
photo:  pixelbay

INSIGHT

SEPTEMBER 2O20
VOLUME 23 / ISSUE 3

A PUBLICATION OF THE INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING ®

This Issue’s Feature:

BILL-OF-FEATURES PORTFOLIOFEATURE CATALOGUE

SHARED ASSET SUPERSETS PRODUCT ASSET INSTANCES

PLE
FACTORY

CONFIGURATOR

EntryControl

Indicator Lockout AutoLock

Screen Speed

Park Neutral Drive

GearCenterConsoleLEDPhysical

EntryControl

EntryControl

EntryControl

Indicator Lockout AutoLock

Screen Speed

Park Neutral Drive

GearCenterConsoleLEDPhysical

This issue is sponsored by the Lockheed Martin Corporation.

Cyber Secure and Resilient Approaches with
Feature-Based Product Line Engineering

Systems Engineering: The Journal of The International Council on Systems Engineering

Call for Papers
he Systems Engineering journal is intend ed to be a primary
source of multidisciplinary information for the systems engineer-
ing and management of products and services, and processes of
all types. Systems engi neering activities involve the technologies

and system management approaches needed for
• definition of systems, including identi fication of user

requirements and technological specifications;
• development of systems, including concep tual architectures,

tradeoff of design concepts, configuration management during
system development, integration of new systems with legacy
systems, inte grated product and process development; and

• deployment of systems, including opera tional test and
evaluation, maintenance over an extended life cycle, and
re-engineering.

Systems Engineering is the archival journal of, and exists to serve the
following objectives of, the International Council on Systems Engineer-
ing (INCOSE):

• To provide a focal point for dissemination of systems
engineering knowledge

• To promote collaboration in systems engineering education
and research

• To encourage and assure establishment of professional
standards for integrity in the practice of systems engineering

• To improve the professional status of all those engaged in the
practice of systems engineering

• To encourage governmental and industrial support for research
and educational programs that will improve the systems
engineering process and its practice

The journal supports these goals by provi ding a continuing, respected
publication of peer-reviewed results from research and development in
the area of systems engineering. Systems engineering is defined broadly
in this context as an interdisciplinary approach and means to enable the
realization of succes s ful systems that are of high quality, cost-effective,
and trust worthy in meeting customer requirements.

The Systems Engineering journal is dedi cated to all aspects of the
engineering of systems: technical, management, economic, and social.
It focuses on the life cycle processes needed to create trustworthy and
high-quality systems. It will also emphasize the systems management
efforts needed to define, develop, and deploy trustworthy and high
quality processes for the production of systems. Within this, Systems
Engineer ing is especially con cerned with evaluation of the efficiency and
effectiveness of systems management, technical direction, and integra-
tion of systems. Systems Engi neering is also very concerned with the
engineering of systems that support sustainable development. Modern
systems, including both products and services, are often very knowl-
edge-intensive, and are found in both the public and private sectors.
The journal emphasizes strate gic and program management of these,
and the infor mation and knowledge base for knowledge princi ples,
knowledge practices, and knowledge perspectives for the engineering of

systems. Definitive case studies involving systems engineering practice
are especially welcome.

The journal is a primary source of infor mation for the systems engineer-
ing of products and services that are generally large in scale, scope,
and complexity. Systems Engineering will be especially concerned with
process- or product-line–related efforts needed to produce products that
are trustworthy and of high quality, and that are cost effective in meeting
user needs. A major component of this is system cost and operational
effectiveness determination, and the development of processes that
ensure that products are cost effective. This requires the integration of a
number of engi neering disciplines necessary for the definition, devel-
opment, and deployment of complex systems. It also requires attention
to the life cycle process used to produce systems, and the integration
of systems, including legacy systems, at various architectural levels.
In addition, appropriate systems management of information and
knowledge across technologies, organi zations, and environments is also
needed to insure a sustainable world.

The journal will accept and review sub missions in English from any
author, in any global locality, whether or not the author is an INCOSE
member. A body of international peers will review all submissions, and
the reviewers will suggest potential revisions to the author, with the intent
to achieve published papers that

• relate to the field of systems engineering;
• represent new, previously unpublished work;
• advance the state of knowledge of the field; and
• conform to a high standard of scholarly presentation.

Editorial selection of works for publication will be made based on con-
tent, without regard to the stature of the authors. Selections will include
a wide variety of international works, recognizing and supporting the
essential breadth and universality of the field. Final selection of papers
for publication, and the form of publication, shall rest with the editor.

Submission of quality papers for review is strongly encouraged. The
review process is estimated to take three months, occasionally longer for
hard-copy manuscript.

Systems Engineering operates an online submission and peer review
system that allows authors to submit articles online and track their
progress, throughout the peer-review process, via a web interface.
All papers submitted to Systems Engineering, including revisions or
resubmissions of prior manuscripts, must be made through the online
system. Contributions sent through regular mail on paper or emails with
attachments will not be reviewed or acknowledged.

All manuscripts must be submitted online to Systems Engineering at
ScholarOne Manuscripts, located at:
 http://mc.manuscriptcentral.com/SYS
Full instructions and support are available on the site, and a user ID and
password can be obtained on the first visit.

T

SEP
TEM

B
ER

 2O
20

VOLUM
E 23/ ISSUE 3

3

W
H

A
T

’S IN
SID

E
TH

IS ISSU
E

Inside this issue

INSIGHT
SEPTEMBER 2O20  VOLUME 23 / ISSUE 3

A PUBLICATION OF THE INTERNATIONAL COUNCIL
ON SYSTEMS ENGINEERING

®

FROM THE EDITOR-IN-CHIEF	 6

SPECIAL FEATURE	 7

Exploring Cyber Secure and Resilient Approaches with Feature-Based Product Line Engineering	 7

Introduction to Systems Security Engineering Vocabulary	 9

Introduction to Product Line Engineering Vocabulary	 11

System Security Engineering and Feature-based Product Line Engineering: A Productive Marriage	 13

Engineering a Cyber Resilient Product Line	 17

Security Issue Detection and Mitigation Patterns for Product Line Resource Variation	 22

Effective Systems Security Requirements in Product Line Engineering	 26

Rule-based Verification of System Security using Feature-Based Product Line Engineering	 31

Leveraging a System Model to Initiate Security Architecture Development for Product Lines	 35

Towards a Model-Based approach to Systems and Cybersecurity	 39
Co-engineering in a Product Line context

Integrating Security into Enterprise Architecture with UAF and PLE	 44

SEP
TEM

B
ER

 2O
20

VOLUM
E 23/ ISSUE 3

4

A
B

O
U

T TH
IS

P
U

B
LIC

A
TIO

N

About This Publication

INCOSE’s membership extends to over 18, 000 individual
members and more than 100 corporations, government
entities, and academic institutions. Its mission is to share,
promote, and advance the best of systems engineering from
across the globe for the benefit of humanity and the planet.
INCOSE charters chapters worldwide, includes a corporate
advisory board, and is led by elected officers and directors.

For more information, click here:
The International Council on Systems Engineering
(www.incose.org)

INSIGHT is the magazine of the International Council on
Systems Engineering. It is published four times per year and
features informative articles dedicated to advancing the state
of practice in systems engineering and to close the gap with
the state of the art. INSIGHT delivers practical information
on current hot topics, implementations, and best practices,
written in applications-driven style. There is an emphasis on
practical applications, tutorials, guides, and case studies that
result in successful outcomes. Explicitly identified opinion
pieces, book reviews, and technology roadmapping comple-
ment articles to stimulate advancing the state of practice.
INSIGHT is dedicated to advancing the INCOSE objectives
of impactful products and accelerating the transformation of

systems engineering to a model-based discipline.
Topics to be covered include resilient systems, model-based
systems engineering, commercial-driven transformational
systems engineering, natural systems, agile security, systems
of systems, and cyber-physical systems across disciplines
and domains of interest to the constituent groups in the
systems engineering community: industry, government,
and academia. Advances in practice often come from lateral
connections of information dissemination across disciplines
and domains. INSIGHT will track advances in the state of the
art with follow-up, practically written articles to more rapidly
disseminate knowledge to stimulate practice throughout the
community.

INFORMATION ABOUT INCOSE OVERVIEW

EDITORIAL BOARD AND STAFF 2020 INCOSE BOARD OF DIRECTORS

* PLEASE NOTE:  If the links highlighted here do not take you to
those web sites, please copy and paste address in your browser.

Permission to reproduce Wiley journal Content:
Requests to reproduce material from John Wiley & Sons publications
are being handled through the RightsLink® automated permissions
service.

Simply follow the steps below to obtain permission via the Right-
slink® system:

•	 Locate the article you wish to reproduce on Wiley Online Library
(http://onlinelibrary.wiley.com)

•	 Click on the ‘Request Permissions’ link, under the ‹ ARTICLE
TOOLS › menu on the abstract page (also available from Table of
Contents or Search Results)

•	 Follow the online instructions and select your requirements from
the drop down options and click on ‘quick price’ to get a quote

•	 Create a RightsLink® account to complete your transaction (and
pay, where applicable)

•	 Read and accept our Terms & Conditions and download your
license

•	 For any technical queries please contact 
customercare@copyright.com

•	 For further information and to view a Rightslink® demo please visit
www.wiley.com and select Rights & Permissions.

AUTHORS – If you wish to reuse your own article (or an amended
version of it) in a new publication of which you are the author, editor
or co-editor, prior permission is not required (with the usual acknowl-
edgements). However, a formal grant of license can be downloaded free
of charge from RightsLink if required.

