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Systems Engineering: The Journal of The International Council on Systems Engineering

Call for Papers
he Systems Engineering journal is intend ed to be a primary 
source of multidisciplinary information for the systems engineer-
ing and management of products and services, and processes of 
all types. Systems engi neering activities involve the technologies 

and system management approaches needed for
• definition of systems, including identi fication of user 

requirements and technological specifications;
• development of systems, including concep tual architectures, 

tradeoff of design concepts, configuration management during 
system development, integration of new systems with legacy 
systems, inte grated product and process development; and

• deployment of systems, including opera tional test and 
evaluation, maintenance over an extended life cycle, and 
re-engineering.

Systems Engineering is the archival journal of, and exists to serve the 
following objectives of, the International Council on Systems Engineer-
ing (INCOSE):

• To provide a focal point for dissemination of systems 
engineering knowledge

• To promote collaboration in systems engineering education 
and research

• To encourage and assure establishment of professional 
standards for integrity in the practice of systems engineering

• To improve the professional status of all those engaged in the 
practice of systems engineering

• To encourage governmental and industrial support for research 
and educational programs that will improve the systems 
engineering process and its practice

The journal supports these goals by provi ding a continuing, respected 
publication of peer-reviewed results from research and development in 
the area of systems engineering. Systems engineering is defined broadly 
in this context as an interdisciplinary approach and means to enable the 
realization of succes s ful systems that are of high quality, cost-effective, 
and trust worthy in meeting customer requirements.

The Systems Engineering journal is dedi cated to all aspects of the 
engineering of systems: technical, management, economic, and social. 
It focuses on the life cycle processes needed to create trustworthy and 
high-quality systems. It will also emphasize the systems management 
efforts needed to define, develop, and deploy trustworthy and high 
quality processes for the production of systems. Within this, Systems 
Engineer ing is especially con cerned with evaluation of the efficiency and 
effectiveness of systems management, technical direction, and integra-
tion of systems. Systems Engi neering is also very concerned with the 
engineering of systems that support sustainable development. Modern 
systems, including both products and services, are often very knowl-
edge-intensive, and are found in both the public and private sectors. 
The journal emphasizes strate gic and program management of these, 
and the infor mation and knowledge base for knowledge princi ples, 
knowledge practices, and knowledge perspectives for the engineering of 

systems. Definitive case studies involving systems engineering practice 
are especially welcome.

The journal is a primary source of infor mation for the systems engineer-
ing of products and services that are generally large in scale, scope, 
and complexity. Systems Engineering will be especially concerned with 
process- or product-line–related efforts needed to produce products that 
are trustworthy and of high quality, and that are cost effective in meeting 
user needs. A major component of this is system cost and operational 
effectiveness determination, and the development of processes that 
ensure that products are cost effective. This requires the integration of a 
number of engi neering disciplines necessary for the definition, devel-
opment, and deployment of complex systems. It also requires attention 
to the life cycle process used to produce systems, and the integration 
of systems, including legacy systems, at various architectural levels. 
In addition, appropriate systems management of information and 
knowledge across technologies, organi zations, and environments is also 
needed to insure a sustainable world.

The journal will accept and review sub missions in English from any 
author, in any global locality, whether or not the author is an INCOSE 
member. A body of international peers will review all submissions, and 
the reviewers will suggest potential revisions to the author, with the intent 
to achieve published papers that

• relate to the field of systems engineering;
• represent new, previously unpublished work;
• advance the state of knowledge of the field; and
• conform to a high standard of scholarly presentation.

Editorial selection of works for publication will be made based on con-
tent, without regard to the stature of the authors. Selections will include 
a wide variety of international works, recognizing and supporting the 
essential breadth and universality of the field. Final selection of papers 
for publication, and the form of publication, shall rest with the editor.

Submission of quality papers for review is strongly encouraged. The 
review process is estimated to take three months, occasionally longer for 
hard-copy manuscript.

Systems Engineering operates an online submission and peer review 
system that allows authors to submit articles online and track their 
progress, throughout the peer-review process, via a web interface. 
All papers submitted to Systems Engineering, including revisions or 
resubmissions of prior manuscripts, must be made through the online 
system. Contributions sent through regular mail on paper or emails with 
attachments will not be reviewed or acknowledged.

All manuscripts must be submitted online to Systems Engineering at 
ScholarOne Manuscripts, located at:  
  http://mc.manuscriptcentral.com/SYS 
Full instructions and support are available on the site, and a user ID and 
password can be obtained on the first visit.
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About This Publication

INCOSE’s membership extends to over 18, 000 individual 
members and more than 100 corporations, government 
entities, and academic institutions. Its mission is to share, 
promote, and advance the best of systems engineering from 
across the globe for the benefit of humanity and the planet. 
INCOSE charters chapters worldwide, includes a corporate 
advisory board, and is led by elected officers and directors.

For more information, click here: 
The International Council on Systems Engineering
(www.incose.org)

INSIGHT is the magazine of the International Council on 
Systems Engineering. It is published four times per year and 
features informative articles dedicated to advancing the state 
of practice in systems engineering and to close the gap with 
the state of the art. INSIGHT delivers practical information 
on current hot topics, implementations, and best practices, 
written in applications-driven style. There is an emphasis on 
practical applications, tutorials, guides, and case studies that 
result in successful outcomes. Explicitly identified opinion 
pieces, book reviews, and technology roadmapping comple-
ment articles to stimulate advancing the state of practice. 
INSIGHT is dedicated to advancing the INCOSE objectives 
of impactful products and accelerating the transformation of 

systems engineering to a model-based discipline.
Topics to be covered include resilient systems, model-based 
systems engineering, commercial-driven transformational 
systems engineering, natural systems, agile security, systems 
of systems, and cyber-physical systems across disciplines 
and domains of interest to the constituent groups in the 
systems engineering community: industry, government, 
and academia. Advances in practice often come from lateral 
connections of information dissemination across disciplines 
and domains. INSIGHT will track advances in the state of the 
art with follow-up, practically written articles to more rapidly 
disseminate knowledge to stimulate practice throughout the 
community.

INFORMATION ABOUT INCOSE OVERVIEW

EDITORIAL BOARD AND STAFF 2020 INCOSE BOARD OF DIRECTORS

* PLEASE NOTE:  If the links highlighted here do not take you to 
those web sites, please copy and paste address in your browser.

Permission to reproduce Wiley journal Content:
Requests to reproduce material from John Wiley & Sons publications 
are being handled through the RightsLink® automated permissions 
service.

Simply follow the steps below to obtain permission via the Right-
slink® system:

•	 Locate the article you wish to reproduce on Wiley Online Library 
(http://onlinelibrary.wiley.com)

•	 Click on the ‘Request Permissions’ link, under the ‹ ARTICLE 
TOOLS › menu on the abstract page (also available from Table of 
Contents or Search Results)

•	 Follow the online instructions and select your requirements from 
the drop down options and click on ‘quick price’ to get a quote

•	 Create a RightsLink® account to complete your transaction (and 
pay, where applicable)

•	 Read and accept our Terms & Conditions and download your 
license

•	 For any technical queries please contact   
customercare@copyright.com

•	 For further information and to view a Rightslink® demo please visit 
www.wiley.com and select Rights & Permissions.

AUTHORS – If you wish to reuse your own article (or an amended 
version of it) in a new publication of which you are the author, editor 
or co-editor, prior permission is not required (with the usual acknowl-
edgements). However, a formal grant of license can be downloaded free 
of charge from RightsLink if required.

Photocopying 
Teaching institutions with a current paid subscription to the journal 
may make multiple copies for teaching purposes without charge, pro-
vided such copies are not resold or copied. In all other cases, permission 
should be obtained from a reproduction rights organisation (see below) 
or directly from RightsLink®.

Copyright Licensing Agency (CLA) 
Institutions based in the UK with a valid photocopying and/or digital 
license with the Copyright Licensing Agency may copy excerpts from 
Wiley books and journals under the terms of their license. For further 
information go to CLA.

Copyright Clearance Center (CCC) 
Institutions based in the US with a valid photocopying and/or digital 
license with the Copyright Clearance Center may copy excerpts from 
Wiley books and journals under the terms of their license, please go 
to CCC.

Other Territories:  Please contact your local reproduction rights 
organisation. For further information please visit www.wiley.com and 
select Rights & Permissions. 
If you have any questions about the permitted uses of a specific article, 
please contact us.

Permissions Department – UK 
John Wiley & Sons Ltd. 
The Atrium, 
Southern Gate, 
Chichester 
West Sussex, PO19 8SQ 
UK
Email:  Permissions@wiley.com 
Fax:  44 (0) 1243 770620
or

Permissions Department – US 
John Wiley & Sons Inc. 
111 River Street MS 4-02 
Hoboken, NJ 07030-5774 
USA
Email:  Permissions@wiley.com 
Fax:  (201) 748-6008

PERMISSIONS

ARTICLE SUBMISSION
INSIGHT@incose.org

Publication Schedule.  INSIGHT is published four times per year.
Issue and article submission deadlines are as follows:

  March 2020 issue  –  2 January
  June 2020 issue  –  2 April
  September 2020 issue  –  1 July
  December 2020 issue  –  1 October

For further information on submissions and issue themes, visit the 
INCOSE website:  www.incose.org

© 2020 Copyright Notice. 
Unless otherwise noted, the entire contents are 
copyrighted by INCOSE and may not be reproduced in 
whole or in part without written permission by INCOSE. 
Permission is given for use of up to three paragraphs as 
long as full credit is provided. The opinions expressed in  

 
INSIGHT are those of the authors and advertisers and do 
not necessarily reflect the positions of the editorial staff 
or the International Council on Systems Engineering. 
ISSN 2156-485X; (print) ISSN 2156-4868 (online)

Editor-In-Chief	 William Miller 
insight@incose.org	 +1 908-759-7110

Assistant Editor	 Lisa Hoverman 
lisa@hsmcgroup.biz

Theme Editors 
Bobbi Young	 bobbi.young@raytheon.com 
Beth Wilson	 wilsondrbeth@aol.com

Advertising Account Manager	 Dan Nicholas 
dnicholas@wiley.org	 +1 716-587-2181

Layout and Design	 Chuck Eng 
chuck.eng@comcast.net

Member Services	 INCOSE Administrative Office 
info@incose.org	 +1 858 541-1725

Officers
President:  Kerry Lunney, ESEP, Thales Australia
President-Elect:  Marilee Wheaton, INCOSE Fellow, 

The Aerospace Corporation

Secretary:  Kayla Marshall, CSEP, Lockheed Martin 
Corporation

Treasurer:  Michael Vinarcik, ESEP, SAIC

At-Large Directors
Academic Matters:  Bob Swarz, WPI
Marketing & Communications:  Lisa Hoverman, HSMC
Outreach:  Mitchell Kerman, Idaho National Laboratory
Americas Sector:  Antony Williams, ESEP, Jacobs
EMEA Sector:  Lucio Tirone, CSEP, OCSMP, Fincantieri
Asia-Oceania Sector:  Serge Landry, ESEP, Consultant
Chief Information Officer (CIO):  Bill Chown, BBM Group
Technical Director:  David Endler, CSEP, Systems 

Engineering Consultant

Deputy Technical Director:  Christopher Hoffman, CSEP, 
Cummins

Technical Services Director: Don Gelosh, WPI
Director for Strategic Integration: Tom McDermott, 

Stevens Institute of Technology
Corporate Advisory Board Chair: Don York, CSEP, SAIC
CAB Co-chair:  Ron Giachetti, Naval Postgraduate School
Chief of Staff:  Andy Pickard, Rolls Royce Corporation



SEP
TEM

B
ER

  2O
20

VOLUM
E 23/ ISSUE 3

5

A
B

O
U

T TH
IS 

P
U

B
LIC

A
TIO

N

Questions or comments concerning:

Submissions, Editorial Policy, or Publication Management 
Please contact:  William Miller, Editor-in-Chief 
insight@incose.org

Advertising — please contact:   
Susan Blessing, Senior Account Manager Sciences 
Sciences, Corporate Sales 
mobile:  24/7  201-723-3129
e-mail:  sblessin@wiley.com

Member Services – please contact:  info@incose.org

ADVERTISE

Readership 
INSIGHT reaches over 18, 000 individual members and uncounted 
employees and students of more than 100 CAB organizations worldwide. 
Readership includes engineers, manufacturers/purchasers, scientists, 
research & development processionals, presidents and CEOs, students and 
other professionals in systems engineering.

Issuance	 Circulation
2020, Vol 23, 4 Issues	 100% Paid

Contact us for Advertising and Corporate Sales Services
We have a complete range of advertising and publishing solutions profes
sionally managed within our global team. From traditional print-based 
solutions to cutting-edge online technology the Wiley-Blackwell corporate 
sales service is your connection to minds that matter. For an overview of 
all our services please browse our site which is located under the Resources 
section. Contact our corporate sales team today to discuss the range of 
services available:

•	 Print advertising for non-US journals
•	 Email Table of Contents Sponsorship
•	 Reprints
•	 Supplement and sponsorship opportunities
•	 Books
•	 Custom Projects
•	 Online advertising

Click on the option below to email your enquiry to your 
nearest office:

•	 Asia & Australia  corporatesalesaustralia@wiley.com
•	 Europe, Middle East & Africa (EMEA)  

corporatesaleseurope@wiley.com
•	 Japan  corporatesalesjapan@wiley.com
•	 Korea  corporatesaleskorea@wiley.com

USA (also Canada, and South/Central America):
•	 Healthcare Advertising  corporatesalesusa@wiley.com
•	 Science Advertising  Ads_sciences@wiley.com
•	 Reprints  Commercialreprints@wiley.com
•	 Supplements, Sponsorship, Books and Custom Projects 

busdev@wiley.com

Or please contact:
Dan Nicholas, Associate Director – Sciences, Corporate Sales
Wiley
phone:  +1 716-587-2181
e-mail:  dnicholas@wiley.com

CONTACT

ADVERTISER INDEX� September  volume 23-3
Systems Engineering Call for Papers	 inside front cover
Annual INCOSE International Workshop	 back inside cover
INCOSE regional events	 back cover

CORPORATE ADVISORY BOARD — MEMBER COMPANIES

INSIGHT volume 23, no. 3  is sponsored by the Lockheed Martin Corporation.

321 Gang, Inc.
Aerospace Corporation, The 
Airbus 
Airbus Defense and Space 
AM General LLC 
Analog Devices, Inc.
Analytic Services
Aras Corp
Aviation Industry Corporation of China, LTD
BAE Systems 
Bechtel 
Beckton Dickinson
Boeing Company, The
Bombardier Transportation
Booz Allen Hamilton Inc. 
C.S. Draper Laboratory, Inc. 
Carnegie Mellon University Software 

Engineering Institute 
Change Vision, Inc
Colorado State University
Cornell University
Cranfield University 
Cubic Corporation
Cummins, Inc.
CYBERNET MBSE
Defense Acquisition University 
DENSO Create, Inc.
Drexel University
Eindhoven University of Technology
Embraer S.A.
ENAC
Federal Aviation Administration (U.S.) 
Ford Motor Company 
Fundacao Ezute
General Dynamics 
General Motors
George Mason University 
Georgia Institute of Technology 
IBM
Idaho National Laboratory

ISAE SUPAERO
ISDEFE
ISID Engineering, LTD
iTiD Consulting, Ltd
Jacobs Engineering
Jama Software
Jet Propulsion Laboratory 
John Deere & Company
Johns Hopkins University 
KBR, Inc.
KEIO University 
L3 Harris
Leidos 
Lockheed Martin Corporation 
Los Alamos National Laboratory 
ManTech International Corporation 
Maplesoft
Massachusetts Institute of Technology 
MBDA (UK) Ltd.
Missouri University of Science & Technology 
MITRE Corporation, The 
Mitsubishi Aircraft Corporation (Mitsubishi 

Heavy Induftries Group)
National Aeronautics and Space Administration 
National Security Agency - Enterprise
Naval Postgraduate School 
Nissan Motor Co, Ltd 
No Magic/Dassault Systems
Noblis
Northrop Grumman Corporation 
Penn State University
Perspecta (formerly Vencore)
Prime Solutions Group, Inc.
Project Performance International 
Raytheon Corporation 
Roche Diagnostics 
Rolls-Royce 
Saab AB 
Safran Electronics and Defence
SAIC

Sandia National Laboratories 
Shell
Siemens 
Sierra Nevada Corporation
Singapore Institute of Technology
Skoltech
SPEC Innovations
Stellar Solutions
Stevens Institute of Technology 
Strategic Technical Services
Swedish Defence Materiel Administration 
Systems Engineering Directorate
Systems Planning and Analysis 
Thales 
TNO 
Trane Technologies
Tsinghua University
TUS Solution LLC
UK MoD 
United Technologies Corporation 
University of Arkansas 
University of California San Diego
University of Connecticut
University of Maryland 
University of Maryland, Baltimore County 
University of Michigan, Ann Arbor
University of New South Wales, The, Canberra 
University of Southern California 
University of Texas at Dallas
University of Texas at El Paso, The
US Department of Defense, Deputy Assistant 

Secretary of Defense for Systems Engineering 
Veoneer, Inc
Vitech Corporation 
Volvo Construction Equipment 
Woodward Inc 
Worcester Polytechnic Institute- WPI 
Zuken, Inc



SEP
TEM

B
ER

  2O
20

VOLUM
E 23/ ISSUE 3

6

William Miller, insight@incose.org

FROM THE 
EDITOR-IN-CHIEF

FR
O

M
 TH

E 
ED

ITO
R

-IN
-CH

IEF

I NSIGHT’s mission is providing 
informative articles advancing the 
systems engineering practice state. 
The intent is accelerating knowledge 

dissemination closing the gap between 
the practice state and the research state 
as Systems Engineering, the Journal of 
INCOSE, also Wiley published, captures. 
INCOSE thanks corporate advisory board 
member Lockheed Martin for sponsoring 
INSIGHT in 2020 and welcomes additional 
sponsors, who may contact the INCOSE 
marketing and communications director at 
marcom@incose.org.

The INSIGHT September 2020 issue’s 
theme is a joint INCOSE Systems Security 
Engineering (SSE) Working Group and 
Product Line Engineering (PLE) Working 
Group project to bring systems security 
into product line design. We thank theme 
editors Beth Wilson and Bobbi Young and 
the authors for their contributions. The 
SSE Working Group’s mission is providing 
systems engineers and systems engineering 
effective sustainable system functionality 
means and methods under advanced 
adversarial attack. Their objectives are 
instilling systems engineering responsibility 
for sustainable systems functionality 
facing intelligent, determined, and highly 
competent system adversaries; facilitating 
responsibility assimilation and dispatch; 
and instigating self-sustaining cross- 
community involvement between systems 
engineers, security engineers, and system 
security standards. The PLE Working 
Group’s mission is promoting PLE and 
related systems engineering best practices 

and to coordinate activities around PLE at 
the INCOSE level and share results. The 
working group’s objectives are helping our 
members acquire knowledge comparing 
to the state‐of‐art, share concerns, 
experiences, good practices, and traps to 
avoid while providing guidelines to set up 
and evolve organization PLE.

