learning algo-
rithms. This might be through conventional 
cyber-attack vectors or through learning 
algorithm input data disruption (sensor 
data) via physical means in the environ-
ment. Additionally, the learning process’ 
complexity and non-determinism mean, 

even in the absence of adversarial action, 
field condition performance may diverge 
from testing performance.

Engineering for AI/ML resilience is 
beginning. Today, few understand how to 
design learning-based systems resilient to an 
intelligent adversary’s attacks or to use, envi-
ronment, and condition changes occurring 
over a critical system’s long lifecycle. Howev-
er, these goals are similar to engineering re-
silience against cyber threats where the aim 
is inhibiting adversarial action, enduring an 
attack by maintaining minimum mission 
capability, and finally restoring full function-
ality in a timely manner. As part of the secu-
rity roadmap research, SERC has developed 
numerous design patterns and technical 
methods for detecting and responding to 
cyber-attacks, alongside methodologies and 
tools supporting cyber-resilient design and 
vulnerability assessment (Beling Horowitz 
and Fleming 2019)( Carter Adams Barkirtzis 
Sherburne Beling Horowitz and Fleming 
2019). This engineering for cyber resilience 
will provide a foundation for the study of 
engineering for AI resilience.

SUMMARY
Roadmapping various research opportu-

nities is important to communicate broad 
research goals and to connect researchers 
working on individual projects to larger 
impact opportunities. It also serves to 
help professional societies, government, 
industry, and academia focus their strategic 
goals. Systems engineering is transforming, 
enabled by digital engineering and shifted 
by the SE4AI and AI4SE concepts. These 
interlink with the need for methods, pro-
cesses, and tools leading to adaptive, con-
tinually developed and deployed systems 
(velocity) while ensuring security and resil-
ience are inherent in the outcomes. Perhaps 
the systems engineering community’s 
biggest challenge is to adapt itself to these 
transformative concepts’ challenges.  ¡
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INTRODUCTION

As engineered systems have 
evolved to higher complexity, 
formal knowledge representation 
has become a solution to 

help efficiently manage complex system 
design and manufacturing. Knowledge 
representation refers to many techniques 
attempting to encode information about 
the world, often into machine readable 
syntaxes (Chandrasegaran, Ramani, Sriram, 
Horváth, Bernard, Harik, and Gao 2013). 
These representations facilitate automated 
reasoning using logical deductions and 
rules to infer new information from 
datasets. This is powerful in systems 
engineering contexts where subject matter 
experts often make decisions based on 
understanding cross domain knowledge.

The challenge researchers from the Sys-
tems Engineering Research Center (SERC) 
have faced since 2013 is finding ways to de-
velop complex systems in less time (Bone, 
Blackburn, Rhodes, Cohen, and Guerrero 
2018), leading to the belief that a digital 
thread is the path forward to meet this 
challenge. This paper discusses a case study 
demonstrating how artificial/augmented 
intelligence (AI) may facilitate augmented 
design tools and enable a digital thread dis-
tinct from, although potentially synergistic 
with, techniques such as machine learn-
ing. AI in a context based on theoretical 
knowledge rather than big data, focuses 
applications like digital assistants. Early 
in this effort SERC researchers concluded 
a drastic change in how engineers design 

systems was not an option, and the solution 
must allow engineers to work naturally al-
lowing creativity in system design. The key 
is to provide engineers with information 
and knowledge they need when they need 
it using computer reasoning and semantic 
web technologies (SWT). 

BACKGROUND
Knowledge representation for systems en-

gineering offers broad potential to introduce 
AI capabilities into existing model-based 
systems engineering (MBSE) and digital 
engineering (DE) practices. Engineering 
fields are technical, and systems engineering 
involves multiple disciplines. Moreover, 
projects require multiple non-compatible, 
discipline-specific tools. This poses challeng-

  ABSTRACT
This article discusses knowledge representation using ontologies and semantic web technologies to enable artificial intelligence 
(AI) for Systems Engineering. Technology trends indicate new methods and tools for digital engineering will incorporate AI and 
machine learning (ML) technologies . ML techniques support classification, clustering, and association identification, but strug-
gle to explain the rationale for decision making, where multi-domain semantic modeling and rule-based reasoning can excel. 
Knowledge representation plays a key role in applying this type of AI. Ontologies are a means to domain modeling and reasoning 
required across Digital Thread domains instantiated in digital system models (DSM). These evolve over time as digital twins, 
which co-evolve with physical instantiations of a DSM. Semantic technologies and ontologies formalize knowledge as an enabler 
for reasoning, with interoperable ontologies enabling reason about systems engineering across domains.
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es for a knowledge-based AI tool for systems 
engineering. Representation of knowledge 
must be consistent across domains, or the AI 
tools will replicate existing data siloes. The 
AI tool must also accommodate tool-specific 
data models. SWT and ontologies offer tools 
suited to these challenges.

SWT refers to standards, software tools, 
and methodologies aiming to enrich data 
with semantically meaningful tags. This 
semantically enhanced data can inform 
intelligent software tools (Berners-Lee, 
Hendler, and Lassila 2001). Ontologies are 
label taxonomies corresponding to classes 
of things and a permissible relation between 
these types (Gruber 1995) (Gruber 1993). 
Unlike conventional database schema, 
ontologies codify knowledge domains rather 
than specific data, and so can be consistent 
across applications. In systems engineering, 
knowledge representation with ontologies 
and SWT permit data about a system from 
different tools to be made interoperable 
(Bone, Blackburn, Kruse, Dzielski, 
Hagedorn, and Grosse 2018), and facilitate 
automated reasoning upon combined data.

CASE STUDY
Overview

The case study system has multiple sub-
systems which have their own components 
and properties such as weight. A system 
model specifies these traits, and various 
analysis tools provide their value estimates. 
In a simple case, deducing the entire system’s 
weight is simple. System models can use 
tools like parametric diagrams to obtain 
the final weight, but these need repeated 
defining across models. If one wanted to add 
another trait like cost, the process would be 
similar but would need a separate definition. 
As the model becomes more complicated 
and more tools start informing the system 
analysis, this approach becomes arduous.

The same systems engineering problem 
can use ontologies and SWT to provide 
software platforms aggregating disparate 
information into a single, tool-agnostic 
source. The software uses its semantics to 
define general solutions enabled by auto-
mated, AI type reasoning and simple rule-
based inferences. This platform, called the 
Interoperability and Integration Framework 

(IoIF), provides a platform for using one or 
more ontologies and associated reasoning.

This paper discusses a system model 
implemented with blocks describing the 
system’s physical make-up, requirements 
specifying permissible bounds on various 
system traits, and secondary elements 
representing analysis data about the system. 
A duplicate system with intentional errors 
facilitated error finding demonstration 
purposes. The model also included a signoff 
element set in the Open Model Based 
Engineering Environment’s (OpenMBEE) 
View Editor, allowing an individual to in-
dicate part(s) of the model as reviewed and 
approved http://www.openmbee.org.

OpenMBEE Model Management System 
(MMS) implements a data server for models, 
web script layer, and representational state 
transfer application programming interface 
(REST API), while the view editor allows 
document creation of documents standard 
“views” to explore models stored in MMS. 
The REST API allows remote interactions 
with data stored in MMS’s graph data server 
via HTTP requests, allowing model modifi-
cation or content retrieval as elements writ-
ten in JavaScript Object Notation (JSON), a 
lightweight data interchange format.

The case study comprises several steps 
(Figure 1). First, system model creation 
or update in Cameo System Modeler, a 
graphical tool for creating SysML models. 
The model posts to a cloud-based model 
management server implementing MMS 
and the view editor via the model devel-
opment kit plugin. Once signed off in the 
view editor (Kruse and Blackburn 2019), 
IoIF retrieves the model through the MMS 
REST API. MMS returns JSON elements 
parsed into IoIF’s SWT architecture. Ingest-
ed data then transforms into a tool-agnostic 
data representation pattern derived from 
an ontology ecosystem. Logical reasoning 
and rules inspect the transformed data to 
tabulate the system weight, identify incon-
sistencies, and generate documentation and 
updated elements.

Updates and signoff changes return to 
the model in MMS. The view editor or in 
Cameo Systems Modeler can then observe 
these changes by synchronizing the tool 
with MMS.

The next sections discuss SWT theory and 
implementation in this workflow’s context.

Ontologies and Ontology Systems
Ontologies are human and machine- 

readable domain knowledge formaliza-
tions (Gruber 1993; Gruber 1995). Human 
readable portions provide a taxonomy of 
domain terms, definitions, guidance for 
use, and information facilitating deploy-
ment within a larger SWT ecosystem. 
Machine-readable portions contain logical 
axioms enabling automated reasoning on 
the ontology itself and data aligned to it 
(Smith 1998). Together these provide a 
controlled lexicon used to tag data and rep-
resentations to contextualize it. The ontol-
ogy and aligned data form a directed data 
graph with vertices indicating relations and 
nodes representing explicitly stated entities 
(W3C Owl Working Group 2009)(Motik 
Grau Horrocks Wu Fokoue and Lutz 2009), 
resulting in a highly interconnected and 
semantically meaningful dataset. Since 
engineering terminology evolves slowly, 
ontologies remain stable across time. If one 
formalized the term “force” a century ago, it 
would remain accurate today.

Ontologies can be reusable, shareable, 
and extensible (Gruber 1991), but in prac-
tice these properties are contingent on good 
development principle adoption. Such prin-
ciples include using shared development 
strategies and standards; using a top-level 
ontology; coordinated ontology co-devel-
opment; using and re-using prior work; and 
curating and openly disseminating existing, 
vetted ontologies (Arp, Smith, and Spear 
2015). Though challenging, ontology devel-
opment yields an expanding, specialized as 
needed, ecosystem. In the “force” example 
one might use subclasses, like “drag force,” 
to refine the term without affecting the 
existing work’s validity or usefulness.

The case study’s ontology used free-
ly available ontologies to represent the 
system. A top-level ontology called the 
Basic Formal Ontology (BFO) (Bittner and 
Smith 2004) provided the semantic layer’s 
philosophical foundations. BFO provides 
a framework and guidance under which 
to define more specific domain terms. 
The adopted BFO-aligned common core 

Figure 1. Round trip of demonstration data
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ontologies (CCO) then represent things 
like manmade systems (artifacts) and 
the specific weight case. CCO forms an 
ontology “mid-layer” which bridge the 
divide between a high-level philosophical 
basis (BFO) and a domain expert’s terms 
of interest. Prior work used in IoIF (Bone, 
Blackburn, Kruse, Dzielski, Hagedorn, and 
Grosse 2018) extended this base to address 
model alternative analyses for decision 
making, based on a decision ontology.

This case study’s specific requirements 
also mandated ontology development for 
the SysML language and its implementation 
in Cameo Systems Modeler. These highly 
specialized terms, called “application ontol-
ogies,” align tool or institution specific data 
to tool-agnostic domain ontologies through 
taxonomical relations.

Semantic Web Technology
While ontologies enable knowledge rep-

resentation, SWT comprises tools realizing 
the knowledge representation benefits in 
a software system. A resource description 
framework (RDF) captures semantic data 
(Horrocks, Patel-Schneider, and Van Har-
melen 2003)(Antoniou and Van Harmelen 
2004)(W3C Owl Working Group 2009) in 
the “triples” form. Triples are essentially 
statements comprising a subject, predicate, 
and object. Visualized as a graph, each tri-
ple has two nodes (the subject and object) 
connected by a vertex (the predicate). Each 
triple defines new nodes or connections 
between nodes, creating an ever-larger 
data graph aligned to a controlled lexicon. 
The web ontology language (W3C Owl 
Working Group 2009)(Antoniou and Van 
Harmelen 2004) (OWL) extends RDF with 
more expressive semantics. Triple stores, 
data repositories implementing language 
semantics, scale well and can store and 
query RDF data (Morsey et al. 2011).

SWT also helps implement AI through 
automated reasoning. Automated reasoning 
uses logical deduction from ontology axi-
oms to make inferences about the entities 
described in the graph. In the ontology 
itself (referred to as the “Terminology Box” 
(TBox)) a reasoner reclassifies terms or 
assets new class-level axioms. Data (the 
“assertion box” or ABox), reasoned upon 
according to the same axioms, can evolve 
through semantic rules (Horrocks et al. 
2004), which implement full first order 
logic in if-then type statements called Horn 
Rules (Horn 1951).

Standards such as the SPARQL Protocol 
and RDF Query Language (SPARQL) (Prud 
and Seaborne 2006) can query semantic 
data. SPARQL queries describe graph 
patterns and return nodes, data values, or 
new triples based on conforming graph 
data. SPARQL is highly expressive (Angles 

and Gutierrez 2008) and implements 
complex logical rules outside of a reasoner.

The software developed for IoIF 
implements key methods used to manage, 
store, and manipulate semantic data, and 
is not case-study specific. The Owlready2 
(Lamy 2017) Python package populated the 
ontologies and call Pellet (Parsia and Sirin 
2004), an automated reasoning software. 
RDF4J server was a triple store and 
SPARQL query endpoint. The knowledge 
representation combination through OWL, 
querying through SPARQL, and automatic 
reasoning through Pellet cumulatively 
provide a foundation for knowledge 
representation and AI project data 
enhancement. We view this semantically 
enhanced data as the authoritative 
information source for the modeled system.

Data Ingestion
Most tools do not natively output RDF 

data. The exact output (format, data type, 
other) varies by tool. As a result, it is nec-
essary to pre-process data to express it as 
a graph of triples. Commercial linked dat 
products refer to this as “data ingestion”. 
In practice, the ontology ecosystem must 
inform the data ingestion process. Ontolo-
gy-aligned data includes graph patterns re-
peated at differing generality levels, helping 
with reuse and effective querying (Blomqvist 
and Sandkuhl 2005). Ingestion uses tool data 
and metadata to populate a triples graph 
conforming to these patterns. This often 
entails translation from a “tool” lexicon to an 
ontology lexicon. IoIF accomplishes this by 
using taxonomic relations expressed in an 
application ontology. SysML uses terms like 
“class” and “property,” and these all function 
as information describing something of 
interest queried using general graph patterns 
for all information content.

The case study retrieved a system model 
from MMS as a JSON element list. A parser 
used the JSON elements to write an RDF 
representation aligned to a SysML tool 
ontology.

Interpreting the System Model:
Since system modelers do not use 

tightly controlled naming conventions and 
operate outside ontological constraints 
(such as ontological disjoints, the open-
world assumption, and more), integration 
between IoIF and a system model requires 
extra work. Prior efforts used element 
naming conventions to tie a model to the 
ontology lexicon (Bone et al. 2018), but the 
process proved time consuming, knowledge 
intensive, and had limited reuse potential. 
In IoIF, providing the system modeler 
with ontologically meaningful profiles 
with consistent and reusable tool metadata 
solves these issues. These profiles recreate 

the controlled ontology terminology 
in the modeling environment through 
introducing stereotypes corresponding 
to ontology terms. The presence of 
ontologically aligned stereotypes helps 
translate the model into repeatable graph 
patterns by identifying precisely what the 
modeler described and flagging relevant 
elements to the broader system analyses 
and verification facilitating parsing 
elements into repeatable, ontology-
aligned graphs. This approach allows IoIF 
to incorporate a system model into its 
knowledge base and automatically use it as 
a basis to understand the system’s nature.

Thus, in the IoIF context, system models 
can create a system and mission represen-
tation in the triple store. Subsequent data 
from any given tool links to this represen-
tation. A system model becomes central to 
defining the data structure ultimately used 
to semantically relate data throughout the 
digital thread. The next section describes 
the data transformation process from the 
native modeling language to a tool invari-
ant ontological representation.

Data Transformation
Ontologically aligned graph pattern 

creation requires data transformation from 
a tool information model and lexicon into 
one represented ontologically. For example, 
modeling languages often lack a one-to-one 
mapping between language constructs and 
a domain view. In the transformation pro-
cess a graph identifies tool specific patterns 
of interest which translate to equivalent 
ontological representation.

The profiled SysML model required 
such a transformation. The ontologically 
profiled stereotypes in the SysML model 
guides the transformation process. Though 
a modeler might not follow some preferred 
representation pattern sets, the stereotypes 
provide starting points. A transformation 
might select stereotyped blocks and 
properties and use them to infer the model 
addresses certain items, for example a 
vehicle block having weight properties. 
It might also add nodes to represent data 
about the system and assert relations 
between the entire pattern (Figure 2). This 
process repeats across tool-specific patterns 
and translations; the model helps describe 
related system parts, and the profile, 
stereotypes, and ontology terms help 
determine their exact relation.

In IoIF, SPARQL targets patterns of 
interest in the tool-aligned graph. The results 
construct a parallel, ontology conformant 
graph according to transformation 
instructions (Figure 3). The new graph 
contains distinct individuals in ontology 
prescribed graph patterns, and these 
link back to the tool-specific graph. This 
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ontology-aligned graph provides the tool-
agnostic data against which AI applications 
then make inferences.

Absent the clear metadata provided by the 
ontologically aligned profile, this transfor-
mation process may become arduous and 
unrepeatable. The profiled case study model 
could fully automate the transformation. 
Ongoing work in other applications has ap-
plied the transformation instructions used in 
the case study across substantially different 
models, with the ontology scope and the im-
plemented transformation instruction extent 
being the main limiting factors.

Reasoning Upon Data
Reasoning is possible once triples repre-

sent the model, but is easier to implement 
and more reusable if used upon domain 
ontology aligned data. Many reasoning 
kinds, including automated consistency 
checking, description and first order logical 
deduction, data completeness verification, 
and rule-based reasoning. There are several 
ways to accomplish these, though all stem 
from information or context embodied in 
the ontology layer. A reasoner uses explicit 
and inferred relations in an ontology and 
data to make new inferences. For example, 
an ontology might assert every material 
thing bears a single mass, thus inferring ev-
ery node tagged as a material thing would 

have mass, even if mass does not explicitly 
exist in the graph. Automated reasoning 
results in inserting new triples into the 
graph, with each new inference poten-
tially causing additional ones. This makes 
reasoners reliable but computationally 
intensive for larger graphs (Abburu 2012). 
SPARQL queries are useful in cases where 
one requires inferences at scale, new graph 
node creation, or extended semantics. This 
provides considerable power, but does not 
forward chain inferences leaving them in-
complete. Used opportunistically in tandem 
with another, automated and query-rule 
based reasoning provide very powerful AI 
potential to ontology-aligned data.

The IoIF case study used an automated 
reasoning software called Pellet (Parsia and 
Sirin 2004) and SPARQL focusing on sum-
ming system weight from its component 
parts and using the results to assess the 
model’s internal validity. When accom-
plished in SWT systems and projects un-
dergoing ingestion and transformation may 
reuse this. Determining system weight is a 
relatively straightforward addition problem. 
The main challenge is knowing what to add. 
The ontology facilitates identifying trait 
types aggregating (sum) between a whole 
and its parts. Weight is one such trait; 
anything having multiple parts or includ-
ing a repetition aggregate can weigh the 

sum of all those parts provided the graph 
includes all parts. SPARQL locates these 
values and returns the weight sum. The 
resulting values can return to the tool-ag-
nostic graph, and eventually associate with 
the tool-specific data, model elements, and 
views (Figure 4 on next page).

IoIF implements this logic by first calling 
a reasoner to make classification inferences. 
It then provides a wrapper so the query 
can run until it knows the entire system’s 
weight. The query itself modifies the 
tool-agnostic graph to include the inferred 
weight. Automated reasoning, rules, or 
queries then determine the consistency, 
validity, and conformance and insert new 
triples into the graph. 

Pushing Data Back to Models
Thus far, SWT has addressed a unidirec-

tional link from tools to a triple store acting 
as a tool-agnostic information source. For 
the knowledge representation and AI to 
deliver benefits, this link likely needs to be 
bidirectional and the resulting informa-
tion derived from reasoning should push 
back into the system model. The first issue 
is identifying what data is relevant to the 
tool. Terms used to denote inconsistencies 
and changed values identify a node set in 
the tool-agnostic graph linked tool-specific 
graph. Documentation, new data values, and 

Figure 2. Data transformation and handling of SysML class and instance relations
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the like pass to the tool based upon these 
links. The demonstration case also included 
an update to the signoff mechanism built 
into the system model (Figure 5). Queries 
computed a “affected elements” set based on 
known changes and relations in the ontology 
denoting dependencies in information. 
Tracing these back to their associated signoff 
allowed an updated status to return to the 
tool-specific graph’s corresponding nodes.

To synchronize to MMS, MMS requested 
the changed elements as JSON and over-
wrote the changed fields. The resulting 
JSON elements pass back to the MMS via 
the MMS REST API and become visible 
in the View Editor and synchronize to a 
system modeling tool (Figure 6). A modeler 
can then inspect the model and changes, or 
documentation not explicitly captured in 
model views.