Photocopying
Teaching institutions with a current paid subscription to the journal
may make multiple copies for teaching purposes without charge, pro-
vided such copies are not resold or copied. In all other cases, permission
should be obtained from a reproduction rights organisation (see below)
or directly from RightsLink®.

Copyright Licensing Agency (CLA)
Institutions based in the UK with a valid photocopying and/or digital
license with the Copyright Licensing Agency may copy excerpts from
Wiley books and journals under the terms of their license. For further
information go to CLA.

Copyright Clearance Center (CCC)
Institutions based in the US with a valid photocopying and/or digital
license with the Copyright Clearance Center may copy excerpts from
Wiley books and journals under the terms of their license, please go
to CCC.

Other Territories:  Please contact your local reproduction rights
organisation. For further information please visit www.wiley.com and
select Rights & Permissions.
If you have any questions about the permitted uses of a specific article,
please contact us.

Permissions Department – UK
John Wiley & Sons Ltd.
The Atrium,
Southern Gate,
Chichester
West Sussex, PO19 8SQ
UK
Email:  Permissions@wiley.com
Fax:  44 (0) 1243 770620
or

Permissions Department – US
John Wiley & Sons Inc.
111 River Street MS 4-02
Hoboken, NJ 07030-5774
USA
Email:  Permissions@wiley.com
Fax:  (201) 748-6008

PERMISSIONS

ARTICLE SUBMISSION
INSIGHT@incose.org

Publication Schedule.  INSIGHT is published four times per year.
Issue and article submission deadlines are as follows:

  March 2020 issue  –  2 January
  June 2020 issue  –  2 April
  September 2020 issue  –  1 July
  December 2020 issue  –  1 October

For further information on submissions and issue themes, visit the
INCOSE website:  www.incose.org

© 2020 Copyright Notice.
Unless otherwise noted, the entire contents are
copyrighted by INCOSE and may not be reproduced in
whole or in part without written permission by INCOSE.
Permission is given for use of up to three paragraphs as
long as full credit is provided. The opinions expressed in

INSIGHT are those of the authors and advertisers and do
not necessarily reflect the positions of the editorial staff
or the International Council on Systems Engineering.
ISSN 2156-485X; (print) ISSN 2156-4868 (online)

Editor-In-Chief	 William Miller
insight@incose.org	 +1 908-759-7110

Assistant Editor	 Lisa Hoverman
lisa@hsmcgroup.biz

Theme Editors
Bobbi Young	 bobbi.young@raytheon.com
Beth Wilson	 wilsondrbeth@aol.com

Advertising Account Manager	 Dan Nicholas
dnicholas@wiley.org	 +1 716-587-2181

Layout and Design	 Chuck Eng
chuck.eng@comcast.net

Member Services	 INCOSE Administrative Office
info@incose.org	 +1 858 541-1725

Officers
President:  Kerry Lunney, ESEP, Thales Australia
President-Elect:  Marilee Wheaton, INCOSE Fellow,

The Aerospace Corporation

Secretary:  Kayla Marshall, CSEP, Lockheed Martin
Corporation

Treasurer:  Michael Vinarcik, ESEP, SAIC

At-Large Directors
Academic Matters:  Bob Swarz, WPI
Marketing & Communications:  Lisa Hoverman, HSMC
Outreach:  Mitchell Kerman, Idaho National Laboratory
Americas Sector:  Antony Williams, ESEP, Jacobs
EMEA Sector:  Lucio Tirone, CSEP, OCSMP, Fincantieri
Asia-Oceania Sector:  Serge Landry, ESEP, Consultant
Chief Information Officer (CIO):  Bill Chown, BBM Group
Technical Director:  David Endler, CSEP, Systems

Engineering Consultant

Deputy Technical Director:  Christopher Hoffman, CSEP,
Cummins

Technical Services Director: Don Gelosh, WPI
Director for Strategic Integration: Tom McDermott,

Stevens Institute of Technology
Corporate Advisory Board Chair: Don York, CSEP, SAIC
CAB Co-chair:  Ron Giachetti, Naval Postgraduate School
Chief of Staff:  Andy Pickard, Rolls Royce Corporation

SEP
TEM

B
ER

 2O
20

VOLUM
E 23/ ISSUE 3

5

A
B

O
U

T TH
IS

P
U

B
LIC

A
TIO

N

Questions or comments concerning:

Submissions, Editorial Policy, or Publication Management
Please contact:  William Miller, Editor-in-Chief
insight@incose.org

Advertising — please contact: 
Susan Blessing, Senior Account Manager Sciences
Sciences, Corporate Sales
mobile:  24/7  201-723-3129
e-mail:  sblessin@wiley.com

Member Services – please contact:  info@incose.org

ADVERTISE

Readership
INSIGHT reaches over 18, 000 individual members and uncounted
employees and students of more than 100 CAB organizations worldwide.
Readership includes engineers, manufacturers/purchasers, scientists,
research & development processionals, presidents and CEOs, students and
other professionals in systems engineering.

Issuance	 Circulation
2020, Vol 23, 4 Issues	 100% Paid

Contact us for Advertising and Corporate Sales Services
We have a complete range of advertising and publishing solutions profes
sionally managed within our global team. From traditional print-based
solutions to cutting-edge online technology the Wiley-Blackwell corporate
sales service is your connection to minds that matter. For an overview of
all our services please browse our site which is located under the Resources
section. Contact our corporate sales team today to discuss the range of
services available:

•	 Print advertising for non-US journals
•	 Email Table of Contents Sponsorship
•	 Reprints
•	 Supplement and sponsorship opportunities
•	 Books
•	 Custom Projects
•	 Online advertising

Click on the option below to email your enquiry to your
nearest office:

•	 Asia & Australia  corporatesalesaustralia@wiley.com
•	 Europe, Middle East & Africa (EMEA)

corporatesaleseurope@wiley.com
•	 Japan  corporatesalesjapan@wiley.com
•	 Korea  corporatesaleskorea@wiley.com

USA (also Canada, and South/Central America):
•	 Healthcare Advertising  corporatesalesusa@wiley.com
•	 Science Advertising  Ads_sciences@wiley.com
•	 Reprints  Commercialreprints@wiley.com
•	 Supplements, Sponsorship, Books and Custom Projects

busdev@wiley.com

Or please contact:
Dan Nicholas, Associate Director – Sciences, Corporate Sales
Wiley
phone:  +1 716-587-2181
e-mail:  dnicholas@wiley.com

CONTACT

ADVERTISER INDEX� September  volume 23-3
Systems Engineering Call for Papers	 inside front cover
Annual INCOSE International Workshop	 back inside cover
INCOSE regional events	 back cover

CORPORATE ADVISORY BOARD — MEMBER COMPANIES

INSIGHT volume 23, no. 3 is sponsored by the Lockheed Martin Corporation.

321 Gang, Inc.
Aerospace Corporation, The
Airbus
Airbus Defense and Space
AM General LLC
Analog Devices, Inc.
Analytic Services
Aras Corp
Aviation Industry Corporation of China, LTD
BAE Systems
Bechtel
Beckton Dickinson
Boeing Company, The
Bombardier Transportation
Booz Allen Hamilton Inc.
C.S. Draper Laboratory, Inc.
Carnegie Mellon University Software

Engineering Institute
Change Vision, Inc
Colorado State University
Cornell University
Cranfield University
Cubic Corporation
Cummins, Inc.
CYBERNET MBSE
Defense Acquisition University
DENSO Create, Inc.
Drexel University
Eindhoven University of Technology
Embraer S.A.
ENAC
Federal Aviation Administration (U.S.)
Ford Motor Company
Fundacao Ezute
General Dynamics
General Motors
George Mason University
Georgia Institute of Technology
IBM
Idaho National Laboratory

ISAE SUPAERO
ISDEFE
ISID Engineering, LTD
iTiD Consulting, Ltd
Jacobs Engineering
Jama Software
Jet Propulsion Laboratory
John Deere & Company
Johns Hopkins University
KBR, Inc.
KEIO University
L3 Harris
Leidos
Lockheed Martin Corporation
Los Alamos National Laboratory
ManTech International Corporation
Maplesoft
Massachusetts Institute of Technology
MBDA (UK) Ltd.
Missouri University of Science & Technology
MITRE Corporation, The
Mitsubishi Aircraft Corporation (Mitsubishi

Heavy Induftries Group)
National Aeronautics and Space Administration
National Security Agency - Enterprise
Naval Postgraduate School
Nissan Motor Co, Ltd
No Magic/Dassault Systems
Noblis
Northrop Grumman Corporation
Penn State University
Perspecta (formerly Vencore)
Prime Solutions Group, Inc.
Project Performance International
Raytheon Corporation
Roche Diagnostics
Rolls-Royce
Saab AB
Safran Electronics and Defence
SAIC

Sandia National Laboratories
Shell
Siemens
Sierra Nevada Corporation
Singapore Institute of Technology
Skoltech
SPEC Innovations
Stellar Solutions
Stevens Institute of Technology
Strategic Technical Services
Swedish Defence Materiel Administration
Systems Engineering Directorate
Systems Planning and Analysis
Thales
TNO
Trane Technologies
Tsinghua University
TUS Solution LLC
UK MoD
United Technologies Corporation
University of Arkansas
University of California San Diego
University of Connecticut
University of Maryland
University of Maryland, Baltimore County
University of Michigan, Ann Arbor
University of New South Wales, The, Canberra
University of Southern California
University of Texas at Dallas
University of Texas at El Paso, The
US Department of Defense, Deputy Assistant

Secretary of Defense for Systems Engineering
Veoneer, Inc
Vitech Corporation
Volvo Construction Equipment
Woodward Inc
Worcester Polytechnic Institute- WPI
Zuken, Inc

SEP
TEM

B
ER

 2O
20

VOLUM
E 23/ ISSUE 3

6

William Miller, insight@incose.org

FROM THE
EDITOR-IN-CHIEF

FR
O

M
 TH

E
ED

ITO
R

-IN
-CH

IEF

I NSIGHT’s mission is providing
informative articles advancing the
systems engineering practice state.
The intent is accelerating knowledge

dissemination closing the gap between
the practice state and the research state
as Systems Engineering, the Journal of
INCOSE, also Wiley published, captures.
INCOSE thanks corporate advisory board
member Lockheed Martin for sponsoring
INSIGHT in 2020 and welcomes additional
sponsors, who may contact the INCOSE
marketing and communications director at
marcom@incose.org.