Young and Wilson’s article introduced 
the theme issue and the articles exploring 
the intersection between systems security 
engineering and product line engineering. 
The focus includes product line system 
security implementation techniques, 
product line architectures patterns 
addressing systems security, and security 
and resilient product line product variation 
management approaches. Two articles 
follow the lead article addressing SSE 
and PLE vocabulary, respectively. Young, 
Darbin, and Clements then describe how 
applying both SSE and PLE achieves 
a productive union, introducing the 
“securing the PLE factory” technique. 
Williams, Moss, Bataller, and Hassell 
describe how to apply cyber resiliency 
analysis to product line architectures, 
introducing the “cyber resiliency wheel” 
technique. Dove addresses product line 
resource variation security issue detection 
and mitigation p-patterns. Adejokun and 
Siok describe how to identify a product 
line design’s security requirements, 
introducing a security profile developing 
and evolving a secure product line 
aligned with industry security standards. 
Teaff describes how to apply rule-based 
system security verification in product 

line variants. Agrawal describes how to 
leverage model-based systems engineering 
capturing systems security concerns while 
developing the product line architecture. 
Navas, Voirin, Paul, and Bonnet address 
a model-based approach to systems and 
cybersecurity co-engineering in a product 
line context. Finally, Hause describes 
an integrated security views set for the 
Unified Architecture Framework (UAF) 
defining security goals and requirements 
implemented throughout the architecture.

We hope you find INSIGHT, the 
practitioners’ magazine for systems 
engineers, informative and relevant. 
Feedback from readers is critical to 
INSIGHT’s quality. We encourage letters 
to the editor at insight@incose.org. Please 
include “letter to the editor” in the subject 
line. INSIGHT also continues to solicit 
special features, standalone articles, book 
reviews, and op-eds. For information about 
INSIGHT, including upcoming issues, 
see https://www.incose.org/products-and-
publications/periodicals#INSIGHT .  ¡

Front cover image credit:  INCOSE Product Line 
Engineering Working Group
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  ABSTRACT
The INCOSE Systems Security Engineering Working Group and Product Line Engineering Working Group completed a joint 
project exploring cyber secure and resilient approaches with feature-based product line engineering. The project output results are 
in this INCOSE INSIGHT theme issue (Volume 23, Issue 3). This article introduces the theme issue and the articles exploring the 
intersection between systems security engineering and product line engineering. The focus includes techniques for implementing 
systems security as part of a product line design, patterns for product line architectures addressing systems security, and variation 
management approaches for security and resilient product line products.

Exploring Cyber Secure 
and Resilient Approaches 
with Feature-Based 
Product Line Engineering
Bobbi Young, bobbi.young@raytheon.com and Beth Wilson, wilsondrbeth@aol.com
Copyright © 2020 by Bobbi Young and Beth Wilson. Published and used by INCOSE with permission.

INTRODUCTION

The INCOSE Systems Security 
Engineering (SSE) and Product 
Line Engineering (PLE) Working 
Groups launched a joint project 

in April 2018 to explore the intersection of 
SSE and PLE. Product line design rep-
resents a unique opportunity to address 
cybersecurity and cyber resiliency in a way 
that benefits all the products in the portfo-
lio. By addressing systems security within 
the product line core team, the product 
line programs receive secure and resilient 
products and shared assets. When systems 
security repeats for every system using 
a product line product, it is a potentially 
incomplete and wasted effort. Applying sys-
tems security techniques before generating 
the variations is more cost effective and 
likely to have better outcomes.

The project vision was to bring systems 
security into product line design. The 
team focused on cyber secure and resilient 
approaches to feature-based management 
in product line implementation. The effort 
addressed the vision through three goals:

1.	 Identify and/or develop techniques 
for implementing systems security as 
part of product line design

2.	 Identify and/or develop patterns for 
product line architectures addressing 
systems security

3.	 Identify and/or develop variation 
management approaches for secure 
and resilient product line products

The articles in this theme issue address 
the intersection of SSE and PLE for product 
design, implementation, and migration 
over time. The authors collectively address 
architecture development, requirements, 
and verification using model-based systems 
engineering, SSE/PLE techniques, and 
patterns.

These articles show how applying sys-
tems security to product line design can 
provide a cost-effective focus on critical 
mission threads with recursive analysis 
at different design levels. Model-based 
systems engineering approaches capture 
systems security concerns while developing 
a digital environment to promote reuse and 
enable multi-discipline teams to co-engi-
neer the product line.

The techniques developed by this project 
show how SSE analysis can apply to interim 
systems engineering products to address 

security concerns inside and outside the 
core product line. These product line 
architecture techniques provide continuous 
analysis of the cyber-attack surface and 
address critical mission threads that may be 
different across the product line. Feature-
based variation management applied 
to the product line products results in 
security requirements in the requirements 
specification, threats in the operational 
environment description, security-related 
scenarios in the Concept of Operations, 
and test cases in the verification plan. 
Changes to the threat environment require 
evaluating the impact on the instantiated 
products across the product line.

INTRODUCTIONS TO SSE AND PLE 
VOCABULARY

When the team started this joint project, 
the initial effort was to make sure SSE 
experts were using the correct PLE vocab-
ulary and vice versa. As the authors drafted 
the initial versions of their papers, intro-
ductory material related to terminology 
repeated across the articles. We decided to 
include two introductory articles in this is-
sue to provide essential vocabulary to better 



SP
ECIA

L 
FEA

TU
R

E
SEP

TEM
B

ER
  2O

20
VOLUM

E 23/ ISSUE 3

8

understand the collaboration between the 
two working groups:

■	 Introduction to Systems Security 
Engineering Vocabulary

■	 Introduction to Product Line Engineer-
ing Vocabulary

SYSTEM SECURITY ENGINEERING 
AND FEATURE-BASED PRODUCT LINE 
ENGINEERING: A PRODUCTIVE MARRIAGE

Bobbi Young, Rowland Darbin, and Paul 
Clements describe how to apply both SSE 
and PLE to achieve the best of each. They 
introduce the “Securing the PLE Factory” 
technique that creates a product line archi-
tecture to support transferring product line 
products designed to be cyber secure and 
cyber resilient to multiple programs. When 
the security-related content is the same for 
all product line members, the PLE factory 
can design and test these products once as 
part of the product line. The product line 
team can maintain the expertise necessary 
to address evolving threats benefitting all 
the receiving programs. The technique 
includes temporal baseline management 
to synchronize the evolution of the digital 
assets at each security level as development 
occurs over time. This allows for mixed 
data sharing and multiple security levels 
across the receiving programs. The article 
also addresses “Applying PLE to Security” 
which considers the need to address the 
impact of variant related security content 
for each possible product solution within a 
product line.

ENGINEERING A CYBER RESILIENT PRODUCT 
LINE

Paula Moss, Susan Bataller, Patrice 
Williams, and Suzanne Hassell describe 
how to apply cyber resiliency analysis to 
product line architectures. They introduce 
the “Cyber Resiliency Wheel” technique 
to develop a cyber secure and cyber 
resilient product family architecture 
facilitating building block reuse of product 
modules. The cyber resiliency wheel’s 
key advantage is applying the analysis on 
interim architecture products at different 
stages of product line development and 
maintenance.

SECURITY ISSUE DETECTION AND 
MITIGATION PATTERNS FOR PRODUCT LINE 
RESOURCE VARIATION

Rick Dove describes how to represent the 
product line design as an agile architectural 
pattern. He addresses cyber-physical-
social system products using techno-social 
patterns for detecting and mitigating 
security issues. The techno-social contract 
concept provides a method to implement 

defense-in-depth as an emergent security 
behavior adapting to a varying threat.

EFFECTIVE SYSTEMS SECURITY 
REQUIREMENTS IN PRODUCT LINE 
ENGINEERING

Ademola Adejokun and Michael Siok 
describe how to identify security re-
quirements in product line design. They 
introduce a security profile to develop and 
evolve a secure product line aligned with 
industry security standards. Beyond the 
confidentiality, integrity, and availability 
requirements addressed as security tenets, 
the technique also addresses requirements 
for configuration management and the 
deployment environment.

RULE-BASED VERIFICATION OF SYSTEM 
SECURITY USING FEATURE-BASED PRODUCT 
LINE ENGINEERING

Jim Teaff describes how to apply rule-
based verification of system security in 
product line variants. The rule base is 
created in the PLE factory to provide 
continuous cyber-attack surface analysis 
and digitize cybersecurity and cyber 
resiliency verification rules. The technique 
validates instantiated variants to ensure 
systems security capabilities delivery to the 
fielded systems.

LEVERAGING A SYSTEM MODEL TO INITIATE 
SECURITY ARCHITECTURE DEVELOPMENT 
FOR PRODUCT LINES 

Angel Agrawal describes how to leverage 
model-based systems engineering to 
capture systems security concerns while 
developing the product line architecture. 
He identifies security related model 
elements using stereotypes defining 
a security architecture. The directed 
association relationships between threat 
activities and countermeasure activities 
result in a countermeasure coverage matrix 
to identify coverage and gaps for product 
line products.

TOWARDS A MODEL-BASED APPROACH 
TO SYSTEMS AND CYBERSECURITY CO-
ENGINEERING IN A PRODUCT LINE CONTEXT 

Juan Navas, Jean-Luc Voirin, Stephane 
Paul, and Stephane Bonnet describe a se-
curity-by-design co-engineering approach 
to product line development using the 
Arcadia model-based method. The tech-
nique integrates cybersecurity functions 
with the product line architecture to define 
protected services and patterns for man-
aging sensitive data. The resulting model 
elements superset includes cybersecurity 
capabilities for configuring into the product 
line products.

INTEGRATING SECURITY INTO ENTERPRISE 
ARCHITECTURE WITH UAF AND PLE

Matthew Hause describes an 
integrated security views set for the 
Unified Architecture Framework (UAF) 
defining security goals and requirements 
implemented throughout the architecture. 
The UAF security views can address 
cybersecurity and cyber resilience in the 
product line architecture capturing the 
variations. The UAF security measures 
provide a quantitative and qualitative 
method to analyze security alternatives.  ¡
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INTRODUCTION

At the beginning of the INCOSE 
joint project between the 
systems security and product 
line working groups, the team 

spent some time reviewing vocabulary. 
For those experienced in systems security 
concepts, learning the nuances of feature-
based product line engineering, and vice 
versa, was important to make progress. 
This article summarizes systems security 
concept nuances and highlights the 
essential vocabulary the team identified.

Systems security engineering is a 
discipline focused on ensuring the system 

of interest can deliver value even under 
adverse conditions. Table 1 from the 
INCOSE handbook shows a more formal 
definition. Using this definition, systems 
security engineering is a discipline to 
engineer a system of interest to ensure 
that system “can function under disruptive 
conditions associated with misuse and 
malicious behavior.”

Before we had computers, systems 
security protected the system from misuse 
that could intentionally or unintentionally 
disrupt effective operation. Guards and 
gates kept the enemy out. They authorized 

people who got in (and things they 
carried) to be there. If someone got in 
who should not be there or had malicious 
intent, the guards made sure they could 
not damage anything inside or remove 
anything valuable.

Systems security’s emphasis expanded 
when adversaries could attack from a 
distance (drop bombs from a plane) or steal 
something valuable without removing it 
(take a picture or make a recording). The 
focus remained on physical security and the 
protection of hardware-intensive systems.

Term Definition Source

Systems security 
engineering

Ensuring a system can function under disruptive conditions 
associated with misuse and malicious behavior

INCOSE SE Handbook 
(Walden, et al. 2015)

Cyberspace Interconnected digital environment of networks, services, 
systems, and processes

ISO/IEC 27102: 2019 (ISO 
2019)

Cyber-attack Malicious attempts to exploit vulnerabilities in information 
systems or physical systems in cyberspace and to damage, 
disrupt or gain unauthorized access to these systems

ISO/IEC 27102: 2019 (ISO 
2019)

Cybersecurity Safeguarding of society, people, organizations, and nations 
from cyber risks

ISO/IEC 27102:2019 (ISO 2019)

Cyber resiliency Ability to anticipate, withstand, recover from, and adapt to 
adverse conditions, stresses, attacks, or compromises on 
systems that use or are enabled by cyber resources

NIST SP 800-160 (NIST 2019)

Table 1. Definitions related to systems security engineering

  ABSTRACT
Systems security protects a system from misuse and malicious behavior and makes sure the system can deliver value even under 
adverse conditions in cyberspace. This article identifies essential systems security vocabulary including systems security engineer-
ing, cyberspace, cyber-attack, cybersecurity, and cyber resiliency. This terminology overview supports effective collaboration with 
other INCOSE working groups.

Introduction to Systems 
Security Engineering 
Vocabulary

INCOSE Systems Security Engineering Working Group, https://www.incose.org/incose-member-resources/working-groups/
analytic/systems-security-engineering
Copyright © 2020 by the INCOSE Systems Security Engineering Working Group. Published and used by INCOSE with permission.
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SYSTEMS SECURITY IN CYBERSPACE
Systems security’s focus expanded 

again to protect the information stored in 
computers. The goal stayed the same — to 
protect the system from unauthorized 
entry, to protect what is valuable if there 
is an entry, and to resist the disruption of 
the system’s operation. The challenge now 
is systems must operate in cyberspace, 
defined in table 1 as an “interconnected 
digital environment of networks, services, 
systems, and processes” representing the 
proposed definition in ISO 2019.

The focus on cyberspace is important. 
This interconnected digital environment 
soon became much more than computers 
and their software. Cyber-physical 
systems represent a global interaction 
of people, software, and hardware. The 
Internet of Things connects our smart 
phone applications to our physical 
devices. Delivering value under adverse 
conditions now needs to include cyber-
attacks, defined in ISO/IEC 27102:2019 
as “malicious attempts to exploit 

SSE focus:
Deliver value even under adverse 
conditions

Cybersecurity focus:
Protect from cyber-attack

Cyber resiliency focus:
Ensure mission success in event 
of cyber-attack

Systems security

Cybersecurity Cyber resiliency

Figure 1. Systems security engineering includes both cybersecurity and cyber 
resiliency

vulnerabilities in information systems 
or physical systems in cyberspace and to 
damage, disrupt or gain unauthorized 
access to these systems.”

An important systems security nuance in 
figure 1 is showing both cybersecurity and 
cyber resiliency. Cybersecurity as defined 
in ISO/IEC 27102:2019 is “safeguarding of 
society, people, organizations, and nations 
from cyber risks.” Cyber resiliency, defined 
in NIST 800-160, is the “ability to antici-
pate, withstand, recover from, and adapt 
to adverse conditions, stresses, attacks, or 
compromises on systems that use or are en-
abled by cyber resources.” We must protect 
the system from a cyber-attack. We must 
also ensure mission success in the event of 
a cyber-attack.

As noted in the diagram, some overlap 
exists between cybersecurity and cyber 
resiliency. Some techniques, such as en-
cryption and access control, help to both 
prevent an attack and provide resiliency if 
attacked.

Designing cyber secure and cyber 
resilient systems requires a risk-based 
assessment of how best to deliver value in 
cyberspace. We identify the critical mission 
threads and business use cases represent-
ing key value delivery aspects. We identify 
cybersecurity techniques to protect the 
critical system assets from potential threats. 
We identify cyber resiliency techniques 
and approaches to deliver value when the 
system faces adverse conditions (including 
a cyber-attack).  ¡
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INTRODUCTION

  ABSTRACT
Feature-based product line engineering (PLE) designs a portfolio of products using variation management to maximize value of 
commonality and manage differences. This article identifies essential product line vocabulary including product line engineering, 
shared assets, feature catalogue, bill-of-features, PLE factory configurator, and product asset instances. This terminology overview 
supports effective collaboration with other INCOSE working groups and summarizes the INCOSE PLE Primer.

Introduction to Product 
Line Engineering 
Vocabulary

INCOSE Product Line Engineering Working Group, https://www.incose.org/incose-member-resources/working-groups/
analytic/product-lines
Copyright © 2020 by the INCOSE Product Line Engineering Working Group. Published and used by INCOSE with permission.

Product Line Engineering (PLE) is 
a systems engineering discipline 
to engineer a portfolio of products 
using variation management tech-

niques to take advantage of products’ sim-
ilarities while managing their differences. 
This approach enables large organizations 
to maximize a portfolio’s commonality val-
ue by embracing variation as a value driver 
instead of a justification for divergence.

Feature-based PLE is a specific and 
well-documented PLE form supported by 
industrial-strength commercial automation 
and using features to express the differences 
among the products. Maximizing common-
ality requires encapsulating and abstracting 
the differences across the portfolio using 
a defined set of features enabling variation 
within shared assets ranging from systems 
development artifacts (requirements, 
systems models, and software) to the 
deployment environment (configuration 
parameters, bills of materials, and end-user 
documentation). Using these feature-based 
variation mechanisms enables organiza-
tions to encapsulate and abstract access to 
system resources from a single logical ex-
pression describing the services offered to 
the external environment. Ultimately, this 
enables a family of systems’ risk manage-
ment to scale with a normalized capability 
offering instead of each system.

FEATURE-BASED PRODUCT LINE 
ENGINEERING FACTORY

Organizations utilizing Feature-based 
PLE adopt a factory approach to building 
their products. The factory is a conceptual 
construct showing how the various Fea-
ture-based PLE aspects interact with each 
other (INCOSE 2019). Figure 1 illustrates:

•	 Shared assets are the “soft” artifacts 
supporting the creation, design, imple-
mentation, deployment, and operation 
of products. A shared asset can be any 

artifact representable digitally: require-
ments, design models, source code, test 
cases, bills of materials, wiring diagrams, 
documents, user manuals, installation 
guides, and more. They either compose 
a product or support the engineering 
process to create a product. Shared assets 
can be configured and shared across the 
product line.

A shared asset used in the product 
line exists as a superset and includes 

BILL-OF-FEATURES PORTFOLIOFEATURE CATALOGUE

SHARED ASSET SUPERSETS PRODUCT ASSET INSTANCES

PLE
FACTORY

CONFIGURATOR

EntryControl

Indicator Lockout AutoLock

Screen Speed

Park Neutral Drive

GearCenterConsoleLEDPhysical

EntryControl

EntryControl

EntryControl

Indicator Lockout AutoLock

Screen Speed

Park Neutral Drive

GearCenterConsoleLEDPhysical

Figure 1. The Feature-based PLE Factory
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any asset content used in any product. 
There is no asset content duplication or 
replication. This duplication elimination 
is where Feature-based PLE derives its 
savings.

The shared asset supersets contain 
variation points, which identify content 
included, omitted, or configured accord-
ing to the product’s feature selections. A 
statement of the product’s distinguishing 
characteristics — its features — “exercises” 
these variation points (configuring the 
content associated with each variation 
point to meet the product needs).

A key aspect of Feature-based PLE is 
consistent and traceable variation treat-
ment across all shared asset types. Fea-
ture choices are the basis of a common 
variation language across all disciplines 
and at all organization levels. This 
resolves the confusion brought about by 
different disciplines each using its own 
approach to variation.

•	 The Feature Catalogue captures the fea-
tures available for each product to select. 
A feature is a distinguishing characteristic 
describing how the product line members 
differ from each other. This provides a 
common language and definition of the 
product line’s variation scope for every-
one throughout the organization.

•	 The Bill-of-Features specifies the features 
selected for each product in the product 
line.

•	 The PLE Factory Configurator is an 
automated software tool applying a Bill-
of-Features to all shared assets. It eval-
uates each variation point to determine 
if it should include that variation point’s 
content.