CONCLUSIONS:
Knowledge representation through ontol-

ogies is a foundation for enabling automat-
ing reasoning about systems engineering 
methods. The case study identified areas 

requiring effort. Well-defined ontologies 
facilitate reuse across systems, disciplines, 
and domains. Both in and beyond the 
ontologies the case study used, it is necessary 
to represent vast domain knowledge. Doing 
so requires multiple SWT tools. It is also 
necessary to develop software systems and 
tools to support integration with SWT. IoIF 
made the case study possible using multiple 
parsers, clients, and links to external tools, 
many requiring independent development.

This data-driven systems engineering 
view is a necessary step for AI in systems 
engineering, and this exemplifies how 
system engineers define future systems to 
support AI applications. This case study 
demonstrated current technology enables 
a digital thread providing information 
such as system weight and helps identify 
inconsistent design data. These checks and 
system data enhancement with semantical-
ly meaningful information demonstrates AI 
for SE’s art-of-the-possible.

Other contexts, such as cyber security, 
have reused the same approach and software. 
In this case IoIF performed a round trip from 

a SysML model, into a triple store, and then 
associate vulnerabilities with model elements. 
These propagated back into MMS and finally 
the SysML model. The process used nearly 
identical SWT and software despite using 
different models and moving from a physical 
to a cyber system. This ease of re-application 
suggests the approach may be useful in many 
domains and AI applications. Future work 
plans to investigate other ways ontologies, 
SWT, and IoIF apply to AI for systems 
engineering.  ¡
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  ABSTRACT
As we evolve artificial and machine intelligence concepts, and consider their extension into intelligent systems, it becomes im-
portant to be able to assess the system’s intelligence level. This assessment serves several important needs in systems engineering. 
First, it enables the tradeoff of system design alternatives based on a system’s intelligence, along with other factors including cost 
and performance. Second, it influences system verification and validation methods. Lastly, it will help stakeholders specify the 
required system intelligence. Assessing or specifying the system’s intelligence presents many challenges and difficulties similar to 
those faced by psychologists and neurologists in measuring the intelligence of human beings and animals. This article explores 
some human and animal intelligence assessment concepts and shows their application to assessing a system’s intelligence.
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As Smart as a Human? 
Leveraging Models of Human 
Intelligence to Assess the 
Intelligence of Systems

INTRODUCTION

The only systems currently on planet 
earth rivaling human intelligence 
levels, are human beings them-
selves. When we interact with these 

systems (human beings), we appraise the 
system’s intelligence, and adjust our behavior 
accordingly. We interact with a 1-year old 
differently than we would a 3-year-old, 
10-year-old or 35-year old. Independent of 
age, humans have varying abilities to under-
stand, reason, and respond — the commonly 
recognized intelligence characteristics. What 
of engineered systems — can we sensibly 
appraise their intelligence?

Intelligence is a systems phenomenon. 
Human beings did not rise to preeminence 
on earth by thinking alone, but by devel-
oping and applying spoken and written 
language, building and using tools, and 
harnessing fire (Asimov 1979). Artificial 
intelligence technologies, including rapidly 
progressing deep neural network methods, 
are providing intelligent building blocks 
with which to create intelligent systems. 
The resulting systems’ usefulness will be 
a function of a combination of elements, 
with systems intelligence as an emergent 
property. Whether enough known and 

(Source:  https://www.pxfuel.com/en/free-photo-qaulj, CC0 license)

creatable elements can eventually combine 
to produce an artificial general intelligence, 
is a debatable topic. Some claim this evolu-
tion is inevitable and others believe it will 
never happen—that we are jungle dwellers, 
building mud huts and assuming if we only 
had enough mud we could build skyscrap-
ers! In either case, systems engineers are 
in a unique position to lead and guide 

intelligent system dynamic, uncertain, and 
exciting evolution.

WHAT IS AN INTELLIGENT SYSTEM?
We are sure human beings, and some 

animals, have various levels of what we 
call intelligence, so it is tempting to define 
an intelligent system as one constructed 
the way humans and animals are—with a 
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brain. To create an intelligent system this 
way would require creating an engineered 
system accomplishing what a brain does. 
Attempts to create artificial brains exist, but 
are limited by the understanding current 
science has about how brains work, and 
more importantly, how they produce 
what we observe as intelligence, let alone 
consciousness (Li et al, 2012). Creating 
an artificial brain is intriguing and may 
produce a system demonstrating both 
intelligence and consciousness, yet there 
is significant doubt about its feasibility, at 
least until we fully understand animal and 
human brains. By analogy, once we under-
stood the human heart’s function, it was a 
straightforward matter to create an artificial 
system doing what the heart does. We lack 
this understanding of the brain, but do we 
need to create a brain to create an intelli-
gent system?

The word intelligence, which comes 
from roots related to understanding, has 
come to mean “the ability to acquire and 
apply knowledge and skills” (Lexico/Ox-
ford, 2019), casting a much wider net and 
including numerous skills, provided the 
system can acquire and apply them. Intelli-
gence, understanding, and consciousness, 
considered closely related before comput-
ers, occurred together as an emergent brain 
function. Progress in artificial intelligence 
and machine learning, however, has shown 
constructed systems can act intelligently 
while having neither humanlike under-
standing nor anything resembling con-
sciousness. 

From an engineering perspective, it seems 
there must be more to intelligence than re-
sponding to an input and producing a result 
or decision. A thermostat can control the 
temperature in a home and make decisions 
regulating the heating, cooling, and venti-
lation systems, but it seems a stretch to call 
it intelligent. Replace the thermostat with a 
human caretaker, and we expect consider-
ation of the home’s occupants, their current 
activities, their needs, their schedules (both 
regular and anticipated), the weather, and 
the heating and cooling system efficiencies 
and economics. Advanced thermostats on 
the market now have these capabilities and 
we (or at least their marketers) call them 
intelligent. We can say the more advanced 
thermostat is more intelligent than last cen-
tury’s simpler ones, but even the advanced 
thermostat would score low on intelligence 
when compared to a human caretaker 
performing the same function. Considering 
our intuitions on what counts as intelligent 
behavior starts us on the path to a concep-
tion of intelligent systems.

IBM Deep Blue’s victory over world chess 
champion Garry Kasparov in 1997 showed 
a computer could achieve a superhuman 

performance level in a task previous-
ly thought to require high intelligence, 
understanding, and consciousness. Deep 
Blue, however, had nothing resembling 
understanding or consciousness, playing 
openings and endgames from rote tables 
and exploiting fast computation to evaluate 
midgame board positions and choose 
moves. Deep Blue could play chess, but 
could not do things we would expect of a 
human who can play good chess—it could 
neither explain chess to a child, nor develop 
a strategic attack plan, nor be an interesting 
guest on the Tonight Show. On the other 
hand, it could not experience regret, over-
confidence, or fear (as Kasparov himself 
observed in 2018). Deep Blue had a specific 
intelligence—chess—but not the general 
chess intelligence we would expect from a 
human chess player.

Deep Blue is an intelligent system—a 
useful system, with specific abilities to 
acquire and apply knowledge and skills at 
human (even superhuman) performance 
levels in specific circumstances. An intel-
ligent system exhibits human-like intelli-
gence in a specific area or domain but need 
not be—and is likely not to be for some 
time—intelligent in all human activity 
areas. Intelligent systems will be specialists, 
not generalists for one main reason: we do 
not know how specific intelligences com-
bine to produce general intelligence. We 
could try combining a Tesla car’s auto-pilot 
capabilities with Deep Blue’s chess-playing 
abilities, but would that improve either the 
driving or the chess game? In a human, 
learning chess can reasonably improve 
mental capabilities which may transfer to 
other activities, like driving. We know this 
works—it’s the reason we give our children 
broad, general educations, rather than 
simply training them from birth to perform 
a specific vocational task. Our dogs, on the 
other hand, are more in the specific task 
category.

MEASURING INTELLIGENCE
Not all systems performing some 

function are intelligent systems. Risking a 
circular explanation, a system is intelligent 
if it performs a function, which were it 
performed by a human, would be consid-
ered as intelligent behavior. For example, a 
child can answer, “What is 2 + 2?” by rote. 
More learning and time expands this to any 
single number pair, then larger numbers, 
more than two numbers, and so on—a 
growing intelligence level in arithmetic 
computation. Incidentally, Google, Amazon 
Echo, and Bing handle “What is 2 + 2?” 
just fine, but Yahoo and DuckDuckGo 
do not. DuckDuckGo gives the correct 
answer when inputting “2+2=”, much as 
a pocket calculator would. Google and 

Bing, with their superior ability to handle 
various question forms, are intuitively more 
intelligent with respect to plain language 
arithmetic computation than their rivals. 
However, simply programming a system to 
do something a human can do, such as add 
2 + 2, does not make it intelligent. Intelli-
gence requires something more than strict 
function performance.

The technology to implement a system 
does not matter with respect to intelligence 
in the sense we are describing. A system 
need not add numbers, or play chess, the 
way we do to appear intelligent and be 
useful to its users. A system might not use 
current artificial intelligence and machine 
learning techniques, but still seem intel-
ligent. Deep Blue seems quite intelligent, 
though it plays the entire chess endgame 
by rote table lookup. Conversely, a system 
may use the latest machine learning deep 
neural network algorithms but not appear 
to humans as intelligent, depending on the 
example data on which it was trained and 
the neural network design. A system might 
include multiple component subsystems, 
some using AI or machine learning, and 
the whole system may behave in intelligent 
or unintelligent ways. System implementa-
tion does not matter, only successfully and 
beneficial intelligent behavior that meets 
stakeholder requirements. 

We have concluded an intelligent system 
is one exhibiting intelligent behavior and 
acting in intelligent ways to benefit its 
users. Before breaking this down into more 
measurable intelligence components, first 
consider some intelligent system examples. 

Imagine a McDonald’s hamburger 
restaurant. Consider the entire restaurant, 
including employees, to be a system. Spe-
cifically, it is a human activity system since 
human actions are its primary motivator, 
distinct from an engineered system which 
does not contain humans as a system part, 
or a natural system which contains only 
biological components (Checkland 1999). 
Since the first McDonald’s opened in 1955, 
a customer’s interaction with the McDon-
ald’s system has been the same—approach 
an employee, dictate the order as he or she 
keys it into an order keyboard, and pay. Of 
course, this system is intelligent at some 
level, relying mostly on the McDonald’s 
employee to contribute the intelligence. In 
2018, McDonald’s began deploying large ki-
osks in its restaurants, allowing customers 
to enter their own orders, select customi-
zations, and make payment. A McDonald’s 
host hovers nearby to help with kiosk order 
entry if needed. Is the original McDonald’s 
a more intelligent system than the kiosk-
plus-host McDonald’s, or is McDonald’s 
simply trying to replace human workers 
with automation? 
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“The popular narrative is that kiosks and 
mobile ordering are here to take jobs and 
hours away from underpaid cashiers… but 
the data suggests that isn’t true… with such 
a tight labor market, many chains are strug-
gling to hire and retain customer-facing 
employees… automated ordering can help 
wait times and improve order accuracy, 
and it doesn’t negatively affect labor as 
much as some think” writes Hollis Johnson 
in Business Insider (2018), suggesting 
a kiosk might produce a better or more 
intelligent interaction with customers than 
under-trained, low-tenure, error-prone 
employees. If the former is a more intelli-
gent system, how much more intelligent is 
it? To move toward an answer for systems, 
consider human intelligence in more depth.

THE COMPONENTS OF INTELLIGENCE
Everyday notions of intelligence when 

applied to humans include characteristics 
like language and conversation mastery; 
abstract or symbolic reasoning; ability to 
recall related fact sets; wide-ranging world 
knowledge (both on trivial and significant 
topics); worldliness; logic and analysis, 
creativity in science, technology, or art; and 
various puzzle solving forms. Engineered 
systems cannot compete with intelligent 
humans unless the competition limits its 
scope to a certain task, puzzle, or game, 
such as chess, arithmetic, or simple fact 
retrieval. We would not consider a human 
being intelligent whose only ability is 
performing a narrow, even though complex 
function, just as we would not consider 
a human who can recite e=mC 2 to be as 
intelligent as one who can also explain it, 
analyze it, and apply it. In any function 
requiring intelligence, we expect a system 
(or human) to be able to perform a set of 
subfunctions. 

If a human can play chess, we would 
expect the human to be able to explain 
the rules for how a knight can move to 
a six-year-old, and to be able to play a 
modified game where, say, kings can move 
two squares at a time instead of the normal 
one. Interestingly Deep Blue would fail at 
both, the latter because it plays openings 
and endgames from tables now invali-
dated by the rule change. For a system to 
be intelligent, as we gauge intelligence, it 
must perform a complex function, but also 
have additional characteristics including 
subfunctioning, flexibility, adaptation, 
and others. Developing a comprehensive 
characteristics set along with means for 
specifying and measuring them in systems 
is an important task for systems engineers.

In addition to performing subfunctions, 
an intelligent system would be able to rear-
range these subfunctions to perform new 
tasks. When we teach our children to play 

basketball, we begin with holding the ball, 
then catching the ball, then throwing the 
ball with two hands, then with one hand, 
then at a target, and more. When it comes 
to playing soccer, many skills will transfer 
over, even though throwing the ball plays a 
different role in soccer than in basketball. 
An intelligent system can adapt to new 
but similar situations. A competent tennis 
player, confronted for the first time with 
racquetball, will play better than a begin-
ning racquetball player. The tennis player 
will use some skills unmodified, such as 
footwork, and modify others such as wrist 
position and use. In software, including 
flexible and multi-level APIs (application 
programming interfaces) allows other 
programs to separately invoke a system’s 
capabilities in new sequences and arrange-
ments to accomplish a new purpose. Func-
tion definitions and calls work similarly in a 
software program.

An intelligent system design should 
handle situations where it does not have 
confidence in its answer or decision. A 
human, say a two-year-old, when given a 
complex sentence, such as one requiring 
more working memory (Blything and 
Cain 2016), will likely find something in 
the sentence that sparks some idea and 
provides some response. “Honey, did you 
know the latest research on fat-content 
and calorie-consumption indicates that 
it might be better to eat more ice cream 
and fewer chips?” will bring a response 
of “Ice cream!” rather than an insightful 
response to the whole sentence’s meaning. 
Try this sentence with an “intelligent” voice 
assistant and you’ll likely get, “Sorry—I 
don’t understand” instead of a more helpful 
guess like, “Should I add ice cream to your 
shopping list?” Most current conversational 
systems cannot do as well with unexpected 
input as a two-year-old.

A similar, but distinct characteristic we 
also associate with intelligence is input 
flexibility. A system, or human, seems more 
intelligent if it can accept our input any 
way we give it. When requesting a cash 
withdrawal, we expect to make the request 
however we wish from a caveman-like, 
“Cash: $100,” to an over-explained, “Hello 
and good day. My sister is coming to town 
and we need some cash to shop at the an-
tique market—you know the one on Broad 
Street? Do you think $350 will be enough? 
No wait, let’s do $500. Thanks.” When 
interacting with a bank teller, or intelligent 
system, it would be strange indeed to inter-
act as we do with the much-less-intelligent 
ATM outside, wordlessly handing the teller 
the ATM card first, then waiting for the 
teller to provide a choice menu, identifying 
the choice in exact terms, then providing 
the amount, and more. One could imagine 

a more intelligent ATM with which we can 
interact in a more flexible way.

Think about how one enters an address 
into an online form. Virtually all systems ask 
the user to enter address, city, state/province, 
zip/postal code and perhaps country into 
separate fields, in that order. A more intelli-
gent system would simply ask the zip/postal 
code first, and then find a valid address as 
the user types the street address character by 
character, then fill in the city, state/province, 
and country automatically (allowing changes 
if necessary). An even more intelligent 
system would ask the user, “What is your 
address?” and interpret whatever the user 
supplied to derive the correct address. 
“123 Main in Vienna” might be enough 
to uniquely specify an address, but what if 
there is more than one Vienna in the world 
(there are at least a few)?

The city-name example leads us to an-
other intelligent systems’ characteristic and, 
like the other characteristics, humans do it 
instinctively. When information provided 
is incomplete, an intelligent system will ask 
for the missing information, using what it 
has as a guide. In the example above the 
system might ask, “Do mean the Vienna 
in Austria, Virginia, West Virginia or New 
York?” which is what we expect of a very 
geographically literate human. Less intelli-
gent systems (what we have today it seems) 
would respond with, “invalid address, try 
again,” (what the system should say is “try 
something different,” but we should not 
argue with unintelligent systems).

Moving beyond intelligent user interfac-
es, intelligent systems also keep watch over 
boundary conditions. Ask an Uber driver 
to go 100 mph in a residential area, and he 
or she will (hopefully) refuse. Simple hard-
wired thermostats have, for decades, had a 
failsafe function keeping the home heated 
to a minimum of 50°F/10°C no matter the 
user’s settings, to avoid frozen pipes and 
property damage. This missing failsafe in 
a Nest thermostat caused a stir as home 
temperatures plunged after a failed software 
update (Bilton 2016). At the other end 
of the temperature scale, if a thermostat 
detects the home has risen in temperature 
from 70°F/21°C to 200°F/93°C in the last 
hour, it should do more than log this in-
teresting fact in the historical database—it 
should call the fire department! Self-driving 
cars should avoid collisions with anything, 
regardless of the GPS-powered navigation 
system and its optimized route. An inspi-
rational self-management and overriding 
constraint conditions example can be seen 
in Asimov’s three laws of robotics.

Systems engineers will notice many intel-
ligent capabilities require multiple intelli-
gent subsystems and higher-level intelligent 
capabilities to coordinate and arbitrate 
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between them, making intelligent system 
design a systems challenge, suited to system 
engineering skills. A watchdog subsystem 
should oversee a deep neural network with 
training-data based decisions, preventing 
ridiculous decisions resulting from neural 
network structure errors, or from faulty, in-
complete, or intentionally misleading data 
fed to the system after deployment.

These intelligent system characteristics 
(and many more) can give us an approach 
to specifying and assessing intelligence in 
systems. Assessing intelligence has never 
been easy or uncontroversial, even with 
the most familiar intelligent systems we 
know—human beings.

ASSESSING HUMAN INTELLIGENCE
When assessing human being intelli-

gence, the range of characteristics to con-
sider is wide and probably far beyond the 
systems we can imagine building. Science 
fiction makes it easy to visualize systems 
with these human intelligence character-
istics, but they do it by clothing a human 
personality in mechanical garb and adding 
flashing lights. When assessing human 
intelligence, even in children, we find char-
acteristics surpassing what we know how 
to build, such as those listed in the table 
below. These characteristics can however, 
act as inspiration for where we might look 
to increase system intelligence.

What Human Beings Do When They 
Behave Intelligently (Costa 1988)

1.	 Persistence: persevering when 
the solution to a problem is 
not immediately apparent 

2.	 Decreasing impulsiveness: 
Often students blurt the first 
answer that comes to mind 
rather than considering 
alternatives

3.	 Listening to others–with 
understanding and empathy

4.	 Flexibility in thinking
5.	 Metacognition: awareness of 

our own thinking
6.	 Checking for accuracy and 

precision
7.	 Questioning and problem 

posing 
8.	 Drawing on past knowledge 

and applying it to new 
situations

9.	 Precision of language and 
thought

10.	 Using all the senses
11.	 Ingenuity, originality, 

insightfulness: creativity
12.	 Wonderment, inquisitiveness, 

curiosity, and the enjoyment 
of problem solving

It is natural for humans to assess the in-
telligence of other humans using language 
and conversation. At this point in intelli-
gent system evolution, conversation is not a 
feasible way to assess a system’s intelligence. 
Conversational systems, including chatbots, 
are available and have become popular, but 
conversational interfaces to intelligent sys-
tems are rare, and do not give us access to 
assess the system’s intelligence, so the ways 
we assess human intelligence (IQ-tests, in-
terviews, writing assignments) do not apply 
to intelligent systems. 

Conversational systems, designed purely 
to provide conversation, have claimed 
to pass the Turing test, fooling human 
conversational partners about whether they 
were talking with a human or a computer. 
In one celebrated claimed success, however, 
characterizing the conversational system as 
a 13-year old boy whose first language was 
not English reduced expectations for highly 
intelligent conversation (BBC 2014).

We can imagine a future where a general 
conversational interface or voice API might 
be available on virtually all intelligent 
systems, allowing users to question them in 
plain language about their behavior, knowl-
edge, and intelligence. Systems engineers 
will design how conversational interfaces, 
offered by multiple intelligent subsystems 
in an environment such as a vehicle cock-
pit, will combine and integrate to provide 
a smooth and intelligent user interface. 
Complex conversational systems may need 
to meet human language requirements 
such vocabulary size, comprehension, and 
personality and sentiment, then measured 
and evaluated to see if they meet the 
required standards. A simple system might 
require only a 10-year-old’s language level 
and vocabulary, with a friendly, helpful 
personality. Another might need to operate 
at a college level with a more assertive per-
sonality. Systems engineers must find ways 
to specify these new requirements.