The INSIGHT September 2020 issue’s
theme is a joint INCOSE Systems Security
Engineering (SSE) Working Group and
Product Line Engineering (PLE) Working
Group project to bring systems security
into product line design. We thank theme
editors Beth Wilson and Bobbi Young and
the authors for their contributions. The
SSE Working Group’s mission is providing
systems engineers and systems engineering
effective sustainable system functionality
means and methods under advanced
adversarial attack. Their objectives are
instilling systems engineering responsibility
for sustainable systems functionality
facing intelligent, determined, and highly
competent system adversaries; facilitating
responsibility assimilation and dispatch;
and instigating self-sustaining cross-
community involvement between systems
engineers, security engineers, and system
security standards. The PLE Working
Group’s mission is promoting PLE and
related systems engineering best practices

and to coordinate activities around PLE at
the INCOSE level and share results. The
working group’s objectives are helping our
members acquire knowledge comparing
to the state‐of‐art, share concerns,
experiences, good practices, and traps to
avoid while providing guidelines to set up
and evolve organization PLE.

Young and Wilson’s article introduced
the theme issue and the articles exploring
the intersection between systems security
engineering and product line engineering.
The focus includes product line system
security implementation techniques,
product line architectures patterns
addressing systems security, and security
and resilient product line product variation
management approaches. Two articles
follow the lead article addressing SSE
and PLE vocabulary, respectively. Young,
Darbin, and Clements then describe how
applying both SSE and PLE achieves
a productive union, introducing the
“securing the PLE factory” technique.
Williams, Moss, Bataller, and Hassell
describe how to apply cyber resiliency
analysis to product line architectures,
introducing the “cyber resiliency wheel”
technique. Dove addresses product line
resource variation security issue detection
and mitigation p-patterns. Adejokun and
Siok describe how to identify a product
line design’s security requirements,
introducing a security profile developing
and evolving a secure product line
aligned with industry security standards.
Teaff describes how to apply rule-based
system security verification in product

line variants. Agrawal describes how to
leverage model-based systems engineering
capturing systems security concerns while
developing the product line architecture.
Navas, Voirin, Paul, and Bonnet address
a model-based approach to systems and
cybersecurity co-engineering in a product
line context. Finally, Hause describes
an integrated security views set for the
Unified Architecture Framework (UAF)
defining security goals and requirements
implemented throughout the architecture.

We hope you find INSIGHT, the
practitioners’ magazine for systems
engineers, informative and relevant.
Feedback from readers is critical to
INSIGHT’s quality. We encourage letters
to the editor at insight@incose.org. Please
include “letter to the editor” in the subject
line. INSIGHT also continues to solicit
special features, standalone articles, book
reviews, and op-eds. For information about
INSIGHT, including upcoming issues,
see https://www.incose.org/products-and-
publications/periodicals#INSIGHT .  ¡

Front cover image credit:  INCOSE Product Line
Engineering Working Group

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

7

  ABSTRACT
The INCOSE Systems Security Engineering Working Group and Product Line Engineering Working Group completed a joint
project exploring cyber secure and resilient approaches with feature-based product line engineering. The project output results are
in this INCOSE INSIGHT theme issue (Volume 23, Issue 3). This article introduces the theme issue and the articles exploring the
intersection between systems security engineering and product line engineering. The focus includes techniques for implementing
systems security as part of a product line design, patterns for product line architectures addressing systems security, and variation
management approaches for security and resilient product line products.

Exploring Cyber Secure
and Resilient Approaches
with Feature-Based
Product Line Engineering
Bobbi Young, bobbi.young@raytheon.com and Beth Wilson, wilsondrbeth@aol.com
Copyright © 2020 by Bobbi Young and Beth Wilson. Published and used by INCOSE with permission.

INTRODUCTION

The INCOSE Systems Security
Engineering (SSE) and Product
Line Engineering (PLE) Working
Groups launched a joint project

in April 2018 to explore the intersection of
SSE and PLE. Product line design rep-
resents a unique opportunity to address
cybersecurity and cyber resiliency in a way
that benefits all the products in the portfo-
lio. By addressing systems security within
the product line core team, the product
line programs receive secure and resilient
products and shared assets. When systems
security repeats for every system using
a product line product, it is a potentially
incomplete and wasted effort. Applying sys-
tems security techniques before generating
the variations is more cost effective and
likely to have better outcomes.

The project vision was to bring systems
security into product line design. The
team focused on cyber secure and resilient
approaches to feature-based management
in product line implementation. The effort
addressed the vision through three goals:

1.	 Identify and/or develop techniques
for implementing systems security as
part of product line design

2.	 Identify and/or develop patterns for
product line architectures addressing
systems security

3.	 Identify and/or develop variation
management approaches for secure
and resilient product line products

The articles in this theme issue address
the intersection of SSE and PLE for product
design, implementation, and migration
over time. The authors collectively address
architecture development, requirements,
and verification using model-based systems
engineering, SSE/PLE techniques, and
patterns.

These articles show how applying sys-
tems security to product line design can
provide a cost-effective focus on critical
mission threads with recursive analysis
at different design levels. Model-based
systems engineering approaches capture
systems security concerns while developing
a digital environment to promote reuse and
enable multi-discipline teams to co-engi-
neer the product line.

The techniques developed by this project
show how SSE analysis can apply to interim
systems engineering products to address

security concerns inside and outside the
core product line. These product line
architecture techniques provide continuous
analysis of the cyber-attack surface and
address critical mission threads that may be
different across the product line. Feature-
based variation management applied
to the product line products results in
security requirements in the requirements
specification, threats in the operational
environment description, security-related
scenarios in the Concept of Operations,
and test cases in the verification plan.
Changes to the threat environment require
evaluating the impact on the instantiated
products across the product line.

INTRODUCTIONS TO SSE AND PLE
VOCABULARY

When the team started this joint project,
the initial effort was to make sure SSE
experts were using the correct PLE vocab-
ulary and vice versa. As the authors drafted
the initial versions of their papers, intro-
ductory material related to terminology
repeated across the articles. We decided to
include two introductory articles in this is-
sue to provide essential vocabulary to better

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

8

understand the collaboration between the
two working groups:

■	 Introduction to Systems Security
Engineering Vocabulary

■	 Introduction to Product Line Engineer-
ing Vocabulary

SYSTEM SECURITY ENGINEERING
AND FEATURE-BASED PRODUCT LINE
ENGINEERING: A PRODUCTIVE MARRIAGE

Bobbi Young, Rowland Darbin, and Paul
Clements describe how to apply both SSE
and PLE to achieve the best of each. They
introduce the “Securing the PLE Factory”
technique that creates a product line archi-
tecture to support transferring product line
products designed to be cyber secure and
cyber resilient to multiple programs. When
the security-related content is the same for
all product line members, the PLE factory
can design and test these products once as
part of the product line. The product line
team can maintain the expertise necessary
to address evolving threats benefitting all
the receiving programs. The technique
includes temporal baseline management
to synchronize the evolution of the digital
assets at each security level as development
occurs over time. This allows for mixed
data sharing and multiple security levels
across the receiving programs. The article
also addresses “Applying PLE to Security”
which considers the need to address the
impact of variant related security content
for each possible product solution within a
product line.

ENGINEERING A CYBER RESILIENT PRODUCT
LINE

Paula Moss, Susan Bataller, Patrice
Williams, and Suzanne Hassell describe
how to apply cyber resiliency analysis to
product line architectures. They introduce
the “Cyber Resiliency Wheel” technique
to develop a cyber secure and cyber
resilient product family architecture
facilitating building block reuse of product
modules. The cyber resiliency wheel’s
key advantage is applying the analysis on
interim architecture products at different
stages of product line development and
maintenance.

SECURITY ISSUE DETECTION AND
MITIGATION PATTERNS FOR PRODUCT LINE
RESOURCE VARIATION

Rick Dove describes how to represent the
product line design as an agile architectural
pattern. He addresses cyber-physical-
social system products using techno-social
patterns for detecting and mitigating
security issues. The techno-social contract
concept provides a method to implement

defense-in-depth as an emergent security
behavior adapting to a varying threat.

EFFECTIVE SYSTEMS SECURITY
REQUIREMENTS IN PRODUCT LINE
ENGINEERING

Ademola Adejokun and Michael Siok
describe how to identify security re-
quirements in product line design. They
introduce a security profile to develop and
evolve a secure product line aligned with
industry security standards. Beyond the
confidentiality, integrity, and availability
requirements addressed as security tenets,
the technique also addresses requirements
for configuration management and the
deployment environment.

RULE-BASED VERIFICATION OF SYSTEM
SECURITY USING FEATURE-BASED PRODUCT
LINE ENGINEERING

Jim Teaff describes how to apply rule-
based verification of system security in
product line variants. The rule base is
created in the PLE factory to provide
continuous cyber-attack surface analysis
and digitize cybersecurity and cyber
resiliency verification rules. The technique
validates instantiated variants to ensure
systems security capabilities delivery to the
fielded systems.