•	 The PLE Factory produces as output 
Product Asset Instances, each one 
containing only the shared asset content 
suited for one product in the product 
line. Together, they constitute the artifact 

set for one product in the product line. 
Engineers now work on the shared asset 
supersets, the Feature Catalogue, and the 
Bills-of-Features, handling change and 
evolution systematically through well-de-
fined governance procedures.

Once established, the PLE Factory in-
stantiates, rather than manually creates, en-
gineering assets for products. Feature-based 
PLE transforms the task of engineering 
products into the much more efficient task 
of producing a single system: The PLE 
Factory itself.  ¡

REFERENCES
■	 INCOSE International Working Group 

for Product Line Engineering. 2019. 
“Feature-based Systems and Software 
Product Line Engineering: A Primer.” 
Available at  https://connect.incose.org/
Pages/Product-Details.aspx?Product-
Code=PLE_Primer_2019
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INTRODUCTION

System Security 
Engineering and Feature-
based Product Line 
Engineering: A Productive 
Marriage

  ABSTRACT
Product Line Engineering (PLE) is a systems engineering discipline to engineer a product portfolio using variation management 
techniques to take advantage of the products’ similarities while managing their differences. It has well known cost, quality, and 
time to delivery improvements compared to single-system development. Systems Security Engineering (SSE) is a discipline for 
engineering systems proactively and reactively mitigating vulnerabilities. Do these two engineering disciplines conflict with each 
other? Or are they compatible, even complementary? This article will discuss the relationship between PLE and SSE and how they 
work together. Specific topics include managing a product line factory of products in a secure way and implementing cyber resilient 
frameworks within a product line addressing cyber resiliency commonality and variability in product design, implementation, and 
migration over time.

Bobbi Young, bobbi.young@raytheon.com; Rowland Darbin, rowland.darbin@gd-ms.com; and Paul Clements, pclements@
biglever.com
Copyright © 2020 by Bobbi Young, Rowland Darbin, and Paul Clements. Published and used by INCOSE with permission.

Product line engineering (PLE) 
and Systems Security Engineer-
ing (SSE) are two engineering 
disciplines needing little or no 

motivating justification. Each provides 
an indispensable engineering solution to 
an overwhelming economic impetus. The 
prohibitive cost PLE avoids is building and 
maintaining a portfolio of similar systems 
independently or semi-independently. SSE 
avoids disastrous theft, protected informa-
tion disclosure, or service denial resulting 
from a security breakdown.

Lacking insight, a systems engineer 
may choose one discipline over the other 
and accept what he or she perceives as the 
lesser of two evils in a particular engineer-
ing context. Happily, however, it is not 
necessary to choose between the renowned 
efficiencies of PLE and the reassuring 
safeguards of security. This paper will show 

one can apply both disciplines together 
and achieve the best of each.

First, what does it mean, operationally 
speaking, to apply PLE and SSE together? 
It means accounting for a bi-directional 
relationship:
1.	 Applying SSE to PLE: Addressing 

security concerns while applying PLE 
processes on a daily basis.

2.	 Applying PLE to SSE: Building a prod-
uct line of security-intensive systems to 
effectively and efficiently manage their 
commonality and variations.

This article will treat each of these as a 
section of its own.

Our goal is not to comprehensively 
define a new, hybrid engineering discipline 
but to provide examples and approaches 
showing how these two disciplines work 
together in practice. We want to show PLE 

and SSE are not antagonistic towards one 
another but help each other in order to 
achieve the cost avoidance in the purview 
of each.

APPLYING SSE TO PLE
Securing the PLE Factory

As discussed in the INCOSE primer on 
Feature-based PLE (INCOSE Product Line 
Engineering Working Group 2020), the 
concept of a “factory” is central. Shared 
assets — the engineering artifacts used to 
design, develop, implement, and deploy 
the products—are maintained as super-
sets with variation points and input to 
the factory. Also input to the factory are 
each product’s feature-based descriptions. 
The PLE Factory applies one of these to 
the shared assets and the result is a set of 
asset instances applying specifically to the 
described product. Engineers in a Fea-
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Figure 1. Mixed Data Sharing and Multiple Security Level Daisy Chain Approach (Teaff 2019)

ture-based PLE organization focus on the 
PLE Factory’s care and evolution—man-
aging and implementing evolution to the 
Feature Catalog, the Shared Asset Super-
sets, and the Bills-of-Features. The PLE 
Factory generates the products themselves; 
no development occurs in them.

In this section, we consider the PLE Fac-
tory as the entity needing securing. Under 
this view, Feature-based PLE is no differ-
ent from any other project you want to 
secure; here, the PLE Factory care, feeding, 
building, nourishing, and evolution is the 
“project.” The objective is making the infor-
mation contained in the PLE Factory—the 
features, the shared assets, and the product 
definitions—immune to theft or disclosure 
to the extent required.

As a specific example, we will consider 
how to make the PLE Factory “project” se-
cure across multiple security classification 
zones. Imagine our PLE Factory includes 
requirements, source code, test cases, 
and various documentation types. Some 
capabilities of our product line, or certain 
aspects, are classified. This means some 
requirements are classified, as is the source 
code, test cases, and the documentation 
portions corresponding to those classified 
capabilities. Specifically, a portion of each 

Shared Asset Superset is classified. This is 
the information we must safeguard.

If all product line members have a classi-
fied capability, then there will be no feature 
in the Feature Catalog to choose; the 
capability is not a distinguishing character-
istic if every product has it. Let us assume, 
however, at least one of our classified capa-
bilities is optional: some product managers 
have chosen it, others have not. Then there 
will be a feature in the Feature Catalog to 
represent it. Such features, which are gen-
erally just descriptive names accompanied 
by a brief explanation, may or may not be 
classified. Typically in practice, these fea-
tures are not classified; it is their specifica-
tion and implementation that is. However, 
if the features are classified, the portions 
of the Feature Catalog corresponding to 
the classified capabilities simply join the 
safeguarded information.

Given we know the classified informa-
tion, the PLE Factory and the digital infor-
mation developed and maintained for its 
use must follow the same SSE rules as when 
handling any “project” information across 
multiple security zones. Each customer 
may dictate the security zones depending, 
for example, on International Traffic in 
Arms Regulations (ITAR) restrictions and/

or security classifications. The classified and 
unclassified security classification levels 
define security zones. The separation of 
these security classification levels requires 
managing and storing information on 
different Information Systems (IS). In ad-
dition, PLE Factories may have to manage 
digital information for different customers 
who may not want their information shared 
or commingled with other customers’ in-
formation even at the same classified levels. 
The result may require additional informa-
tion partitioning either within the same IS 
or on different ISs. The need to compart-
mentalize multiple customers’ intellectual 
property from each other is simply another 
type of “security classification” scheme.

Operating a PLE Factory across multiple 
security classification zones follows these 
rules:

1.	 Maintain all information associated 
with different classification levels in sep-
arate environments, on separate servers.

2.	 Perform as much work as possible in 
the lowest-level-classification (ideally, 
unclassified) environment.

3.	 Information may move into a higher 
classification level environment from a 
lower classification level environment, 
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but no information flows from higher to 
lower classification levels.

4.	 Information resident at a particular 
level includes the portions of the 
Feature Catalog, Shared Asset Supersets, 
and Bills-of-Features classified at that 
level. From time to time, through 
natural change processes, contents at 
that level evolve over time.

5.	 Define synchronization points at con-
venient points in time—periodically, at 
specific intervals, or in support to some 
event such as an upcoming build-and-
test milestone. Within every level, a 
snapshot of the level’s contents is passed 
to the next-higher level enclave, which 
then performs a merge between that 
content and its own.

As shown in (Teaff 2019), data-sharing 
agreements and trusted gateways can play a 
role in this process:
•	 Brokering unidirectional data sharing 

agreement with the agencies involved is 
required to take advantage of the reuse 
offered by product line engineering and 
continuously delivers product variants to 
various classified customers. Data sharing 
agreements between these agencies 
allows harvesting classified assets from 
pre-existing programs for use in the PLE 
Factory, and sharing and commingling 
variant customer information within the 
production line and the same security 
classification levels.

•	 In case there needs to be information 
separation between different ISs, the 
production line architecture uses a daisy 
chained assembly line approach as illus-
trated in Figure 1. Security zones manage 
each production line daisy chain segment. 
Files are automatically and securely 
transferred between IS security zones via 
a trusted gateway. The trusted gateway 
provides a rule-driven file content and 
meta-data inspection allowing for file 
transfer allowed by security policies.

Temporal baseline management 
synchronizes the digital information’s 
evolution at each security level as 
development occurs over time. In the 
PLE Factory, production line segment 
level baselines define temporal baselines 
comprising the superset (not the product-
specific instances output by the PLE 
Factory) of digital information and 
the PLE Factory files within the daisy 
chain segments. Standard configuration 
management processes and tooling can 
manage the baselines at each security level.

With this process in place, information 
that constitutes the contents of the PLE 
Factory is secured, in accordance with best 
SSE practices for safeguarding information

Now, what about the security of the 
products produced by the PLE Factory?

Security of the instances produced by the 
PLE Factory

To complete the applying SSE to PLE 
discussion, let us consider the product 
instances generated from the PLE Factory 
as the things needing securing. For our 
discussion this can mean either (or both) of 
two things:

1.	 Building, testing, delivering, deploying, 
and operating the instantiated product 
in a secure manner. This necessity is no 
different from a product build outside 
of PLE. Once the PLE Factory pro-
duces the instantiated product (in the 
highest-classification zone necessary), 
it delivers from that zone in the “usual” 
manner. This is SSE’s normal realm.

2.	 The instantiated product must adhere to 
the security restrictions imposed upon 
it. It must comply with rules protecting 
intellectual property, ITAR restrictions, 
and regulatory restrictions of the coun-
try of sale. 

The second is the case we will consider: 
Meeting content restrictions in a generated 
product.

A capability audit is a quality audit 
focusing on the restricted content’s correct 
use. A product manifest assists in pro-
viding checks and balances at different 
points within the production, providing an 
auditable trail to any leak sources. The Fea-
ture-based PLE Factory approach provides 
the ability to identify sensitive capabilities 
and choose to either include or exclude 
them in a product instance. This occurs by:
•	 Features representing capabilities includ-

ed or excluded in some products. Re-
stricted capabilities identified as features.

•	 Feature and product profiles identify the 
capability features to include. Profiles for 
a product must not include capability fea-
tures representing a forbidden capability.

•	 Variation points inserted within the asset 
supersets identify the location of infor-
mation related to feature specific choices. 
Variation points can identify protected 
content.

•	 Assertions or rules exclude illegal combi-
nations of capability features—a rule can 
state a particular feature is unavailable for 
a particular country of sale (ITAR), or for 
a particular customer (IP protection).

•	 The PLE Factory’s automated config-
urator supports constructing product 
instances by exercising the profiles, varia-
tion points, and assertions.

The configurator must also provide a 
product manifest for inspection ensuring 

the configurator exercised the appropriate 
profiles, variation points, and assertions 
to include or exclude capability features 
as expected. In addition to inspecting the 
generated product manifest during the au-
dit, steps must ensure careful construction 
when defining features, profiles, assertions, 
variation point placement, and inspecting/
testing the generated product instance prior 
to delivery.

To read about an example of the capability 
audit approach in use, see Clements 2013.

APPLYING PLE TO SECURITY
The previous section discussed applying 

SSE to PLE by addressing the PLE Factory’s 
security and the security of the products 
emitted by the PLE Factory.

This section will complete our treatment 
of PLE with SSE by considering the reverse 
case: How do we apply PLE to the SSE 
realm?

Suppose an organization produces a 
product line of systems under security 
requirements such as requirements dealing 
with cyber-resilience (Ross 2018). Whereas 
Section 2 addresses handling information 
securely during the product’s develop-
ment — which is the PLE Factory’s realm —
this section deals with a product line of 
products required to operate securely.

To apply PLE we ask the following two 
questions:

1.	 How does the need for security manifest 
itself as we build, deploy, and operate 
each system in our product line? Spe-
cifically, what artifacts does the need to 
implement security affect? For any spe-
cific product line under any specific se-
curity requirements set, the answer will 
be a content list in a specific artifacts 
list, but for the sake of our argument let 
us hypothesize the following:

■	 Requirements specifications will 
capture the security requirements

■	 Other documents will define the threat 
environment

■	 A Concept of Operations will define 
security-related scenarios and the 
system’s desired response to each

■	 System models will capture the secure 
solution’s design (such as a security 
architecture)

■	 Software source code will implement 
the secure solution

■	 System test cases will evaluate the 
solution security

■	 A Bill of Materials will catalog the 
devices necessary to provide physical 
security

2.	 For each artifact, is their security-
related content the same for all product 
line members or does it vary?
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Suppose the security-related content of 
each artifact we listed in Question #1 does 
not vary from system to system in the prod-
uct line. For example, all products share 
the same security architecture crafted with 
the entire product line in mind, rather than 
just a single system. Or, all systems required 
operation under the same threat environ-
ment. This case most easily occurs under 
Feature-based PLE: security-related content 
in each artifact from Question #1 does not 
vary and needs no variation points.

However, the more interesting answer 
from a PLE perspective is they do vary from 
product to product. Managing variation like 
this is Feature-based PLE’s superpower. Each 
artifact listed for Question #1 will exist as 
a superset including the respective content 
for each possible solution need. Feature 
selections will determine which system gets 
which security treatment, and variation 
points on all security-related content in 
each artifact will reflect the feature selection 
so the correct security provisions are in 
the requirements, documents, Concept of 
Operations, models, code, tests, and Bill of 
Materials.

In summary, Feature-based PLE treats 
security-related content as it would any 
other content varying from product line 
member to product line member, thus 
providing the appropriate security solution 
for each product line member. The PLE 
Factory will instantiate each product in 
the Requirements, Concept of Operations, 
models, and source code which all con-
sistently define and implement a product 
meeting its security requirements.

Once instantiated, the product can return 
to testing and certification as needed, just 
like any other security-intensive system.

CONCLUSION
Systems Security Engineering focus-

es on building and maintaining systems 
remaining secure despite malice or error. 
This requires using appropriate security 
measures and controls utilizing tools, 
processes, and methods needed to de-
sign and implement systems mitigating 
vulnerability to achieve system assurance 
(SEBoK 2019). Feature-based Product 
Line Engineering provides a company the 
power to take advantage of wide-spectrum 
reuse while managing variation among 
products delivered to multiple customers 
with variantsecurity concerns, vulnerabil-
ities, and restrictions. Feature-based PLE 
can incorporate system security practices 
and architecture frameworks addressing 
customer protection needs and security 
concerns, including protecting intellectual 
property as data, information, methods, 
techniques, and technology used to create 
the system or incorporated into the system 

while maintaining physical and operational 
control of information classification levels.

Systems Security Engineering’s nature is 
much broader than the context provided in 
this paper, as is Product Line Engineering’s 
application to manage shared assets in a 
product portfolio, as is their interaction. 
A well-known security problem involves 
aggregating data (all unclassified) in order 
to infer something classified. Feature-based 
PLE helps ameliorate that problem up 
front, rather than after the fact, by putting 
all information in supersets. The gathered 
data resides next to each other, allowing 
much up-front identification and therefore 
prevention and mitigation. Once identified, 
Feature-based PLE allows written rules, en-
forced by the PLE Factory Configurator au-
tomation, to ensure the data never co-habit 
a product at a lower classification level than 
that of their aggregated information.

The focused approach to applying PLE 
as a complementary technology to SSE in 
this paper, presented the risk reduction op-
portunity in the portfolio and the concepts 
while ensuring the PLE assets security nec-
essary in the product deployment. Embrac-
ing the SSE and PLE approaches facilitates 
deploying complex solutions to multiple 
customers with variant needs across 
multiple domains without significantly 
increasing the organization’s burden. This 
ultimately leaves more resources available 
for advancing the core value ensuring the 
organization’s success.  ¡
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Engineering a Cyber 
Resilient Product Line

Figure 1. Example product line structure
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OVERVIEW OF A PRODUCT LINE STRUCTURE 
SUPPORTING MULTIPLE ARCHITECTURES

A product line consists of a man-
aged core set of composable sys-
tems with scalable features and 
customizable variations. Critical 

mission threads may differ across the 
product line, but key product line architec-
ture components support the implementing 
capabilities supporting a specific customer 
mission.

The choice to adopt a product line 
engineering strategy allows an organization 
to manage its assets for efficient use across 
business opportunities. This article uses 
an illustrative product line containing two 
separate but related architectural solutions, 
which include some similar and some 
unique hardware assets. Developing shared 
hardware assets conforming to both archi-
tectural constraints facilitates asset usage 

across the entire product line. Using the 
product line engineering factory configura-
tor adapts the shared software asset super-
sets to these hardware assets. This approach 
comes from Meyer and Lehnerd 1997.

Figure 1 illustrates an example dual 
architecture product line for cryptographic 
solutions, supporting a core and an 
adjacent market. Each architecture 
solution supports the requirements and 
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QAs Supporting Building Block Approach

Modularity Composed of discrete components; minimized impact of 
change propagation

Interoperability Ease by which one asset can exchange data with 
another; different operating environments

Adaptability Ability to adjust to new conditions; the ability to adapt to 
new use or purpose

Table 1. Building block approach

QAs Supporting Secure Architectures 

Confidentiality Not disclosing information to unauthorized individuals or 
processes

Integrity Not modifying or deleting protected data in an 
unauthorized and undetected manner

Availability Ability to adjust to new conditions; modification ability for 
new use or purpose

Resiliency The ability to adapt to changing conditions and to 
withstand and recover rapidly from disruptions.

Table 2. Secure architectures

Figure 2. Product line business climate
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environmental considerations of the 
business opportunities within that market. 
The product line has organized its shared 
asset supersets into separate functional 
areas to create embedded cryptographic 
modules, crypto key management systems, 
and user interfaces supporting both 
architectures. Within each shared asset 
superset is a set of hardware, software, 
and firmware assets supporting the core’s 
architecture and/or adjacent business 
opportunities. Finally, each architecture 
supports several projects, with each being a 
unique architecture instantiation.

A product line can provide a structured 
approach to effectively managing 
commonality and diversity in its product 
offerings. An organization may decide 
to stand up a product line based on its 
business forecasts in its core markets. 
Alternatively, once established in a core 
market, an organization may wish to 
leverage its existing products to establish 
a presence in identified adjacent markets. 
The potential cost savings associated with 
effectively leveraging existing projects in 
the new market is a significant motivator 
for adopting a product line approach.

Figure 2 shows the business climate for 
our example product line. The organization 
has an established business presence in its 
core market. The future business climate 
shows increasing opportunities in an adja-
cent market, with a corresponding decrease 
in core business opportunities. The organi-
zation anticipates reusing technologies and 
products developed in the core market will 
provide competitive advantages in the new-
ly expanded adjacent market. Described 
below are the key components needed to 
establish a product line.

Vision: Create the vision for the product 
line, which identifies and binds its scope. 
This includes identifying the business op-
portunities within the current and adjacent 
markets the product line will support, and 
the business opportunities not in product 
line’s scope.

Product Line Guiding Practices: Identi-
fy overarching practices used across the 

product line. These include identifying 
development and change control strategies, 
funding models, and strategies for shared 
asset development with defined variation 
mechanisms.