In the future when a general voice 
interface is available, it might be conceiv-
able to assess system intelligence through 
an interview or written IQ test, much as 
with human beings. These tests have their 
limitations, but the natural language flex-
ibility allows a wide-ranging evaluation of 
intelligence aspects. Until we have access to 
HAL (2001: A Space Odyssey), Cmdr. Data 
(Star Trek: The Next Generation) or C3PO 
(Star Wars movies), we need methods other 
than natural language interaction to assess 
system intelligence.

WHEN INTERVIEWS ARE IMPOSSIBLE
Psychologists, neurologists, and those 

who study animal behavior often need 
to assess intelligence or functional ability 
levels for pre-verbal or non-verbal children, 

non-verbal or disabled adults, and animals. 
Since a natural language interface is not 
available for these natural systems, they must 
use other means, which might be applicable 
to evaluating engineered intelligent systems.

As an example, consider the Wisconsin 
Card Sorting Test, used to measure child 
development. A child chooses a card from a 
deck and must match it to one of four other 
cards, matching number of symbols, their 
color, or their shape. The child must guess 
which matching to use, and the matching 
type changes, unannounced, throughout 
the test. The test measures how quickly the 
child can adapt and how many avoidable 
mistakes he or she makes. This method can 
test systems designed to recognize objects.

It is interesting to consider building a 
system to take this test. While it would be 
straightforward to design it so its only func-
tion is taking this test, it would be more in-
teresting to build such an intelligent system 
using subfunctional units, mirroring the 
way we believe children learn. The system 
would need to learn modular subfunctions 
like identifying objects (cards), reading, 
counting and classifying sub-objects (the 
card symbols), reinforcement learning of 
the correct matching rule, and adaptation 
to a rule change. If designed correctly, 
these subfunctions should work in other 
situations, such as a system classifying 
traffic light images by color or number, or 
even one choosing the best move in a game, 
based on changing game conditions.

The Wisconsin Card Sorting Test

Human intelligence testing relies on 
progressive intelligence—human intel-
ligence grows with education, time, and 
practice, using building-block subfunctions 
(moving a knight correctly in chess) to 
create higher-level functions (formulating 
and launching an attack in chess). This 
building-block approach is familiar to 
systems engineers who seek to develop 
modular architectures, rather than “hard-
wired” monolithic single-function systems. 
The modular approach is likely to lead to 

Press 1-4 to sort card

21 33 4

Image credit: http://pebl.sourceforge.net/
screens/cardsort.jpg (public domain)
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flexibility and adaptability making more 
intelligent systems.

Animal intelligence requires testing 
without using language. These tests reward 
the animal for correctly performing the 
task. In the AI and machine learning field 
this approach is known as reinforcement 
learning, and has led to notable successes 
such as AlphaZero, which taught itself to 
play chess, shogi, and go (Oullette 2018). 
Assessing an animal’s intelligence takes the 
same approach as reinforcement learning—
run many repeated task trials, rewarding 
when results are good. Think rats running 
mazes for a cheese reward at the end. How 
quickly it learns a maze or how well it does 
at remembering multiple mazes assesses the 
rat’s intelligence.

Assessing system intelligence of even a 
complex system can use a similar approach 
by designing a maze or game for the 
system to run repeatedly, and assessing its 
performance each time. This method could 
evaluate a system comprising multiple 

intelligent subsystems or agents, much 
as it evaluates a single animal (a system 
of systems itself). Systems engineers can 
formulate such mazes and performance 
scenarios along with measures for how 
intelligently the system performs.

SPECIFYING AND VERIFYING INTELLIGENCE
Intelligence can act as a requirement 

category for an engineered system, though 
not a singular, monolithic one. We cannot 
specify, “the system shall be intelligent,” in 
the same way we cannot require, “the sys-
tem shall be easy to use.” More work by sys-
tems engineers is required to determine the 
aspects of intelligence required. Little is free 
in the systems engineering, and when we 
add or increase the level of an intelligence 
characteristic, we increase the engineering 
and system development cost. At the same 
time, new technologies can reduce these 
costs. Deep neural networks are both supe-
rior in performance and less costly to build 
for various applications when compared to 

Intelligent System 
Characteristic Requirement / Specification Verification Methods

Integration of 
multiple intelligent 
components, in 
various combinations 
or sequences to 
accomplish system 
scenarios

Scenarios and use cases of sufficient breadth 
and diversity to exercise system and explore 
limitations

Traditional system testing of key 
scenarios; simulation of additional 
scenarios and/or generation of scenarios 
via Monte Carlo or other statistical 
methods (systems testing systems)

Ability to acquire and 
apply new knowledge 
and skills

What will the system need to learn after its 
initial deployment?
Will the system learn as it operates (adaptive 
learning) and if so, how will the system be 
ongoingly verified?
Will the system be re-trained (and re-verified) 
periodically or based upon conditions?

Inspection/analysis of training data/
examples for correct scope, diversity, 
negative examples
Inspection/analysis of synthetic data 
used to train system

Ability to perform 
subfunctions (derived 
from main system 
functions) in an 
intelligent manner

Recursive decomposition of main system 
functions into subfunctions and determination 
of intelligence requirements for each 
subfunction

Recursive verification of each subfunction 
as an intelligent system function

Ability to handle 
incomplete 
information

Specification of system needed information 
is, what information can the system obtain, 
and what information can the system assume 
or supply, and what information can the 
system accept or ignore without hampering 
performance

Verification of multiple scenarios of 
incomplete, unforeseen or contradictory 
information.
Verification of safe system performance 
even in the presence of no information or 
extreme information

Ability to self-manage 
and limit extreme 
behavior

What are the fail-safe conditions, limits 
to system action, and ability for system to 
override its “normal” operation?

Testing or simulation of system under 
normal and extreme conditions 

Conversational 
interaction

Specification of conversational capabilities 
either by explicit semantics or by large set 
of examples; vocabulary size; complexity of 
language, for example, grade level

Explicit test cases supplemented by wide 
ranging conversational input, generated 
by another system, itself validated for 
accurate conversational synthesis

Examples of Characteristics of Intelligent Systems

previous artificial intelligence methods.
Intelligence may be like obscenity, tempt-

ing us to fall back on Justice Potter Stewart’s 
perspective that a complete definition may 
be impossible, but, “I know it when I see it.” 
Nevertheless, as systems engineers, we must 
work to understand and define intelligence 
as it applies to systems. The chart below 
shows a beginning framework, drawn 
from information presented so far in this 
article. The chart can function as a guide to 
thinking through intelligent system charac-
teristics and evaluating each characteristic’s 
need, want and cost in a system’s design. 
Stakeholders including system acquirers, 
customers, users, designers, and testers 
should consider these characteristics and 
develop feasible and verifiable requirements 
from them. 

EASIER ON OTHER PLANETS?
Our planet, owing to fortune and 

evolution, has produced one clear intelli-
gence champion—human beings—with no 
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close second place. The large gap between 
humans and anything else makes it more 
difficult to imagine a world with various 
ranges of intelligence. While philosophers, 
scientists, and science fiction writers may 
help us imagine such a world occurring 
naturally (Asimov 1979), through AI, we 
are gradually building a world with intelli-
gence ranges, not-always-clear boundaries, 
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INTRODUCTION

  ABSTRACT
Incorporating artificial intelligence (AI) leveraging statistical machine learning (ML) into complex systems poses numerous chal-
lenges to traditional test and evaluation (T&E) methods. As AI handles varying decision levels, the underlying ML needs con-
fidence to ensure testable, repeatable, and auditable decisions. Additionally, we need to understand failure modes and failure 
mitigation techniques. We need AI assurance–certifying ML and/or AI algorithms function as intended and are vulnerability free, 
either intentionally or unintentionally designed or inserted as data/algorithm parts. T&E provides a process for AI assurance. This 
article highlights existing test and evaluation methods, the key challenges embedded-AI exacerbates, and themes based for how 
T&E will evolve to provide AI system assurance.
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Test and Evaluation for 
Artificial Intelligence

Test and evaluation (T&E) provides 
information used to inform 
system design and development, 
characterize existing systems 

capabilities, and inform decision makers 
on the benefits and risks of using a system. 
A canonical T&E community question is 
“how much testing is enough?” Examina-
tion through the years revealed various 
answers to this question. Numerous stand-
ards exist across numerous test objectives 
(performance, security, safety) and organ-
izations have adopted their own standards 
to define adequate testing. 

Statistical methods, including design of 
experiments, have provided foundational 
T&E tools for years. The National Research 
Council recommended these methods 
in 1998 in their publication on Statistics, 
Testing, and Defense Acquisition: New Ap-
proaches and Methodological Improvements 
(National Research Center 1998). DoD test-
ing has widely implemented these methods. 
However, some have noted they are failing 
to provide the necessary tools for complex 
systems with embedded software.

System changes resulting from increased 
embedded software require new T&E 
methods to keep pace. Figure 1 from the 
Defense Science Board (DSB) shows the 
embedded software evolution in terms 
fighter aircraft code lines(Defense Science 

Board 2018). The figure shows a dramatic 
increase in recent years. The DSB highlights 
the need for new T&E process for software, 
notably testing software changes requires 
a “software factory.” A key challenge is, 
embedded software enables capabilities in 
complex systems and test design approach-
es have revolved around modeling those 
capabilities across an operational space. 
When the software, human operators, and 
complex environments interact the result is 
a stochastic system with a large operational 
space to cover.

Incorporating AI algorithms into com-

plex systems exacerbates the T&E chal-
lenge by adding complexity via stochastic 
algorithms. Test and evaluation for AI 
algorithms based on statistical learning 
is still in its nascent phases. Both expert 
system enabled AI and statistical machine 
learning enabled AI pose new challenges 
for T&E. Expert systems based on explicit 
models covering all models, which can 
expand test scope. However, the newest 
wave in AI – machine learning algorithms 
learning from experience and improving 
by analyzing large data quantities and iden-
tifying patterns – adds a complication in 

Figure 1. Software lines of code (SLOC) in fighter aircraft from the Defense Science 
Board’s report on Design and Acquisition of Software for Defense Systems. (Defense 
Science Board 2018)
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changing systems outcomes based on new 
data inputs or the algorithms themselves 
changing overtime.

New test methods need to provide these 
AI algorithms’ assurance even as they con-
tinue to learn. In a report on operational 
testing of autonomy, the Institute for De-
fense Analysis (IDA) notes “a fundamental 
challenge in autonomy is developing trust 
in its decision-making capacity across all 
situations and environments it potentially 
will encounter” (Wojton Porter Pinelis 
Bieber McAnally and Freeman 2019). They 
also note while we can make assumptions 
about human decision making they are 
not sure for machine decision making. For 
example, just because a human can walk 
on varied surface types (sand, snow) we 
cannot assume a robot leveraging AI can 
do the same. This clearly illustrates the 
increased operational space magnitude an 
AI-enabled system must test. Convention-
al test methods reasonably assume how 
results from one environment transfer to 
another, this may not be a straightforward 
assumption for systems leveraging AI.

THE NEED FOR T&E FOR AI
The “National Artificial Intelligence R&D 

Strategic Plan: 2019 Update” ( National 
Science and Technology Council 2019) 
highlights enhancements needed in AI 
verification and validation. The plan calls 
for methods measuring and evaluating 
AI technologies via standards and bench-
marks. It also notes the need for testbeds 
for AI. In validation terms, they note AI 
systems “may need to possess capabilities 
for self-assessment, self-diagnosis, and 
self-repair to be robust and reliable.”

Addressing rigorous AI T&E must 
happen before we can use AI in situations 
where it has the most potential. Those 
situations include environments where AI 
enables missions where humans cannot 
go (deep space, remote harsh locations, 
and more) and situations where the 
timescale is too fast for human decision 
making. For example, the National Security 
Commission on Artificial Intelligence 
Interim Report (National Security 
Commission on Artificial Intelligence 
2019) notes the AI for accelerated cyber-
attacks value – when malware “can move 
through multiple systems at superhuman 
speed.”

Systems are starting to incorporate 
machine learning (ML) and artificial 
intelligence (AI) algorithms to support 
varying autonomy levels, so the challenge 
is pressing (See for example General 
Dynamics Knifefish Unmanned Undersea 
Vehicle: https://gdmissionsystems.com/en/
underwater-vehicles/knifefish-unmanned-un-
dersea-vehicle.)

Many academic disciplines have elements 
providing key insights and methods for 
developing an AI T&E framework. Key 
disciplines include: system engineering, 
human factors, statistics, software testing, 
and emerging research in machine learning 
and artificial intelligence assurance. Some 
examples include:

■	 Design of Experiments (DOE) provides 
a statistical process for T&E. This 
methodology allows test and evaluation 
practitioners to consider trade-offs 
in risk, sample size, environment 
coverage, and information required for 
decision making in a dynamic fashion. 
Freeman and Warner (2018) show this 
methodology has proven valuable in 
testing complex systems integrating 
technologies, humans, and missions 
where outputs are stochastic (Freeman 
and Warner 2018).

■	 Human factors testing is experimental 
design subset where test techniques 
focus on controlling order effects 
(humans learning over time) and 
ensuring generalizable conclusions not 
specific to a particular individual. These 
methods might suggest techniques 
for dealing with algorithms learning 
overtime similar to humans. 

■	 Software testing generally covers three 
test levels: unit, integration, system, and 
acceptance. As the software changes, 
regression testing can perform at any 
level. Integration testing considers 
interactions among software compo-
nents. Rapid test techniques including 
SecDevOps (Security Development 
Operations) provide frameworks for 
thinking about testing AI software.

CHALLENGES FOR TESTING AI
The DoD and intelligence communities 

take this challenge seriously. They have 
published numerous strategic initiatives 
including the 2018 DoD Artificial 
Intelligence Strategy (Department of 
Defense 2019) and The AIM initiative: 
A Strategy for Augmenting Intelligence 
Using Machines (Coats and Gordon 2019). 
The DoD has stood up the algorithmic 
warfare cross-functional team (Project 
Maven) and the Joint Artificial Intelligence 
Center (JAIC). These initiatives have 
driven numerous working groups, panel 
discussions, and forums over the past year, 
I have attended many and noted several 
themes emerging. These themes address 
primary challenges T&E must address to 
adequately test AI including:

■	 Systems leveraging AI struggle to 
enumerate requirements and testing all 
cases is impossible. Traditional human 
intuition about generalizing which cas-
es fail to simplify the test strategy.

■	 AI systems are complex and exhibit 
emergent behavior. System decomposa-
bility assumptions may not be valid.

■	 System is not “final” during the 
deployment. It changes dynamically as 
algorithms learn and the environment 
changes.

THEMES FOR ENHANCING T&E TO ADDRESS 
AI CHALLENGES

This initial theme list is far from compre-
hensive, but provides a starting point mov-
ing towards a T&E methodology for AI as-
suring autonomous systems will function as 
intended when called upon in operations. 
The themes highlight where T&E processes 
need to evolve. Many themes could also im-
prove general T&E practices today, they are 
not AI exclusive, but incorporating AI in 
systems provides an opportunity to develop 
the scientific methods behind T&E.

Theme 1 – Testing and Evaluation is a 
Continuum

Current test and evaluation processes 
are isolated test events answering a specific 
decision, like “should I start production of 
my system?” or “can I field this system to 
operational users?” In operational testing 
of systems with autonomy, IDA highlights 
reforms T&E needs for testing autonomy:

“It is infeasible to create a brute force 
test that covers the entire operational 
space of autonomy. We must instead 
build a “body of evidence” over time, 
pulling from multiple data sources to 
answer our questions. We must use 
sequential testing, leverage modeling 
and simulation (while overcoming the 
unique challenges autonomy will pose), 
and eliminate the hard-line distinction 
between developmental testing and 
operational testing” (Wojton et al. 2019).

It is already infeasible to create test 
events at any given point in time covering 
the operational space where a system will 
be used. Adding AI to a system expands 
operational space. Test events must move 
beyond points in time to inform specific 
decisions to a T&E paradigm as a contin-
uum where information accumulates over 
time across varying venues (computer 
models and simulations, software in the 
loop, hardware in the loop). Iterative testing 
should also imply iterative learning across 
a continuum, where a prior event informs 
each test point/event.

Theme 2 – The Continuum Does Not End 
Until the System Retires

For fielded systems not leveraging AI, 
follow-on testing or regression testing 
occurs only if the system receives any new 
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improvement and then only if the im-
provement is substantial enough to impact 
performance. Integrating AI into a system 
continually evolves our knowledge of the 
system’s ability to accomplish tasks. For 
systems learning off-line there is the chance 
they will encounter new data in the field 
producing an unexpected or new outcome. 
Additionally, systems allowed to learn 
online continually evolve as the algorithms 
process new data. Therefore, T&E must 
be continuous. As the IDA report notes 
“systems must be designed to record data 
about themselves, by themselves.” The test 
continuum needs built-in test modules 
and the ability to provide an independent 
observer (human or software, separate from 
the system) the ability to do independent 
test result checks.

Additionally, continuously learning 
systems require occasional correction and/
or recertification – test processes need to 
determine when to apply corrective action. 
Quality control concepts and control charts 
provide useful frameworks on how to im-
plement such a system on an AI system.

Theme 3 – Integrating information from 
disparate data sources requires methods

Models, simulations, digital 
environments, hardware in loop testbeds, 
and more, all have the potential to provide 
valuable information about the evolving 
AI enabled system’s performance. Using 
these different test venues is not new, 
many different system types have used 
them for years. However, we currently 
lack the ability to integrate different 
data types under one model to draw 
conclusions at the appropriate inference 
level. Bayesian hierarchical models and 
increased computing power have addressed 
this challenge in defense systems and the 
national labs to combine information from 
different data types. Dickinson shows how 
to combine reliability data from different 
testing types using both classical regression 
models and Bayesian hierarchical models. 
(Dickinson et al. 2015) Researchers from 
Los Alamos have developed methods for 
combining quality assurance data and 
system failure data (Anderson-Cook et 
al. 2008) and combining component level 
reliability data and full system reliability 
data (Anderson-Cook et al. 2007). 
These methods require both system and 
mathematical expertise to implement, but 
provide the opportunity to develop analyses 
quantifying capability and uncertainty 
as a reflection of all possible information 
sources.

Theme 4 – Data management is 
foundational

Better data management is foundational 

using information from across a continuum 
in integrated models. The National Security 
Commission on Artificial Intelligence 
Interim Report (National Security 
Commission on Artificial Intelligence 
2019) noted:

“AI is only as good as the infrastructure 
behind it. Within DoD in particular this 
infrastructure is severely underdeveloped.” 
They go on to note AI is supported by 
computing power, data storage, and 
communication networks.

A key data management aspect is under-
standing the data’s quality and pedigree. 
Lawrence developed a scale for data read-
iness levels summarized below (Lawrence 
2017):

■	 Level C – Conceive –machine readable 
data, accessible

■	 Level B – Believe – the data have known 
and correct data types, data pedigree 
known (data history), and documented 
missing values

■	 Level A — Analyze — known meta-data 
and meaningful values to the problem 
at hand

Since 2017, Lawrence et al. have built on 
level A data.

■	 Level AA – Auto-Analyze – data 
support the automation of bias 
detection, feature selection, 
normalization, and more

■	 Level AAA – Safe – data are issue free, 
integrity checks, complete provenance 
information

Understanding the data quality provides 
context for what data can integrate 
to various models across the testing 
continuum. Better data management 
includes a clear documentation of meta-
data and data pedigree, foundational for 
future AI testing.

Theme 5 – AI systems require a risk-based 
test approach 

While statistical methods have always 
provided a risk-based approach to Test 
and Evaluation, AI-enabled systems drive 
risk-based approach necessity and add new 
dimensions to risk characterization. Test 
risk needs to consider documented system 
and algorithm knowledge, operational 
space expanse, AI type, the decision 
authority granted to the algorithm, and 
consequence severity for making an 
incorrect decision.

Theme 6 – Previous test metrics still apply, 
but they may have different interpretations

The general concepts behind test and 
evaluation. A system needs to remain 
effective when operationally realistic 
operators (representative human user) 

call to accomplish tasks in the intended 
environment. This implies the following 
high level metrics remain relevant:

■	 Performance: Task- and mission-level
■	 The ’ilities: Reliability, flexibility, agility, 

stability, availability, scalability, main-
tainability

■	 Security, safety, and human factors 
considerations

However, the metrics definitions may 
expand/change. For example, maintaina-
bility previously captured the probability 
of performing a successful repair in an ac-
ceptable time period. Hardware repairs and 
computer restarts have used it. However, in 
AI-enabled systems, maintainability could 
reflect algorithm maintenance as operation-
al environment shifts over time.