LEVERAGING A SYSTEM MODEL TO INITIATE
SECURITY ARCHITECTURE DEVELOPMENT
FOR PRODUCT LINES

Angel Agrawal describes how to leverage
model-based systems engineering to
capture systems security concerns while
developing the product line architecture.
He identifies security related model
elements using stereotypes defining
a security architecture. The directed
association relationships between threat
activities and countermeasure activities
result in a countermeasure coverage matrix
to identify coverage and gaps for product
line products.

TOWARDS A MODEL-BASED APPROACH
TO SYSTEMS AND CYBERSECURITY CO-
ENGINEERING IN A PRODUCT LINE CONTEXT

Juan Navas, Jean-Luc Voirin, Stephane
Paul, and Stephane Bonnet describe a se-
curity-by-design co-engineering approach
to product line development using the
Arcadia model-based method. The tech-
nique integrates cybersecurity functions
with the product line architecture to define
protected services and patterns for man-
aging sensitive data. The resulting model
elements superset includes cybersecurity
capabilities for configuring into the product
line products.

INTEGRATING SECURITY INTO ENTERPRISE
ARCHITECTURE WITH UAF AND PLE

Matthew Hause describes an
integrated security views set for the
Unified Architecture Framework (UAF)
defining security goals and requirements
implemented throughout the architecture.
The UAF security views can address
cybersecurity and cyber resilience in the
product line architecture capturing the
variations. The UAF security measures
provide a quantitative and qualitative
method to analyze security alternatives.  ¡

ABOUT THE AUTHORS
Dr. Bobbi Young is a systems

engineering fellow and certified architect
at Raytheon Technologies. She currently
leads an internal research and development
project focusing on adoption of product
line engineering across the business.
She is regarded throughout Raytheon
Technologies as an expert in Product Line
Engineering and MBSE and co-chairs an
MBSE technical interchange group. She is
a member of the INCOSE Product Line
Engineering Working Group, Architecture
Working Group, and MBSE Working
Group. Bobbi is also an adjunct professor at
Worcester Polytechnic Institute as an MBSE
instructor and has co-authored a book on
object oriented analysis and design. She is a
US Navy Commander (ret).

Beth Wilson earned her PhD in
electrical engineering from the University
of Rhode Island. She is retired from
Raytheon where she worked for 33 years
as a design engineer, program manager,
research scientist, functional manager,
systems architect, risk manager, and test
director on sonar, satellite, and radar
programs. Dr. Wilson is currently an
adjunct professor at Worcester Polytechnic
Institute in their master of science in
systems engineering program. She is an
INCOSE Expert Systems Engineering
Professional (ESEP), INCOSE Certification
Advisory Group (CAG) member, and
co-chair for the INCOSE Systems Security
Engineering Working Group.

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

9

INTRODUCTION

At the beginning of the INCOSE
joint project between the
systems security and product
line working groups, the team

spent some time reviewing vocabulary.
For those experienced in systems security
concepts, learning the nuances of feature-
based product line engineering, and vice
versa, was important to make progress.
This article summarizes systems security
concept nuances and highlights the
essential vocabulary the team identified.

Systems security engineering is a
discipline focused on ensuring the system

of interest can deliver value even under
adverse conditions. Table 1 from the
INCOSE handbook shows a more formal
definition. Using this definition, systems
security engineering is a discipline to
engineer a system of interest to ensure
that system “can function under disruptive
conditions associated with misuse and
malicious behavior.”

Before we had computers, systems
security protected the system from misuse
that could intentionally or unintentionally
disrupt effective operation. Guards and
gates kept the enemy out. They authorized

people who got in (and things they
carried) to be there. If someone got in
who should not be there or had malicious
intent, the guards made sure they could
not damage anything inside or remove
anything valuable.

Systems security’s emphasis expanded
when adversaries could attack from a
distance (drop bombs from a plane) or steal
something valuable without removing it
(take a picture or make a recording). The
focus remained on physical security and the
protection of hardware-intensive systems.

Term Definition Source

Systems security
engineering

Ensuring a system can function under disruptive conditions
associated with misuse and malicious behavior

INCOSE SE Handbook
(Walden, et al. 2015)

Cyberspace Interconnected digital environment of networks, services,
systems, and processes

ISO/IEC 27102: 2019 (ISO
2019)

Cyber-attack Malicious attempts to exploit vulnerabilities in information
systems or physical systems in cyberspace and to damage,
disrupt or gain unauthorized access to these systems

ISO/IEC 27102: 2019 (ISO
2019)

Cybersecurity Safeguarding of society, people, organizations, and nations
from cyber risks

ISO/IEC 27102:2019 (ISO 2019)

Cyber resiliency Ability to anticipate, withstand, recover from, and adapt to
adverse conditions, stresses, attacks, or compromises on
systems that use or are enabled by cyber resources

NIST SP 800-160 (NIST 2019)

Table 1. Definitions related to systems security engineering

  ABSTRACT
Systems security protects a system from misuse and malicious behavior and makes sure the system can deliver value even under
adverse conditions in cyberspace. This article identifies essential systems security vocabulary including systems security engineer-
ing, cyberspace, cyber-attack, cybersecurity, and cyber resiliency. This terminology overview supports effective collaboration with
other INCOSE working groups.

Introduction to Systems
Security Engineering
Vocabulary

INCOSE Systems Security Engineering Working Group, https://www.incose.org/incose-member-resources/working-groups/
analytic/systems-security-engineering
Copyright © 2020 by the INCOSE Systems Security Engineering Working Group. Published and used by INCOSE with permission.

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

10

SYSTEMS SECURITY IN CYBERSPACE
Systems security’s focus expanded

again to protect the information stored in
computers. The goal stayed the same — to
protect the system from unauthorized
entry, to protect what is valuable if there
is an entry, and to resist the disruption of
the system’s operation. The challenge now
is systems must operate in cyberspace,
defined in table 1 as an “interconnected
digital environment of networks, services,
systems, and processes” representing the
proposed definition in ISO 2019.

The focus on cyberspace is important.
This interconnected digital environment
soon became much more than computers
and their software. Cyber-physical
systems represent a global interaction
of people, software, and hardware. The
Internet of Things connects our smart
phone applications to our physical
devices. Delivering value under adverse
conditions now needs to include cyber-
attacks, defined in ISO/IEC 27102:2019
as “malicious attempts to exploit

SSE focus:
Deliver value even under adverse
conditions

Cybersecurity focus:
Protect from cyber-attack

Cyber resiliency focus:
Ensure mission success in event
of cyber-attack

Systems security

Cybersecurity Cyber resiliency

Figure 1. Systems security engineering includes both cybersecurity and cyber
resiliency

vulnerabilities in information systems
or physical systems in cyberspace and to
damage, disrupt or gain unauthorized
access to these systems.”

An important systems security nuance in
figure 1 is showing both cybersecurity and
cyber resiliency. Cybersecurity as defined
in ISO/IEC 27102:2019 is “safeguarding of
society, people, organizations, and nations
from cyber risks.” Cyber resiliency, defined
in NIST 800-160, is the “ability to antici-
pate, withstand, recover from, and adapt
to adverse conditions, stresses, attacks, or
compromises on systems that use or are en-
abled by cyber resources.” We must protect
the system from a cyber-attack. We must
also ensure mission success in the event of
a cyber-attack.

As noted in the diagram, some overlap
exists between cybersecurity and cyber
resiliency. Some techniques, such as en-
cryption and access control, help to both
prevent an attack and provide resiliency if
attacked.

Designing cyber secure and cyber
resilient systems requires a risk-based
assessment of how best to deliver value in
cyberspace. We identify the critical mission
threads and business use cases represent-
ing key value delivery aspects. We identify
cybersecurity techniques to protect the
critical system assets from potential threats.
We identify cyber resiliency techniques
and approaches to deliver value when the
system faces adverse conditions (including
a cyber-attack).  ¡

REFERENCES
■	 ISO (International Organization for Standardization). 2019.

ISO/IEC 27102:2019. Inforamtion Security Management—
Guidelines for Cyber-Insurance. Geneva, CH: ISO.

■	 NIST 2019. “NIST SP 800-160 “Developiong Cyber Resilient
Systems: A Systems Security Engineering Approach”.
Gathersburg, US-MD. National Institute of Standards and
Technology.

■	 Ross, R, V. Pillitteri, R. Graubart, D. Bodeau, and R. McQuaid.
2019. “Developing Cyber Resilient Systems: A Systems Security
Engineering Approach.” National Institute of Standards and
Technology Special Publication 800-160 2:1-229. doi:10.6028/
NIST.SP.800-160v2.

■	 Walden, D. D., G.J. Roedler, K.J. Forsber, R.D. Hamelin, and
T.M. Shortell. 2015. INCOSE Systems Engineering Hand-
book. San Diego, US-CA: Wiley. https://www.wiley.com/
en-us/INCOSE+Systems+Engineering+Handbook%3A+A+Guide+-
for+System+Life+Cycle+Processes+and+Activities%2C+4th+Edi-
tion-p-9781118999400 .

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

11

INTRODUCTION

  ABSTRACT
Feature-based product line engineering (PLE) designs a portfolio of products using variation management to maximize value of
commonality and manage differences. This article identifies essential product line vocabulary including product line engineering,
shared assets, feature catalogue, bill-of-features, PLE factory configurator, and product asset instances. This terminology overview
supports effective collaboration with other INCOSE working groups and summarizes the INCOSE PLE Primer.