Digital Environment: Establish a digital 
environment supporting the product line, 
which organizes digital models and repos-
itories to promote artifact reuse. Defining, 
characterizing, organizing, and managing 
the product line artifacts is essential for 
efficient governance. Creating customiz-
able templates for common product line 
documents can reduce the effort for each 
supported project.

Figure 3 provides a layered artifact 
organization for the example product line. 

The product line repository stores artifacts 
defining the product line structure, estab-
lished governance methodologies, project 
portfolio views, and product line evolu-
tionary plans. The architecture repositories, 
one for each identified architecture, store 
information common to that architecture, 
such as architecture views, data models, op-
erational views, and shared asset inventory. 
Finally, each project creates a project-spe-
cific repository to contain its unique views 
and inventory of project-unique assets.

The following recommended activities 
define each architecture within the product 
line.

Characterize the Architecture: 
Characterize the architecture by 
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Figure 4. Example project use of shared and unique assets
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identifying the architectural principles and 
quality attributes which will define the 
architecture. Table 1 and Table 2 below 
show quality attribute examples (QA)   .

Create Common Architectural Views: 
Common operational, data, and system 
views define the common architecture 
supporting the member projects.

Identify Shared Architectural Constraints: 
Shared architectural constraints facilitate 
building coherent systems from the shared 
asset superset. Examples include:

■■ Using a Modular Open System Ap-
proach (MOSA) and associated support 
for a specific Open System Architecture 
(OSA)

■■ Hardware architecture constraints, such 
as size, weight, and power restrictions

■■ Software architecture constraints, such 
as layered architecture, service-oriented 
architecture, specific middleware, and 
programming languages

Identify Shared Security Attributes and 
Capabilities: Security capabilities provided 
by the architecture may exceed the protec-
tion’s scope required by any one project.

Creating a project as part of a defined 
architecture has advantages for both the 

project and the product line. The following 
depicts the typical steps undertaken when 
adding a new project to an architecture 
solution within the product line. The proj-
ect benefits by inheriting a defined archi-
tecture, and a set of shared assets available 
to provide the required capability. The 
project identifies available shared assets, 
and the variation points used to create the 
architecturally compatible asset instance. 
Developing new assets within a shared asset 
superset can provide value to other projects 
in the product line.

Figure 4 shows an example project’s 
product line use. Project ‘A’ belongs to the 
Core Market business, and therefore inherits 
its overall architecture. The project develops 
two functions, for stand-alone cryptography, 
and for key generation and distribution. For 
the stand-alone cryptography function, as-
sets identified within the crypto and the user 
interface shared asset supersets are good 
fits for the new function. The project also 
identifies the need for new assets, developed 
within the shared asset superset. Similarly, 
the key generation and distribution function 
will use existing shared assets from the cryp-
to key management shared asset superset. 
Since project ‘A’ has some unique require-

ments for this function, unique assets will 
provide this functionality.

A key concern in a crypto architecture is 
ensuring the resulting system can achieve 
mission success in a cyber-compromised 
environment. This is also known as ‘Cyber 
Resiliency,’ associated with the “Resiliency” 
product line quality attribute. Section II 
describes the approach for applying cyber 
resiliency analysis within the product line.

CYBER RESILIENCY AND PRODUCT LINES
Cyber Resiliency is achieving mission 

success in a cyber-compromised environ-
ment. It anticipates a compromised system. 
Cyber hardening of systems is insufficient 
to ensure systems continue operating in a 
cyber-compromised environment. Brittle 
systems may result in unreliable system 
performance and failed missions in an 
environment with ever changing threats. 
Reusing Commercial-Off-the-Shelf (COTS) 
and Government-Off-the-Shelf (GOTS) 
hardware, software, and firmware has creat-
ed a vast attack surface including undiscov-
ered or unpatched vulnerabilities. Vulner-
abilities can also invade the system at any 
point in the system supply chain. “Resilient 
computer network defense must anticipate 
the emergence of new vulnerabilities, take 
action to exploit these vulnerabilities, and 
disrupt the actions of successful intruders 
to increase their work factor and minimize 
their impact. The focus of resilience is the 
assumption that attackers are inside the 
network, we cannot detect them, and yet 
engineers must ensure mission survival 
(Hassell 2015).”

“Cyber secure and cyber resilient ap-
proaches focus on both protection from 
and reaction to a cyber threat. Cyber secure 
approaches focus on keeping the adversary 
out of the system. Cyber resilient approach-
es focus on mission success if an adver-
sary can get into the system. The cyber 
resiliency wheel applies these techniques 
to interim system architecture products 
demonstrating the architecture decisions 
made to improve cyber resiliency (Hassell, 
Wilson, and Williams 2020).”

Cyber Resiliency analysis addresses key 
concerns assumed to happen during system 
operation. You may not know the specific 
cause but anticipate the resulting effect on 
the Systems of Systems. Cyber Resiliency 
has a focus on key Mission Threads and 
their associated Key Performance Parame-
ters, Technical Performance Measures and 
Measures of Effectiveness. The Mission 
Thread analysis is an architecture-based ta-
bletop analysis of customer concerns based 
on known or anticipated attacker effects 
and capabilities engineers have applied 
or will develop and field offsetting those 
concerns. This tabletop analysis includes 
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Resiliency Concerns (Effects of Exploit)

Data Exfiltration False Representation Physical Effects

Disrupt Connection Force Code Execution Social Engineering

False Information Force Supervisor Protected 
State

Software 
Exfiltration

Table 3. Resiliency concerns

Resiliency Capabilities

Adaptive Diversity Non Persistence

Containment Forensics Pre-emption

Cyber Modeling Integrity Prioritization

Deception Least Privilege Pro-active

Detection Monitoring Randomness/Unpredictability

Distributedness Cyber Maneuver Reconstitution

Redundancy

Table 4. Resiliency capabilities

Resiliency Concerns (Effects of Exploit)

Disrupt Connection Inappropriate storage of keys—Keys easily 
recovered by an attacker

Data Exfiltration Key Re Use—Allows the attacker to crack the key

False Representation Insider threat—Employees have access to keys

Table 5. Cryptography system resiliency concerns

Resiliency Capabilities 

Adaptive Audit log of key management

Containment Policy to prevent reuse of keys—lifecycle management

Least Privilege Role-based access to keys

Detection Plan to detect key misuse within software

Diversity Key rotation

Table 6. Cryptography system resiliency capabilities

Figure 5. Resiliency wheel
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a cross functional team including Oper-
ational subject matter experts, Software 
Engineers, Architects, and System Security 
Engineers. The Mission Thread binds the 
analysis timeframe to the time period 
during specific Mission Thread execution 
by the Systems of Systems. When identify-
ing gaps, resources strategically allocated 
to implement enhancements close the gaps 
and any not closed track as a program risk. 
Figure 5 shows the process for performing 
the resiliency analysis.

The cyber resiliency analysis is made 
tractable by focusing only on key mission 
threads. Improving key mission thread 
component resiliency increases other mis-
sion threads’ resiliency if they exercise the 
functionality in the improved components. 
If the improved components are a part of 
a product family, the resiliency lift applies 
across the product family.

Resiliency Concerns describe cyber 
attack effects on the System of Systems 
resulting from a cyber exploit. Architec-
turally, Use Cases describe normal system 
behavior. Misuse Cases describe resiliency 
concerns. A Misuse  Case example is what 
happens to the Systems of Systems when it 
is under a Denial of Service attack. Table 3 
provides a Resiliency Concerns list. It does 
not include all concerns applying from Sys-
tems of Systems inception to retirement.

Resiliency Capabilities can be capabilities 
built into the Systems of Systems or training 
and processes established for the Systems 
of Systems offsetting Resiliency Concerns. 
Resiliency Capabilities are proactive. They 
adhere to sound architecture principles such 
as “separation of concerns” and understand-
ing and maximizing Quality Attributes such 
as “Trust.” Table 4 derives, with some mod-
ifications, capabilities identified by Harriet 
Goldman (2010) of MITRE.

APPLYING THE RESILIENCY WHEEL: 
CRYPTOGRAPHY EXAMPLE

The following example uses the 5-step 

Resiliency Wheel to analyze 
the cryptography architecture.

Step 1: Using the Critical 
Mission Threads, Key Per-
formance Parameters, and 
Measures of Effectiveness for 
the domain; determine the 
applicable architecture artifacts 
for the analysis. These include 
the Concept of Operations di-
agram, System Block Diagram, 
Activity Diagrams, Sequence 
Diagrams, and State Diagrams.

For our cryptography exam-
ple, the critical mission thread 
is the Crypto Key Management 

Product Platform. This includes creating em-
bedded cryptographic modules, crypto key 
management systems, and user interfaces.

The Customer Key Performance Param-
eters and Measures of Effectiveness for the 
Cryptographic System are:

■	 User Interface
■	 Key Distribution
■	 Key Management

The architecture information supports 
architecture tabletop discussions with 
the stakeholders. The stakeholder group 
includes the customer, architect, safety, 
and security engineers, and key system 
developers.
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Step 2:  Identify Resiliency Concerns. 
Table 5 describes the resiliency concerns 
resulting from the tabletop discussion.

Step 3:  Identify Resiliency Capabilities 
mitigating the Concerns. Table 5 describes 
the resiliency concerns resulting from the 
tabletop discussion.

Step 4:  Identify Gaps:
False information: Attacker cracks and 

manipulates keys (inaccurate information, 
malicious content attached).

Disrupt Communications: Keys stored 
improperly.

False Representation: Observe Opera-
tions for future malicious intent.

Step 5:  Implement enhancements to 
the system(s) to mitigate the Resiliency 
Concerns.

The Resiliency Wheel should repeat 
when there are significant design changes 
to the system or changes to the operating 
environment raise new threat vectors. 
Cyber resiliency awareness should be an 
integral part of program system engineer-
ing activities.

Increasing cyber resiliency has emerged 
as a significant concern for both commer-
cial and defense systems. When related 
systems belong to a product family, the 
effectiveness of adding resiliency to product 
modules accrues across the product family, 
reducing cost, schedule, and, most impor-
tantly ensuring mission success.

SUMMARY
Product line engineering provides a 

tremendous opportunity for organizations. 
Utilizing proven practices and technology 
allows an organization to focus on 

enhancements and features benefiting 
their customers. While many benefits to 
engineering a product line exist, adding 
Cyber Resilient practices need attention. 
These Resiliency measures help ensure 
mission success in a cyber-compromised 
environment. Applying the cyber resiliency 
wheel techniques and focusing on critical 
mission threads throughout the system, 
helps engineers evaluate the organization’s 
most vital needs. Although, it is impossible 
to build a product line hardened against 
every cyber-attack, it is possible to build a 
product line with confidence using Cyber 
Resiliency techniques.  ¡
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CONTEXT

  ABSTRACT
Product Line Engineering (PLE) builds upon an Agile Architectural Pattern—with reusable resources, evolving resource vari-
ations, and a standardized interconnect and sustainment infrastructure. Commercial PLE systems attract alternative resource 
suppliers, such as automotive parts. Defense PLE systems typically result from acquirers encouraging Open System Architectures 
to enable alternative resource suppliers. Alternative resource suppliers are a major resource variation source in product line engi-
neered systems. Product line engineered systems are systems of systems with potential for complex interactions and unintended 
emergent behaviors. This article focuses on PLE cyber-physical-social system products, the security issues resource variation can 
introduce, and security patterns for detecting and mitigating these security issues. Resource variations may cause security issues 
unintentionally, but intentional introduction is also possible by malicious alternative resource suppliers, supply chain interdiction, 
and insiders. This article assumes malicious intent in resource variation as its security issue base line, as patterns for effective de-
tection and mitigation of malicious variation intent encompass unintentional occurrences.

Rick Dove, dove@parshift.com
Copyright © 2020 by Rick Dove. Published and used by INCOSE with permission.

Security Issue Detection 
and Mitigation Patterns 
for Product Line 
Resource Variation

  KEYWORDS:  social contract; techno-social contract

Product line engineering (PLE) 
can be fractal. Military radios 
produced as a product line can be 
assembled for specific features from 

an inventory of electronic circuit board 
components pooled for variations on general 
capabilities. One pool may have variations 
in sensor signal processing, another in 
transmission encryption. These radios may 
become part of an aircraft avionics system 
with an open systems architecture structured 
as a product line to accommodate different 
radio and other avionic devices. The avionics 
systems in turn may provide variations for 
use in an aircraft product family.

This article broadly addresses product 
components architected and designed as a 
product line part, and focuses on detection 
and mitigation of security issues introduced 
by component variation. Components 
have cyber, physical, and techno-social 
interactions with other components 

collectively configured as a product. 
Components adapt internally to facilitate 
variation in component features fit for 
different purposes. Variation may occur in 
cyber, physical, and techno-social features.

More specifically, this article focuses on 
PLE variation security from a techno-social 
pattern point of view. The techno-social 
viewpoint centers on the social contract 
concept among components. The social 
contract concept, introduced by the French 
philosopher Jean-Jacque Rousseau (Rous-
seau 1762), recognizes humans aggregate 
as communities for mutual preservation. A 
social contract is an implicit cultural agree-
ment or contract among society members 
that “essentially binds the members into a 
community that exists for mutual preserva-
tion” (SparkNotes 2005).

We propose PLE variation security is 
more effective when there is a techno-social 
contract of mutual protection among prod-

uct components, we discuss why this is, 
and we show ten patterns useful for social 
contract compliance.

TECHNO-SOCIAL CONTRACT CONCEPT
A product assembled from PLE compo-

nent variants, built with intent to serve a 
specific user need (or desire), is a compo-
nent collection which works to satisfy a 
user’s total need. Ultimately, a component’s 
task is to perform its intended functionality. 
A security issue in any other component it 
interacts with may affect its ability to func-
tion securely, but a security issue in any 
component may affect the ability of other 
components to function securely.

In a sense, we have a component com-
munity participating collectively to deliver 
total product satisfaction for the user. If the 
radio continues working in a disabled car 
the user experiences considerable dissatis-
faction. This degrades the radio’s participa-
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tive intent. We propose the radio (and other 
components) should have a community 
sense specifically in the security domain, 
complying with a collective social contract 
for mutual protection.

WHY TECHNO-SOCIAL ASPECTS ARE USEFUL
Long considered truth, no unit or system 

testing, certification, and standards com-
pliance can guarantee secure product op-
eration. These practices are necessary, but 
insufficient. Accidental or insider-malicious 
security issues may occur undetected at 
engineering time, but damage manifests at 
operational time. Operational time is when 
unexpected emergent behaviors can occur.

An Original Equipment Manufacturer 
(OEM) initially assembles PLE products 
and, we suggest, provides a mutual protec-
tion social contract among OEM compo-
nents. However, in deployed operation, 3rd 
party components may replace the OEM 
product components, or additional com-
ponents may add to the product from 3rd 
party sources. Nevertheless, the OEM re-
mains the producer of record, and bears the 
responsibility of product security failures. If 
a 3rd party component has a security issue 
not affecting other product components, 
the OEM is innocent, but if a 3rd party 
component acts as a gateway for security 
issues spreading to OEM components the 
OEM is at fault.

The 3rd party issue underscores the need 
for PLE product components to distrust 
other components. The OEM does not con-
trol the deployed product configuration.

A malicious OEM insider, the OEM’s 
supply chain when procuring parts for 
product components from a malicious 
source, or the OEM ships a safe product 
component but interdiction and malicious 
alteration occurs in transit to the product 
integration point, or when installation or 
maintenance personnel maliciously intro-
duce a component variation are various 
security issue introductions.

The malicious intent issue underscores 
the need for distributed real-time op-
erational behavior assessment by OEM 
components.

There are many ways to introduce a 
vulnerable variation. Attempting to pre-
clude such introductions before deploying 
a product is a form of perimeter defense. 
Implementing a product techno-social 
contract is a form of defense in depth.

For the reasons above, the operation 
must actively detect and mitigate variation 
vulnerability in a component-distributed 
manner sensitive to abnormal operational 
behavior. If the OEM product can detect 
and mitigate the uncontrollable 3rd party 
security issues and security issues intro-
duced with malicious intent, then it encom-

passes unintended OEM engineering issues 
evading discovery.

TECHNO-SOCIAL PATTERNS
Peyton Quinn will provide a conceptual 

example. Peyton has a conscience, or so it 
seems. A voice saying you did something 
probably causing others some problems, 
and you ought to confess. Peyton resides in 
a gated community with a mutual protec-
tion social contract. A bit like neighbor-
hood watch, but a lot more. The gate did 
not stop an intruder, evidenced by a mess 
made where a neighbor’s keys were kept. 
Payton’s conscience gets the upper hand 
and notifies the community association 
as well as the neighbors. The association 
responds shortly thereafter with a commu-
nity broadcast saying a few residents have 
noticed security problems and recommends 
all go on high alert. Peyton double locks 
the doors, increases surveillance by cutting 
back on editing some videos as planned, 
and calls the cleaners to fix the mess the in-
truder made. Peyton Quinn is a blazing fast 
hardware/software techno-social device—
pay a ton for edits, quintuple what software 
would have cost.

A social focus has patterns to consider 
from mutual security practices in human 
and animal social groups. The social focus 
in this article is technology-technology 
relationships rather than relationships in-
volving humans or animals. Our concern is 
with components of a cohesive techno-so-
cial product community. The following 
ten patterns come from a paper discussing 
security in the Future of Systems Engineer-
ing (Dove, Willett 2020).

Self-Protection
When a techno-social contract is present 

there is an obligation for components to 
perform the contract, seemingly benefiting 
others but it is a contract for optimizing 
self-protection. Self protection is an encom-
passing macro-pattern including the nine 
following patterns and more.

Self Aware
Techno-social capabilities rely on self 

awareness, as socialness is a relationship 
between self and others. How much self 
awareness does a component need? At 
least awareness of the functional exchanges 
establishing interactive relationships with 
other components warranting attentive 
interest. Maximally, perhaps, as follows.

Self Behavior Judgement
This is like a conscience, an indepen-

dent local agent evaluating behavior for 
expected norms and deviations constituting 
abnormality. This approach does not rely 
on other components’ sustained integrity to 

make judgement, it distributes watchfulness 
diversely and widely and is independent 
of potentially aberrant functional mecha-
nisms, regardless of cause. Such an agent 
might exist within the component or as a 
separate component-dedicated compan-
ion. See Horowitz 2015 for a functional 
example.

Self Behavior Mitigation
A self judgement may have different con-

fidence levels. Some may be sufficient for 
unilateral immediate action. An extreme 
example proposed for ad hoc networks 
includes the ability for a component (node) 
to commit suicide for the greater good. An-
other component type might call for a wipe 
and reload. A less confident judgement may 
call for consensus among peer components 
or appeal to a higher authority, perhaps 
a component functioning as community 
overwatch attentive to multiparticipant 
appeals, or a human.

Peer Behavior Judgement
Peer-behavior monitoring and judge-

ment occurs naturally and constantly in so-
cial animals. Each group member evaluates 
the others for adherence to social norms 
and threats to social coherence and secu-
rity. Humans monitor others’ behavior in 
more sophisticated and more complex ways 
than animals of lesser cognitive capability. 
A techno-social component interacts with 
other components through communication 
and observed behavior, can learn what to 
expect as normal, and vet for normalcy 
before, during, or after acting upon it. A 
two-part journal paper in Dove 2009a 
and 2009b reviews literature supporting 
concepts and methods for peer behavior 
monitoring among unmanned autonomous 
systems. “Trust but verify” might be a polite 
operable phrase but is fundamentally about 
the need for distrust.