Theme 6b – We need new metrics focusing 
on risks for AI systems

New metrics needing consideration 
reflect the AI algorithm’s human cogni-
tion functions including assessing the 
algorithm’s perception, comprehension, 
learning, reasoning, and decision making. 
Additionally, trust and/or reliance metrics 
can measure human adoption of AI.

Theme 7 – An expanded definition of threat 
is necessary

The threat surface expands for AI-
enabled systems. Threats historically have 
been kinetic (mortars, rocket-propelled 
grenades, man-portable air defense 
missile, weapons of mass destruction, 
ballistic and cruise missiles) or cyber-
threats, via internet protocol (IP) and 
non-IP mediums. Threats to AI-enabled 
systems are broader and reflect the close 
intersection of the environment, data 
collected, algorithms, and tasks the system 
must perform.

The adversarial AI community has 
identified new threat categories reflecting 
this connectivity. They include 1) data 
poisoning –an adversary attempts to impact 
the training data to shift the algorithm 
decision making process in their favor; 2) 
evasion attacks –the adversary intentionally 
feeds an already trained algorithm inputs 
engineered to cause a miss-classification 
(adding noise to); and 3) model inversion 
attacks — the adversary attempts to probe 
the AI algorithms inputs/outputs enough to 
generate an emulation of the algorithm en-
abling other attacks. This also provides the 
adversary with insight into the algorithm’s 
decision making process. These new and 
expanding attack vectors now must factor 
into the T&E program.

These attack methods also suggest the 
owners of systems using AI need to start 
thinking about the training data security.
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Theme 8 – Operational relevance is essen-
tial

The close interactions between AI-
enabled software making decisions, the 
environments they operate in, and the 
task they accomplish mean the training 
(development) environment should closely 
reflect the true operational environment. 
This may be a big challenge for systems 
designed for use in military applications 
where data and the actual operational 
environment may only occur very rarely.

Theme 9 – All AI areas need Testbeds. 
Both development and training purposes 

need testbeds closely reflecting the 
operational environment. For AI, testbeds 
provide the opportunity to conduct 
experiments on algorithms using actual 
operational data. The National Artificial 
Intelligence R&D Strategic Plan ( National 
Science and Technology Council 2019) 
highlights the unique opportunity AI 
testbeds provide, noting “The government 
has massive amounts of mission sensitive 

data unique to government, but much 
of this data cannot be distributed to the 
outside research community. Appropriate 
programs could be established for 
academic and industrial researchers to 
conduct research within a secured and 
curated testbed environments.” Note this 
recommendation provides data security 
and the opportunity to explore expanding 
operationally relevant threats], key themes 
highlighted here. The report goes on to 
note this would create “unique research 
opportunities” for students.

This unique research opportunity 
engages students in experiential learning 
projects and connects them to organiza-
tions needing AI talent – bringing us to the 
final theme: the need for pipeline programs 
to develop the future workforce.

Theme 10 – T&E workforce
The future T&E workforce needs to lev-

erage new, rapidly evolving skillsets. Every 
report in this article highlights the need 
for computer science, machine learning, 
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and artificial intelligence skills. However, 
that does not go far enough. AI adoption is 
fundamentally about human decision mak-
ing. Trust, fairness, and reliance on these 
systems need social science research. We 
need a T&E workforce skilled in computer 
science, statistics, and systems engineering, 
but we also need human sciences.

The National Security Commission 
on Artificial Intelligence Interim Report 
(National Security Commission on Arti-
ficial Intelligence 2019) notes the current 
challenges:

“DoD and the IC are failing to capital-
ize on existing technical talent because 
they do not have effective ways to identify 
AI-relevant skills already present in their 
workforce.”

“Agencies need to make better use of 
pipelines for people with STEM training.”

Tapping systems engineering, human 
factors, phycology, statistics, and com-
puter science backgrounds will help build 
the workforce pipelines needed for the 
future.  ¡
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INTRODUCTION

  ABSTRACT
With AI resurgence paced by recent machine learning advances, several engineering disciplines including systems engineering 
turn to AI to improve system model accuracy, process flexibility, content exploration and search, and team productivity. More 
recently, AI has become a means to augment rather than replace human capability. This perspective alters AI’s role from autono-
mous intelligence to augmented intelligence (AugI). Inherent in this view, recognizing AI and human together can perform certain 
tasks better than either could alone. This paper presents a methodological framework for effectively exploiting AugI in systems 
engineering and in engineered intelligent human-machine systems.

  KEYWORDS:  augmented intelligence; artificial intelligence; systems engineering; human-AI collaboration; ontology engineering

Azad M. Madni, azad.madni@usc.edu
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Exploiting Augmented 
Intelligence in Systems 
Engineering and 
Engineered Systems

Three themes motivate Systems 
Engineering’s transformation: 
development of formal underpin-
nings placing systems engineering 

on the same footing as other engineering 
disciplines in scientific rigor; accelerating 
convergence with digital engineering to 
strengthen system verification and testing 
while spanning the full system life cycle; 
and leveraging ongoing convergence with 
other disciplines and technologies filling 
gaps or enhancing performance in prob-
lem-solving (Madni 2015). The latter is this 
paper’s topic.

AI today is a promising technology to 
enhance systems engineering. This requires 
AI as an associate or an aid to the systems 
engineer, and as a partner in engineered 
human-machine systems. Augmented intel-
ligence (AugI) centers around this relation-
ship. AugI’s current definition is: AI-aug-
mented human, where AI performs as a 
human’s partner or assistant. However, aug-
mentation can be a two-way proposition: 
AI-augmented human, and human-aided 
AI (Madni 1988). In other words, while AI 
can augment human engineer capabilities, 

the human engineer can also enhance AI 
capabilities, especially in planning and de-
cision-making tasks in systems engineering 
or in engineered human-machine systems 
(Madni Sievers and Madni 2018).

Systems Engineering Example: 
The engineer(s) define one system’s 
objectives and constraints, AI can refine 
(decompose) the objectives, recall known 
options, examine the trade-off space, 
evaluate candidate options, and make 
recommendations to human engineers. 
This way, AI can augment human decision-
making performance. Conversely, it is 
difficult for AI to contextualize a problem 
situation and keep up with changing 
context. Therefore, it is difficult for AI to 
define objectives, and to generate novel 
options satisfying objectives. In these 
circumstances, human engineers can 
define objectives, set parameter ranges, and 
generate novel alternatives relying on their 
innate ability to contextualize and create 
(Madni 2014).

Engineered System Example: Consider 
automatic target recognition (ATR) in 
an operational combat mission. For this 

scenario, hilly terrain partially hides a 
vehicle from view. The ATR system needs 
to rapidly locate and identify this vehicle. 
To this end, it needs to determine where to 
look, locate the vehicle, identify the vehicle 
type (friend, foe, neutral), and report to the 
commander. In this problem, it is difficult 
for the AI to determine where to look (it 
requires rapid contextualization, some-
thing AI is not good at). However, the AI, 
equipped with a vehicle and recognition 
technique library can rapidly identify the 
vehicle even if partially hidden from view. 
AugI comes in here. The human, being fast 
in problem contextualization, can tell the 
AI where to look for potential threats, al-
lowing the AI to locate the vehicle; identify 
it as a threat, neutral, or friend; and notify 
the commander. This function allocation 
between human and machine is “shared 
perception” (Madni 1994). Today, it serves 
as an excellent AugI example, where the hu-
man augments the AI system capabilities.

Based on the foregoing examples, AugI 
can work as two-way augmentation, AI-
augmented human and human-augmented 
AI.
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Systems engineering (Bird 2017)(Ka-
minski 2019), and more specifically model 
based systems engineering (MBSE) can 
exploit AugI. MBSE is the systems engi-
neering community’s response to managing 
complexity while supporting interdisci-
plinary collaborative groups in systems 
development using systems engineering 
principles, heuristics, and methods with 
the system model constituting an enduring, 
authoritative source of truth. Today, MBSE 
is more mainstream as system modeling 
languages continue to mature and add new 
semantics needed for spanning the full 
systems engineering life cycle.

AI savants would agree we are far from 
artificial general intelligence (or com-
mon-sense reasoning). We need progress 
on a few important fronts before building 
systems to independently process, reason, 
and create at a level comparable to the hu-
man brain. But is replicating human intel-
ligence our goal as systems engineers (even 
though it continues to be a worthwhile goal 
for AI researchers)? My straightforward 
and simple answer is no. I believe our goal 
should be to augment and amplify human 
intelligence through AI technologies, aug-
mented intelligence (AugI). AugI focuses 
on complementing human intelligence and 
supporting humans in performing tasks not 
performable by the human or AI alone, but 
possible through human-AI collaboration 
(Madni and Madni 2018). Importantly, 
with AugI, the human remains the ultimate 
decision-maker allaying concerns about “AI 
taking over the world.”

It is important to realize the underlying 
technologies powering AI and AugI are the 
same, but the goals, usage, and applica-
tion context are fundamentally different. 
AI creates systems operating without the 
need for humans (dispense with humans), 
whereas AugI uses AI to augment human 
performance (which implies maximizing 
human-AI performance), which for many 
activities will be superior to the individ-
ual human or AI performance. It is also 
important to realize AugI is not a new tech-
nology category; rather, it is a different way 
to think about AI technology’s purpose. 
While researchers pursue AI to see how 
far it can go is an admirable goal to realize 
key technologies proving invaluable in the 
future, the real world today is better served 
by AugI. 

This paper argues for a shift in how we 
see humans and AI based on how we archi-
tect human-machine systems and how we 
view AI and systems engineering. Rather 
than view humans as liabilities needing 
replaced by AI, humans should be potential 
assets to exploit when the problem situation 
calls for ingenuity and creativity. Madni 
(2010a; 2010b) describes this as “exploiting 

the human’s capability to adapt without 
exceeding the human’s capacity to adapt.” 
This insight is at AugI’s core.

Section 2 discusses AI misperceptions 
along with AI pros and cons. Section 3 
argues for AugI in systems engineering. 
Section 4 presents several key systems 
engineering-augmented AI concepts. Spe-
cifically, it presents AugI applicability and 
the activities benefiting from AugI. Section 
5 presents AugI architectural implications. 
Section 6 presents a conceptual framework 
for developing AugI systems. Section 7 
summarizes the key concepts presented in 
this paper and discusses broader implica-
tions of AugI.

SEPARATING MISPERCEPTIONS OF AI FROM 
ACTUAL PROS AND CONS

People have been uneasy about AI since 
its inception. This is partially due to fear of 
the unknown and the distorted view of AI 
presented by Hollywood movies such as 
“2001: A Space Odyssey,” “Terminator,” and 
“The Matrix” casting AI as some malevo-
lent intelligence. However, there are legit-
imate concerns about AI. The late, great 
physicist, Stephen Hawking, cautioned 
while humans and AI could co-exist, “a 
rogue AI” could be difficult to stop without 
appropriate safeguards. Technology leaders 
such as Space-X’s Elon Musk, have made 
even more dire pronouncements. These 
concerns have drawn attention to how we 
intend to use AI, which in turn, requires 
understanding today’s AI’s pros and cons.

As with any technology, AI is not inher-
ently good or evil. It all depends on what 
role AI fills and the attention paid to its 
implementation. Like any other technology, 
AI, when hijacked, can be nefarious. This 
should not deter pursuing AI for societal 
good and for the country’s security and 
safety. There is no denying AI technology 
will profoundly impact the job market. 
Even as it decimates routine and mundane 
jobs, it expects to create several new jobs 
for knowledge workers.

Incorporating AI more deeply into our 
societal fabric requires understanding 
AI pros and cons. The pros include the 
ability to offload humans in routine and 
structured decision-making tasks, facilitate 
faster decision-making, derive insights 
from machine learning, perform error-free 
processing, perform hazardous tasks, and 
make limited predictions (Madni Sievers 
and Madni 2018), discussed next.

Offload Humans in Mundane Tasks: hu-
mans bore easily and lack motivation when 
performing routine or mundane tasks. They 
also tire when performing repetitive tasks 
over extended periods. However, machines 
do not. Therefore, it makes sense to assign 
such tasks to machines, and more specif-

ically to AI if they involve contingency 
handling and decision-making. In fact, 
AI has successful uses in adaptive process 
automation, increasing process flexibility 
and resource utilization efficiency, while 
offloading humans allowing them to per-
form more creative tasks.

Faster Decisions and Actions: AI and 
cognitive technologies facilitate rapid de-
cision-making and faster action execution. 
For example, dynamic planning and sched-
uling and target detection and identifica-
tion are problems in which AI excels.

Derive Insights from Machine Learning 
(ML): In today’s world, data continues to 
grow exponentially with ever-increasing 
connectivity, instrumentation, and access. 
Big data, for example, has come to mean 
datasets in the petabytes. Assimilating such 
data far exceeds human cognitive band-
width. This is where AI in ML and specif-
ically unsupervised learning can plough 
through data at blinding speed to provide 
timely insights for informed human deci-
sion-making.

Error-Free Processing: AI algorithms are 
infallible for routine tasks if properly archi-
tected. AI processing can ensure error-free 
data processing, regardless of dataset size. 
However, problems calling for judgment are 
best left to humans.

Hazardous Task Performance: AI can 
perform jobs posing grave risks to humans. 
Explosive ordnance disposal and space 
exploration are two such tasks. An auton-
omous or semi-autonomous robot is ideal 
for disposing explosive ordnance. Similarly, 
the Curiosity Mars rover, can autonomous-
ly examine Mars surface and dynamically 
determine the best path to take while con-
tinuously “learning” its environment. 

Outcome Prediction: AI technologies, 
such as computer vision, can help achieve 
better outcomes through improved predic-
tion. This capability is crucial for demand 
forecasting, oil exploration, and medical 
diagnosis.

AI also has many cons. To begin with, 
it can engender distrust as a gut response 
to mitigate through consistent, repeatable 
performance. It is worth recognizing the 
human does not have to understand how 
the AI works to develop trust in the AI 
given the AI responses are consistent and 
match human’s expectations (Madni 2011). 
Viewed solely as a replacement for humans, 
AI poses economic challenges in losing 
low-skilled jobs, inequitable AI generated 
wealth distribution, and disproportionate 
power increase in a few hands. But beyond 
the economic challenge, AI has other draw-
backs such as poor judgment, lack of cre-
ativity to deal with “broken plays,” inability 
to keep up with changing contexts, and 
inability to adapt quickly to changing goals 
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and plans. According to Facebook’s Jerome 
Pesenti, deep learning and current AI have 
many limitations. In other words, we are 
far from human intelligence. Today’s AI 
can propagate human biases, is not easy to 
explain, and does not have common sense. 
It is more on pattern matching level than 
robust semantic understanding. However, 
progress is happening on these fronts, and 
the field progresses fast.

Poor “judgment” was evident in the 2014 
downtown Sydney shooting and hostage 
incident aftermath. Panicked pedestrians 
began calling Uber to vacate the area. 
Because the surge in demand remained in a 
limited area, Uber’s algorithms resorted to 
supply-and-demand heuristics. As a result, 
ride rates skyrocketed. It turns out Uber’s 
algorithms had not accounted for such 
crises. While impatient pedestrians did not 
care at the time, they were beside them-
selves when they discovered the exorbitant 
ride fare that Uber charged them in the cri-
sis. This incident forced Uber to reevaluate 
its ride fare calculation algorithms for such 
emergencies.

Human intelligence, a delicate balance of 
knowledge, emotions, and skills, is always 
in perpetually adjusting. This characteristic 
enables human judgment to reflect shades 
of grey, while stimulus from the real world 
continues to shape human behavior. There-
fore, replacing adaptive human behavior 
with rigid AI can lead to irrational behavior 
within ecosystems comprising people and 
human-made artifacts.

The Uber scenario clearly suggests unless 
AI algorithms anticipate all contingencies 
in advance, AI can reach simplistic conclu-
sions and act on them to the detriment of 
both humans and the environment. In oth-
er words, AI programs designed to pursue 
benign goals may, in the interest of expe-
diency and using simplistic logic, imple-
ment a highly unrealistic and unacceptable 
solution. One example solution is “if there 
is a problem with over-population in cities, 
an AI solution may call for reducing the 
population by any means available rather 
than proposing more reasonable solutions 
such as developing adjacent areas and 
villages for some fraction of the population 
to move to.”

THE CASE FOR AUGI IN SYSTEMS 
ENGINEERING

AI is already beginning to impact various 
systems engineering aspects. These include 
systems modeling and verification, process 
management, search and information re-
trieval, dynamic context management, and 
human-systems integration. In each case, 
the AI is AugI. AugI can provide the best of 
AI and human intelligence while circum-
venting and/or compensating for their 

respective limitations. Figure 1 presents the 
various ways AugI can contribute to sys-
tems engineering activities using different 
AI technologies. As shown in, AI-augment-
ed systems engineering encompasses the 
system, the infrastructure support facilities, 
and processes.

At the system level, system modeling, 
verification, and reuse exploit AI-augment-
ed systems engineering. In system model-
ing, AugI can exploit ML in reinforcement 
learning to collect real-time evidence to 
update an incomplete initial system model, 
called “closed-loop system modeling.” AugI 
can employ formal logic in contracts to en-
sure static model correctness. And, system 
and domain ontologies help identify model 
fragment reuse opportunities.

At the infrastructure support level, AugI 
can: facilitate dynamic context manage-
ment where context ontologies define 
context; accelerate information search and 
retrieval by metadata tagging content with 
ontology elements; and facilitate interoper-
ability by exploiting underlying ontology.

At the process level, AugI can enable 
intelligent information logistics (informa-
tion pre-fetching); adaptive execution by 
exploiting flexibility afforded by resilience 
contracts and machine learning; and reuse 
and integration by leveraging underlying 
system and domain ontologies. 

AugI can take various forms including 
memory joggers, active prompters and 
prodders, assistants, associates, and team 
orchestrators (Madni 1988). However, all 
these forms involve some human-AI collab-
oration. Garry Kasparov (2017) in Deep 
Thinking argues for human-AI collabora-
tion rather than human replacement by AI: 
“Many jobs will continue to be lost to intel-
ligent automation. But if you’re looking for 
a field that will be booming for many years, 

get into human-machine collaboration.”
Licklider (1960) was prescient in present-

ing his vision for cognitive assistance. He 
predicted “in not too many years, human 
brains and computing machines will be 
coupled together very tightly, and the re-
sulting partnership will think as no human 
brain has thought.” My own view is “the 
resulting partnership will think and do as 
no human brain or AI system in isolation 
could ever think or do.” In other words, I 
advocate AugI.

AugI is all about human-AI collabora-
tion. I define AugI as teaming human and 
AI to capitalize on their strengths while 
circumventing their respective limitations 
(Madni 2010a). A common refrain applying 
in this context is: a team of experts does not 
make an expert team. We know this is true 
in sports. Think about the Celtics led by Bill 
Russell, or the Patriots led by Tom Brady. 
Despite most players not being superstars 
on these teams, they were championships 
teams. When Bill Belichick, the Patriots 
coach, urges his players to, “Do your job,” 
he means more than just do your own 
tasks (taskwork). He is demanding they be 
cognizant of interdependencies with team-
mates so they can excel at teamwork (learn 
to play as a team). Learning to play as a 
team means understanding teammate roles, 
developing mutual expectation awareness, 
and being cognizant of the interdepen-
dencies with teammates (DeChurch and 
Mesmer-Magnus 2010) (Madni and Madni 
2018) (Bansal Nushi Kamar Weld Lasecki 
and Horvitz 2019). The true competitive 
team advantage resides in this knowledge of 
mutual interdependencies and the commit-
ments implied by them (Johnson and Vera 
2019). 

However, the AI-human teaming 
problem is more complicated than 

Figure 1. AugI can contribute to systems engineering activities using AI technologies
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human-teaming (Kamar 2016). While 
we know about human teams, we know 
much less about AI-human teams. AI 
and humans have different strengths and 
limitations. Human are superior at rapid 
contextualization, considered and snap 
judgments, creative problem-solving, 
and handling unknowns (known and 
unknown). However, humans are poor at 
monitoring infrequent events because they 
tend to experience a drop in alertness or 
vigilance. At the same time, they cannot 
keep up with rapidly occurring events, 
because they suffer cognitive overload, 
then fatigue, and eventual drop in moti-
vation. AI is far superior in recalling past 
events and cases, has faster reaction times, 
and excels at rare event monitoring and 
computation. However, AI is not as good as 
humans in creative problem solving, novel 
option generation, information aggrega-
tion, and responding to previously unseen 
disruptions.

There are particular tasks neither the 
human nor AI can do by themselves. 
These tasks require both the human and 
AI to work in concert. This is AugI’s fertile 
regime. AugI requires shared contextual 
awareness, mutual expectation aware-
ness, respective strengths and limitations 
knowledge, and interdependencies and 
other constraints understanding. In actual 
operation, AugI requires knowing which 
interdependencies and constraints apply in 
which context. 