Introduction to Product
Line Engineering
Vocabulary

INCOSE Product Line Engineering Working Group, https://www.incose.org/incose-member-resources/working-groups/
analytic/product-lines
Copyright © 2020 by the INCOSE Product Line Engineering Working Group. Published and used by INCOSE with permission.

Product Line Engineering (PLE) is
a systems engineering discipline
to engineer a portfolio of products
using variation management tech-

niques to take advantage of products’ sim-
ilarities while managing their differences.
This approach enables large organizations
to maximize a portfolio’s commonality val-
ue by embracing variation as a value driver
instead of a justification for divergence.

Feature-based PLE is a specific and
well-documented PLE form supported by
industrial-strength commercial automation
and using features to express the differences
among the products. Maximizing common-
ality requires encapsulating and abstracting
the differences across the portfolio using
a defined set of features enabling variation
within shared assets ranging from systems
development artifacts (requirements,
systems models, and software) to the
deployment environment (configuration
parameters, bills of materials, and end-user
documentation). Using these feature-based
variation mechanisms enables organiza-
tions to encapsulate and abstract access to
system resources from a single logical ex-
pression describing the services offered to
the external environment. Ultimately, this
enables a family of systems’ risk manage-
ment to scale with a normalized capability
offering instead of each system.

FEATURE-BASED PRODUCT LINE
ENGINEERING FACTORY

Organizations utilizing Feature-based
PLE adopt a factory approach to building
their products. The factory is a conceptual
construct showing how the various Fea-
ture-based PLE aspects interact with each
other (INCOSE 2019). Figure 1 illustrates:

•	 Shared assets are the “soft” artifacts
supporting the creation, design, imple-
mentation, deployment, and operation
of products. A shared asset can be any

artifact representable digitally: require-
ments, design models, source code, test
cases, bills of materials, wiring diagrams,
documents, user manuals, installation
guides, and more. They either compose
a product or support the engineering
process to create a product. Shared assets
can be configured and shared across the
product line.

A shared asset used in the product
line exists as a superset and includes

BILL-OF-FEATURES PORTFOLIOFEATURE CATALOGUE

SHARED ASSET SUPERSETS PRODUCT ASSET INSTANCES

PLE
FACTORY

CONFIGURATOR

EntryControl

Indicator Lockout AutoLock

Screen Speed

Park Neutral Drive

GearCenterConsoleLEDPhysical

EntryControl

EntryControl

EntryControl

Indicator Lockout AutoLock

Screen Speed

Park Neutral Drive

GearCenterConsoleLEDPhysical

Figure 1. The Feature-based PLE Factory

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

12

any asset content used in any product.
There is no asset content duplication or
replication. This duplication elimination
is where Feature-based PLE derives its
savings.

The shared asset supersets contain
variation points, which identify content
included, omitted, or configured accord-
ing to the product’s feature selections. A
statement of the product’s distinguishing
characteristics — its features — “exercises”
these variation points (configuring the
content associated with each variation
point to meet the product needs).

A key aspect of Feature-based PLE is
consistent and traceable variation treat-
ment across all shared asset types. Fea-
ture choices are the basis of a common
variation language across all disciplines
and at all organization levels. This
resolves the confusion brought about by
different disciplines each using its own
approach to variation.

•	 The Feature Catalogue captures the fea-
tures available for each product to select.
A feature is a distinguishing characteristic
describing how the product line members
differ from each other. This provides a
common language and definition of the
product line’s variation scope for every-
one throughout the organization.

•	 The Bill-of-Features specifies the features
selected for each product in the product
line.

•	 The PLE Factory Configurator is an
automated software tool applying a Bill-
of-Features to all shared assets. It eval-
uates each variation point to determine
if it should include that variation point’s
content.

•	 The PLE Factory produces as output
Product Asset Instances, each one
containing only the shared asset content
suited for one product in the product
line. Together, they constitute the artifact

set for one product in the product line.
Engineers now work on the shared asset
supersets, the Feature Catalogue, and the
Bills-of-Features, handling change and
evolution systematically through well-de-
fined governance procedures.

Once established, the PLE Factory in-
stantiates, rather than manually creates, en-
gineering assets for products. Feature-based
PLE transforms the task of engineering
products into the much more efficient task
of producing a single system: The PLE
Factory itself.  ¡

REFERENCES
■	 INCOSE International Working Group

for Product Line Engineering. 2019.
“Feature-based Systems and Software
Product Line Engineering: A Primer.”
Available at  https://connect.incose.org/
Pages/Product-Details.aspx?Product-
Code=PLE_Primer_2019

®

Are you ready to advance your career in systems engineering? Then look into

INCOSE certi�cation and set yourself apart. We offer three levels of certi�cation

for professionals who are ready to take charge of their career success.

Apply for INCOSE Certi�cation Today!

INCOSE Certi�cation
See why the top companies are
seeking out INCOSE Certi�ed

Systems Engineering Professionals.

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

13

INTRODUCTION

System Security
Engineering and Feature-
based Product Line
Engineering: A Productive
Marriage

  ABSTRACT
Product Line Engineering (PLE) is a systems engineering discipline to engineer a product portfolio using variation management
techniques to take advantage of the products’ similarities while managing their differences. It has well known cost, quality, and
time to delivery improvements compared to single-system development. Systems Security Engineering (SSE) is a discipline for
engineering systems proactively and reactively mitigating vulnerabilities. Do these two engineering disciplines conflict with each
other? Or are they compatible, even complementary? This article will discuss the relationship between PLE and SSE and how they
work together. Specific topics include managing a product line factory of products in a secure way and implementing cyber resilient
frameworks within a product line addressing cyber resiliency commonality and variability in product design, implementation, and
migration over time.

Bobbi Young, bobbi.young@raytheon.com; Rowland Darbin, rowland.darbin@gd-ms.com; and Paul Clements, pclements@
biglever.com
Copyright © 2020 by Bobbi Young, Rowland Darbin, and Paul Clements. Published and used by INCOSE with permission.

Product line engineering (PLE)
and Systems Security Engineer-
ing (SSE) are two engineering
disciplines needing little or no

motivating justification. Each provides
an indispensable engineering solution to
an overwhelming economic impetus. The
prohibitive cost PLE avoids is building and
maintaining a portfolio of similar systems
independently or semi-independently. SSE
avoids disastrous theft, protected informa-
tion disclosure, or service denial resulting
from a security breakdown.

Lacking insight, a systems engineer
may choose one discipline over the other
and accept what he or she perceives as the
lesser of two evils in a particular engineer-
ing context. Happily, however, it is not
necessary to choose between the renowned
efficiencies of PLE and the reassuring
safeguards of security. This paper will show

one can apply both disciplines together
and achieve the best of each.

First, what does it mean, operationally
speaking, to apply PLE and SSE together?
It means accounting for a bi-directional
relationship:
1.	 Applying SSE to PLE: Addressing

security concerns while applying PLE
processes on a daily basis.

2.	 Applying PLE to SSE: Building a prod-
uct line of security-intensive systems to
effectively and efficiently manage their
commonality and variations.

This article will treat each of these as a
section of its own.

Our goal is not to comprehensively
define a new, hybrid engineering discipline
but to provide examples and approaches
showing how these two disciplines work
together in practice. We want to show PLE

and SSE are not antagonistic towards one
another but help each other in order to
achieve the cost avoidance in the purview
of each.

APPLYING SSE TO PLE
Securing the PLE Factory

As discussed in the INCOSE primer on
Feature-based PLE (INCOSE Product Line
Engineering Working Group 2020), the
concept of a “factory” is central. Shared
assets — the engineering artifacts used to
design, develop, implement, and deploy
the products—are maintained as super-
sets with variation points and input to
the factory. Also input to the factory are
each product’s feature-based descriptions.
The PLE Factory applies one of these to
the shared assets and the result is a set of
asset instances applying specifically to the
described product. Engineers in a Fea-

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

14

Program
Secret Classified
Production Line

Segment A
Merged Unclassified

and Classified
Assets e.g., secret
sensor algorithms

Program Unclassified
Production Line

Segment
Unclassified Assets
e.g., unclassified

sensor algorithms, etc.

Program
Top Secret Classified

Production Line
Segment B

Merged Unclassified,
Secret, and Top

Scret Assets e.g.,
top secret effector

specifications

Program
Top Secret Classified

Cutomers with
Unidirectional
Agreements

Program
Secret Classified
Customers with

Bidirectional
Agreements

Program Unclassified
Customers

Program
Unclassified

Product Instance
Customer 1

Program
Unclassified

Product Instance
Customer 2

Program
Secret Product

Instance
Customer 3

Program
Secret Product

Instance
Customer 4

Program
Top Secret

Product
Instance

Customer 5

Product Instance
Deliveries

Trusted
Gateway

Product Instance
Deliveries

Product Instance
Deliveries

Event-based, One-way
Secure Digital Asset

Transfers

Event-based, One-way
Secure Digital Asset

Transfers

Trusted
Gateway

Figure 1. Mixed Data Sharing and Multiple Security Level Daisy Chain Approach (Teaff 2019)

ture-based PLE organization focus on the
PLE Factory’s care and evolution—man-
aging and implementing evolution to the
Feature Catalog, the Shared Asset Super-
sets, and the Bills-of-Features. The PLE
Factory generates the products themselves;
no development occurs in them.

In this section, we consider the PLE Fac-
tory as the entity needing securing. Under
this view, Feature-based PLE is no differ-
ent from any other project you want to
secure; here, the PLE Factory care, feeding,
building, nourishing, and evolution is the
“project.” The objective is making the infor-
mation contained in the PLE Factory—the
features, the shared assets, and the product
definitions—immune to theft or disclosure
to the extent required.