Peer Behavior Mitigation
Rogue elephants are the result of ban-

ishment for unacceptable behavior. Social 
insects restrain and even kill group mem-
bers that overstep certain social bounds. 
One of the 911 planes had passengers who 
took preventive action against the attackers. 
Nodes in some ad hoc networks will take 
a vote on questionable communication 
behaviors experienced with specific nodes 
and take collective action to refuse further 
interaction with a node receiving bad vote 
results.

Peer Collaboration
Vehicular communication systems are 

computer networks in which vehicles and 
roadside units are the communicating 
nodes, providing each other with 
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information, such as safety warnings and 
traffic information. They can effectively 
avoid accidents and traffic congestion. 
Both node types are dedicated, short-
range communications devices. Vehicular 
communications usually develops as 
part of intelligent transportation systems 
(Wikipedia: “Vehicular communication 
systems”).

Adaptable Attention Priorities
Maslow’s [human] hierarchy of needs 

(Wikipedia) contends fuel and security 
are the first two of six, sustained existence 
needs taking precedence over higher level 
purpose needs. This occurs in robotic 
mobile devices interrupting their tasks to 
seek an electrical outlet, and in devices and 
operating systems with various anti-tam-
per detection and prevention capabilities 
(short of self-destruction). For a notional 
technical hierarchy of needs see Dove and 
Willett (2020).

Diversity
There is a socially attentive load on 

components attempting to cover a large 
awareness area, and inefficiency in dupli-
cating their neighbors’ same measures. 
All components do not have to partici-
pate, and all components should not look 
for the same things. One way this could 
implement might be to have a selection of 
(work intense) things to do randomly down 
selected by or for each component. Gal 
Kaminka makes this case in his doctoral 
thesis (Kaminka 2000) for distributed social 
behavior monitoring and detection, show-
ing a centralized monitor does not do as 
well as multiple monitor/detectors among 
socially aware components. He also shows 

this can happen effectively without any one 
component monitoring all components, 
and without all the components having this 
monitoring capability.

Heterogeneous Awareness
A recent study of grey squirrels (Lilly, 

Lucore, and Tarvin 2019) found they 
use signals from multiple bird species to 
indicate a present threat is in the area, as 
well as to indicate no imminent threat is 
present. Normal calm bird chatter finds the 
squirrels attending to foraging tasks, while 
alarm notes cause heightened agitation 
and evasive moves. Technical components 
receiving signals about the general state of 
alarm or calm in other components not in 
direct peer communication can ratchet the 
relative component attention level between 
self protective activity and functional 
purpose. Heterogeneity differs from 
diversity in that different social sub-groups 
have some cross communication, whereas 
diversity addresses a single social subgroup.

ARCHITECTURAL VIEW
Engineered as systems, PLE components 

and component variations should apply 
good system security practices during their 
engineering activity, as with any system 
type. But a PLE product assembled from 
components and their variations provides 
an opportunity for security not readily 
available in a non-PLE product. This is true 
because of the PLE product architecture 
and the PLE process architecture. Both 
are classic agile architecture pattern forms 
(Dove and Schindel 2019), structured 
to facilitate reusable, reconfigurable, 
and scalable product and process 
configurations.

A PLE product has a standardized 
infrastructure facilitating interconnection 
among components and their variations to 
configure a product. A PLE process has a 
similar standardized infrastructure facilitat-
ing interconnection among engineering 
assets, production assets, and component 
assets, as depicted in Figure 1.

 Techno-social security assets are a 
principle resource pool in the PLE process 
architecture. It is a pool of social contract 
variations because product intended for 
use by different customer types may need 
different capabilities. Figure 1 depicts a 
military vehicle and a drive-around-town 
vehicle as two possible product types in a 
product family. Military acquirers and users 
will likely want more security capability 
and features. The drive-around-town 
vehicle may have variations appropriate 
for evolving driverless operation or vehicle 
communication systems.

A techno-social contract for a PLE 
product family has three aspects for 
consideration: security assets associated with 
specific products, security assets associated 
with specific components, and system 
engineering assets associated with the PLE 
process. A product family employing a 
techno-social contract concept will likely 
have variants in all three asset classes.

Product security assets implement the 
techno-social contract at the product level 
of component-community interaction. 
Peyton Quinn’s story referenced a 
community association providing 
security-related services to all community 
members. A product security asset may 
also phone home to the OEM with security 
information indicating issues needing 
attention in similar products.

Figure 1. Notional Concept: Security-Relevant PLE-Process Agile Architecture Pattern
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Component security assets implement 
the techno-social contract at the 
component level. Some may also have 
direct communication capability with 
the OEM—to receive security updates 
and wipe-and-reloads, and to transmit 
component-specific security issues.

Systems engineering security assets 
enable assembling a techno-social contract 
for a product at two levels: resources 
include various techno-social contract 
assets which can draw upon various 
component and product security assets 
appropriate for a given techno-social 
contract. In human societies a social 
contract can be cultural, lawful, or both. 
A techno-social contract will generally 
rely upon a lawful approach governed by 
the contract’s nature—short of artificial 
intelligence approaches beyond this article’s 
scope. An OEM may decide contract 
governance includes contract enforcement, 
depending upon tolerance for 3rd party 
component inclusion.

CONCLUDING REMARKS
We cannot guarantee security. There 

is nothing absolutely preventing the 
possibility a PLE variation introduces 
an exploitable security issue. Good and 
improved security practices in the PLE 
factory management processes will surely 
help; but it is insufficient to believe good 
security practice during PLE factory 
operation will ensure a secure product. 
This argues for security vigilance during 
operational product behavior.

PLE invites 3rd party suppliers. With 
a standardized component interface, the 
OEM cannot control replacing components 
in an operational product or adding 
components for additional capability. 
The automotive after market is a prime 
example. Defense acquisition’s push to 
open systems architecture intended to 
enable componentry from other than 
the OEM. In any event, operational 
product augmentation or replacing OEM 
componentry can cause security issues. 
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INTRODUCTION

  ABSTRACT
Requirements engineering for complex software-intensive systems (and other systems) requires identifying, specifying, analyzing, 
and reviewing system requirements early in the system development process. However, many cases overlook system security re-
quirements, treating them as an afterthought during this important initial process stage. Missing security requirements for these 
system types cannot guarantee system integrity. It is not cost efficient to retrofit requirements at later stages to include missing 
security capabilities specified earlier in-process. Detailed analysis and understanding of security requirements enable building 
confidentiality and integrity into our systems. Thus, early process activities must include security requirements engineering.
	 Product Line Engineering development must guarantee system integrity and assurance for a “family of systems” borne from 
a common design. Hence, detailed requirements elicitation and specification is important early in the product-line development 
and must include security requirements. Further, security requirements must revisit applicability, extension, and new security 
requirements specified to provide for security coverage of selected features contained within the product line’s instances.
	 This paper describes an approach to security requirements engineering identification and includes introducing a security pro-
file to facilitate developing and evolving a secure product line for software-intensive systems.

Ademola Adejokun, Ademola.Adejokun@lmco.com; and Michael F. Siok, Mike.Siok@uta.edu
Copyright © 2020 by Ademola Adejokun and Michael F. Siok. Published and used by INCOSE with permission.

Effective Systems 
Security Requirements in 
Product Line Engineering

  KEYWORDS:  product line engineering, security, trustworthy system

Deficiencies in requirements 
engineering is a major risk am-
plifying and resulting in product 
defects over the entire product 

lifecycle. To develop a high quality and 
secure product, eliciting, identifying, ana-
lyzing, and managing system requirements 
is necessary (Insfran, Chastek, Donohoe, 
and Cesar 2014; Clements and Northrop 
2001; and Kuloor and Eberlein 2002). 
Specifically, adequately specified security 
requirements. Concise and unambiguous 
requirements ensure a simple system design 
and implementation. This also reduces 
costly security-related defects found later 
in development and production stages due 
to requirements errors (Mellado, Fernan-
dez-Medina, and Piattini 2010; Arciniegas, 
Duenas, Ruiz, Ceron, Bermejo, and Oltra 
2006; and Baresi and Morasca 2007).

Product line engineering (PLE) includes 
a group or family of similar systems borne 
of a common design containing an allowed 

variations portfolio (features) generating 
instances of those systems for customers 
(Insfran et al. 2014). This underlying PLE 
nature enables continuous integration 
and a faster more cost-efficient product 
development and delivery by promoting 
secured systematic reuse of a large reusable 
Shared Asset Superset. The complexity and 
extensivity PLE nature requires adequate 
security requirements engineering for the 
common reusable shared assets superset. 

The key enabling factor to advance PLE is 
generating a secure and trustworthy prod-
uct instance drawn from a stable common, 
secure, and trustworthy base (the shared 
asset supersets) with allowed product 
features drawn from a features catalogue. 
Product instances generated from these 
trustworthy assets and features will inherit 
PLE’s security capabilities and present an 
acceptable system security posture for the 
customer at delivery.

Figure 1. Security tenets

Security

Confidentiality Integrity Availability
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This paper explores a requirement 
engineering approach for PLE development 
emphasizing system trustworthiness of the 
common reusable product base (the shared 
asset supersets) and the generated prod-
uct instances. The approach’s key focus is 
reviewing, adopting, and tailoring relevant 
security standards for the PLE process 
lifecycle.

SECURE PRODUCT LINE ENGINEERING
Confidentiality, integrity, and availabil-

ity are the main security tenets to achieve 
system security and trustworthiness 
(Schramm and Grzemba 2011; Griglock 
and Kleidermacher 2001; Clements and 
Northrop 2001; Kuloor and Eberlein 2002; 
and NIST 2018). See Figure 1. Require-
ments supporting these security tenets 
establish a ‘root of trust’ to facilitate a secure 
product line development and PLE product 
asset instnaces deployment.

An effective and systematic approach to 
define and manage product asset instance 
security requirements, product features, 
and feature portfolios ensures a secure 
product line with a consistent underlying 
and robust security policy and protection 
profile. This ensures secure critical data 
processing and continued PLE develop-
ment process and generated product asset 
instance assurance.

The approach to achieve a secure product 
line is to promote product line commonal-
ity alignment with the main security tenets 
(Confidentiality, Integrity, and Availability) 
and to provide compliance with appropri-
ate and relevant industry configuration 
management, development environment, 
and security requirements standards. Be-
cause PLE features are either infrastructure 
commonality parts or defined as part of the 
features portfolio, all product-line generat-
ed product asset instances can inherit com-
mon security requirements; specialized/
unique requirement(s) may be part of the 

relevant feature within the feature portfolio 
and that feature can manage it separately.

The following paragraphs provide this 
approach’s key tenets descriptions.

Confidentiality Requirements:
Confidentiality requirements address 

protection against disclosing sensitive and 
critical data. The PLE should implement 
security controls to achieve confidentiality 
and ensure Data-at-Rest, Data-In-Transit, 
and Data-In-Use processing protection. 
Security engineering checklists should 
contain data protection verification features 
such as Encryption protocols.

Integrity Requirements:
Integrity requirements ensure PLE 

system reliability and data and processing 
accuracy. Verifying software functionality 
achieves reliability. Verifying data modi-
fications occur in an authorized manner 
and data is complete and consistent before 
and after modification ensures accuracy. 
Specifying security control protocols, such 
as Hashing and Digital Signatures, ensures 
system integrity and  are part of the Securi-
ty Controls Checklist.

Availability Requirements:
Availability requirements ensure PLE 

system protection against service disrup-
tion. These requirements are part of prod-
uct-line system infrastructure requirements 
and provide a means to conduct business 

impact analysis and define measurement of 
the system’s maximum tolerable downtime 
and recovery time objective.

Configuration Management Requirements:
Configuration management require-

ments help define and direct the PLE 
infrastructure, application features, and 
system functionality development control 
and ensures the allowed product asset 
instance’s integrity. Defining and enacting 
specific configuration items, including 
specifying effective management practices 
and measures, ensures PLE work product 
and process security and integrity. 

Deployment Environment Requirements:
Deployment environment security 

requirements address the needs and 
methods to protect classified or sensitive 
data once the system transfers or deploys 
to the operational environment for systems 
integration and test and/or delivery. 

SECURITY STANDARDS APPROACH
Industry security standards and 

frameworks exist to provide a systemat-
ic approach to managing, securing, and 
processing sensitive and critical data. These 
standards provide specifications to achieve 
system resiliency, the system’s ability to 
provide continued assurance and adaptable 
response before, during, and after a security 
event. Therefore, the approach here to 
achieve resiliency is to identify and tailor 
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Use Cases
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1 .. n instancesFigure 3. Generated and traceable  
security requirements for the product line

Figure 2. Product variant inherits common requirements
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relevant and critical elements of the chosen 
security standards requirements and mea-
sures for the PLE.

Because of the PLE commonality and 
variability (Yu et al. 2008) specification, 
security requirements for critical system 
features of the shared asset supersets intend 
to align with a fundamental security profile. 
The product commonality top level, the PLE 
infrastructure, where generated product 
instances will inherit and reuse the common 
security features, must define and man-
age these requirements. Specific security 
requirements, needed and specified for the 
variable features, derive from and traced 
back to the overarching commonality or in-
frastructure specifications contained in the 
shared asset supersets. Figure 2 illustrates 
the these relationship’s natures.The feature 
catalogue contains allowed PLE features 
that have been built with the appropriate 
security tenets; each feature in the catalogue 
complies with the security requirements 
of the PLE. The bill of features variations 
contain the definitions of each allowed vari-
ation of the PLE using the feature catalogue. 
Then, the PLE factory generator uses the 
reusable components from the shared assets 
repository and the bill of features variations 
(which draw components from the features 
catalogue) to construct a predefined allowed 
instance of the PLE. Figure 3 illustrates 
these relationships.

Standards such as the National Insti-
tute of Standards and Technology (NIST) 
Framework for Improving Critical Infra-
structure Cybersecurity (Version 1.1), ISO/
IEC 27001:2013 (the Information Secu-
rity Management System), and ISO/IEC 
15408:2005 (Common Criteria), identify 
and tailor relevant security requirements for 
the PLE Lifecycle application. For example:

•	 The NIST Framework for Improving 
Critical Infrastructure Cybersecurity is a 
risk-based approach to managing cyberse-
curity risk. The framework lists Functions 
and Categories/Controls describing 
specific cybersecurity activities common 
across critical infrastructure sectors. These 
categories can further align to the security 
tenets essential for the PLE requirement 
specifications. Table 1 illustrates this rela-
tionship (ISO/IEC 2013).

•	 The ISO/IEC 27001:2013 standard pro-
vides requirements for an information 
security management system (ISMS) 
necessary to keep identified information 
assets secure. The ISMS preserves the 
fundamental security tenets of con-
fidentiality, integrity, and availability 
of the identified information assets by 
directing application of risk management 
techniques. These techniques provide 

Framework Function Category/Control Security Tenet 
Alignment

1 IDENTIFY Asset Management Availability

Risk Management Strategy Availability

Supply Chain Risk Management Availability

2 PROTECT Access Control Confidentiality/
Integrity

Information Protection Confidentiality/
Integrity

Protective Technology Confidentiality/
Integrity

Data Security Confidentiality/
Integrity

Maintenance Availability

3 DETECT Anomalies and Events Availability

Anomalies and Events Availability

Detection Processes Availability

4 RESPOND Response Planning Availability

Communications Availability

Analysis Availability

Mitigation Availability

Improvements Availability

5 RECOVER Recovery Planning Availability

Improvements Availability

Communications Availability

Table 1. NIST framework for managing cybersecurity risk mapping to security tenets

confidence the information system 
management assures the security mecha-
nisms. Table 2 illustrates this relationship 
(Arciniegas et al. 2006).

The Common Criteria process (https://
www.commoncriteriaportal.org/pps/) focuses 
on the protection profiles for the security 
targets. The protection profiles specify se-
curity requirements facilitating the protec-
tions for the evaluated system. In this con-
text, applicable Protection Profile standards 
tailor to the identified PLE security assets; 
the derived security requirements facilitate 
a secure PLE development again ensuring 
alignment with the security tenets. Table 3 
specifies the Protection Profiles to extend 
the PLE security requirements.

SUMMARY AND CONCLUSIONS
Security requirements are essential in 

the PLE development lifecycle. Lacking ef-
fective and adequate security requirements 
in early product line system development 
stages is a major risk manifesting in costly 
PLE infrastructure and generated system 
instances defects.

The infrastructure components of PLE 
provide the product-line commonality 
contained in the shared assets superset; the 
generated system instances is provided in 
the bill-of-features variations allowed vari-
ability that provides the delivered product 
instances with required and specialized se-
curity features. Thus, the PLE commonality 
and variability features promote a leveraged 
reuse approach enabling faster and more 
cost-effective product delivery over mul-
tiple system instance deliveries. Adequate 
security requirements specification and 
management across the product line is the 
key factor in developing and delivering 
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Category Control Security Tenet Alignment

Information Classification Classification  Confidentiality/Integrity

Labelling of information Confidentiality/Integrity

Handling of assets Confidentiality/Integrity

Access control Access control policy Confidentiality/Integrity

Access to networks and network services Confidentiality/Integrity

Cryptography Policy on using cryptographic controls Confidentiality/Integrity

Key management Confidentiality/Integrity

Operations security Change management Integrity

Capacity management Control Integrity

Separation of development, testing and operational 
environments Integrity

Logging and monitoring Event logging Integrity

Protection of log information Integrity

Security in development 
and support processes Secure development policy Confidentiality/Integrity

System change control procedures Integrity

Secure system engineering principles Confidentiality/Integrity

Secure development environment Confidentiality/Integrity

System security testing Integrity

System acceptance testing Integrity

Information security 
continuity Planning information security continuity Integrity

Implementing information security continuity Integrity

Redundancies Availability of information processing facilities Availability

Table 2.  ISO/IES 27001 ISMS risk management mapping to security tenets

Protection Profile Security Tenet Alignment

1 Access Control Confidentiality/Integrity

2 Data Protection Confidentiality/Integrity

3 Key Protection Confidentiality/Integrity

4 Operating System Confidentiality/Integrity

5 Product for Digital 
Signature Confidentiality/Integrity

6 Trusted Computing Confidentiality/Integrity

Table 3. Common criteria protection profiles mapped to security tenets a product instance with specific security 
assurance properties efficiently.

Paradigms for specifying and managing 
security requirements across PLE lifecycles 
are a necessity. Systemically aligning and 
categorizing the PLE requirements with 
fundamental security tenets and compliance 
with the relevant industry security stan-
dards promotes a leveraged reuse develop-
ment approach and infuses a working “plug 
and play concept” for generated system 
instances within the product line “family of 
systems.” Bringing security into the open 
standard PLE lifecycle compliance will help 
advance the PLE lifecycles and the current 
state-of-the-practice for engineering future 
complex software-intensive systems.  ¡
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INTRODUCTION

  ABSTRACT
Systems security engineering is a discipline to engineer a system of interest ensuring system functionality under disruptive 
conditions associated with misuse and malicious behavior. Today’s cyber-physical systems must survive in a constantly changing 
threat environment. Cybersecurity controls and cyber resiliency capabilities require continuous delivery to meet this challenge. 
This article describes creating and using a rule base as an integral part of a systems and software product line engineering 
(PLE) factory enabling continuous resilient and secure cyber-physical systems delivery ensuring the system can function under 
disruptive conditions. A hypothetical intelligence gathering network comprising unmanned vehicles, a ground control segment, 
and an intelligence analytics segment is the system of interest. Systems engineering activities include continuously analyzing 
the cyber-attack surface for each system variant in the product portfolio; creating or amending cyber resiliency capabilities and 
cybersecurity controls for each system variant addressing each attack vector; and a living rule base maintained within a PLE 
factory ensuring each system variant automatically generated by the factory contains the requisite system capabilities. Applying 
this approach results in rule-based verification of continuously delivered cyber resiliency capabilities and cybersecurity controls 
for each fielded system variant. Moving at the speed of mission need is essential, and automated rule-based verification of system 
deliveries meets that need.