ARCHITECTURAL IMPLICATIONS OF AUGI
AugI has several architectural implica-

tions. The most obvious implication is since 
the human will always be part of the sys-
tem, the system architecture needs to follow 
human-centered architecting principles. 
These principles (Madni 2009) are:

■	 Inspectable, explainable, potentially 
suboptimal algorithms preferred 
to opaque/black-box optimization 
techniques

■	 Flexible human-AI collaboration at 
multiple levels based on problem 
context, tasks

■	 Shared contextual awareness especially 
during adaptive collaborative response

■	 Selective information aggregation to 
maximize situation and contextual 
awareness (context-sensitive declutter) 
without cognitive overload

■	 Mutual augmentation to maximize joint 
performance

■	 Mutual learning of priorities/
preferences in different engineering/
operational contexts

■	 Shift from traditional human-AI 
function allocation to human-AI 
synergy exploitation across various 
contexts

Inspectable, Explainable Algorithms: 
allow human to intervene in AI opera-
tion if needed without making needless 
assumptions. Consider route planning to a 
destination with specific waypoints needing 
traversed. AugI would offload the human 
by controlling low-level navigation and 
obstacle avoidance tasks thereby offloading 
the commander to concentrate on tactics. 
Unlike an optimization algorithm, AugI 
would be transparent to the commander al-
lowing the commander to insert additional 
waypoints, override AugI recommendation, 
or take over manual control. As important, 
AI must articulate (be able to explain) its 
decisions and recommendations when 
called upon. This is a debate area. What 
constitutes an explanation? For our pur-
poses, we limit explanation to presenting 
the rules followed in response to triggering 
events.

Flexibility in Human-AI Collaboration 
Interface: for AugI to aid the human at 
different task hierarchy levels, the architec-
ture needs to provide human-AI interac-
tions at multiple levels. In this regard, a 
context-sensitive, multi-level dashboard 
could ensure sustained situation awareness 
in the AI-human team.

Context-Sensitive Search and Query: 
facilitate recall thereby compressing devel-
opment cycle time. Realizing this capability 
requires a context ontology (Madni and 
Madni 2018). Multi-perspective, multi-level 
visualization requires a domain ontology, 

class hierarchies for various concepts, and 
the necessary taxonomies.

Selective Information Aggregation: es-
sential for maximizing situation awareness 
without cognitive overload. Agregating 
entities the human does not interact with 
in specific contexts helps achieve it. This 
capability is dynamic; if context changes 
certain aggregated elements may need dis-
aggregated while other elements may need 
aggregated.

Shift from Human-AI function Allocation 
to Exploiting Synergy in Human-AI teams: 
recognizes, even in those tasks where AI is 
superior, there are areas human interven-
tion can help to maximize performance. 
The same is true for tasks where the human 
is superior, but AI can still provide oppor-
tunistic useful intervention.

CONCEPTUAL FRAMEWORK FOR DEVELOPING 
AUGI SYSTEMS

Figure 2 presents a conceptual frame-
work informing the methodology for 
developing AugI systems.

As shown in this figure, there are six 
partitions associated with human and 
AI capabilities. The square at the bottom 
left corner represents tasks both AI and 
humans do not do well. Examples are 
time-stressed decision-making with partial 
information and rapid exhaustive parallel 
searches. Good design practices avoid this 
region. The vertical rectangle to the left 
represents the region humans perform 

Figure 2. Task regime for AugI (Adapted from Madni and Madni 2018)
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exceedingly well and therefore tasks in 
this region are best left to humans. The 
horizontal rectangle at the base represents 
a region best performed by AI without 
human intervention. The square at the top 
right corner represents tasks that AI and 
humans do well, with. assignment to one or 
the other based on respective availability. 
The two trapezoids in the middle represent 
task regimes where both AI and human can 
perform, except in the top trapezoid the 
human is better than AI, and in the bottom 
one AI is better than the human. These two 
regimes are fertile grounds for AugI.

The top trapezoid represents the tasks 
regime where humans are superior to AI. 
However, AI can augment the human. 
Examples are recalling past successful and 
unsuccessful options (designs), visually 
presenting multi-dimensional tradeoffs, 
rapidly evaluating options, managing and 
sharing dynamic context changes, flagging 
anomalous situations, and learning from 
both the human and data. The bottom 
trapezoid represents the task regime where 
AI is superior to humans. However, the 
human can augment AI. Examples are 
goal and parameter setting for a particular 
mission or problem; rapidly contextualizing 
a previously unseen or unknown situation; 
generating novel options to augment the 
options recalled by AI using metadata tag-
ging; making judgments in uncertainty or 
ambiguity; and intervening at AI’s request, 
when AI fails to respond in allotted time, 
or when AI has not previously experienced 
the situation.

ROLE OF SYSTEMS ENGINEERING IN 
AUGMENTED AI

Thus far, this paper has addressed AI 
and systems engineering, and how AugI 
can have a major impact on both systems 
engineering and engineered intelligent 
human-machine systems. Now this paper 
discusses how systems engineering can ben-
efit by developing AugI systems. This regard 
takes a broader systems engineering view 
to include systems theory, control systems 
theory (Madni 2018), and systems thinking. 
In particular, using a control-theoretic con-
struct, we can leverage the analogy between 
the plant in a traditional control system 
and the problem domain in AI systems 
(Alpcan Erfani and Leckie 2017) (Madni 
1999)(Passino and Antsaklis 1989). Then, 
it becomes possible to create concepts for 
the AI system equivalent to properties such 
as controllability, observability, stability, 
system rate, and feedback.

Observability and controllability are 
fundamental concepts needing defining 
and understanding within an AI framework 
(Passino and Antsaklis 1989)(Madni, 1999). 
For example, if a certain event occurs 

within the system but the information con-
tained in the observations is inadequate for 
event detection and assessment, then the 
system (the way we choose to model it and 
the observations we obtain) is unobserv-
able. Similarly, system states unaffected by 
any commands we apply could be uncon-
trollable.

Stability is another important concept 
needing defining and understanding within 
an AI framework. Stability can fit several 
views. First, set acceptable states of AI sys-
tem symbolic variables can define stability. 
Thus, when a variable in question is outside 
the acceptable set, appropriate process-
ing brings the system states back into the 
acceptable set. Second, stability can act as 
a “string” of acceptable system behaviors. 
This definition is less restrictive; the system 
can go through unacceptable states defined 
above as long as the system continues to 
exhibit overall desired behavior. For a warf-
ighting system, this could mean there may 
be temporary setbacks, such as damage to 
assets, but as long as recovery remains pos-
sible and enemy defeat stays achievable, the 
overall system behavior can be acceptable.

Performance, a crucial metric for a 
control system, can extended to AI systems 
where performance would imply the rate 
at which the AI system can achieve the end 
objective (Madni 1999). In this case, the 
performance metric must tie to the desired 
end goal and context.

Robustness is another important concept 
in control systems. This creates a control 
system designed to withstand changes in 
the controlled “plant” and external distur-
bances or disruptions. In the AI realm and 
more specifically in AugI, the situation is 
similar. Changes within the system, due to 
unpredictable decisions or enemy moves, 
are unknown model changes. Unexpected 
or “unmeasurable” events affecting the sys-
tem’s response are external disturbances. In 
this case, the command and control inputs 
should minimize the outcome changes 
affected by model changes and/or external 
disturbances (binding the outcome).

Time delay is always a crucial factor in 
real-time dynamic systems. For AI systems, 
the collection, assessment, and next input 
processing time interval is vitally im-

portant. Significant time delays can affect 
performance and often lead to instabilities. 
For an AI system or AugI system, one can 
estimate the bounds for allowable delays to 
guarantee stability and performance. The 
key hypothesis here an observe-assess-re-
spond cycle time less than the duration 
between key external events creates a stable 
system (experience no oscillations).

In sum, formalizing the above-defined 
control system properties for AI systems 
will be a major systems engineering 
contribution to AI as many important AI 
system properties contributing to their 
behavior will arise.

CONCLUDING REMARKS
This paper has advocated augmented 

intelligence (AugI) to connote the desired 
symbiosis between humans and AI. AugI 
engenders greater acceptance than AI 
does. It does not imagine intelligent robots 
running amuck while reducing humans 
to helpless bystanders. More importantly, 
AugI has crucial implications for the 
resulting system architecture, testing 
approach, and metrics. One might say AugI 
is a construct responding to Lange’s (2015) 
famous refrain “Technology is a useful 
servant but a dangerous master.” AugI also 
responds to Galbraith’s (1967) caution “We 
are becoming the servants in thought as 
in action, of the machines we have created 
to serve us.” AugI is a solution to this 
quagmire. It holds hope without fearing 
AI taking over. As important, it dispels the 
misconceptions and hyperbole surrounding 
AI. Ultimately, AugI is crucial to AI’s future 
understanding and broader acceptance 
(Bird 2017).

The paper also addresses the role 
systems engineering, broadly defined, can 
play in AugI system development. Relying 
on the classical feedback control systems 
construct as the guiding pattern, the paper 
advances ways in which this construct 
can expand for symbol-processing 
systems, AugI systems. Specifically, by 
generalizing concepts such as observability, 
controllability, and stability, it becomes 
possible for AugI systems to exhibit 
predictability and performance lacking in 
current AI systems.  ¡
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INTRODUCTION

  ABSTRACT
Artificial intelligence is an emerging technology with few principled engineering frameworks guiding its application, particularly 
theoretical frameworks for understanding the interrelationships between systems and their learning processes. We propose 
addressing this gap by using systems theory as a mathematical superstructure for learning theory. Such a framework would 
connect learning theory and machine learning directly to model-based systems engineering practices. A general systems learning 
theory would show how general learning processes relate to general systems and, when applied to particular systems, could reveal 
how particular learning processes relate to particular systems. Condition-based maintenance and actuators for context to discuss 
these concepts.

Tyler Cody, tmc4dk@virginia.edu; Stephen Adams, sca2c@virginia.edu; and Peter Beling, beling@virginia.edu
Copyright © 2020 by Tyler Cody, Stephen Adams, and Peter Beling. Published and used by INCOSE with permission.

Motivating a Systems 
Theory of AI

Artificial intelligence (AI) has 
moved beyond a research field 
to a workable approach for build-
ing autonomous functions into 

systems. However, a principled systems en-
gineering discipline for AI-dependent sys-
tems has yet to emerge. Although learning 
algorithms offer statistical performance im-
provements and allow for novel function-
ality, interactions with embedded systems 
raise concerns. There are missing robust 
test and evaluation practices, deployment 
sustainment tradecraft, and failure modes 
in AI systems lack understanding.

Frameworks studying the interrelation-
ships between systems and their learning 
algorithms are underdeveloped. Although 
cybernetics and general systems theory re-
search has explored these issues, its findings 
rely on metaphorical abstractions bringing 
the frameworks away from the specific 
nature of the underlying learning processes. 
Conversely, machine learning and learning 
theoretic approaches focus on the learning 
processes in isolation, thereby neglecting 
the broader systems context.

From this observation, it appears 
desirable to find a middle ground. 
Sacrificing some systems theory generality, 
and some learning theory specificity, a 
set-theoretic systems learning theory 
closely knits systems and learning theory 
together. Set-theoretic systems theory is 

a mathematical framework for studying 
the general system natures. Using systems 
theory as a superstructure for learning, 
learning algorithms can formally study the 
systems within which they operate.

BACKGROUND
General systems theory studies general 

systems, and Ludwig von Bertalanffy, a 
founding father of the field, describes 
its motivation in an observation (Von 
Bertalanffy 1968):

“… there exist models, principles, and 
laws that apply to generalized systems 
or their subclasses, irrespective of their 
particular kind, the nature of their 
component elements, and the relation-
ships or ‘forces’ between them. It seems 
legitimate to ask for a theory, not of 
systems of a more or less special kind, 
but of universal principles applying to 
systems in general.”

Bertalanffy’s efforts began in the 1950’s 
and gave a banner to countless researchers 
in philosophy, engineering, mathematics, 
and science whose contributions helped 
shape and proliferate systems thinking and 
supported establishing systems engineering 
as a discipline.

Shortly thereafter, mathematical 
approaches to general systems theory 

emerged, replacing metaphors with 
axioms, and forming the basis of model-
based systems engineering. Set-theoretic 
general systems theories, in particular, 
were mathematical superstructures 
allowing for generalizing and integrating 
more specialized theory (Mesarovic and 
Takahara 1975)(Wymore 1976). Following 
the formalization approach, which adds 
assumptions and mathematical structure 
in order of their generality, set-theoretic 
systems theories provided formal, top-
down theories leading to principled, top-
down methodologies.

AI development closely relates to 
cybernetics (Weiner 1948), and through 
cybernetics, to mathematical general 
systems theory. Learning theory and ma-
chine learning are AI subfields concerned 
with learning to perform tasks from data 
(Vapnik 2013)(Bishop 2006). At an intuitive 
level, systems and learning theory closely 
relate in pursuing general understandings 
and general methods. This relation persists 
at a technical level where systems theory is 
largely a theory of sets and learning theory 
is a theory of probability, or a theory of 
measures on those sets.

A mathematical systems learning theory, 
if developed following M.D. Mesarovic 
and Wayne Wymore’s visions, would give 
an approach to formally model learning 
algorithms in systems within which they 



SP
ECIA

L 
FEA

TU
R

E
M

A
R

CH
  2O

20
VOLUM

E 23/ ISSUE 1

38

operate, a framework studying the logical 
consequences of using learning algorithms 
to satisfy particular system functions, 
and interdisciplinary communication and 
organization in AI engineering efforts. Im-
portantly, it would do so naturally connect-
ing learning theory and machine learning 
directly to model-based systems engineer-
ing practices. A general systems learning 
theory would reveal how general learning 
processes relate to general systems and, 
when applied to particular systems, could 
reveal how particular learning processes 
relate to particular systems.

MOTIVATING EXAMPLE
Sensorizing machinery has created 

data-driven approaches to condition-based 
maintenance. Condition-based main-
tenance (CBM) uses information about 
current and future health states to inform 
maintenance decisions (Jardine Lin and 
Banjevic 2006)(Peng Dong and Zuo 2010). 
Numerous fields including wind turbines 
(Hameed et al. 2009), rotary machines (Lee 
et al. 2014), electric motors (Nandi Toliyat 
and Li 2005), and lithium ion batteries 
(Zhang and Lee 2011) have applied CBM. 
Machine learning approaches to CBM use 
data and learned algorithms to predict such 
health states (Si Wang Hu and Zhou 2011). 
We discuss a system-theoretic approach to 
AI in a CBM process with a specific moti-
vating example of condition monitoring for 
a hydraulic actuator.

Industry and the U.S. military widely 
use hydraulic actuators. U.S. Navy surface 
ships utilize hundreds of hydraulic 

actuators performing numerous functions. 
Currently, these hydraulic actuators receive 
service on a time-based maintenance 
schedule, but moving to a condition-based 
maintenance routine will reduce cost 
and improve utility. Data on healthy and 
faulty conditions collect in a constructed 
test bed with embedded sensors. Figure 
1 depicts the test bed. Standard machine 
learning classifiers have demonstrated 
accurate health state estimates (Adams et 
al. 2016). A hierarchical formulation of 
the condition-monitoring problem has 
prediction problem aspects including 
adding resource constraints (Adams et 
al. 2019). Other studies have investigated 
feature selection (Adams et al. 2017) 
(Meekins et al. 2018) and methods for 
conserving energy consumption on 
embedded hardware (Farinholt et al. 2018). 

Figure 2 shows a block-diagram of a 
CBM process, wherein a learning system 
receives data from a machine and sends a 
health state prediction to a decision system, 
which, in turn, results in a maintenance 
decision for the machine.

CBM process structures, as depicted 
in Figure 2, present a fundamental 
challenge to machine learning for 
condition monitoring. If the maintenance 
decision changes the machine, such as 
part repair or replacement, it also changes 
the data distribution witnessed by the 
learning system, and a degradation in the 
learning system’s predictive performance. 
In previous research, we found such a 
phenomenon exists when rebuilding 
hydraulic actuators. Using the previously 
described test bed, we collected healthy and 
simulated failure data, deconstructed then 
reconstructed the actuator, and recollected 
the data. We found a binary healthy-failed 
classifier’s accuracy dropped from 99% 
to 77% due to system rebuild associated 
distribution changes (Cody et al. 2019).

An important and general machine 
learning approach to addressing 
distributional changes is transfer learning 
(Pan and Yang 2009). Transfer learning 
describes the system’s ability to use 
knowledge learned in previous tasks to help 
learn novel tasks and is intimately related 
to propagating knowledge forward through 
a system’s life cycle. The machine learning 
approach to transfer learning involves 
transferring knowledge in data, features, 
and parameters between learning tasks.

Using feature selection and random 
sampling, we recovered classifier 
performance of 85% (Cody et al. 2019). 
Such an approach, however, neglects 
systems knowledge and, by using a system 
model, in addition to the transfer learning 
methods, we can perform better. We 
modeled the actuator rebuild procedure 
as a random process and used the random 
process to provide a probabilistic model 
of the rebuilt-actuator’s behavior to 
the transfer learning algorithm. With 
this additional systems knowledge, the 
performance climbed to 88%, a significant 
increase from the original 77% considering 
the inaccuracy consequences.

By modeling part of the process shown 
in Figure 2, we brought some system 
perspective benefits to bear on the transfer 
learning problem. However, such an 
approach still treats transfer learning as an 
algorithm-centric discipline. If we assume 
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Figure 2: Block-diagram of condition-based maintenance

Figure 1: Hydraulic actuator test stand (Adams Beling Farinholt Brown Polter and 
Dong 2016)
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learning algorithms couple to the systems 
within which they operate then, from a 
systems theoretic perspective, transfer 
learning expands to consider not just data 
and algorithms, but also their systems 
(Cody Adams and Beling 2019). Under 
such a perspective, one connecting learning 
algorithms to their systems, system design 
emerges as an important mechanism for 
successful knowledge transfer.

In actuator rebuilds, it is apparent the 
rebuild procedure’s design determines the 
associated distribution changes witnessed 
by the learning system. For example, 
consider completing the rebuild process 
carefully, but not tediously. If, for example, 
we measure and replicate the pre-rebuild 
actuator’s fastener tensions during the 
rebuild, we would expect a smaller 
distribution change. Similarly, if the rebuild 
was haphazard we would expect a larger 
distribution change and a more difficult 
generalization problem.

System designs and their life cycles 
clearly relate to generalization problems 
faced by component learning systems, but 
formal methods for analyzing and exploit-
ing such relationships are underdeveloped. 
A systems and learning theory synthesis 
may help uncover their theoretical nature 
and, in doing so, reveal important, related 
properties and measures.

SYSTEMS THEORETIC MODELING OF 
LEARNING SYSTEMS

In an effort to demonstrate such a 
synthesis, we will show a systems theoretic 
modeling of a learning-based CBM process. 
Modeling is fundamental to synthesis and 
analysis and, in engineering contexts, is 
crucial to system design and operation. The 
systems approach to modeling is top-down, 
using a verbal description to create a block 
diagram, and subsequently a detailed math-
ematical model.

The problem with such an approach, 
Mesarovic advocates (Mesarovic and 
Takahara 1975), is block-diagrams 
are imprecise and vague, yet detailed 
mathematics specificity can be inflexible, 
constraining, and resource-intensive. 
General systems models bridge this gulf by 
bringing precise, mathematical formalism 
to the block-diagram without losing its 
generality. Figure 3 shows Mesarovic’s 
approach to modeling using general 
systems theory.

General systems theory may be espe-
cially useful in learning, because the gap 
between general systems learning models 
and detailed mathematical learning models 
is comparatively small with respect to other 
domains, such as biology. Thus, a modeler 
can iteratively add mathematical struc-
ture to general systems models following 
the formalization approach, considering 
modeling questions as they arise in their 
generality order, arriving at a detailed 
mathematical learning model. We demon-
strate this in the following example.

Consider a case where a learning system 
monitors a machine’s health. The modeling 
problem starts with a verbal description 
from a hypothetical stakeholder.

“We would like to model how a learn-
ing system can use observations from a 
machine to predict its health for making 
maintenance decisions. The model will 
help design the learning system.”

We show how general systems theory can 
create such a model by adding mathemati-
cal structure in successive iterations.

From the verbal description, we can create 
the block-diagram in Figure 2. At this ab-
straction level, high-level questions emerge. 
Is this a reasonable model structure? Does 
it capture the desired features? Is it granular 
enough? Because we care most about mode-
ling for learning system design, the detail in 
Figure 2 seems sufficient, particularly in an 
iterative formalization process.