As a specific example, we will consider
how to make the PLE Factory “project” se-
cure across multiple security classification
zones. Imagine our PLE Factory includes
requirements, source code, test cases,
and various documentation types. Some
capabilities of our product line, or certain
aspects, are classified. This means some
requirements are classified, as is the source
code, test cases, and the documentation
portions corresponding to those classified
capabilities. Specifically, a portion of each

Shared Asset Superset is classified. This is
the information we must safeguard.

If all product line members have a classi-
fied capability, then there will be no feature
in the Feature Catalog to choose; the
capability is not a distinguishing character-
istic if every product has it. Let us assume,
however, at least one of our classified capa-
bilities is optional: some product managers
have chosen it, others have not. Then there
will be a feature in the Feature Catalog to
represent it. Such features, which are gen-
erally just descriptive names accompanied
by a brief explanation, may or may not be
classified. Typically in practice, these fea-
tures are not classified; it is their specifica-
tion and implementation that is. However,
if the features are classified, the portions
of the Feature Catalog corresponding to
the classified capabilities simply join the
safeguarded information.

Given we know the classified informa-
tion, the PLE Factory and the digital infor-
mation developed and maintained for its
use must follow the same SSE rules as when
handling any “project” information across
multiple security zones. Each customer
may dictate the security zones depending,
for example, on International Traffic in
Arms Regulations (ITAR) restrictions and/

or security classifications. The classified and
unclassified security classification levels
define security zones. The separation of
these security classification levels requires
managing and storing information on
different Information Systems (IS). In ad-
dition, PLE Factories may have to manage
digital information for different customers
who may not want their information shared
or commingled with other customers’ in-
formation even at the same classified levels.
The result may require additional informa-
tion partitioning either within the same IS
or on different ISs. The need to compart-
mentalize multiple customers’ intellectual
property from each other is simply another
type of “security classification” scheme.

Operating a PLE Factory across multiple
security classification zones follows these
rules:

1.	 Maintain all information associated
with different classification levels in sep-
arate environments, on separate servers.

2.	 Perform as much work as possible in
the lowest-level-classification (ideally,
unclassified) environment.

3.	 Information may move into a higher
classification level environment from a
lower classification level environment,

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

15

but no information flows from higher to
lower classification levels.

4.	 Information resident at a particular
level includes the portions of the
Feature Catalog, Shared Asset Supersets,
and Bills-of-Features classified at that
level. From time to time, through
natural change processes, contents at
that level evolve over time.

5.	 Define synchronization points at con-
venient points in time—periodically, at
specific intervals, or in support to some
event such as an upcoming build-and-
test milestone. Within every level, a
snapshot of the level’s contents is passed
to the next-higher level enclave, which
then performs a merge between that
content and its own.

As shown in (Teaff 2019), data-sharing
agreements and trusted gateways can play a
role in this process:
•	 Brokering unidirectional data sharing

agreement with the agencies involved is
required to take advantage of the reuse
offered by product line engineering and
continuously delivers product variants to
various classified customers. Data sharing
agreements between these agencies
allows harvesting classified assets from
pre-existing programs for use in the PLE
Factory, and sharing and commingling
variant customer information within the
production line and the same security
classification levels.

•	 In case there needs to be information
separation between different ISs, the
production line architecture uses a daisy
chained assembly line approach as illus-
trated in Figure 1. Security zones manage
each production line daisy chain segment.
Files are automatically and securely
transferred between IS security zones via
a trusted gateway. The trusted gateway
provides a rule-driven file content and
meta-data inspection allowing for file
transfer allowed by security policies.

Temporal baseline management
synchronizes the digital information’s
evolution at each security level as
development occurs over time. In the
PLE Factory, production line segment
level baselines define temporal baselines
comprising the superset (not the product-
specific instances output by the PLE
Factory) of digital information and
the PLE Factory files within the daisy
chain segments. Standard configuration
management processes and tooling can
manage the baselines at each security level.

With this process in place, information
that constitutes the contents of the PLE
Factory is secured, in accordance with best
SSE practices for safeguarding information

Now, what about the security of the
products produced by the PLE Factory?

Security of the instances produced by the
PLE Factory

To complete the applying SSE to PLE
discussion, let us consider the product
instances generated from the PLE Factory
as the things needing securing. For our
discussion this can mean either (or both) of
two things:

1.	 Building, testing, delivering, deploying,
and operating the instantiated product
in a secure manner. This necessity is no
different from a product build outside
of PLE. Once the PLE Factory pro-
duces the instantiated product (in the
highest-classification zone necessary),
it delivers from that zone in the “usual”
manner. This is SSE’s normal realm.

2.	 The instantiated product must adhere to
the security restrictions imposed upon
it. It must comply with rules protecting
intellectual property, ITAR restrictions,
and regulatory restrictions of the coun-
try of sale.

The second is the case we will consider:
Meeting content restrictions in a generated
product.

A capability audit is a quality audit
focusing on the restricted content’s correct
use. A product manifest assists in pro-
viding checks and balances at different
points within the production, providing an
auditable trail to any leak sources. The Fea-
ture-based PLE Factory approach provides
the ability to identify sensitive capabilities
and choose to either include or exclude
them in a product instance. This occurs by:
•	 Features representing capabilities includ-

ed or excluded in some products. Re-
stricted capabilities identified as features.

•	 Feature and product profiles identify the
capability features to include. Profiles for
a product must not include capability fea-
tures representing a forbidden capability.

•	 Variation points inserted within the asset
supersets identify the location of infor-
mation related to feature specific choices.
Variation points can identify protected
content.

•	 Assertions or rules exclude illegal combi-
nations of capability features—a rule can
state a particular feature is unavailable for
a particular country of sale (ITAR), or for
a particular customer (IP protection).

•	 The PLE Factory’s automated config-
urator supports constructing product
instances by exercising the profiles, varia-
tion points, and assertions.

The configurator must also provide a
product manifest for inspection ensuring

the configurator exercised the appropriate
profiles, variation points, and assertions
to include or exclude capability features
as expected. In addition to inspecting the
generated product manifest during the au-
dit, steps must ensure careful construction
when defining features, profiles, assertions,
variation point placement, and inspecting/
testing the generated product instance prior
to delivery.

To read about an example of the capability
audit approach in use, see Clements 2013.

APPLYING PLE TO SECURITY
The previous section discussed applying

SSE to PLE by addressing the PLE Factory’s
security and the security of the products
emitted by the PLE Factory.

This section will complete our treatment
of PLE with SSE by considering the reverse
case: How do we apply PLE to the SSE
realm?

Suppose an organization produces a
product line of systems under security
requirements such as requirements dealing
with cyber-resilience (Ross 2018). Whereas
Section 2 addresses handling information
securely during the product’s develop-
ment — which is the PLE Factory’s realm —
this section deals with a product line of
products required to operate securely.

To apply PLE we ask the following two
questions:

1.	 How does the need for security manifest
itself as we build, deploy, and operate
each system in our product line? Spe-
cifically, what artifacts does the need to
implement security affect? For any spe-
cific product line under any specific se-
curity requirements set, the answer will
be a content list in a specific artifacts
list, but for the sake of our argument let
us hypothesize the following:

■	 Requirements specifications will
capture the security requirements

■	 Other documents will define the threat
environment

■	 A Concept of Operations will define
security-related scenarios and the
system’s desired response to each

■	 System models will capture the secure
solution’s design (such as a security
architecture)

■	 Software source code will implement
the secure solution

■	 System test cases will evaluate the
solution security

■	 A Bill of Materials will catalog the
devices necessary to provide physical
security

2.	 For each artifact, is their security-
related content the same for all product
line members or does it vary?

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

16

Suppose the security-related content of
each artifact we listed in Question #1 does
not vary from system to system in the prod-
uct line. For example, all products share
the same security architecture crafted with
the entire product line in mind, rather than
just a single system. Or, all systems required
operation under the same threat environ-
ment. This case most easily occurs under
Feature-based PLE: security-related content
in each artifact from Question #1 does not
vary and needs no variation points.

However, the more interesting answer
from a PLE perspective is they do vary from
product to product. Managing variation like
this is Feature-based PLE’s superpower. Each
artifact listed for Question #1 will exist as
a superset including the respective content
for each possible solution need. Feature
selections will determine which system gets
which security treatment, and variation
points on all security-related content in
each artifact will reflect the feature selection
so the correct security provisions are in
the requirements, documents, Concept of
Operations, models, code, tests, and Bill of
Materials.

In summary, Feature-based PLE treats
security-related content as it would any
other content varying from product line
member to product line member, thus
providing the appropriate security solution
for each product line member. The PLE
Factory will instantiate each product in
the Requirements, Concept of Operations,
models, and source code which all con-
sistently define and implement a product
meeting its security requirements.

Once instantiated, the product can return
to testing and certification as needed, just
like any other security-intensive system.

CONCLUSION
Systems Security Engineering focus-

es on building and maintaining systems
remaining secure despite malice or error.
This requires using appropriate security
measures and controls utilizing tools,
processes, and methods needed to de-
sign and implement systems mitigating
vulnerability to achieve system assurance
(SEBoK 2019). Feature-based Product
Line Engineering provides a company the
power to take advantage of wide-spectrum
reuse while managing variation among
products delivered to multiple customers
with variantsecurity concerns, vulnerabil-
ities, and restrictions. Feature-based PLE
can incorporate system security practices
and architecture frameworks addressing
customer protection needs and security
concerns, including protecting intellectual
property as data, information, methods,
techniques, and technology used to create
the system or incorporated into the system

while maintaining physical and operational
control of information classification levels.