Rule-based Verification 
of System Security using 
Feature-Based Product 
Line Engineering

James K. Teaff, James.K.Teaff@rtx.com 
Copyright © 2020 by James K. Teaff. Published and used by INCOSE with permission.

“Software is eating the world,” Marc 
Andreesen famously declared in 
his August 2011 Wall Street Journal 
article. This trend ultimately resulted 

in modern cyber-physical systems com-
prising people, hardware, and software 
fielded supporting diverse missions. These 
cyber-physical systems must survive in a 
constantly changing threat environment, 
which mandates continuous cyber resilien-
cy capabilities and cybersecurity controls 
delivery. The software malleability lends 
itself to implementing the majority of the 
requisite system capabilities, and software, 
as noted by the United States Defense Inno-
vation Board, is immortal—ever evolving 
long after its initial delivery to the field 
(McQuade et al. 2019) (McQuade, Medin, 
and Murray 2018). Recognizing speed and 
cycle time as the most important metrics 
for managing software, the Defense Inno-

vation Board states system developers need 
to deploy and update software working for 
its users at the speed of relevance. Clearly, 
whatever can automate needs automation, 
removing human-in-the-loop processes in 
order to move at the speed of mission need; 
improve system quality, cyber resiliency, 
and cybersecurity; and enable users to trust 
the tools they use in the field.

To meet the continuously fielding secure 
systems challenge, organizations leverage 
feature-based systems and software product 
line engineering (FB-PLE). The key to 
FB-PLE is automation through a product 
line engineering factory. At the factory’s 
center is a rule base used to verify each 
system variant created by the factory. A rule 
base is a specialized knowledge base or a 
knowledge repository obtained from sub-
ject matter experts and digitized as a rule 

set. A product rule is a system constraint 
represented in a rule base as an assertion. 
Each assertion is a Boolean expression—a 
true or false expression. Creating and 
using a rule base begins with analyzing the 
cyber-attack surface for each system variant 
in the product portfolio. Systems engineers 
then design invariant and variant system 
capabilities for each fielded system address-
ing the identified attack vectors. The factory 
digitizes and subsequently uses product 
rules to automatically ensure each output 
product configuration is secure, delivery 
after delivery to the field.

For the systems engineer, rule-based 
system security verification enables 
knowledge capturing from subject matter 
experts and then each field delivery’s 
tireless, error-free verification by the 
factory using the rule base as the single 
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truth source. Contrast this with the typical 
systems engineer’s writing requirements 
in a requirements management tool, 
developers interpreting the natural 
language requirements when creating a 
module, and finally testers independently 
interpreting the requirements when 
creating and executing a test. Each process 
step has the potential for introducing 
verification faults through inconsistencies 
inherent in multiple truth sources.

With the rule-based verification context 
established, the remainder of this article 
details the hands-on tasks a systems 
engineer performs creating and using a 
product rule base.

HYPOTHETICAL INTELLIGENCE GATHERING 
NETWORK

This article uses a hypothetical intel-
ligence gathering network (H-IGN), as 
depicted in Figure 1, as a rule-based system 
variant verification example.

The H-IGN system mission is to support 
the intelligence analyst via capturing and 
processing sensor data collected by sensor 
platforms. The H-IGN system comprises 
one or more unmanned vehicles (UxV), 
a ground control segment, and an intelli-
gence analytics & dissemination segment. 
The H-IGN product portfolio supports 
three primary configurations:

■	 Small area of interest (AOI): line of 
sight UxV control and one analyst such 
as covering a city block

■	 Medium AOI: less than 200 square 
miles and up to five analysts such as 
covering a city

■	 Large AOI: less than 125,000 square 
miles and up to twenty analysts

Additionally, the H-IGN system supports 
the following variations in sensor plat-
forms:

■	 One or more unmanned aerial vehicles
■	 One or more unmanned ground 

vehicles

■	 One or more maritime unmanned 
surface vehicles

The H-IGN system supports the follow-
ing sensor platform control options:

■	 Continuous active ground control
■	 Autonomous vehicle control

The system capabilities and total lifecycle 
cost for each product variant in the port-
folio differs based on its product specifica-
tion: its factory bill-of-features.

CYBER RESILIENCY CAPABILITIES AND 
CYBERSECURITY CONTROLS RULE BASE

The systems engineering activities for 
creating the factory product rule base 
include:

■	 Continuously analyzing the cyber-at-
tack surface for each system variant in 
the product portfolio

■	 Creating or amending cyber resiliency 
capabilities and cybersecurity controls 
for each system variant addressing each 
identified attack vector

■	 Digitizing cyber resiliency and 
cybersecurity verification rules forming 
a living rule base

■	 Using the factory’s living rule 
base ensuring each system variant 
automatically generated by the factory 
contains the requisite cyber resiliency 
capabilities and cybersecurity controls

The cyber-attack surface analysis for 
the H-IGN system identifies the ground 
control to UxV communications system 
(COMMS) as an attack vector. Potential 
attacks include:

■	 Passive data interception
■	 Covert data modification
■	 COMMS disruption

COMMS system feature’s engineering 
ensures ongoing human and/or auton-
omous sensor platform control for each 
system variant, each differing in capabilities 
and cost. Features include:

■	 Wireless COMMS—radio frequency 
(RF); microwave radio
•	 Encryption algorithms
•	 Frequency hopping algorithms

■	 Line of sight COMMS
■	 Wired COMMS—essentially the UxV 

tethered to a ground operator

Modeling the sensor platform control 
modes results in a variant feature model, 
depicted in Figure 2, comprising the 
“Ground Control” feature and the 
“Autonomous” control feature.

Modeling the configurable COMMS 
capability set results in a variant feature 
model, depicted in Figure 3, comprising the 
“Wireless COMMS” feature and the “Line 
Of Sight COMMS” feature.

«Block»
SensorPlatforms

«Block»
VehicleGroundControl

«Block»
IntelligenceAnalyticsAndDissemination

«flow»

«flow»

«flow»

VehicleControl

Telemetry

SensorData

Figure 1. Hypothetical intelligence gathering 
network (H-IGN)

SensorPlatformControlModes ?

SensorPlatformControlModes

GroundControl

Text Structure Graph
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Set

Atom Atom

?

??

Mixin Features

Figure 2. H-IGN sensor platform control modes



SP
ECIA

L 
FEA

TU
R

E
SEP

TEM
B

ER
  2O

20
VOLUM

E 23/ ISSUE 3

33

The H-IGN subject matter experts provide the following speci-
fication:

■	 All product variants shall have redundant COMMS capabilities 
for greater cyber resiliency

■	 All product variants shall encrypt data to ensure cybersecurity
■	 RF COMMS shall use a frequency hopping algorithm to ensure 

cybersecurity

Additionally, for each AOI variant the subject matter experts 
provide the following specification:

■	 The small AOI variant:
•	 Shall have both wireless radio frequency and line of sight 

COMMS for greater cyber resiliency
•	 Customers may additionally choose to add “Basic” or “En-

hanced” wired COMMS, but not both (this drives capability 
and cost variation)

•	 Shall not support autonomous vehicle control (this drives 
capability and cost variation)

■	 The medium AOI variant:
•	 Shall have both wireless radio frequency and microwave 

radio COMMS for greater cyber resiliency
•	 Customers may additionally choose to add line of sight 

COMMS for greater cyber resiliency
•	 Shall not support wired COMMS
•	 Shall support autonomous vehicle control for greater cyber 

resiliency
■	 The large AOI variant:

•	 Shall have both wireless radio frequency and microwave 
radio COMMS for greater cyber resiliency

•	 Shall not support line of sight COMMS
•	 Shall not support wired COMMS
•	 Shall support autonomous vehicle control for greater cyber 

resiliency

Each subject matter expert specification digitizes into a product 
rule. The product rules exist in the factory rule base as assertions. 
Assertions use a Boolean expression language including Boolean 
operators and comparison operators as described in Appendix 
A—Product Rule Boolean Expression Language. The set operators 
frequently used are: “>” and “>=”. ({TheSet} > A) is true when 
TheSet contains A and at least one other member. ({TheSet} >= A) 
is true when TheSet contains A.

For example, the subject matter expert specification “All product 
variants shall have redundant COMMS capabilities for greater 
resiliency” results in the product rule:

While the specifications “All product variants shall encrypt data”, 
and “RF COMMS shall use a frequency hopping algorithm”, results 
in the product rule set:

?

? ?

?
Set Set

Set Atom

WirelessCOMMS LineOfSightCOMMS

Microwave?
Set

RF BasicLOSSCOMMS

?
Atom

BasicRFCOMMS ?
Atom

BasicMicrowaveCOMMS

Figure 3. Subset of COMMS capabilities

Assert ((COMMS.COMMSTypes > {WirelessCOMMS}) OR 
((COMMS.COMMSTypes > {LineOfSightCOMMS}) OR 
(COMMS.COMMSTypes > {WiredCOMMS})));

Assert ((COMMS.COMMSTypes.WirelessCOMMS.RF >= 
{BasicRFCOMMS}) REQUIRES (COMMS.COMMSCyberse-
curity.EncryptionAlgorithm == {EncryptionAlgo_Alpha}));

Assert ((COMMS.COMMSTypes.WirelessCOMMS.RF >= {Ba-
sicRFCOMMS}) REQUIRES (COMMS.COMMSCybersecuri-
ty.FrequencyHoppingAlgorithm == {FreqHopAlgo_Bravo}));

Adding these assertions to the factory’s product rule base results 
in the initial rule base for COMMS as presented in Figure 4.

Figure 4.  Initial COMMS Rule Base

Features of Mixin “COMMS”
guideline:
Feature Declarations
Assertions

Assert ((COMMS.COMMSTypes > {WirelessCOMMS}) OR ((COMMSTypes>
{LineOfSightCOMMS}) OR (COMMS.COMMSTypes > {WiredCOMMS})))
Assert ((COMMS.COMMSTypes.WirelessCOMMS.RF >= {BasicRFCOMMS})
REQUIRES (COMMS.COMMSCybersecurity.FrequencyHoppingAlgorithm=
 = {FreqHopAlgo_Bravo}))

RULE-BASED SYSTEM VARIANT VERIFICATION
Once the digitized product rules are in place, the factory checks 

the assertions in the rule base and issues an error to the systems 
engineer for every rule violation as they work. For example, if a 
systems engineer attempts to design a system variant with basic 
RF COMMS without a frequency hopping algorithm, the factory 
throws an “assertion failed” when evaluating the product rule base:

Assertion failed: Assert ((COMMS.COMMSTypes.Wireless-
COMMS.RF >= {BasicRFCOMMS}) REQUIRES (COMMS.
COMMSCybersecurity.FrequencyHoppingAlgorithm == 
{FreqHopAlgo_Bravo}))

Figure 5 (next page) depicts an example product rules evalua-
tion report. Once the systems engineer adds a frequency hopping 
algorithm to the system variant, and re-evaluates the product rule 
base, the assertion passes.

RESPONDING TO THREAT ENVIRONMENT CHANGES
After fielding various hypothetical H-IGN systems, a compro-

mise in the frequency hopping algorithm appears. A new algo-
rithm installs, and the factory COMMS feature model updates 
adding frequency hopping algorithm “Charlie,” while retaining 
frequency hopping algorithm “Bravo” for audits and traceability. 
The product rule base updates with an assertion deprecating the 
old algorithm using the “EXCLUDES” operator; and an assertion 
requiring the new algorithm added as follows:

Assert ((COMMS.COMMSTypes.WirelessCOMMS.RF >= 
{BasicRFCOMMS}) EXCLUDES (COMMS.COMMSCyberse-
curity.FrequencyHoppingAlgorithm == {FreqHopAlgo_Bra-
vo}));
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Boolean operators

And Boolean AND Boolean

Or Boolean OR Boolean

Not NOT Boolean

Requires Boolean REQUIRES 
Boolean

Excludes Boolean EXCLUDES 
Boolean

Comparison operators

Equals Expression == Expression

Not equals Expression != Expression

Less than Expression < Expression

Greater than Expression > Expression

Less than or equal Expression <= Expression

Greater than or equal Expression >= Expression

Comparison operators used for expressions involving Sets

({TheSet} == A) is true when TheSet 
contains A and only A

({TheSet} >= A) is true when TheSet 
contains A

({TheSet} > A) is true when TheSet 
contains A and at least one other 
member

APPENDIX A—PRODUCT RULE BOOLEAN EXPRESSION LANGUAGE

Figure 5. Example product rules evaluation report

The systems engineer performs an impact assessment to deter-
mine the product variant specifications requiring refactoring and 
redelivery, depicted in Figure 6. The systems engineer updates 
each impacted product variant. Subsequently the PLE factory 
automatically verifies the updated cyber resiliency capabilities and 
cybersecurity controls deliver to the fielded systems during each 
production run.

Figure 6. Example impact analysis report

Semantic Check Report

Checked: Profile “MedAOICOMMS_Variant_Omega” of Mixin “COMMS”

**************** Errors ****************

Assertion failed: Assert ((COMMS.COMMSTypes.WirelessCOMM.RF >= {BasicRFCOMMS]) EXCLUDES 
(COMMS.COMMSCybersecurity.FrequencyHoppingAlgorithm == {FreqHopAlgo_Bravo}));
Found in:
Features of Mixin “COMMS”
Profile “MedAOICOMMS_Variant_Omega” of Mixin “COMMS”

Assertion failed: Assert ((COMMS.COMMSTypes.WirelessCOMM.RF >= {BasicRFCOMMS]) REQUIRES 
(COMMS.COMMSCybersecurity.FrequencyHoppingAlgorithm == {FreqHopAlgo_Charlie}));
Found in:
Features of Mixin “COMMS”
Profile “MedAOICOMMS_Variant_Omega” of Mixin “COMMS”

Output

Semantic Check Report

Checked: Profile “MedAOICOMMS_Variant_Omega” of Mixin “COMMS”

**************** Errors ****************

Assertion failed: Assert ((COMMS.COMMSTypes.WirelessCOMM.RF >= {BasicRFCOMMS]) REQUIRES (COMMS.COMMSCybersecurity.FrequencyHoppingAlgorithm == {FreqHopAlgo_Bravo}));
Found in:
Features of Mixin “COMMS”
Profile “MedAOICOMMS_Variant_Omega” of Mixin “COMMS”

??

?

Set

Atom

WiredCOMMS
Set

/* UNDEFINED */

LineOfSightCOMMS ?
Set

/* UNDEFINED */

FrequencyHoppingAlgorithm

EnhancedWiredCOMMS?
Atom

BasicWiredCOMMS ?
Atom

EncrptionAlgo_Alpha

?
Set

EncrptionAlgorithm?
Set

WiredCOMMS

?
Set

RF ?
Set

Microwave

Output

SUMMARY
Moving at the speed of relevance is today’s organizational man-

date. Modern cyber-physical systems must survive in a constantly 
changing cybersecurity threat environment. This article described 
how to meet the continuous cybersecurity controls and cyber re-
siliency capabilities delivery challenge using a rule base embedded 
within a systems and software product line engineering factory to 
automatically create, verify, and deliver system variants. Systems 
engineering tasks included continuously analyzing the cyber-at-
tack surface for each product line system variant, creating or 
amending cyber resiliency capabilities and cybersecurity controls 
for each system variant addressing each attack vector, and a living 
rule base maintained within a factory ensuring each system variant 
automatically generated by the factory contains the requisite 
system capabilities. By creating a single truth source and remov-

Assert ((COMMS.COMMSTypes.WirelessCOMMS.RF >= 
{BasicRFCOMMS}) REQUIRES (COMMS.COMMSCyberse-
curity.FrequencyHoppingAlgorithm == {FreqHopAlgo_Char-
lie}));

ing human-in-the-loop faults from verification processes, system 
developers improve system quality, cyber resiliency, and cyberse-
curity, enabling users to trust the tools they use in the field.  ¡

>  continued on page 38
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INTRODUCTION

  ABSTRACT
This paper presents a method for leveraging Model Based Systems Engineering to facilitate systems security architecture develop-
ment, with product line engineering considerations. The sensitivity of systems security information constrains the development of 
the system security model. Creating a tailored subset of the system of interest (SOI) model can generate value as a system security 
decision driver, and serve as the cornerstone for system security model development. This establishes clear correlation points 
between the SOI model and system security model. Conducting this collaboration early in the SOI lifecycle enables engineers to 
implement security considerations in the system design, reducing the cost and schedule impact of delaying system security devel-
opment. For product line systems, common features are quickly identified with their associated security considerations. Variants 
retain these common features, preventing rework.

Leveraging a System 
Model to Initiate Security 
Architecture Development 
for Product Lines
Angel Agrawal, agrawal.angel95@gmail.com
Copyright © 2020 by Angel Agrawal. Published and used by INCOSE with permission.

Model-Based Systems Engineer-
ing (MBSE) principles, when 
combined with a modeling 
tool, enable creating numer-

ous system of interest (SOI) views. The 
Systems Modeling Language (SysML®) 
provides a standardized syntax and view 
set for defining the SOI. These views focus 
on the SOI from various stakeholders’ 
perspectives. Systems Security Engineer-
ing’s (SSE) primary concern, as defined by 
the United States Department of Defense, 
is “… to identify security vulnerabilities and 
minimize or contain risks associated with 
these vulnerabilities (SEBoK 2018).” The 
product’s (or product line’s) systems model, 
whether it be physical, logical, or functional 
in nature, can adapt to address security 
considerations. Security Aware, Model 
Based Systems Engineering with SysML 
by Herries et al. (2013) provides a funda-
mental groundwork for tools necessary to 
initiate modeling security architecture for a 
SOI. This paper will expand on their work, 
proposing additional views and efforts in 
SysML to leverage a systems model to sup-
port the security perspective. Additionally, 

this paper incorporates considerations for 
modeling product line engineering (PLE) 
as part of the security views. The follow-
ing views leverage a SOI systems model, 
combined with PLE and security modeling 
techniques to create a fundamental SysML 
views set for capturing a security aware 
system architecture. 

FOREWORD ON MBSE FOR PRODUCT LINE 
ENGINEERING

Feature-based product line engineering 
has been described as a factory (Clements 
and Young 2017). This factory uses shared 
asset supersets, a feature model, and bills of 
features to deliver product instances. The 
factory analogy can extend to developing 
a SysML systems model for a product, de-
rived from a model capturing the product 
line’s asset superset. As a model captures 
the SOI design elements, the assets in a 
model are the various model elements 
within it. Variation points apply to these 
model elements as a tool for the configura-
tor to understand what model elements to 
keep and which to remove when generating 
a model instance. Variation points coincide 

with the various features defined in the 
feature model, not with the anticipated 
model output. The complete feature model 
can then instantiate as a bill of features 
(analogously as a product specification). 
The configurator tool assembles an instance 
of the systems model, resembling a product 
satisfying the bill of features.