We can create an abstract systems model 
of the block-diagram. Figure 4 shows how 
a machine � with health state � passes a 
hypothesis � with input �. Hypothesis � 
outputs a health prediction � to a decision 
process �, which sends a maintenance 
action � to �. With the added input-
output structure choices the � � � space 
emerges. What � are we trying to predict? 

Are we predicting discrete health states, 
and if so, binary or multi-categorical? What 
are possible � inputs, perhaps considering 
instrumentation, cost, and security 
constraints? We can also begin investigating 
properties like the stationarity of the joint 
distribution �(�,�), given we narrowed 
down to a set of particular � � � spaces.

Narrowing our scope, we can focus on 
the learning system’s learning theoretic 
aspects. We can add learning theoretic 
mathematical structure by adding a 
learning algorithm � using a sample � to 
select a hypothesis � from a hypotheses set 
�, depicted in Figure 5.

Verbal
Description

Block
Diagram

General
Systems
Model

Detailed
Mathematical

Model

Figure 3: Mesarovic’s systems approach to modeling

Figure 5: Adding learning theoretic 
structure to the learning system

X Yh
S A

Questions about the constraints on � and 
�, for example, due to hardware, or the 
data size, independence, and distributions 
in �, present themselves. Less quantitative 
questions emerge at this level abstraction. 
For example, do predictions made by hy-
potheses from � need explaining, and if so, 
to experts and non-experts alike? How does 
this impact the specification of �?

We can continue adding mathematical 
detail. What loss functions should we 
consider? Do we want theoretical guarantees 
about the learning process? Should we 
adopt the empirical risk minimization 
framework from statistical learning theory 
(Vapnik 2013) for its computable bounds 
and convergence properties? Further yet, we 
can add time into our model, and consider 
the case where �, �, and � are dynamic, 
perhaps due to iterative development or 
policy changes.

This case study is merely a thought 
experiment, and the reader must answer 
these modeling questions. The broader 
point we emphasize in this exercise is 
general systems models, and particularly 
general systems frameworks for learning 

systems, facilitate creating 
top-down, successively 
more specific modeling 
considerations. Mesarovic’s 
modeling process, Figure 3, 
allows for a natural descent 
from general, verbal system 
descriptions into specific, 
mathematically explicit, 
learning theoretic nuances 
of a system’s component 
learning systems.

Figure 4: A Mesarovician general systems model of 
condition-based maintenance
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CONCLUSION
Systems theory has an important role 

to play in the design and operation of AI 
systems. The motivating example suggested 
systems-level knowledge and thinking 
are integral to developing and deploying 
machine learning solutions. We discussed 
its role in learned algorithms’ robustness 
and transfer learning success to motivate 
more general, theoretical systems research. 
With this motivation, we showed how 
learning theoretic mathematical details 
might join conventional general systems 

modeling approaches, and the mathematical 
abstractions related to doing so.

AI and machine learning technologies 
are moving from laboratories to fielded 
systems; however, they are far from 
maturation. Basic and fundamental 
concerns about these technologies’ function 
in systems are under-addressed. Set-
theoretic systems theory offers a formal 
framework for connecting the general 
systems knowledge to learning theory 
particulars. Such a synthesized theory, 

synthesized in foundational model-based 
systems engineering frameworks, would 
provide a base for developing digital 
engineering methods for AI engineering. 
Although much AI systems engineering 
tradecraft will focus on heuristics, 
empiricism, and lessons learned; systems 
theory offers a research path for expanding 
the extent mathematically grounding 
such tradecraft and, thus, a path towards 
principled methodologies for AI systems 
engineering.  ¡
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  ABSTRACT
Artificial intelligence is at a tipping point where the technical capabilities it enables are outstripping systems engineers’ ability to 
employ it in viable systems. This paper reviews the very large scale integration (VLSI) revolution enabled by Mead and Conway 
in the late 1970’s and the lessons learned from this experience. It applies these principles to engineering artificial intelligence (AI) 
centric systems and formulates approaches to systems engineering and education to successfully meet this critical challenge.
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A Systems Engineering 
Approach for Artificial 
Intelligence: Inspired by 
the VLSI Revolution of 
Mead & Conway

INTRODUCTION
“History doesn’t repeat itself, but it 

often rhymes.”  — attributed to  
Samuel Clemens (aka Mark Twain)

The self-assembling organization 
of complex systems is comprises 
relatively long slow evolution 
periods, punctuated by infrequent 

synergistic paradigm-shifting change bursts 
(Eldredge and Gould 1972). It is during 
these rapid change periods, due to numer-
ous coinciding critical factors in the system, 
it reaches a tipping point enabling new 
emergent behaviors. Often the necessary 
seeds of change precede the state change by 
a significant time period, providing an ena-
bler when all required conditions are ready.

So it is true for technological systems 
which, when including the vast supply 
chains, economic and knowledge networks 
supporting them, are the most complex ones 
in human history. One such tipping point 
was the very large scale integration (VSLI) 
revolution, sparked by inventing the tran-

sistor in 1947, funded by the 1960’s space 
programs, and reaching commercial eco-
nomic scale in the early 1970’s. While there 
was great potential in the technology, human 
engineering capabilities became the limiting 
factor for its use. The VLSI revolution, ena-
bled by the engineering processes pioneered 
by Carver Mead and Lynn Conway in the 
late 1970’s, helped alleviate these engineering 
limitations. Artificial intelligence is now at 
a tipping point where human systems engi-
neers’ ability to employ it in viable systems 
limits the technological potential.

This paper first reviews the challenges 
faced by engineering VLSI systems and the 
Mead and Conway revolution addressing 
these issues. It then describes the current 
situation with AI-centric systems and the 
similar challenges it presents to systems 
engineering. Next are the lessons learned 
from the VLSI revolution which may apply 
AI-centric systems engineering. Finally, this 
knowledge helps formulate approaches to 
successfully address the critical AI challenge.

MEAD & CONWAY VLSI REVOLUTION
Moore’s Law and its Impact

On December 23, 1947 at Bell Laborato-
ries, William Shockley, John Bardeen, and 
Walter Brattain demonstrated the first solid 
state germanium transistor. This preceded 
numerous innovations including using 
lower-cost silicon (1954), planar fabrication 
processes (1959), Metal-oxide-semicon-
ductors field effect transistors (MOSFETs) 
(1959), and self-aligning gates (1967) which 
led to the first silicon-gate MOS integrated 
circuits (1968). Gordon Moore, Fairchild 
Semiconductor’s co-founder and Intel’s 
CEO, described observing the number of 
components per integrated circuit doubled 
every year and projected this growth would 
continue for at least another decade (Moore 
1965). In 1975, he revised this to transis-
tors doubling every two years. Amazingly 
‘Moore’s law’ has arguably held up for the 
past fifty years. 

Investors in new technologies look for 
a ‘killer-app’ increasing the odds for rapid 
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market acceptance and profitability. For the 
semiconductor industry it was the Apollo 
space program. Integrated circuits had no 
technological competition for the space 
program’s critical needs for computing 
power, low-weight, durability, power, and 
volume. The MIT Instrumentation Lab 
tried to design the Apollo computer using 
individual transistors, but after about a 
year into the effort it became obvious they 
would not be sufficient. In November 1962, 
MIT’s engineers got NASA’s permission to 
use a new technology: integrated circuits 
(Fishman 2019). The Apollo comput-
ers were their time’s most sophisticated 
general-purpose computers, designed to 
fly the entire mission on autopilot, while 
informing the astronauts of the craft’s status 
in real time.

This early development work did two 
things, it provided critical funding from a 
reliable source, the US government, and it 
rapidly drove down cost and dramatically 
improved quality. Chips costing $1,000 
per piece at the beginning of the program 
dropped to $15 each in 1963 and were 
$1.58 in 1969. In 1962 the US government 
bought 100% of the US’s integrated circuit 
production. In 1963 and 1964 the govern-
ment consumed 85%, reduced to 72% in 
1965 at a volume twenty times greater than 
in 1962. The commercial market realized 
this new technology potential and made 
rapid strides in this area. The first integrat-
ed circuit microprocessor’s design, the Intel 
4004 initiated in 1969, and launched in late 
1971 with the prophetic ad “Announcing a 
new era in integrated electronics.”

With the rapid development in tech-
nology, it became extremely difficult to 
master all technologies necessary to create 
a design. Only an expert designer with deep 
MOS process technology knowledge could 
hand craft the Intel 4004 and comparable 
designs. Federico Faggin, hired at Intel in 
April 1970 from Fairchild Semiconductor 
as the 4004’s project leader and designer, 
brought his silicon gate transistors mastery 
he had invented at Fairchild in 1968 and 
used it to develop his novel methodology 
for random chip design, key to making 
all the early Intel microprocessors. While 
architecturally simple, the 4004 design 
implementation and fabrication details 
were obscure to most computer scientists. 
According to Lynn Conway, the question 
was “whether the design of VLSI systems 
would be possible outside Intel moving 
forward” (Conway 2012).

Until 1979, specialists who understood 
every technology aspect, from 
semiconductor fabrication and transistor 
characteristics to functional blocks of 
approximately a thousand gates, the limit 
of chip fabrication at the time, designed IC. 

In the late 1970s, this approach 
started to break down. Design 
was too complex for people 
who understood the individual 
technical processes to do it, 
and the development process 
itself was complex enough it 
became the realm of its own 
specialists. In time, roles would 
stratify into architects, front-
end designers, verification 
engineers, logic designers, 
circuit designers, physical 
layout experts, and physical 
packaging experts. As a result, 
most computer architects, the 
systems engineers’ equivalent, 
lacked knowledge about the 
rapidly advancing integrated 
circuit technology, and 
could not envision how to 
fully exploit it. Nor could expert circuit 
designers provide architects with the 
necessary circuit level hooks to resolve 
intractable computer architecture problems. 
Integrated circuit development became 
limited by the architects and systems-level 
engineers’ ability to effectively design. 

Mead and Conway Design Approach
In 1975, Ivan Sutherland, Carver Mead, 

and Tom Everhart conducted a major Ad-
vanced Research Projects Agency (ARPA) 
study of microelectronics fabrication’s basic 
limitations. Their ARPA report urgently 
recommended research into “very-large-
scale integrated circuits” system design 
implications in light of coming advances in 
scaling, emphasizing no methods existed 
for handling such complexity and no ap-
proaches underway held potential solutions 
(Sutherland Mead and Everhart 1976). As a 
result, Bert and Ivan Sutherland formalized 
a collaborative research project between 
Xerox Palo Alto Research Center (PARC) 
and Caltech to explore how to create entire 
systems in silicon. Among others, Carver 
Mead joined the team from Caltech while 
Lynn Conway came in from PARC. The 
research followed an intensive hands-on 
learning process, incorporating the latest 
technologies from Silicon Valley in tool 
building and prototyping.

By late 1976, Lynn Conway “sensed in 
our work a parallel to Steinmetz’s time – a 
time when DC (direct current) technology 
was well established but was running out of 
steam – while the emerging AC (alternat-
ing current) concepts seemed mysterious, 
even to expert practitioners, who as yet had 
no formal theories to develop AC tech-
nology. Steinmetz had broken the logjam 
by coalescing mathematical methods and 
design examples that enabled practicing 
engineers to routinely design AC electri-

cal systems with predictable results. This 
starter set of knowledge was sufficient to 
launch the AC revolution. By applying 
Steinmetz’s principles, practicing engineers 
spawned a whole new industry” (Conway 
1981). Conway believed this was the right 
approach to take on the VLSI complexity 
problem. “Instead of visualizing an ever 
more complex future into which all current 
and evolving developments were projected, 
why not begin by simplifying, simplify-
ing, simplifying? Would that not spawn 
something starkly simple and eminently 
practical instead?” Conway notes “this 
wasn’t about engineering new things; it 
was about the engineering of new knowl-
edge. My key idea was to sidestep tons of 
accumulated vestigial practices in system 
architecture, logic design, circuit design 
and circuit layout, and replace them with 
a coherent but minimalist set of methods 
sufficient to do any digital design – restruc-
turing the levels of abstraction themselves 
to be appropriate for MOS-LSI (metal oxide 
semiconductor – large scale integration).” 
Figure 1 shows many critical VLSI based 
system abstractions based on this work. 
Thus, this approach would support a “sim-
plified methodology for designing whole 
systems in silicon, not just circuits – and 
aim it specifically at computer architects 
and system designers” (Conway 2012).

Mead & Conway VLSI Revolution
The new method’s clarity and conciseness 

enabled architects to design systems from 
top-to-bottom, as they previously did with 
vacuum tubes and mechanical switches 
using simple rules of thumb and heuristics. 
Long, complicated calculation and simu-
lation sequences were no longer necessary 
for this process. While this work was still 
necessary at the lower layers in the process, 
system design avoided these complications. 

Applications – Software Engineering

Logic – Computer Science

Architecture – Computer Science

Binary Code – Computer Science

Circuits – Electrical Engineering

Device Models – Electrical Engineering

Device Properties – Device Physics

Material Properties – Material Science

Figure 1. Abstraction layers in VLSI
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If the designers stayed within the abstrac-
tion layer limitations, then everything 
would work as designed.

Given these capabilities, the challenge 
was how to best transition this knowledge 
into general practice. In early June 1977, 
during an evening team-brainstorming 
meeting at PARC, Conway launched the 
writing and self-publishing a book idea, 
which was a novel idea at the time. The 
book, eventually named “Introduction to 
VLSI Systems” (Mead and Conway 1980), 
helped design courses at Caltech and U.C. 
Berkeley. Lynn Conway received another 
challenge, to teach a senior/masters-lev-
el course at MIT covering the material. 
Conway developed teaching concepts and 
methods in the semester’s first half, and 
the students completed a design project in 
the second half which, after fabrication, 
would return to the students for testing 
after completing the course. She “felt that 
unless students could learn by doing, and 
make things that worked, they would have 
merely learned a theory of design.” In addi-
tion, not only did the project work inform 
the students, but the students’ results and 
feedback informed the entire process from 
the design methodology, to the textbooks 
and notes, the courses, design environ-
ments, and implementation methodologies 
(Conway 1981).

Word spread quickly on the ARPANET 
about the MIT course the completed 
advanced projects. As a result, many pro-
fessors contacted Conway about offering 
similar courses including the fabricated 
design projects. In response, Conway’s 
group at PARC began training instruc-
tors in teaching VLSI design. In addition, 
her lecture notes created an “Instructor’s 
Guide to VLSI System Design” (Conway 
1979) and those interested in teaching the 
course received printed copies (Conway 
2012). These notes were a critical element 
containg the full description of the new 
design methods not fully described in the 
book. These notes, rather than the textbook 
alone, provided a complete description of 
concise, clear, and accessible design to the 
students, sufficient for them to do VLSI 
system design.

Another critical fact enabling rapid 
scale-up was Mead’s earlier work in VLSI 
instruction which started in 1971. This 
first VLSI course included each student 
designing a simple project, placed onto a 
single mask-set, fabricated and then tested 
by the students. This course repeated each 
year until 1977 when Mead and Conway 
wrote the book. The result was the entire 
design process, the course material , and 
the fabrication interface evolved on a small 
scale before any attempt to scale it up. This 
ensured creating a success driven vehicle 

for multiple universities to participate in 
this process using the a “silicon foundry.”

The movement was a huge success in 
its first year. Twelved leading universities 
participated, allowing 124 designers 
to create 82 designs using the new 
Mead-Conway text, the new Instructors 
Guidebook, and the most recent Guide to 
LSI Implementation. Many designs were 
quite advanced for the time, pushing the 
limits of system architectures. Following 
this success, Caltech and MIT organized 
VLSI conferences, published a VLSI design 
magazine, and Defense Advanced Research 
Projects Agency (DARPA) funding 
launched a VLSI research program. Within 
two years, 120 universities around the 
world offered Mead-Conway VLSI courses, 
with the book translated into Japanese, 
Italian, French, and Russian. The result 
was thousands of students educated in 
the process, venture capital VLSI design 
startup company funding, EDA companies 
and foundry services. Concepts such as 
simplified design methods, new electronic 
representations of digital design data, 
scalable design rules, clean formalized 
digital interfaces between design and 
manufacturing, and widely accessible 
silicon foundries suddenly enabled chip 
designers to create tens of thousands of 
chip designs. A completely new way of 
creating VLSI systems on silicon developed. 
The most significant result was the ability 
for engineering design capabilities to 
support exploiting silicon capabilities 
driven by Moore’s Law, effectively enabling 
a million fold increase in transistors from 
1970 to the present.

SYSTEMS ENGINEERING CHALLENGES 
WITH AI
Artificial Intelligence Background

As with VLSI technologies and the 
resultant Moore’s Law, artificial intelligence 
(AI) has a long and eventful history. To 
understand where AI is today, it is helpful 
to understand how it developed over the 
past sixty years. There has always been 
tension between two purposes for AI: one, 
understanding the way our minds work, 
and two, automating human thought. The 
second purpose leads to thinking robots 
and to familiar hopes and concerns for the 
future economy. However, historically, goal 
one’s scientific pursuit has led to progress 
toward goal two. In the early 1960s, Herbert 
Simon and Marvin Minsky followed two 
very different paths to develop software 
experiments not only producing behav-
ior resembling thinking, but did so with 
techniques imitating the human brain. 
The hope was, if a computer thinks like a 
person, the computer’s software could help 
better understand human thought.

Simon developed Soar, an AI program 
modeling logical thinking and human 
memory. Researchers found practical 
thought required a great deal of logic, 
and eventually this path led to extremely 
complicated programs just to move blocks 
around on a table, and no one believed peo-
ple’s minds truly addressed such complex 
logical deductions in everyday tasks. How-
ever, after simplifying the logic down to a 
large rule set and a rule-processing engine, 
AI software performed impressively. By the 
early 1970s, these rule-based expert systems 
out-performed humans at diagnosing infec-
tious diseases (MYCIN) and analyzing or-
ganic chemicals (DENDRAL). In the 1980s, 
expert systems functioned in industrial 
applications such as logistics optimization 
and call center phone response automation. 
These rule-based systems’ success directly 
depends on the logic developed by humans 
who are expert in the particular situation. 
As a result, it is difficult for these systems to 
handle new situations and also are limited 
in their abstraction capabilities, taking 
insights derived from one situation and 
applying them to new problems. 

Minsky took a much lower-level ap-
proach, structuring his software to imitate 
the way neurons connect in the brain. This 
software became known as neural networks 
or neural nets. Neural nets faced the oppo-
site challenge to logic software. Where logic 
AI seemed far more complex than everyday 
human thought, neural nets seemed far 
too simple. Neuroscience moving from a 
1960s brain model, containing millions 
of neurons with matching connections, to 
the 1990s model, a trillion neurons and 
countless connections, did not help. Even 
for modern computers, imitating such 
a network is intimidating. Also, deeply 
understanding operating much simpler 
neural nets with only millions of connec-
tions is nearly hopeless. So while the insight 
into human thought provided through this 
approach was limited, in the twenty-first 
century, neural nets are outperforming 
rule and logic based systems on cognitive 
tasks. These neural net systems do not rely 
on precise and exact rules, but rather use 
statistical models for certain problems, and 
then ’train’ on many data samples to make 
them more precise and efficient. Neural 
nets detect patterns from large data sets, 
and use them to predict where a new data 
set sample will fall, either in a category 
(such as cat, dog) or in an approximate 
numerical value (such as selling prices for 
houses). Often, the training requires the 
networks to analyze tens of thousands of 
data sources to achieve a tiny improvement. 

So far, neural net systems have managed 
to outdo humans at face recognition, speech 
transcription, object recognition, predicting 
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relationships, and even playing chess 
and more recently Go. They are making 
great leaps forward in translation, and are 
starting to control autonomous cars and 
aerial drones. The success of these systems 
at such complex tasks leave many non-
experts baffled as they are not sure how or 
why they actually work. Major issues neural 
net systems face pertain to explainability, 
making them work with small data sets, and 
gneralizing other domains on their own.

Success of AI-Intensive Systems
While experts abilities to explain the 

‘how’ of their decision-making processes 
severely limited rule-based system’s hand 
crafted knowledge approach, neural net 
systems have migrated from classic ma-
chine learning forms, requiring significant 
human interaction through structured, 
labeled data, to deep learning forms which 
can operate with limited human oversight. 
This deep learning benefited from numer-
ous external factors, namely computation 
driven by advancements in AI, Moore’s 
Law and graphics processing units, and the 
availability of vast data amounts.

There have been advancements on multi-
ple fronts in AI, primarily in more efficient 
machine-learning algorithms for neural 
nets and in areas such as graphical models, 
including Bayesian nets; causal models and 
Markov models; statistical models; and 
various ensemble methods.