Systems Security Engineering’s nature is
much broader than the context provided in
this paper, as is Product Line Engineering’s
application to manage shared assets in a
product portfolio, as is their interaction.
A well-known security problem involves
aggregating data (all unclassified) in order
to infer something classified. Feature-based
PLE helps ameliorate that problem up
front, rather than after the fact, by putting
all information in supersets. The gathered
data resides next to each other, allowing
much up-front identification and therefore
prevention and mitigation. Once identified,
Feature-based PLE allows written rules, en-
forced by the PLE Factory Configurator au-
tomation, to ensure the data never co-habit
a product at a lower classification level than
that of their aggregated information.

The focused approach to applying PLE
as a complementary technology to SSE in
this paper, presented the risk reduction op-
portunity in the portfolio and the concepts
while ensuring the PLE assets security nec-
essary in the product deployment. Embrac-
ing the SSE and PLE approaches facilitates
deploying complex solutions to multiple
customers with variant needs across
multiple domains without significantly
increasing the organization’s burden. This
ultimately leaves more resources available
for advancing the core value ensuring the
organization’s success.  ¡

REFERENCES

■	 Clements, P., C. Krueger, J. Shepherd,
and A. Winkler. 2013. “A PLE-Base
Auditing Method for Protecting
Restricted Content in Derived
Products.” Paper presented at the 17th
International Software Product Line
Conference, Tokyo, JP, 26-30 August.

■	 INCOSE Product Line Engineering
Working Group. “Feature-based Systems
and Software Product Line Engineering:
A Primer,” Technical Product IN-
COSE-TP-2019-002-03-0404, available
at  https://connect.incose.org/Pages/Prod-
uct-Details.aspx?ProductCode=PLE_Prim-
er_2019 , downloaded 17 August 2020).

■	 Ross, R., R. Graubart, D. Bodeau, and R.
McQuaid. 2018. “Systems Security En-
gineering: Cyber Resiliency Considera-
tions for the Engineering of Trustworthy
Secure Systems.” Draft NIST Special
Publication 800-160 2:1-158. https://
insidecybersecurity.com/sites/insidecyber-
security.com/files/documents/2018/mar/
cs03202018_NIST_Systems_Security.pdf .

■	 SEBoK contributors. 2020. “Guide to the
Systems Engineering Body of Knowl-
edge (SEBoK).” International Council
on Systems Engineering (San Diego, US-

CA). SEBoK Wiki (&oldid=59187).
■	 Teaff, J.K., B. Young, and P. Clements.

2019. “Applying Feature-Based Systems
and Software Product Line Engineering
in Unclassified and Classified Environ
ments” Paper presented at the 29th
Annual INCOSE International
Symposiums, Orlando, US-FL, 20–25
July.

ABOUT THE AUTHORS
Dr. Bobbi Young is a systems engi-

neering fellow and certified architect at
Raytheon Technologies. She currently
leads an internal research and development
project focusing on adoption of product
line engineering across the business. She is
regarded throughout Raytheon Technol-
ogies as an expert in MBSE and co-chairs
an MBSE technical interchange group. She
is a member of the INCOSE Product Line
Engineering Working Group, Architec-
ture Working Group, and MBSE Working
Group. Bobbi is also an adjunct professor at
Worcester Polytechnic Institute as an MBSE
instructor and has co-authored a book on
object oriented analysis and design. She is a
US Navy Commander (ret).

Rowland Darbin has been with General
Dynamics Mission Systems for 17 years
and currently leads the Product Line
Engineering (PLE) Center of Excellence
facilitating the adoption of PLE factory
principals across project teams. Prior to his
current position, Rowland was the product
line manager for the consolidated product-
line management program coordinating
systems engineering efforts across the US
Army’s Live Training Transformations
(LT2) family of live training systems,
balancing the needs training portfolio
with the needs of the individual training
ranges. Rowland is also the lead co-
chair of the International Council on
Systems Engineering PLE International
Working Group as well as a reviewer
for the International Organization for
Standardization for the 26580 standard.

Dr. Paul Clements is the Vice President
of Customer Success at BigLever Software,
Inc., where he works to help organizations
adopt Feature-based Systems and Software
Product Line Engineering. Prior to this, he
was a senior member of the technical staff
at Carnegie Mellon University’s Software
Engineering Institute, where for 17 years
he worked leading or co-leading projects
in software product line engineering and
software architecture documentation and
analysis. Prior to the SEI, Paul was a com-
puter scientist with the US Naval Research
Laboratory in Washington, D. C. He is
co-author of seven books and nearly one
hundred papers on software architecture
and product line engineering.

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

17

Engineering a Cyber
Resilient Product Line

Figure 1. Example product line structure

A

SW SW FW FW FWHW

SW SW SW SW FW FWHW HW HW

FWHW HW HW SW SW SW FWHW

HW

B C D

Projects: Projects:

Core Market Architecture

Product Line
Adjacent Market Architecture

Usage: Core and Adjacent Market

Usage: Core and Adjacent Market

Usage: Core and Adjacent Market

Usage: Adjacent Market

Usage: Core MarketUser Interface
Shared Asset
Superset

Embedded
Crypto Shared
Asset
Superset

Crypto Key
Mgmt Shared
Asset
Superset

Patrice Williams, patrice.dillon.williams@raytheon.com; Paula Moss; Susan Bataller; and Suzanne Hassell
Copyright © 2020 by Raytheon Technologies. Published and used by INCOSE with permission.

OVERVIEW OF A PRODUCT LINE STRUCTURE
SUPPORTING MULTIPLE ARCHITECTURES

A product line consists of a man-
aged core set of composable sys-
tems with scalable features and
customizable variations. Critical

mission threads may differ across the
product line, but key product line architec-
ture components support the implementing
capabilities supporting a specific customer
mission.

The choice to adopt a product line
engineering strategy allows an organization
to manage its assets for efficient use across
business opportunities. This article uses
an illustrative product line containing two
separate but related architectural solutions,
which include some similar and some
unique hardware assets. Developing shared
hardware assets conforming to both archi-
tectural constraints facilitates asset usage

across the entire product line. Using the
product line engineering factory configura-
tor adapts the shared software asset super-
sets to these hardware assets. This approach
comes from Meyer and Lehnerd 1997.

Figure 1 illustrates an example dual
architecture product line for cryptographic
solutions, supporting a core and an
adjacent market. Each architecture
solution supports the requirements and

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

18

QAs Supporting Building Block Approach

Modularity Composed of discrete components; minimized impact of
change propagation

Interoperability Ease by which one asset can exchange data with
another; different operating environments

Adaptability Ability to adjust to new conditions; the ability to adapt to
new use or purpose

Table 1. Building block approach

QAs Supporting Secure Architectures

Confidentiality Not disclosing information to unauthorized individuals or
processes

Integrity Not modifying or deleting protected data in an
unauthorized and undetected manner

Availability Ability to adjust to new conditions; modification ability for
new use or purpose

Resiliency The ability to adapt to changing conditions and to
withstand and recover rapidly from disruptions.

Table 2. Secure architectures

Figure 2. Product line business climate

Unaligned Market
Unaligned Market

Adjacent Market Adjacent Market

PL Vision:

Current Business
Climate

Future Business
Climate

Grow our business to
the adjacent market
while continuing to

enhance our position
within the core

market

Core
MarketCore

Market

Figure 3. Example product line artifact organization

Product Line
Repositories

Vision Statements
Governance Methodologies
Shared Structure Diagrams
Project Views
PL Data Dictionary

Shared Asset Descriptions
Common Data Models
Shared CONOPS/Operational Views
Common Services/Structure Views

Unique Asset Descriptions
Project-specific Views

Product Line Model

Architecture Model

Project Model

Architecture
Repositories

Project
Repositories

1..*

1..*

*

environmental considerations of the
business opportunities within that market.
The product line has organized its shared
asset supersets into separate functional
areas to create embedded cryptographic
modules, crypto key management systems,
and user interfaces supporting both
architectures. Within each shared asset
superset is a set of hardware, software,
and firmware assets supporting the core’s
architecture and/or adjacent business
opportunities. Finally, each architecture
supports several projects, with each being a
unique architecture instantiation.

A product line can provide a structured
approach to effectively managing
commonality and diversity in its product
offerings. An organization may decide
to stand up a product line based on its
business forecasts in its core markets.
Alternatively, once established in a core
market, an organization may wish to
leverage its existing products to establish
a presence in identified adjacent markets.
The potential cost savings associated with
effectively leveraging existing projects in
the new market is a significant motivator
for adopting a product line approach.

Figure 2 shows the business climate for
our example product line. The organization
has an established business presence in its
core market. The future business climate
shows increasing opportunities in an adja-
cent market, with a corresponding decrease
in core business opportunities. The organi-
zation anticipates reusing technologies and
products developed in the core market will
provide competitive advantages in the new-
ly expanded adjacent market. Described
below are the key components needed to
establish a product line.

Vision: Create the vision for the product
line, which identifies and binds its scope.
This includes identifying the business op-
portunities within the current and adjacent
markets the product line will support, and
the business opportunities not in product
line’s scope.

Product Line Guiding Practices: Identi-
fy overarching practices used across the

product line. These include identifying
development and change control strategies,
funding models, and strategies for shared
asset development with defined variation
mechanisms.