FUNDAMENTAL SSE MODEL VIEWS
The following is a collection of views 

generated in a SOI systems model, with 
the primary objective of supporting 
security architecture development. These 
views bridge the gap between the systems 
model and security model by focusing 
on the system architecture aspects which 
will drive the security architecture’s 
development. They are developed 
utilizing pre-existing model elements and 
relationships, focusing on the sensitive 
system elements. Creating these views 
requires access to information regarding 
these sensitive items and their usage. We 
assume the model (and consequently 
SOI) elements characterized as ‘sensitive’ 
are known. Modifying the feature model 
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for this product line can capture security 
related model elements which are intrinsic 
features. This may not be necessary for 
security related model elements which are 
a direct composition of pre-existing model 
elements already associated with a feature 
from the feature model.

Stereotypes
Stereotypes can easily be used to identify 

security related model elements. Herries 
et al. suggests stereotypes for defining 
model elements from a security perspec-
tive (Herries, Oates, and Thom 2013). The 
profile constructed in their paper suggests 
using the stereotype “Vulnerable Item” to 
indicate the resources which may be the 
target of attacks. The stereotype “Threat” 
captures the effort(s) conducted by a 
malicious user (misuse cases). Elements 
or activities stereotyped by “Counter-
measure” mitigate “Threats.” The profile 
created in Herries, Oates, and Thom (2013) 
suggests a “Countermeasure” stereotyped 
block’s function is to protect vulnerable 
items. In this paper, activities stereotyped 
as “Countermeasure” capture efforts to 
address different misuse cases directly. 
From the PLE perspective, this paper will 
use stereotypes to serve as variation points, 
indicating the variations corresponding 
to the different features. “Variant 1” and 
“Variant 2” are two stereotypes used in this 
paper. They denote the potential for includ-
ing marked elements in the SOI’s different 
configurations.

Level 0 (Program Level) State Diagram
Every SOI state and configuration must 

take into account system security. System 

State Diagrams may describe the SOI 
states throughout its operation and usage 
(operational level). An abstraction level 
above the operational level is the lifecycle 
level. Lifecycle states captured here include 
development, testing, production, retire-
ment, and other similar states surrounding 
the SOI’s life from conception through 
retirement. The included vulnerable items, 
countermeasures, systems, interfaces, and 
activities may all be different between those 
states, so understanding and capturing this 
is important. Creating State Do, Entry, and 
Exit Activities occurs as necessary from the 
security perspective.

To a certain degree these states may be 
trivial. However, for the system security 
perspective, defining two things is essential: 
A state indicating a compromised system, 
and all the transitions between the other 
states and the “compromised” state. The 
compromised state captures the SOI state 
when an unintended or malicious user 
has accessed the SOI and now intends on 
gaining access to the vulnerable items. 
Defining a Do Activity here should serve 
as the groundwork for understanding the 
activities associated with exploiting and 
defending SOI vulnerabilities. From a 
PLE perspective, placing variation points 
on states and their transitions captures 
the differences across this program level 
features based view. Subsequent diagrams 
account for deeper abstraction levels tied to 
features.

Block Definition Diagram (BDD) for Item 
Containment

Employing block definition diagrams 
can create views capturing subsystem and 

component architecture. From the security 
perspective, it can identify the relationship 
between vulnerable items, countermea-
sures, and the system’s general components. 
Defining all vulnerable items and relation-
ships to the SOI is essential to understand-
ing their context within the system. From a 
functional modeling perspective, decom-
posing down to the abstraction level(s) 
using vulnerable items provides insight to 
their role in the system’s behavior. From a 
physical and logical perspective, thorough 
decomposition provides insight as to the 
system elements which will comprise the 
vulnerable item(s) context. Figure 1 pro-
vides an example system composition for 
a SOI as a part of the SOI’s environment, 
modeling the relationships as directed 
composition or aggregation. Personnel with 
need to know access may need to model 
the definition of the countermeasure model 
elements. However, modeling relationships 
to “Threat” activities will generate value as 
it will enforce countermeasure inclusion 
throughout the system architecture. Prod-
uct line engineering considerations in this 
view should already exist. As mentioned 
previously, this example uses “Variant 1” 
and “Variant 2” stereotypes. Primary con-
siderations for PLE when creating these 
views involve ensuring vulnerable items 
and countermeasures tied to components 
receive variation points consistent with the 
variation points applied to their owning el-
ement. For features which apply to vulner-
able items and countermeasures separately 
than their owning components, variation 
points must apply separately. 

BDD’s for Item Exposure During Transit.
Expanding the concept of identifying 

the model elements storing or using 
a program’s defined vulnerable items, 
creating another Block Definition Diagram 
(BDD) can describe vulnerable items 
transitioning between different locations. 
Conventionally, using an Internal Block 
Diagram (IBD) would be used to show the 
connections amongst internal components 
to the SOI (a white box perspective). 
However, including the “Threats” and 
“Countermeasures” as activities as opposed 
to properties forces the use of a BDD. 
Fortunately, BDDs also permit creating 
ports and connectors similar to IBDs, and 
pre-existing IBDs can define the ports and 
connectors before pulling model elements 
into this particular view. Figure 2 shows 
this concept. Item flow on the connectors 
between ports represents the vulnerable 
items when exposed during transit from 
one domain to another. Directed allocation 
relationships can come from “Threat” 
activities to the various connectors 
representing an attempt to exploit a system 

Figure 1: System Composition
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Figure 2: Transit Attack BDD

vulnerability. Relationships between 
“Threat” activities, modeled as directed 
use relationships, define a dependency 
on one activity’s success for the other’s 
application. “Countermeasure” activities 
integrate at this level and draw a directed 
association to “Threat” activities based 

on the 1 to 1 correspondence between a 
system’s countermeasures and the misuse 
cases they mitigate. Placing the variation 
points on the various interfaces involved, 
easily accounts for feature variation as 
well as the blocks associated with them (if 
not already defined). The value of having 

this view is understanding the transit 
path as a potential exposure point for 
these vulnerable items. Capturing such 
information here facilitates developing 
adequate countermeasures to prevent 
exploitation during those processes. 
Furthermore, this view, as well as the 
following view, capture the fundamental 
relationships between “Threat” and 
“Countermeasure” activities, serving as 
the basis for the countermeasure coverage 
matrix and potentially systems security 
attack trees (not discussed in this paper).

BDD’s for Static Attack Allocation
In similar regard to using BBDs for iden-

tifying when sensitive items are vulnerable, 
a different misuse case allocation BDD 
can capture the SOI access points, SOI 
subsystems, and eventually the vulnerable 
information itself. Ports define and repre-
sent vulnerabilities in the system for which 
a malicious user may gain access to the 
vulnerable items. Much like the previously 
described view; allocations, usage relation-
ships, and associations occur amongst the 
various model elements. Figure 3 provides a 
simple example of this, similar to Figure 2. 
The previously applied variation points on 
the blocks throughout the model account 
for product line considerations. Variation 
points can thus apply to the “Threat” and 
“Countermeasure” activities accordingly 
based on their relationship with the BDD 
view elements.

This view and the previous view’s 
advantage is not requiring fully defined 
“Threat” or “Countermeasure” activities. 
Their existence and relationships are 
the important subject here. The scope 
of this work does not extend to a level 
infringing need to know restrictions, 
beyond identifying the vulnerable items. 
A modeling engineer’s responsibility 
without need to know access ends at 
creating the “Threat” activities as undefined 
placeholders as well as creating the 
coverage matrix without creating any 
actual “Countermeasure” activities or 
defining them. Naming these “Threat” 
and “Countermeasure” activities can be 
simple enough to understand their role in 
the system life cycle. Fully defining these 
activities is a subsequent activity in the 
development of the security architecture.

Attack Coverage Matrix
The quintessential value of creating 

directed association relationships between 
“Threat” activities and “countermeasure” 
activities is the ability to create a Counter-
measure Coverage Matrix, shown in Figure 
4. One axis represents the misuse cases cap-
tured by “Threat” activities. The other axis 
represents the “countermeasure” activities. 
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the assessment to determine if any anticipated misuse cases do 
not have an associated countermeasure prescribed and captured 
as part of the SOI. The same can occur for blocks and ports to 
understand what system components are the most vulnerable: 
what subsystems contain vulnerabilities which are left unguarded. 
When configuring the system model (as an asset superset) to meet 
a bill of features, and removing feature specific variants, any exist-
ing gaps in countermeasure coverage will be easy to recognize. It 
is imperative to generate this view for a countermeasure coverage 
assessment after the configuration step in the PLE process, to en-
sure coverage after removing non-associated superset assets from 
the final product. Then the countermeasure matrix will provide 
accurate information as to the correspondence between all misuse 
cases and countermeasures.

CONCLUSION
This paper proposes a standardized diagram set, using the 

SysML modeling language and PLE modeling tools, for capturing 
a high level system security views. By creating security focused 
views, systems modelers can create a high-level security architec-
ture while requiring little need to know access. Effective MBSE 
and PLE execution can ensure any resulting asset configuration 
has an adequate system security architecture defined for it. This 
method’s potential value is twofold. First, it leverages MBSE tech-
niques to facilitate collaboration and communication between SOI 
architects and SOI Security engineers. Secondly, it extends PLE 
capabilities to another systems engineering specialization.  ¡

Figure 4: Countermeasure Coverage Matrix
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The interior indicates the existence of the association relationship 
from the “countermeasure” to the “Threat.” The applicable domain 
is the largest model containment span, accounting for all counter-
measure and attack activities. Creating this matrix facilitates 
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  ABSTRACT
As cybersecurity threats multiply and global public opinion becomes aware of cybersecurity attack’s potential consequences, 
customers become more demanding regarding cybersecurity concerns in the products they acquire. Consequently, product 
providers should consider such concerns early in their solution’s development life cycle. This paper presents how a model-based 
approach can contribute to an effective co-engineering effort between cybersecurity and product engineering during product 
architecture definition.

Towards a Model-Based 
approach to Systems and 
Cybersecurity
Co-engineering in a Product Line context

Juan Navas, juan.navas@thalesgroup.com; Jean-Luc Voirin; Stephane Paul; and Stephane Bonnet
Copyright © 2020 by Thales Corporate Engineering, Thales Airborne Systems, Thales Research & Technologies, and Thales Avionics. 
Published and used by INCOSE with permission.

SYSTEMS AND CYBERSECURITY 
CO-ENGINEERING CHALLENGES

Society is crossing the threshold into 
the fourth industrial revolution 
where dependency on cyber-physical 
systems will dramatically increase. 

As these services’ complexity will rise due 
to the new and unexpected system combi-
nations, the cybersecurity vulnerabilities 
and potential cybersecurity attack targets 
will increase as well. Not surprisingly, the 
INCOSE Systems Engineering Vision 2025 
(Beihoff et al. 2014) included security, and 
particularly cybersecurity, as one of the 
eight key system characteristics desired 
by stakeholders. It encourages systems 
engineers to treat cybersecurity as a key 
system attribute they shall understand and 
incorporate in their designs. 

 The way a system shall be protected 
against cybersecurity threats is deter-
mined by the context on which the system 
operates, its interactions with the external 
actors, the components of the system and 
their properties and interactions. In a 
Product Line context, in which the system 
is a product portfolio part, analyzing the 

commonalities and variabilities between 
products and between the elements com-
posing them is a key input for designing 
effective cybersecurity controls.

Hence, the development process’ very be-
ginning, and each subsequent development 
stage, should address and consider cyber 
security concerns. Such a security-by-design 
co-engineering approach not only diminish-
es the project’s technical costs and schedule 
risks, but also permits trade-offs between 
cybersecurity concerns and other functional 
and non-functional system concerns.

Implementing this co-engineering 
approach in a Product Line context 
encounters the following barriers:

■	 Cybersecurity engineering requires 
specialized skills and has its own vo-
cabulary, which usually varies following 
regulatory frameworks. Acquiring these 
skills requires a substantial investment, 
and human resources with both systems 
and cybersecurity engineering skills are 
difficult to find.

■	 Experience shows cybersecurity 
engineering activities have their own 

lifecycle potentially uncorrelated with 
the systems engineering activities and 
to the product roadmaps. This is mainly 
due to constraints from certification au-
thorities and need-to-know constraints.

■	 The needs and constraints relative to 
the cybersecurity concerns, as well as 
the elements constituting the prod-
uct architecture, may strongly differ 
according to the market, the product 
addresses, and the available technolo-
gies, among other factors. Furthermore, 
cybersecurity concerns’ priorities may 
change in time. These factors make 
implementing reuse strategies difficult.

The authors present Model-Based 
Systems Engineering (MBSE) practices 
contributing to incorporating cybersecu-
rity concerns into the systems engineering 
activities, and particularly in product’s 
architectural definition, in Product Line 
Engineering contexts.

FINDING A COMMON GROUND
To enable effective and efficient collabo-
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ration between cybersecurity and systems 
engineering, both worlds need to agree on 
a common vocabulary. The concepts each 
one needs to understand from the others’ 
will be a body of knowledge subset: this 
binds the co-engineering efforts to a limited 
discussion scope. It is also the basis for de-
fining the cybersecurity properties assigned 
to the architecture elements.

Regarding product architecture engineer-
ing, we rely on the Arcadia model-based 
engineering method. Arcadia has been 
implemented in many real-life contexts for 
several years. Arcadia has experimented in 
and validated many real-life contexts for 
several years. Its large adoption in many 
different engineering contexts demon-
strates an industry-proven comprehensive 
method for systems engineering, capable 
of adapting to each context in a dedicated 
manner. Our Arcadia implementation uses 
the open-source workbench Capella.

Arcadia intensively relies on functional 
analysis. It introduces four engineering 
perspectives with specific intents (Figure 1): 
Operational Analysis, System needs Anal-
ysis, Logical Architecture and Physical 
Architecture. By doing so, it promotes a clear 
distinction between the need’s expression 
(the first two perspectives) and the solution’s 
expression (the last two perspectives). Each 
perspective provides a concept set, relations, 
architectural design tasks, and diagrams, 
guiding the architect into reaching a good 
quality design. For details on Arcadia per-
spectives please refer to Voirin (2017).

Regarding cybersecurity concerns, in 
this article we avoid referring to a specific 
standard or methodology. We use a well-
known or generic concept set to map 
domain-specific cybersecurity concepts.

A Threat Source is the intent and method 
targeted at the intentional exploitation of 
a vulnerability or a situation and method 
that may accidentally exploit a vulnerability. 
Threat Sources map to system stakeholders 
in Arcadia, Entities and Actors, which are 
external to the system and to the Activities 
and Functions.

A Threat is a situation to avoid that is 
unwanted by the stakeholders. Different 

attack kinds, affecting the system 
Confidentiality, Integrity and Availability 
(CIA) properties, concretize threats. 
Arcadia does not include any concept 
directly mapped to Threats, so it adds 
the concept. Arcadia’s Scenarios or (Mis)
Functional Chains can represent the attacks.

What the stakeholders aim to protect 
from cyberattacks is what they value the 
most. This may include tangible items such 
as system components (software, hardware, 
devices, networks) and intangible ones such 
as the services provided by the system, sen-
sitive information stored or manipulated by 
the system, and the organization’s repu-
tation. Cybersecurity standards, such as 
IEC 62443; Ross, M. McEvilley, and Oren, 
2016; and NIST SP 800-30, commonly call 
these items Assets. However, the Product 
Line Engineering community also uses the 
term shared assets for a different meaning 
(please refer to the Feature-based Product 
Line Engineering overview in this edition). 
To avoid misunderstandings here, we will 
call Resources the tangible and intangible 
items with potential or actual value to an 
organisation.

A Primary Resource is information or 
services deemed important by the organisa-
tion. Primary Resources relate to Arca-
dia concepts encapsulating information 
manipulated and services provided by the 
system, including Capabilities, Functions 
and Exchange Items. A Supporting Resource 
is an item supporting primary resources or 
security controls. They include information 
systems, organisations, and premises. In 
Arcadia, Components (including Actors) 
represent such elements. Security Controls 
are the management, operational, and tech-
nical controls (safeguards or countermea-
sures) prescribed to protect the system CIA 
and its information. In Arcadia, Functions 
and Components represent them.
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Figure 1. Arcadia engineering perspectives

Figure 2. Threats diagram describing how system actors affect 
a meteorological balloon system’s main mission (provide 
meteorological data) and sensitive information
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ANALYZING THE PRODUCT’S CYBERSECURITY 
CONTEXT AND NEEDS

Systems engineering emphasizes analyz-
ing the problem before jumping straight to 
the solution, as a means to develop systems 
effectively contributing to achieving stake-
holders’ missions. In Arcadia, this analysis 
occurs in the Operational Analysis and 
System Analysis perspectives and compris-
es all the problem space elements, including 
cybersecurity ones.

Analyzing the product context and the 
stakeholder expectations leads to: i) iden-
tifying threat sources and other malicious 
agents, ii) defining threat sources goals and 
intents, iii) identifying the valuable primary 
resources these agents may attack, and iv) 
defining the mechanisms threat sources 
may use to attack the product. Formalizing 
the threats relevant to the system and its 
context can use a dedicated Threats dia-
gram such as Figure 2. Figure 3 describes 
how a specific attack may take place.

This practice, when performed in col-
laboration, supports the technical dialogue 
between systems and cybersecurity teams 
and produces the following results:

■	 A common and shared comprehension 
of the operational context in which 
the product will evolve, the applicable 
requirements, and the constraints

■	 Characterizing cybersecurity needs 
and defining requirements on CIA the 
product’s cyber-protection capabilities 
shall address

■	 The product’s first cybersecurity-spe-
cific features set, related to business 
(targeted markets, applicable standards, 
industrial configuration) and/or oper-
ational (users and interfaces with other 
systems) aspects

■	 Identifying the commonalities and 
variabilities induced by these features, 
and how they impact the product 
architecture definition

■	 Multi-criteria evaluations including 
cyber-security aspects, allowing 
identifying necessary trade-offs and 
cybersecurity-related requirement 
prioritizations in the Product 
Requirements Specification

These results may feed a formal cyber-
security risks analysis beyond this article’s 
scope.

DESIGNING CYBERSECURITY-AWARE 
PRODUCT ARCHITECTURES

The solution’s design occurs in Arcadia’s 
Logical Architecture and Physical Archi-
tecture perspectives. The former aims at 
defining a preliminary, technology-agnos-
tic product architecture focusing on the 
expected behavior to fulfill stakeholders’ 
needs. The latter will be the main refer-
ence for subsystems and/or components’ 
development teams. It aims at defining the 
final architecture addressing specific tech-
nologies and geographical considerations, 
and at specifying the interfaces between the 

subsystems and/or components and with 
the external actors.

Performing a functional analysis elicits 
the security controls to implement and 
secures the product against the identified 
threats. Integrating cybersecurity functions 
to the product architecture leads to defining 
protected services and implementing pat-
terns for managing sensitive data.

Identifying the supporting resources 
occurs at this point. In a Product Line 
context it is important to identify how 
the solution’s building blocks (regardless 
of their nature, previous product version 
reuse, vendor integration, existing library 
part) implement the primary resources 
and how security controls impact them. 
This leads to defining cybersecurity-
related properties applied to the product 
components and the interfaces between 
them, as shown in Figure 4.