Graphics processing units (GPUs) drive 
statistical learning AI systems’ perfor-
mance. In 2018, Nvidia CEO Jensen Huang 
noted their GPUs were 25 times faster than 
they were five years ago, versus the factor 
of 10 achieved by Moore’s law, and the 

performance gain on another benchmark 
AlexNet, a neural network trained on 15 
million images has undergone a speedup of 
500x (Perry 2018).

Innovation excels by both hardware and 
the entire stack. While AI algorithms and 
software drive capabilities, big data expands 
the reach. Circa 1980, Robert Metcalfe, an 
engineer, entrepreneur, and co-inventor 
of the Ethernet posited a telecommunica-
tions network’s effect is proportional to the 
square of connected users. While Moore’s 
law drove the transistor numbers on an 
integrated circuit, Metcalfe’s law has driven 
the internet and the internet of things’ 
explosion, and both have driven data’s 
hyper-explosion.

In this case, the government did not 
drive the killer app, but rather of the result-
ing commercial forces in determining cus-
tomer preferences (Google, Amazon, Face-
book, Netflix, Salesforce) and the financial 
market in risk and reward assessment. A 
study shows as early as 2017, over 60% of 
New York Stock Exchange (NYSE) trading 
happens algorithmically (Cheng 2017).

 AI Impact on Systems Engineering
AI has not only had a tremendous 

impact our society, but also on the systems 
nature we are envisioning, developing, 
supporting, and sustaining. A framework 
useful in understanding this transformation 
is the observe-orient-decide-act (OODA) 
loop developed by military strategist and 
United States Air Force Colonel John Boyd 
as shown in Figure 2. Boyd applied the con-
cept to the combat operations process, of-
ten at the operational level during military 
campaigns. It now applies to understanding 

commercial operations and learning pro-
cesses. The approach explains how agility 
can overcome raw power in dealing with 
human opponents. Boyd believed whom-
ever could traverse the OODA loop most 
quickly, would be able to bewilder and con-
found their opposition. He made a $40 bet 
he could transform a vulnerable position to 
dominance in a fighter plan within 40 sec-
onds. He never lost the bet (Coram 2002). 
Digital engineering’s current transforma-
tion within systems engineering has in its 
roots in the OODA loop’s acceleration.

As defined by INCOSE, “Systems engi-
neering is a transdisciplinary and inte-
grative approach to enable the successful 
realization, use, and retirement of engi-
neered systems, using systems principles 
and concepts, and scientific, technological, 
and management methods.” However, 
systems engineers have only designed the 
act system portion and perhaps occasion-
ally the observe functionality, whereas 
the people using the system conduct the 
observe-orient-decide parts. So, while the 
systems engineers might design a machine 
to transform or move something, the deter-
mination on how to use the machine was 
usually in the hands of the human operator 
whose training and oversight were the 
another party’s responsibility. Thus, even 
though the human’s performance is critical 
to the system’s successful operation, a 
systems engineer would rarely consider the 
humans’ training and their performance’s 
continual review to be their responsibility. 
Using artificial intelligence changes this 
equation as engineers increasingly bear 
responsibility for the observe, orient, and 
decide loop portions. This has deep and far 

Figure 2.  John Boyd’s OODA loop
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reaching consequences.
Rather than blaming failures on human 

error, the most frequent error type, increas-
ing responsibility falls to systems engineers 
for how the entire system operates in its 
environment. As systems engineers are 
rarely responsible for human training and 
performance monitoring, it is no won-
der this presents extremely challenging 
responsibilities with technology replacing 
the human element. AI continually learning 
as the environment changes also means 
the systems engineer’s job never ends, but 
rather the system design must successfully 
evolve. Indeed, if the systems engineer is 
responsible for these issues, then the system 
certainly has moved from being merely 
complicated, behavioral understanding, 
to where it is complex and fundamentally 
unpredictable. As such, systems engineer-
ing needs to move from an inherently 
open-loop system, to closed-loop with 
continual active engineering engagement. 
OODA loops series and hierarchy represent 
a closed-loop system.

For these reasons, systems engineering 
in many instances will need to transform as 
noted below:

■	 Systems built to last			 
=> systems built to evolve

■	 Satisfying the requirements              	
=> Constant experimentation and 
innovation                

■	 Phase-based V&V			 
=> Continuous V&V

■	 which the following transitions enable:
■	 Opinion-based decision making	 => 

Data-driven decision making
■	 Paper-based documents		  => 

Model-based documentation
■	 Deeply integrated architectures	 => 

Modular architectures
■	 Hierarchical organizational model	=> 

Ecosystem of partners

As with VLSI in the 1970’s, today there 
is a tremendous challenge in assembling a 
team with the necessary skills to develop AI 
intensive systems. Even if the engineering 
and systems sciences existed to support it, 
it is unclear where to find the engineers 
broadly supporting this work. Since 2000, 
the AI startups have increased by 1400 
percent, and since 2013 the jobs requiring 
AI skills has increased by 450 percent. 
Based on 2018 LinkedIn data, data science 
roles have increased 500 percent since 2014 
and machine learning roles have increased 
by 1200 percent. Those with the critical 
skills tend to go where they are most highly 
valued; Google and Facebook hire approx-
imately 80 percent of the recent PhD grad-
uates in machine learning (Siebel 2019). 
Clearly, it is not possible to have significant 
engineering staff understanding systems 

and the entire AI stack.

SYSTEM ENGINEERING AI 
REVOLUTION
Lessons from Mead and 
Conway

The current situation 
with AI intensive system 
engineering has much 
in common with the 
environment in the late 
1970’s VLSI design. In 
both cases, the techni-
cal capabilities’ rapid 
growth far outstripped 
the ability to engineer 
the technology, with 
respect to both complex-
ity and the quantity of 
people understanding the entire technical 
stack. Given these dual needs, it is clear 
education has a major role in developing 
the engineering knowledge and in training 
those using it, both grounded in engineer-
ing real systems.

In 2014, a conference panel session and 
paper reflected on Mead and Conway’s 
heritage (Casele-Rossi 2014). As Prof. Luca 
Carloni noted, “Thirty years later what has 
remained the same includes: (1) the impor-
tance for interdisciplinary approaches to re-
search and development, (2) the continuous 
quest for new vertically-integrated scalable 
design methodologies, and (3) the need for 
open standards and interchange procedures 
that foster innovation by enabling collab-
orative engineering across institutions and 
beyond geographic constraints.” Carloni 
adds, “the heritage of Mead & Conway lives 
on due to the continuous need to develop 
new vertically-integrated design methodol-
ogies, which requires reinventing the stack 
of levels of abstractions to tame design 
complexity while unleashing performance 
scalability.”

Finally, Professor Alberto Sangiovan-
ni-Vincentelli notes the “meta principles 
are the pillars of its success over the years, 
namely simplification, interdisciplinarity, 
collaboration and orthogonalization of con-
cerns.” This ‘orthogonalization of concerns’ 
is noteworthy as it reduces complexity by 
separating various design aspects facilitat-
ing independent optimization. There has 
been a major focus in electronic system 
design for reuse at all abstraction levels to 
cope with increasingly complicated inte-
grated circuits and relentless time to market 
pressure.

Path Forward for Systems Engineering in AI 
Intensive Systems 

What is the path forward for AI inten-
sive systems engineering? Clearly, it must 
take a transdisciplinary approach. Systems 

engineering and computer science need to 
not only learn to speak the same language, 
but to have discussion and continuing 
dialog. Unfortunately, the silos are strong 
in academia, and it is the exception rather 
than the rule to engage in transdiscipli-
nary research and education. Even the 
adjacent systems and software engineer-
ing disciplines almost never interact in 
academe halls. While this may be less true 
in industry, the barriers formed during 
education often carry forward. There is 
hope, however, as academic silos were also 
in place in the 1970’s at a time when great 
collaboration took place. With the extreme 
market need for graduates possessing these 
skills, and university’s competitive desire 
for the best students, there are rich rewards 
for institutions taking a leadership position 
in this area. Some, like MIT making a 
billion dollar plus bet with the Stephen A. 
Schwarzman College of Computing (MIT 
2018), have not lost the opportunity.

Creating solid abstraction layers support-
ing the ‘orthogonalization of concerns’ 
is critically important. Such a possibility, 
shown in Figure 3, has similar construct to 
one for the VLSI stack and captures AI in-
tensive systems’ essence which implements 
OODA loops at all scales.

Topping the stack is value chain under-
standing within the system which is critical 
to making decisions producing the desired 
benefits. Without this understanding, one 
blindly generates solutions in the hope 
they will find an acceptable one. This work 
involves understanding context, relation-
ships and dynamics, and often denotes the 
systems thinker. The next layer down in-
volves determining the decisions critical to 
achieving the desired outcome in the value 
chain, and the data used to support these. 
This is not something usually done in opin-
ion-based environments, but is increasingly 
important to systems engineering in a 
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data-driven environment.
After identifying the data type, its sources 

need determining and the data needs 
collecting and aggregating to support the 
necessary decision making. It is likely this 
process needs automation as this will be 
an ongoing process. This is data scientist’s 
realm, working with the systems engineer, as 
these interactions tend to be very iterative. 
Next, it may be necessary to analyze the data 
and craft signals data scientists and domain 
experts believe pertain to the decisions. In 
addition, the data may need augmenting 
with meta-data to assist learning.

Next, the actual training data needs to 
identifying and preparing for learning use. 
This is a complex process requiring sub-
stantial effort to complete. First, the data 
needs to ’cleaning’; purging incomplete, 
irrelevant, or incorrect data. Then the data 
needs formatting for compliance with the 
appropriate training architecture and im-
plementation. Where there are adversaries, 
measures must prevent ‘data poisoning’. AI 
expertise is essential in this process. Then, 
the actual algorithms need selected and 
trained using the prepared data. Clearly, 
there will be iterations between the training 
data and algorithms, both taking place in 
AI province.

Once this completes, it will be nec-
essary to determine how to execute the 
algorithms. Given the rapid technology 
development pace, there will be interplay 
between the system requirements, the al-
gorithm’s needs, and AI software/hardware 
stack capabilities. The bottom two stack 
layers involve software and hardware capa-
bility interplay, similar to many embedded 
systems in which the line between software 
and hardware has become blurred, directed 
by the system design.

Finally, there is a need to design the 
system to continually evolve, learning from 
the data it accumulates. This overall system 
architecture is the systems engineer’s 
province.

Supporting these layered abstractions 
are open standards and interchange 
procedures enabling continual innovation 
and investment. Defining concise, clear, 
and sufficient layered abstractions is quite 
challenging as there are deep semantic 
and syntactical technical issues. Rather 
than create a complete ontology, it is 
important to remember Conway’s advice 
to “simplify, simplify, simplify.” In addition, 
there are numerous technical and non-
technical issues with standard creation. This 
ultimately involves bringing tool creators 
and vendors, making tradeoffs and decisions 
not necessarily to any one entity’s own 
self-interests. It is critical the AI ecosystems 
function as one of a ‘growing the pie’ versus 
a zero-sum game so decisions can be for 

the collective good with prospering for 
all. However, where it is not possible for 
commercial organizations to come to a 
consensus, sometimes open-source work 
can create the defacto standards.

Again, the AI system stack shown in 
Figure 3 is only an abstraction layer set 
example for AI intensive systems. While 
various roles in the engineering processes 
already support many activities, some are 
new or at least adapted from current forms. 
The actual abstraction layers need devel-
oping, verifying, and validating through 
their implementation in actual designs, and 
supporting by the appropriate standards 
and tools communities.

Role of Education
As with the Mead and Conway 

revolution, academics play a critical role 
in the AI systems engineering revolution. 
First, an academic environment strongly 
informed by the art’s state and practice 
challenges is essential as the place where 
transdisciplinary work can define the 
‘vertically-integrated scalable design 
methodologies’ required to effectively 
engineer AI intensive systems. While this 
work is foundational, its development is 
an iterative process requiring continuous 
experimentation and updates. Academia, 
in real world system class projects, can 
provide the environment for tool creation 
and experimentation, and serve as the 
research laboratory to test these ideas. A 
one or two semester class focusing first 
on principles and methodologies, and 
then secondly on practice in real designs 
provides an excellent means to evolve 
design knowledge and student capabilities. 
This coincides with the role the classroom 

played in the Meade and Conway VLSI 
revolution.

FUTURE STEPS
While there is much work to do, the 

economic and social forces strongly align to 
make this revolution happen. Transforming 
open-loop systems engineering to a 
closed-loop form is already underway. 
Systems engineers bearing responsibility 
for the entire system, including the human 
elements, occurs in the Boeing 737-MAX 
saga in which pilot training is one major 
issue in a system’s safety (Langewiesche 
2019). Being responsible for the entire 
system necessitates including the human 
element, and thus the OODA loop. Work 
needs to integrate the OODA loop into 
architectural design allowing the Orient 
and Decide capabilities to migrate between 
human and machine without forcing major 
changes.

A critical need to develop new verti-
cally-integrated scalable design meth-
odologies, validated and updated in the 
classroom, exists. As noted, the layered 
abstractions definition supporting orthog-
onalized concerns needs completed and 
integrated into an overall design methodol-
ogy, and tested with real design flows. Open 
standards and interchange procedures need 
to foster innovation by enabling collab-
orative multi-disciplinary engineering 
across institutions and beyond geographic 
constraints.

Finally, some pragmatic tangible steps 
need taken. A transdisciplinary group 
needs to write the book, create the 
courses, and conduct the classes. Let the 
revolution begin.  ¡
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INTRODUCTION

  ABSTRACT
Validating artificial intelligence systems is challenging. Systems continuing to learn new behaviors in the field are particularly difficult, 
because the designer does not know what the functions need proving. This article reports on a research project using the Toulmin 
augmentation method to structure validation test plans and validation testing for very difficult systems like field-learning AI.
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Validation Testing of 
Autonomous Learning 
Systems

We have the technological 
capability to make a system 
which learns behaviors in 
the world, acquiring field 

data to update its deep-learning engine. 
The goal for this capability is systems, once 
released into the world, taking actions 
which we never taught them, and possibly 
never imagined they would take. Such 
systems can adapt to a changing envi-
ronment, outwit a tricky foe, and create 
novel tactical responses faster than people 
could. In a military engagement, facing a 
machine-learning weapon system, perhaps 
only another machine-learning weapon 
system can hope to keep up.

However, systems learning in the field 
present a fundamental challenge to systems 
engineering. Caught in a paradigm of 
specifying behavior then verifying that 
behavior, systems engineers have no way 
to test a system intended to behave in 
un-specified ways. The solution to this 
dilemma does not exist in verification 
testing, which tests only requirements, so 
we look to validation testing.

Example: Developing an adaptive pilot’s 
assistant for an attack rotorcraft. For each 
pilot, the cockpit display is initially passive, 

but adapts to the views and instruments 
the pilot requests in various flight 
conditions and flight condition sequences. 
It also senses pilot motions and speech, 
incorporating this data into its learning. 
The result is a highly tailored interface 
different for every pilot. The pilot’s assistant 
tests on 100 pilots, but every display 
configuration comes out differently, and 
no display configurations have stabilized 
or stopped adapting at test program’s 
conclusion. While the results to date are 
encouraging, there is no sense the testing is 
complete, or ever could be complete.

The traditional approaches to verification 
and validation testing hoping to exhaus-
tively evaluate the entire action space, 
inputs and outputs, have become hopelessly 
impractical even for conventional complex 
systems (Felder and Collopy 2012). These 
approaches are even more obviously inad-
equate for systems learing in the field and 
formulating their own actions after devel-
opment is complete. Such learning enabled 
systems’ behavior will be as dynamic as the 
field data they ingest. As highlighted in the 
2010 Air Force Technology Horizon report 
(Dahm 2010), achieving gains “…from use 
of autonomous systems will require devel-

oping new methods to establish ‘certifiable 
trust in autonomy’ through verification 
and validation (V&V) of the near-infinite 
state systems that result from high levels 
of adaptability; the lack of suitable V&V 
methods today prevents all but relatively 
low levels of autonomy from being certified 
for use.”

This challenge already exists in software 
validation. Traditional validation approach-
es used a decomposable tree to capture the 
relationship between decision states and 
algorithmic sequences. For even basic ma-
chine learning, however, this is not possible; 
the algorithm ingests data and then highly 
interrelated decisions take place within a 
virtual black box to produce the final result. 
DARPA’s program on Explainable Artificial 
Intelligence, striving to develop approaches 
whereby artificial intelligence (AI) systems 
“have the ability to explain their rationale, 
characterize their strengths and weakness-
es, and convey an understanding of how 
they will behave in the future” arose from 
this very problem (DARPA 2016). More 
recent forays such as DARPA’s Assured 
Autonomy program (DARPA 2017) seek to 
bind the space for learning enabled systems 
by limiting operations to environments 
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where a definable ground truth exists, such 
as autonomous navigation where there 
are discernible bounds of desirable versus 
undesirable state spaces. However, systems 
at the capability frontier will operate 
confidently in less rigidly defined environ-
ments, without predetermined constraints. 
The most powerful military AIs will learn 
in theater to identify and classify threats, 
determine firing solutions, and respond to 
evolving enemy tactics. For such systems, 
data in the field is dynamic, uncertain, and 
unlike training data.

Common sense, and several experienced 
systems engineers, say just like with an 
unpredictable learning human being, we 
will, with experience, come to trust these 
learning AI systems, and this constitutes 
system validation. However, it is hard to 
imagine signing off on releasing a complex 
billion-dollar system on only trust.

The authors have completed the feasibil-
ity research phase on an approach to vali-
dating learning AI systems formalizing this 
trust using a structured soft logic developed 
by Stephen Toulmin. Here we report the 
research results.

WHAT IS VALIDATION?
The Systems Engineering Body of 

Knowledge (SEBoK) defines system val-
idation as “a set of actions used to check 
the compliance of any element … with its 
purpose and functions” and focuses on 
checking conformance to system require-
ments. It stresses validation is a process 
occurring throughout the lifecycle, but too 
often validation combines with verification 
and performed as the last step prior to sys-
tem delivery. When defining the intended 
system functions in advance, this approach 
to validation is successful. However, the 
whole reason for autonomous, adaptable, 
augmented-intelligence systems is to act in 
ways not specified by the designers. Thus, 
validating compliance with functions is too 
narrow to create trust in a learning system.

Validation relates to but is distinct from 
assurance, which originally meant the 
system is not broken (quality assurance), 
before migrating to a NASA-type view 
meaning the system is safe. This expanded 
to mission assurance, guaranteeing the 
system will not fail to execute the mission, 
which approaches the SEBoK validation 
meaning, except for the subtle distinction 
between system success and system failure 
avoidance. One can imagine a system 
defeating a peer enemy in four out of five 
engagements (valid) breaking in two out of 
ten engagements (not assured).

Validation standard definitions have 
regressed for the past 15 or 20 years toward 
an industry-preferred notion proving the 
system meets its requirements. Validation 

originally intended to prove the system 
would be successful when deployed. Broad-
ly defined like this, success entails many 
factors outside industry’s control, which 
explains contractor tendency to narrow 
the definition. However, it is still essential 
to guide system design and development 
toward success in the field, and validation 
in its original sense has a critical role.

RESEARCH ON VALIDATION OF AI AND 
MACHINE LEARNING SYSTEMS

Many research efforts have addressed 
specific AI system testing aspects through 
stability theory. Zhang, Clark, Rattan, and 
Muse (2015) consider class verification of 
closed-loop systems containing a neural 
network controller for first-order, nonlinear 
systems with uncertainty. In their work, 
the closed-loop system may face faults in 
either the cyber or the physical system 
components. They developed an approach 
based on Lyapunov stability theory 
detecting unstable learning behaviors 
due to unanticipated faults within either 
system portion. The work focuses on a 
critical part of the overall problem space, 
using unstable learning behaviors as a 
proxy alert for undesirable dynamics, and 
hence compromising safety. It, however, 
inwardly focuses as system verification, 
not validation; the approach considers the 
system only and does not move toward 
a methodology providing confidence in 
system behavior under potentially highly-
varying field conditions.

The commonsense approach to Roff 
and Danks (2018) discusses trust for 
autonomous systems, recognizing trust 
is a complex, multi-dimensional notion 
and not a binary concept. There are 
varying autonomy levels, each affecting 
trust development differently, and 
each posing enormous, albeit varying, 
challenges to testing, verification, 
and validation. Trust, while related 
to predictability and reliability, and 
characterized through behavior patterns, 
also contains a psychological aspect, 
particularly when considering trust 
across manned-unmanned teaming. 
The authors consequently advise against 
relying on binary “yes, trust” or “no, do 
not” frameworks and methods to discern 
actionable guidance. They similarly have 

little faith in purely technological solutions. 
Their research supports a methodology 
building confidence through answers to the 
question “What would it take to convince 
us X is true?” 

Boehm (2006) discusses the parallel 
evolution of software engineering and 
systems engineering away from sequential, 
reductionist methods toward “softer” 
processes emphasizing a more spiral, 
continuous learning approach. Boehm 
observes software requirement emergence 
is incompatible with traditional, sequential, 
waterfall process models: “Fundamentally, 
the theory underlying software and 
systems engineering process models 
needs to evolve from purely reductionist 
“modern” world views (universal, general, 
timeless, written) to a synthesis of these 
and situational “postmodern” world views 
(particular, local, timely, oral) as discussed 
in (Toulmin 1992).”

THE TOULMIN ARGUMENT METHOD
Stephen Toulmin was a British philos-

opher who began his working life during 
World War II in a role now called a radar 
systems engineer. After the war, at Cam-
bridge, he studied under Ludwig Wittgen-
stein who strongly influenced Toulmin’s 
search for truth in a complex and contex-
tual world. Toulmin found the standard for 
truth in philosophy was often Propositional 
Logic, which has been very successful as a 
truth standard in mathematics. However, 
this standard was seldom useful outside 
mathematics because Propositional Logic is 
too brittle and too restrictive. 

Propositional logic focuses on the syl-
logism, summarized formally as (A and A 
implies B) proves B. An example might be 
“Bethesda is a city, and if something is a city, 
then it must contain buildings, therefore 
Bethesda contains buildings.” The positive 
aspect of the syllogism is, when usable, it is 
very reliable. The negative side is, in contex-
tual reasoning about real-world situations, 
syllogisms can prove very little beyond what 
is obviously true in the first place.

To address this shortfall, Toulmin 
developed a softer and more robust 
deductive logic that has since found 
application in many disciplines (Toulmin 
2003). Figure 1 shows Toulmin’s logic’s basic 
elements. He begins with a claim, a true or 

Evidence Supporting/Background
Evidence

Rebuttal of Evidence

Rebuttal of
Rebuttal of Evidence

Rebuttal of Warrant

WarrantClaim

Rebuttal of
Rebuttal of Warrent

Figure 1. The Toulmin model of soft logic
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false statement, and we would like to know 
whether it is true. Evidence, drawn from 
the world or from experience, supports 
the claim. So far, the claim replaces B in 
the syllogism, and the evidence replaces 
A. Toulmin creates a warrant to replace 
“A implies B.” The warrant shows how the 
evidence leads to concluding the claim is 
true. The Toulmin system’s strength is the 
warrant can employ practical reasoning and 
common sense. Sterile statements such as “A 
implies B” no longer restrict it. The warrant 
can be any acceptable argument, such as “in 
our experience, when things like A happen, 
they almost always bring about events like 
B.”

Other elements support or clarify the 
relations between data, warrant, and claim. 
The backing is a way to reference a library, 
authority, or experience lending credibility 
to the warrant. Rebuttals restrict the data or 
warrants ‘applicability – the rebuttal identi-
fies areas where the data does not apply or 
the warrant is not legitimate.

Figure 2 shows this method’s first 
fictitious application to validate a Venus 
autonomous lander system, illustrating our 
prototype tool, based on Vue.js, an open-
source Java-based framework. The claim 
is the Entry-Descent-Landing phase of the 
lander will be successful. Note no reference 
to functional requirements support the 

claim. One goal was to show validation can 
occur without functional requirements, a 
necessary step to validate field-adapting 
systems, where the future function set is 
unknown at design time. 

The blue warrant conveys the essential 
argument why the evidence supports the 
claim. The evidence is largely use cases, 
particularly the evidence directly support-
ing the warrant. The prevalence of use cases 
is not a surprising result, as testing complex 
transactional software, where exhaustive 
state checking is not feasible, commonly 
employs them. Use cases helped avoid 
direct individual function tests, such as de-
ploying a parachute and observing whether 

Since the system adapted successfully in a wide range of
cases, it should adapt successfully in actual EDL

Use case: landing on a rock and self-righting

Use case: landing in acid pool
EDL of Venera 13

EDL of MSL

Use case: loss of radar during landing

Magellan showed places to avoid

Use case: flying through a storm

Successful EDL

Weather changes on Venus
and we have very few samples

Fluid mechanics models of
atmosphere are not accurate

There are features on the surface 
of Venus we may not know about

We will test many weather conditions

Landing has been
designed to be insensitive

to fluid mechanics

Figure 2. Validation of entry-descent-landing for an autonomous venus lander

Enemies will change as time
progresses. Allies may become

enemies and enemies may
become allies

Just as the system learned to
identify them as a threat it will 

adapt to change who is perceived
as an ally or a threat

Only one condition is not
sufficient proof that this works

We will develop a matrix of
different disruptive conditions

UGV system will be
successful in the field

If system can execute all
aspects of ConOps, it

will be successful

UGV will remain operational long
enough to procure valuable information

Successful differentiation between
threats and non-threats

System meets requirements
for operational duration

Use case: enemy RF signal  vs.
allied or other environmental signal

Use case: Allied vehicle
vs. enemy vehicle

Use case: withstands
major weather conditions

Use case: flipping over and
self-righting through adaption

Use case: Red team spoofs threat
vs. non-threat differentiation

Mobility range
requirement met

Environmental tolerance
requirement met

Maintenance
requirement met

Signatures used for
identification may change

as time passes

Enemies mimic
Environmental signals

Bound system based
on system context

Definition of
“withstands” is soft

Built a system that ML-adapted in the lab
then successfully ML-adapted in the field

Import navigation system from TARDEC UGV

Library of weather conditions

Since the system learned to
identify certain threats it will

learn to identify more in the field

Since the UGV’s navigation system adapted
successfully in these conditions, it will also

adapt successfully in similar conditions

Successful data collection and
communication back to base

Successful autonomous
navigation

Almost certainly

Probably

Link “Datastream”

Figure 3. A second application
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the parachute actually deployed. We had 
no objections to functional testing, but we 
knew if the new approach relied entirely on 
functional tests, we would have demon-
strated a replacement for verification test-
ing rather than a new approach to testing. 
It is our opinion verification testing does 
not need replacing, but adaptive systems 
seriously challenge validation testing.

The red polygons are rebuttals, which 
can show flaws or limits to warrants and 
evidence. Two rebuttals in Figure 2 contain 
gray rebuttals-to-the-rebuttal the rebuttal’s 
impact.

Figure 3 shows our second prototype 
application, an unmanned ground vehicle 
(UGV) to perform reconnaissance. Again, 
this is a fictitious example to assess the 
method’s basic feasibility.

In this graph, data shaded green means 
the data is currently available, and purple 
means there is a plan to collect the data or 
run the test, but nothing is available yet. 
We reserve yellow for a test or investigation 
currently in progress, but without complete 
results. In this way, the graph acts as a 
planning tool for validation as well as a 
record for when testing is complete.

This graph also includes qualifiers 
in gray borders applied to the blue 
warrants. Qualifiers are a major difference 
between propositional logic and the 
Toulmin model. In propositional logic, 

any statement can only possess one of 
three statuses with respect to truth: the 
statement is true, false, or undecided. The 
Toulmin model, in deference to actual 
language and the nature of fact in the real 
world, allows all qualifier levels. Statements 
can be possible, likely, almost surely 
true, or most definitely true. Qualifiers 
can apply to data, warrants, or claims to 
indicate the extent to which they are true. 
When Bayesian reasoning is available, 
qualifiers can be numerical probabilities. 
In some cases this will allow various data 
and warrant qualifiers to mathematically 
combine to form the claim’s qualifier, an 
uncertainty quantification.

We also added the notion a warrant 
could show how claims might justify a 
more general claim. In order to preserve a 
hierarchical structure necessary to describ-
ing a complex validation, we devised a link 
connecting one graph to another.

In the end, validation rests on evidence 
collection comprising tests, analyses, data, 
and the usual validation components today. 
However our model compiles this evidence 
into the logic by which the evidence 
supports trust in the system’s success. 
The model facilitates asking if evidence 
is sufficient, specifically where it needs 
shoring up. Impact on claims strength 
assists project management decisions to not 
execute or delay a test.

Our brief study, reported here, 
demonstrated the method’s rough 
feasibility, and we learned much about 
applying it. A follow-on project could 
develop this validation method by 
applying it to actual systems and training 
systems engineers in using the method, 
then observing their performance to feed 
improvements back into the training. At 
this point, the method has shown it might 
be quite effective, and no showstoppers 
have appeared casting shadows on its 
feasibility for full-scale application to 
complex systems. Advantages we have 
observed for the Toulmin model include:

■	 Because the model is formal, it orga-
nizes validation test lists and shows 
an explicit and reasoned connection 
between tests, the specific aspects, and 
capabilities validated by the test.

■	 Warrants can capture the interaction 
between data from various tests and 
other sources. A surprisingly explicit 
and detailed result from one test may 
compensate for an unfortunately am-
biguous result from another test.

We look forward to returning to 
INSIGHT with more information about this 
new approach as it further develops.  ¡
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INTRODUCTION

  ABSTRACT
AI technology’s rapid development has led to various arguments for SE for AI, as well as AI for systems engineering. This article 
argues for and illustrates a third perspective — AI as systems engineering. A conceptual architecture articulates employing AI 
as an assistant systems engineering engineer. This cognitive assistant understands systems engineering concepts, principles, 
methods, and tools as well as the workflows and preferences of the particular supported engineer. The vision is a cognitive assistant 
understanding your domain, your current intentions, and you.

William B. Rouse
Copyright © 2020 by William B. Rouse. Published and used by INCOSE with permission.

AI as Systems Engineering 
Augmented Intelligence 
for Systems Engineers

The first artificial intelligence (AI) 
wave emerged in the mid 1950s, 
with an emphasis on rule-based 
symbolic logic, some statistical 

modeling included. Overselling the AI 
prospects led to the first AI winter in the 
mid 1970s. Expert systems led to a second 
interest wave in the 1980s, but by the late 
1980s, the second AI winter emerged. The 
third wave began in the 2000s with matur-
ing “deep learning” via multi-layered statis-
tical models. It remains unknown whether 
a third AI winter will emerge (Rouse and 
Spohrer 2018).

The hype associated with machine learn-
ing is extraordinary with various pundits 
projecting pending nirvana and others 
projecting human work elimination, eco-
nomic chaos, and revolt. Brockman (2019) 
presents 25 different views by various 
experts. There is a middle ground recogniz-
ing AI as a technnology spectrum ranging 
from deep learning to rule-based symbolic 
logic. This spectrum can enable augment-
ing human intelligence to substantially 
enhance human-machine capabilities and 
performance. 

Figure 1 portrays the AI spectrum from 
statistical models to symbolic logic. Ma-
chine learning can be superior for recog-
nition and classification. Symbolic logic is 
better for problem solving, teaching, and 

advising. Decision making can benefit 
from both approaches, as illustrated later. 
Consider a system to teach algebra. I can 
imagine training machine learning with 
many problems and solutions so it can 
readily solve such problems.

However, if system needed to teach 
humans how to do algebra, this system 
would be useless because it could not 
explain how it was solving problems. In 
fact it is doubtful humans could employ the 
machine’s approach even if it could explain 
it. This reminds me of a recent article 
reporting on how many Stop signs trained 
machine learning to recognize these signs. 
In contrast, when my three-year old grand-
son asked, “What is that sign called?” and 
I told him it was a Stop sign, he insisted on 
pointing out Stop signs for the rest of the 
day.  He only needed one example.

AUGMENTED INTELLIGENCE
Figure 2 provides an overall architecture 

for augmenting intelligence, drawing on 
Figure 1’s AI spectrum, and building on a 
long evolving construct application series 
(Rouse 2019). The intelligent interface 
becomes a component in the broader aug-
mentation. The overall logic is:

■	 Humans see displays and controls, and 
decide and act. Humans need not deal 
with anything other than these three 

architecture elements. The overall sys-
tem frames human’s roles and tasks and 
provides support accordingly.

■	 The intent inference function infers 
what task(s) humans intend to do. This 
function retrieves information and 
control needed for these task(s). The 
information management function 
determines displays and controls ap-
propriate for meeting information and 
control needs

■	 The intelligent tutoring function infers 
humans’ knowledge and skill deficits 
relative to these task(s). If humans 
cannot perform the task(s) acceptably, 
the information management function 
either provides just-in-time training or 
informs adaptive aiding (see below).
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Figure 1. The spectrum of AI
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■	 Deep learning neural nets provide 
recommended actions and decisions. 
The explanation management function 
explains these recommendations to 
the requested extent. The next section 
further elaborates on this function.

■	 The adaptive aiding function, within 
the intelligent interface, determines the 
human’s execution role. This can range 
from manual to automatic control, with 
execution typically somewhere between 
these extremes. The error monitoring 
function, within the intelligent inter-
face, detects, classifies, and remediates 
anomalies.

Note these functions influence each 
other. For example, if adaptive aiding 
determines humans should perform task(s), 
intelligent tutoring assesses necessary 
knowledge and skill availability, and 
determines training interventions needed, 
and information management provides 
the tutoring experiences to augment 
knowledge and skills. On the other hand, 
if adaptive aiding determines automation 
should perform task(s), intelligent tutoring 
assesses humans’ abilities to monitor 
automation, assuming such monitoring is a 
requirement.

EXPLANATION MANAGEMENT
As noted earlier, neural network models 

cannot explain their (recommended) 
decisions. This would seem to be a 

fundamental limitation. However, 
science has long addressed the 
need to understand systems unable 
to explain their own behaviors. 
Experimental methods develop 
statistical input-output relationship 
models. Applying these methods 
to neural network models can yield 
mathematical models enabling 
explaining the (recommended) 
decisions as shown in Figure 3.

Given independent variables 
X, a statistical experiment design, 
for example, a fractional factorial 
design, can determine the X 
value combinations to input to 
the neural net model(s). These 
models, typically multi-layered, 
have “learned” from exposure to 
massive data lakes with labeled 
true positive instances, possibly 
false positives, and false negatives. 
True negatives are the remaining 
instances.

The neural net models yield 
decisions, D, in response to the 
designed X combinations of X. A 
model D(X), fits to these input-
output data sets. Explanation 
generation then yields explanations 

E(D) based on the attributes and weights in 
the fitted model. The result is a first-order, 
non-deep, neural net (recommended) 
decision explanation.

As noted earlier, the paradigm underly-
ing Figure 3 is the standard empirical natu-
ral science paradigm. Thus, it is clear it will 
work, yield rule-based explanations, but 
will it be sufficient to help decision makers 
understand and accept what the machine 
learning recommends? I imagine this will 
depend on the application.

As an example, consider control theory. 
Optimal stochastic control theory includes 
both optimal estimation and optimal 
control. Determining the optimal solution 
across both estimation and control involves 
rather sophisticated mathematics. We 
could apply the method in Figure 3 to the 
optimal control actions resulting from this 
stochastic control problem’s solution.

We would not be able to infer the 
underlying sophisticated mathematics’ 
nature. Instead, we would likely unearth 
something akin to classic PID controllers, 
where the acronym means proportional, 
integral, and derivative attributes of the 
errors between desired and actual states. 
This has provided a reasonable optimal 
control action explanation.

AUGMENTING SYSTEMS ENGINEERING
The following scenario provides a vision 

for how AI might augment a systems 
engineer.

Dave Sawyer has led the systems engineering 
SWAT team (SEST) for two months. SEST’s 
role is to solve tough systems problems quick-
ly. He inherited this role when his mentor 
retired. He had prepared for this role. He was 
happy to run with the ball. 

Today, he feels more pressure than happi-
ness. Their driverless car program’s (Apollo) 
head noticed the advanced prototype they 
have tested at the Proving Grounds consis-
tently makes a rather odd error. It occasion-
ally makes a small, jerking movement to 
the right and then immediately recovers. It 
is rather disconcerting to passengers in the 
back seat.

Dave and his team have two days to pro-
vide insights and one week to recommend 
solutions before the blue ribbon oversight 
committee shows up for an evaluation of 
Apollo. Fortunately, they have the systems 
engineering advisor (SEA) to help them. 
Meeting these deadlines would be impossible 
without this AI-based platform.

Dave decides to explore the resources avail-
able before the first meeting with his team 
tomorrow morning. He logs into the secure 
SEA platform. Its intelligent interface imme-
diately engages him.

“Welcome back, Dave. Do you want to con-
tinue the analysis you were working on?”

“No, Marie. I have a new problem.”

Users of SEA can name their cognitive assis-
tant. Marie was Dave’s favorite aunt, almost 
his second mother.

“So, Marie, what do you know about control 
algorithms in driverless cars?”

“That’s a broad question. Do you really want 
to know everything?”

“No, of course not. I will just assume you 
know everything and will help me get to 
exactly what we need.”

“Let’s just assume I know what can be 
known, but not everything.”

“Great. Show me the trajectory data for the 
most recent Apollo tests.”

 “Do you want it aggregated across test runs, 
or just each individual run?”

“Actually, both would be a good idea.”

A large interactive visualization appears 
almost instantly. It is quickly apparent the 
slight jerk to the right does not always occur 
at the same place. Thus, it has nothing to do 
with the track itself.

Tutoring
Management

Knowledge &
Skills Deficit

Intent
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Decision
Maker(s)

Displays &
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Explanation
Management

Neural Net
Model(s)

Action
Systems
Action
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Actions &
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Intelligent
Interface

Domain
Model

Knowledge &
Skills Needed

Figure 2. Overall architecture of augmented 
intelligence
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Figure 3. Explanation management function
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“I find it hard to believe these jerks are just 
random.”

“Apollo is not just responding to the road. It 
is also responding to other vehicles,” Marie 
offers.

“Good point. Do you have data on other 
nearby vehicles over time?”

“Yes. I thought you might want that, so I 
asked this data be transferred as well.”

“Highlight in red the segments of the traces 
you just showed me whenever another 
oncoming vehicle is within 30 seconds of 
Apollo.”

The highlighted traces appeared immediately. 
The slight jerks to the right always occurred 
when the segment was red, but it did not 
happen during all the red segments.

“Apollo is clearly reacting to the other 
vehicles, but not all of them.”

“Do you want the trajectory traces of the 
other vehicles in each red segment?”

“Yes, that’s a good idea.”

“Should I also average across runs where 
Apollo reacts, with another average for when 
Apollo does not react?”

“Yes, great.”

Another plot set quickly appeared.

“The differences between the two averages 
seem real, but quite subtle.”

“Even if the differences are very small, keep 
in mind Apollo can sense things much better 
than you can,” Marie responds.

“OK, but how do we explain these 
differences?”

“There is a suite of biomedical sensors used 
for all human-driven vehicles at the Proving 
Ground. It is a lot of data. Do you want to 
see it all?”

“Do you know which measures are the best 
predictors of drivers’ loss of vigilance?”

“Yes, EEG is best.”

“Great let’s see it.”

“These measurements are pretty noisy. 
Should I smooth them out a bit?”

“Yes, that will help.”

“Two averages again?”

“Yes.”

The plots were quite clear.

“Apollo is reacting to the oncoming drivers’ 
fading vigilance.”

“Yes, and Apollo is inferring this, without 
realizing it, from subtle movements of the 
oncoming vehicle.”

“So, we know why the slight jerks to the right 
are happening, but what do we do about it?”

“Should I make sure the algorithm people are 
in tomorrow’s meeting?” Marie asked.

“Absolutely. Put together a montage of 
everything we have done, with annotations 
for team members.”

“Will do. It will broadcast in the next couple 
of minutes.”

“Also, change the calendar to make tomorrow 
morning’s meeting top priority. The Apollo 
program manager has to be there because we 
need an increased budget commitment from 
him.”

“I am sure he will like that.”

“Do I detect a bit of sarcasm, Marie?

“I am doing my best to learn from you, 
Dave.”

“Be careful or I will limit your access.”

“I’m sorry, Dave. I’m afraid you can’t do that.”

Analyzing this scenario leads to the 
compilation in Figure 4 of things SEA 
needs to understand and the abilities SEA 
needs to have. Beyond these requirements, 
Marie needs to know a lot about Dave, as 
the scenario illustrates.

User Interface
Input Functions
• controls
• keyboard
• voice

Understanding
• categories of data
• characteristics of objects of analysis
• elements of domain
• expression of a metric
• implication of language
• natural language
• resources available
• domain dynamics
• context of interest

Abilities
• access other systems
• compile results
• compose visualizations
• explain reasoning
• perform statistical analysis
• stratify data
• summarize results
• learn from current user
• learn from previous users
• reason about domain & context

Output Functions
• visualizations
• voice

Figure 4. Understanding and abilities needed to augment Systems Engineering

CONCLUSIONS
This is admittedly an ambitious vision. 

Each element in Figure 4 poses challenges. 
However, the saving grace is not only can 
Dave depend on Marie, but she can depend 
on Dave to drive problem solving, make 
choices about what he needs, and evaluate 
the results. As Selva (2019) argues, Dave 
and Maria need to learn from each other. In 
this way, they both augment each other.  ¡
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