This practice leads to an architectural 
design considering and providing proper 
cybersecurity concern consideration evi-
dence, through the following results:

■	 A common and shared product 
architecture comprehension between 
systems and cybersecurity teams

■	 Incrementally identifying and char-
acterizing the supporting resources, 
beginning with the Logical Compo-
nents and ending with the finer-grained 
Physical Components

■	 The product’s second cybersecurity-
specific feature set, related to 

Figure 3. A Functional Chain (bold blue functional exchanges) describing an attack and the impacted functions: other user IDs 
can supply meteorological data
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architectural choices (technologies, 
reusable building block capabilities) 

■	 Identifying the commonalities and 
variabilities induced by the whole 
product feature set, and how they 
impact defining the final architecture

■	 Defining product configurations inte-
grating cybersecurity concerns, ready to 
derive into project-specific architectures

■	 Multi-criteria evaluations including 
cyber security aspects, allowing consid-
ering cybersecurity constraints while 
defining the best possible architecture.

These results can feed a formal cyberse-
curity risks assessment and risk treatment 
decisions, which may induce architectural 
modifications, and are beyond this article’s 
scope. 

HANDLING VARIATION MANAGEMENT
The MBSE practices presented here 

lead to progressively defining the feature 
catalog, which is the feature superset any 
given product configuration may include, 

Figure 4. Cybersecurity aware system’s physical architecture. Ground Computer component is a supporting resource, imple
menting a primary resource (provide meteo data capability), colored (in pink) according to its cybersecurity properties. Thales 
Encryption Product and its subcomponents are also supporting resources (purple borders) as they implement the security 
controls represented by the [SEC]-prefixed functions in the diagram

including cybersecurity-related ones, 
and the dependencies and/or exclusions 
between the product features.

The architectural design model will 
also be the model element superset 
included in all product configurations. A 
given configuration’s feature choices, the 
dependencies between the features, the 
mapping between the features and the 
model elements, and the dependencies 
between the model elements either remove 
from the model or tailor cybersecurity-
relevant elements. At this point, it is 
important to verify the consistency between 
cybersecurity features and other system-
wide features.

In Figure 5 below, the features catalog 
includes two mandatory features. The 
Market feature determines the product’s 
selling region (Region 1, Region 2, or 
both). The Cyber Performance feature 
relates to using a proprietary encryption 
component providing high performance, 
or a third-party component providing low 
performance (one option between High 

and Low performance). Choosing Region 2 
requires selecting the third-party compo-
nent (reason may include costs or national 
production policies).

The architectural model ensures pro-
posing the required cybersecurity-related 
services in any product configuration. In 
this particular example, it secures a future 
encryption component integration with the 
Ground Computer and the Scientific User 
by ensuring the physical and functional 
interfaces are compatible between them. 
In Figure 5, the forecast service distribu-
tion, identified as a primary resource, can 
happen through either the high or low 
performance encryption components, as 
their interfaces are compatible even if the 
component’s internal behavior may differ or 
even be unknown to the product architect.

SUMMARY AND PERSPECTIVES
This article presented a model-based 

engineering practice and technique set 
enabling an effective co-engineering 
effort between cybersecurity and systems 
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engineering in a Product Line context. 
These practices are based on a common 
vocabulary, allowing collaboration 
between engineering domains, and on the 
Arcadia and Capella systems engineering 
methodology and tool.

One of this work’s perspectives is 

Figure 5. Top-left: the Feature Catalog. Top-right: the superset architecture model containing all the architectural variants, here 
the two encryption component types Bottom left and right: two possible product configurations, the first only suitable for Region 
2 market, the second is suitable for Region 1 market.
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to implement practices to integrate 
cybersecurity-dedicated models into the 
product architecture model. In many 
cases the cybersecurity effort must 
occur separately from the main systems 
engineering effort, due either to the 
high cybersecurity architectural analysis 

complexity itself, or to confidentiality 
constraints. To perform system-wide 
tradeoffs analysis including cybersecurity 
concerns but also safety, human factors 
and others, we need an integration model 
providing the relevant information (and no 
more) for each concern.  ¡

>  continued on page 50
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INTRODUCTION

  ABSTRACT
At the systems of systems and enterprise levels, systems engineers and architects must plan for system security from system con-
cept inception ensuring security embeds into every process, procedure, system, and component as well as the enterprise’s mindset. 
While the various United States Department of Defense Architecture Framework (DoDAF) views contain security attributes, there 
is no integrated view set defining system security goals, threats, risks, mitigating elements, and demonstrating how these integrate 
and implement into the operational, system, standards, and services views. The Unified Architecture Framework (UAF) imple-
ments DoDAF using the Systems Modeling Language (SysML) as well as the British Ministry of Defence Architecture Framework 
(MODAF) and NATO Architecture Framework. In addition, UAF has integrated a security view set facilitating engineers defining 
security goals and requirements and demonstrating how these implement throughout the architecture. By using these integrated 
security views, engineers can design system protection as well as system protection options and variants.

  KEYWORDS:  Security, UAF, MBSE, SoS, Modeling, Architecture Frameworks

Integrating Security into 
Enterprise Architecture 
with UAF and PLE

Matthew Hause, mhause@designxi.com 
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The INCOSE Systems Engineering 
Vision 2025 defines model-based 
systems engineering (MBSE) as 
“the formalized application of 

modeling to support system requirements, 
design, analysis, verification, and validation 
activities beginning in the conceptual 
design phase and continuing throughout 
development and later life cycle phases” 
(INCOSE 2007). The Systems Modeling 
Language (SysML) is the most widely used 
standardized systems modeling language 
and notation. It models systems in both the 
abstract and concrete (logical and physical) 
views including behavioral, structural, 
parametric, and requirements views (Object 
Management Group 2013). For enterprise 
modeling, understanding systems of 
systems and how they change over time 
requires an architecture framework. DoDAF 
is the United States Department of Defense 
Architecture Framework and MODAF 
is the Ministry of Defence Architecture 

Framework. The Unified Architecture 
Framework (UAF) builds on SysML 
and defines the overall goals, strategies, 
capabilities, interactions, standards, 
operational and systems architecture, and 
systems patterns (UAF 2019). Security 
and human factors (personnel) views 
added to DoDAF and MODAF improve 
these frameworks’ coverage. The Object 
Management Group (OMG) ratified the 
UAF, previously called the Unified Profile 
for DoDAF and MODAF (UPDM). Several 
papers cover the UPDM/UAF and its 
system of systems (SoS) modeling support 
including Hause, and Dandashi 2015 and 
Hause 2014. This paper does not include 
full SysML and UAF details for space 
reasons. Please see the references for more 
information. The purpose here is to describe 
the UAF security views and how they can 
describe system features and variants for 
applying security throughout the enterprise 
and over time.

MOTIVATION FOR THE UPDM/UAF
UPDM provided a standardized DoDAF 

and MODAF frameworks expression 
means using a common metamodel, and 
provided interoperability between the 
frameworks. UPDM also leveraged SysML’s 
extensibility to include new concepts 
including complete views.

UAF Views
Before modeling a system or system of 

systems, one must understand both the 
system and model’s purposes. UAF has a 
view set defining a capability set over its 
life-cycle phases. These define the goals, 
vision, enterprise phases, evolution over 
time, the capabilities, and how systems and 
subsystems realize these. The UAF provides 
traceability from these elements to the 
other UAF views including the operational 
architecture which defines the system’s 
abstract, logical, and solution independent 
expression. This defines what must happen 
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and traces directly to the systems views 
defining how to realize these capabilities 
and operational architectures. To use an 
analogy, the operational view could define 
a need to generate power, and the systems 
views define fossil fuel, solar, wind, tidal, 
and other power providing methods. Stan-
dards views define system standards and 
systems conforming to them, services views 
define services systems will implement, and 
the project views define when to deploy and 
retire the systems. In addition, the UAF’s 
latest version also defines security and 
human factors views. The systems assur-
ance group at the OMG is also working to 
integrate threat and risk analysis as a cross 
cutting concern set.

ARCHITECTURE CROSS CUTTING CONCERNS
Cross cutting concerns are an architec-

ture’s non-modular characteristics which 
cut across other aspects. A simple example 
would be vehicular safety. When designing 
a car, there is no specific safety module car 
component. Safety must be inherent and 
intrinsic to the car design and implemen-
tation or the car will not be safe. Further-
more, overall safety performance, as well as 
the vehicle’s operating environment, is the 
vehicle operator’s responsibility. In the same 
way, a system of systems contains various 
cross cutting concerns we must address. 
These include security, safety, resilience, 
flexibility, robustness, and others. Defining 
the vulnerability points for security and 
resilience allows engineers to perform 
trade-off and threat and risk analysis on the 
entire architecture. Integrating the analysis 
tools with the UAF architecture provides a 
means of defining the problem, designing 
possible solutions, and then performing 
trade-off analysis to determine the best fit. 

These possible solutions can narrow to a 
single solution implemented in the final 
system. They can also provide an alternative 
set linked to system features providing a 
product line or product line family.

THE UAF SECURITY VIEWS
The DoDAF and MODAF lacked securi-

ty views. Adding these to the UAF helped 
define requirements, strategies, imple-
mentations, and solutions for all security 
forms throughout the enterprise. The UAF 
security views illustrate the security assets, 
security constraints, security controls, 
families, and measures required to address 
specific security concerns. Their purpose 
is to address the security constraints and 
information assurance attributes existing 
on exchanges between systems and opera-

tional elements. The stakeholders for these 
views include security architects, security 
engineers. systems engineers, and opera-
tional architects.

The Example Model
The example model shown below applies 

the UAF to a common civilian maritime 
Search and Rescue (SAR) operations 
scenario—a Yacht in distress. A Monitor 
Unit picks up the yacht’s distress signal and 
passes it on to the Command and Control 
(C2) Center. The C2 Center coordinates 
the search and rescue operation among 
the Rescue Helicopter, a Naval Ship, and 
a Rescue Boat. A UK Ministry of Defence 
example model is this model’s base. The 
system contains a systems’ set with different 
stakeholders, owners, command hierar-
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chies, purposes, security and safety levels, 
and constraints. In short it is a complex 
system of systems. Communications and 
interactions involve naval vessels and heli-
copters, first responders, civilian and fed-
eral government vessels and vehicles. There 
is a need to communicate and cooperate, 
but also a need to ensure system, personnel, 
and communication security. The example 
will demonstrate how the UAF security 
views can define secure architecture. For 
the complete model, refer to the example 
model in the UAF specification (Object 

Management Group 
2019).

The Security Taxon-
omy (Sc-Tx) domain 
shows the security 
assets and security 
enclaves. The diagram 
defines the security 
asset and asset owner 
hierarchy available to 
implement located (se-
curity enclaves) security, 
security constraints 
(policy, guidance, laws 
and regulations) and de-
tails as Figure 1 shows.

In addition to the 
security elements, the 
Security Taxonomy di-

agram can also define system resources. In 
this way the different security elements can 
group in the same diagram and package 
hierarchy. Since the UAF does not constrain 
where to define and store elements, this 
contributes to more modular architec-
tures. Figure 1 shows the security software 
resources and security enclaves.

The security structure captures asset allo-
cation (operational and resource, informa-
tion and data) across the security enclaves, 
showing applicable security controls 
necessary to protect organizations, systems, 

and information during processing, while 
in storage, and during transmission. It also 
captures Asset Aggregation and allocates 
aggregated information usage at a location 
as shown in Figure 2.

A Resource Mitigation is a security mea-
sure set intended to address specific cyber 
risks. It comprises a tailored security control 
subset protecting the asset at resource 
(Resource Role). In this case, Communica-
tion Redundancy comprises the SAR Field 
Organization, SAR HQ, and communication 
technology. The communication technol-
ogy choices are the email communication 
system, EMS dispatch system, and the cell 
phone network. Not all these systems will 
take part in the final configuration but this 
stage does include them as trade-off analysis 
will compare them. Along with performance 
and cost, security controls, levels, and 
methods can, in the evaluation, compare the 
communication method efficacy. Product 
line engineering can define the available 
trade-off analysis choices.

Variability
The communication method is an 

architecture’s feature with communication 
elements to allow communication as shown 
in Figure 3.

Figure 3 shows the usable comms meth-
od variations. These include the internet, 

Figure 3. System communication variability
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radio, and wireless. The multiplicity, shown 
as 2..3, requires using at least two and not 
more than three. This ensures a backup 
method in case the main one fails. This 
enables the communication redundancy 
resource mitigation defined in Figure 2. In 
addition, Figure 3 shows the Internet re-
quires Wireless as a solution part. Because 
some locations are remote, wired internet 
connections are not always available.

The security connectivity view lists secu-
rity exchanges across security assets, the ap-
plicable security controls, and the security 
enclaves housing the exchange’s producers 
and consumers. Figure 4 shows the internal 
structure for the communication redun-
dancy resource mitigation.

Figure 2 described the structural com-
munication redundancy breakdown. Figure 
4 shows how the parts communicate. In 
this case the crew roster must distribute 
from the SAR HQ to the SAR Field Organi-
zation. Figure 2 shows the communication 
paths at a very high level. For example, the 
crew roster travels from the SAR HQ to 
the cell phone to the cell phone network to 
the Field Organization through the other 
cell phone. The diagram can automatically 
and directly generate interface control. In 
addition, the variants defined in Figure 
3, can link to the various elements. The 
engineer selects the required variants and 
generates a product model removing the 
other elements. This applies to all model 
parts including functional elements such as 
activities, operations, and parameters.

The architecture can define and reuse 
measurement definitions and actual mea-
surements. They can link to systems, ac-
tivities, and interactions as well as directly 
integrate into systems as shown in Figure 5.

 Figure 5 shows an actual measurement 
set defining the security categories of 
unclassified and Sec27. It also shows the 

email communication system’s actual 
resource with its security category and the 
security classification level.

The security processes view provides a 
security control set and any possible en-
hancements as applicable to assets. Figure 6 
shows a security control activity set, the 
software performing them, and the assets 
they protect.

In addition, defined security processes 
can execute behaviors associated with 
security as shown in Figure 7. The activity 
diagram describes operational or resource 
level processes applying (operational level) 
or implementing (resource level) security 
controls/enhancements to assets located 
in and across enclaves. This demonstrates 
interactions crossing security levels and in 
and out of systems. The security processes 
can demonstrate how to protect the data as 
well as the assets themselves.

Figure 7 shows an activity set taking 
place to access the SAR system. These 
can, once added to operational activity 
diagrams, demonstrate logical security 
measure requirements as well as system 
function activity diagrams to describe 

Figure 5. Actual security measurements and actual resource with measurements

«ActualMeasurementSet»
SecCat1 : Security Category

Pm-Me Security Measurements Actual [Pm-Me Security]

«ActualMeasurementSet»
SecCat2 : Security Category

«ActualResource»
Email : Email Communication System

securityClassification : Security Classification Level = UNCLAS

sec : Security Category = UNCLAS

securityClassification : Security Classification Level = Sec27

SysML Sec : Security Classification Level = Restricted

Figure 6. Processes, the elements performing them, and the things they protect
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C2 System

«SecurityControl»
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«SecurityControl»
«activity»
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Sc-Pr [Architecture Description] Security Processes

Figure 7. Security behavior as part of system functions
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specific security measures and technologies. 
State diagrams can also show them to 
describe state-based security behavior.

The security constraints view specifies 
textual rules/non-functional requirements 
as security constraints on resources, 
information, and data (security-related 
in the form of rules, access control 
policy). Identifying risks and specifying 
risk likelihood, impact, asset criticality, 
and other measurements enables risk 
assessment. Figure 8 shows the Search and 
Rescue architecture security constraints.

Figure 8. Security constraints for the search and rescue

Sc-Ct Security Constraints [Sc-Ct]

«System»
C2 System

{Anti-Virus Software shall
be installed on all systems
and updated daily and/or
when new releases are
available.}

«SecurityControl»
AC-1-Access Control Policy and Procedures

«SecurityControl»
AC-2 Account Management

«Protects»
Protects

«Protects»
Protects

«Protects»
Protects

«Affects»

«OwnsRisk»

«Affects»

«Enhances»
Enhances

«EnhancedSecurityControl»
Two-Srep Authentication

«System»
Search System

«Software»
Cyber Defense Software «CapabilityConfiguration»

SAR Field Organization
«Post»

SAR C2 Manager

«Risk»
Cyber Hackers

enet : Ethernet

«SecurityConstraint»

{All SAR Personnel shall undergo yearly
Security clearance checks.}

{All security software shall
be audited by an external
consultant to determine
security riskd.}

«SecurityConstraint»

«SecurityConstraint»

Figure 9. Maritime rescue architecture with security enclaves and systems
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«ResourceRole»
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«ResourceRole»
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1 1

1

«ResourceRole»
C2

«ResourceRole»
NS

«ResourceRole»
PID

«ResourceRole»
UNC

Rs-Sr Resource Structure [Rs-Sr Marine Arch v1]

Figure 8 shows the systems, software, 
and their relationships to the security 
constraints and controls. It also shows 
the risks and the systems they affect as 
well as the person who owns the risks. An 
enhanced security control demonstrates 
how to add additional security, in this 
case, adding two-step authentication to the 
access control policy and procedures.

The Security Traceability domain 
depicts mapping a risk to the: risk owner, 
risk mitigations, and affected asset roles. 
Security Controls to Risks Mapping matrix 

shows which operational or resource 
asset roles mitigate risks and represents 
the Security Traceability. Risks to Assets 
Mapping matrix shows which risks apply 
to Asset Roles. The model automatically 
generates these and is beyond the scope of 
this article.

Security Integrated into Other views
As stated earlier, security is a cross 

cutting construct. As a result, it must 
integrate into the architecture. The previous 
security figures demonstrate this. UAF also 
defines security elements in other UAF 
views. Figure 9 shows a Maritime Rescue 
Architecture resource/systems diagram.

The figure shows the Maritime Rescue 
Architecture’s structural breakdown with 
two different level security enclaves. The 
rescue and control systems are in security 
enclave 1 and the civilian boat is in the un-
classified area. Figures 3 and 4 shows how 
to include other security elements such as 
security mitigations.

Figure 10 (on the next page) shows the 
Maritime Rescue Architecture’s internal 
structure.

Figure 10 shows the security enclaves; 
the enclosed systems, colored blue to em-
phasize their location and extent; and their 
classification levels. The right shows the ci-
vilian boat, personnel, and communication 
systems. The left shows the rescue systems, 
personnel, and communication systems. 
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This emphasizes the data and interactions 
across the security boundaries. PLE can 
demonstrate various configurations and 
security options.

SUMMARY AND CONCLUSIONS
The UAF describes enterprise and system 

architectures and an integrated security 
view set. The security views define the 
security requirements and issues at the 

project’s start in a separate view set. They 
also integrate security into the different 
views to highlight security vulnerabilities 
and demonstrate how to mitigate 
them. These security views provide the 
architecture options expressed to assist in 
trade off analysis and alternative evaluation. 
The UAF views promote a proactive cyber 
security and cyber resilience treatment 
in the architecture during development. 

Resource mitigation defines the 
alternatives for mitigating security risks 
in the architecture. The measures shown 
in the UAF sample problem show the 
benefit of addressing vulnerabilities while 
developing the architecture. These provide 
a quantitative and qualitative security 
alternative analysis.  ¡
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