Digital Environment: Establish a digital
environment supporting the product line,
which organizes digital models and repos-
itories to promote artifact reuse. Defining,
characterizing, organizing, and managing
the product line artifacts is essential for
efficient governance. Creating customiz-
able templates for common product line
documents can reduce the effort for each
supported project.

Figure 3 provides a layered artifact
organization for the example product line.

The product line repository stores artifacts
defining the product line structure, estab-
lished governance methodologies, project
portfolio views, and product line evolu-
tionary plans. The architecture repositories,
one for each identified architecture, store
information common to that architecture,
such as architecture views, data models, op-
erational views, and shared asset inventory.
Finally, each project creates a project-spe-
cific repository to contain its unique views
and inventory of project-unique assets.

The following recommended activities
define each architecture within the product
line.

Characterize the Architecture:
Characterize the architecture by

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

19

Figure 4. Example project use of shared and unique assets

SW

SWSW

SW

SW

SW

FW

FW FW

FW

FW
FW

HW
HW

HW
HW

HW

Existing Shared AssetsExisting Shared AssetsExisting Shared Assets

New Shared Assets

Non-Shared Assets

User Interface
Shared Asset Superset

Function:
Stand-Alone

Cryptography

Function:
Key Generation and

Distribution

Arch: Core Market
Project: ‘A’

Crypto
Shared Asset Superset

Crypto Key Mgmt
Shared Asset Superset

identifying the architectural principles and
quality attributes which will define the
architecture. Table 1 and Table 2 below
show quality attribute examples (QA) .

Create Common Architectural Views:
Common operational, data, and system
views define the common architecture
supporting the member projects.

Identify Shared Architectural Constraints:
Shared architectural constraints facilitate
building coherent systems from the shared
asset superset. Examples include:

■■ Using a Modular Open System Ap-
proach (MOSA) and associated support
for a specific Open System Architecture
(OSA)

■■ Hardware architecture constraints, such
as size, weight, and power restrictions

■■ Software architecture constraints, such
as layered architecture, service-oriented
architecture, specific middleware, and
programming languages

Identify Shared Security Attributes and
Capabilities: Security capabilities provided
by the architecture may exceed the protec-
tion’s scope required by any one project.

Creating a project as part of a defined
architecture has advantages for both the

project and the product line. The following
depicts the typical steps undertaken when
adding a new project to an architecture
solution within the product line. The proj-
ect benefits by inheriting a defined archi-
tecture, and a set of shared assets available
to provide the required capability. The
project identifies available shared assets,
and the variation points used to create the
architecturally compatible asset instance.
Developing new assets within a shared asset
superset can provide value to other projects
in the product line.

Figure 4 shows an example project’s
product line use. Project ‘A’ belongs to the
Core Market business, and therefore inherits
its overall architecture. The project develops
two functions, for stand-alone cryptography,
and for key generation and distribution. For
the stand-alone cryptography function, as-
sets identified within the crypto and the user
interface shared asset supersets are good
fits for the new function. The project also
identifies the need for new assets, developed
within the shared asset superset. Similarly,
the key generation and distribution function
will use existing shared assets from the cryp-
to key management shared asset superset.
Since project ‘A’ has some unique require-

ments for this function, unique assets will
provide this functionality.

A key concern in a crypto architecture is
ensuring the resulting system can achieve
mission success in a cyber-compromised
environment. This is also known as ‘Cyber
Resiliency,’ associated with the “Resiliency”
product line quality attribute. Section II
describes the approach for applying cyber
resiliency analysis within the product line.

CYBER RESILIENCY AND PRODUCT LINES
Cyber Resiliency is achieving mission

success in a cyber-compromised environ-
ment. It anticipates a compromised system.
Cyber hardening of systems is insufficient
to ensure systems continue operating in a
cyber-compromised environment. Brittle
systems may result in unreliable system
performance and failed missions in an
environment with ever changing threats.
Reusing Commercial-Off-the-Shelf (COTS)
and Government-Off-the-Shelf (GOTS)
hardware, software, and firmware has creat-
ed a vast attack surface including undiscov-
ered or unpatched vulnerabilities. Vulner-
abilities can also invade the system at any
point in the system supply chain. “Resilient
computer network defense must anticipate
the emergence of new vulnerabilities, take
action to exploit these vulnerabilities, and
disrupt the actions of successful intruders
to increase their work factor and minimize
their impact. The focus of resilience is the
assumption that attackers are inside the
network, we cannot detect them, and yet
engineers must ensure mission survival
(Hassell 2015).”

“Cyber secure and cyber resilient ap-
proaches focus on both protection from
and reaction to a cyber threat. Cyber secure
approaches focus on keeping the adversary
out of the system. Cyber resilient approach-
es focus on mission success if an adver-
sary can get into the system. The cyber
resiliency wheel applies these techniques
to interim system architecture products
demonstrating the architecture decisions
made to improve cyber resiliency (Hassell,
Wilson, and Williams 2020).”

Cyber Resiliency analysis addresses key
concerns assumed to happen during system
operation. You may not know the specific
cause but anticipate the resulting effect on
the Systems of Systems. Cyber Resiliency
has a focus on key Mission Threads and
their associated Key Performance Parame-
ters, Technical Performance Measures and
Measures of Effectiveness. The Mission
Thread analysis is an architecture-based ta-
bletop analysis of customer concerns based
on known or anticipated attacker effects
and capabilities engineers have applied
or will develop and field offsetting those
concerns. This tabletop analysis includes

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

20

Resiliency Concerns (Effects of Exploit)

Data Exfiltration False Representation Physical Effects

Disrupt Connection Force Code Execution Social Engineering

False Information Force Supervisor Protected
State

Software
Exfiltration

Table 3. Resiliency concerns

Resiliency Capabilities

Adaptive Diversity Non Persistence

Containment Forensics Pre-emption

Cyber Modeling Integrity Prioritization

Deception Least Privilege Pro-active

Detection Monitoring Randomness/Unpredictability

Distributedness Cyber Maneuver Reconstitution

Redundancy

Table 4. Resiliency capabilities

Resiliency Concerns (Effects of Exploit)

Disrupt Connection Inappropriate storage of keys—Keys easily
recovered by an attacker

Data Exfiltration Key Re Use—Allows the attacker to crack the key

False Representation Insider threat—Employees have access to keys

Table 5. Cryptography system resiliency concerns

Resiliency Capabilities

Adaptive Audit log of key management

Containment Policy to prevent reuse of keys—lifecycle management

Least Privilege Role-based access to keys

Detection Plan to detect key misuse within software

Diversity Key rotation

Table 6. Cryptography system resiliency capabilities

Figure 5. Resiliency wheel

Select
Architecture
Artifact for

Analysis

Identify Cyber
Attack Effects

Concerns

Identify
Resiliency

Capabilities
Identify Gaps

Implement
enhancements

to address
gaps

Repeat Cycle
For

Each Selected
Architecture

Artifact

Inputs (example artifacts):
System/Mission State Diagram
External Interfaces Description
Critical Mission Threads

with TPMs/MOEs
System Function Decomposition

a cross functional team including Oper-
ational subject matter experts, Software
Engineers, Architects, and System Security
Engineers. The Mission Thread binds the
analysis timeframe to the time period
during specific Mission Thread execution
by the Systems of Systems. When identify-
ing gaps, resources strategically allocated
to implement enhancements close the gaps
and any not closed track as a program risk.
Figure 5 shows the process for performing
the resiliency analysis.

The cyber resiliency analysis is made
tractable by focusing only on key mission
threads. Improving key mission thread
component resiliency increases other mis-
sion threads’ resiliency if they exercise the
functionality in the improved components.
If the improved components are a part of
a product family, the resiliency lift applies
across the product family.

Resiliency Concerns describe cyber
attack effects on the System of Systems
resulting from a cyber exploit. Architec-
turally, Use Cases describe normal system
behavior. Misuse Cases describe resiliency
concerns. A Misuse Case example is what
happens to the Systems of Systems when it
is under a Denial of Service attack. Table 3
provides a Resiliency Concerns list. It does
not include all concerns applying from Sys-
tems of Systems inception to retirement.

Resiliency Capabilities can be capabilities
built into the Systems of Systems or training
and processes established for the Systems
of Systems offsetting Resiliency Concerns.
Resiliency Capabilities are proactive. They
adhere to sound architecture principles such
as “separation of concerns” and understand-
ing and maximizing Quality Attributes such
as “Trust.” Table 4 derives, with some mod-
ifications, capabilities identified by Harriet
Goldman (2010) of MITRE.

APPLYING THE RESILIENCY WHEEL:
CRYPTOGRAPHY EXAMPLE

The following example uses the 5-step

Resiliency Wheel to analyze
the cryptography architecture.

Step 1: Using the Critical
Mission Threads, Key Per-
formance Parameters, and
Measures of Effectiveness for
the domain; determine the
applicable architecture artifacts
for the analysis. These include
the Concept of Operations di-
agram, System Block Diagram,
Activity Diagrams, Sequence
Diagrams, and State Diagrams.

For our cryptography exam-
ple, the critical mission thread
is the Crypto Key Management

Product Platform. This includes creating em-
bedded cryptographic modules, crypto key
management systems, and user interfaces.

The Customer Key Performance Param-
eters and Measures of Effectiveness for the
Cryptographic System are:

■	 User Interface
■	 Key Distribution
■	 Key Management

The architecture information supports
architecture tabletop discussions with
the stakeholders. The stakeholder group
includes the customer, architect, safety,
and security engineers, and key system
developers.

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

21

REFERENCES
■	 Goldman, H. 2010. “Building Secure, Resilient Architectures

for Cyber Mission Assurance.” Paper presented at the 201 Se-
cure and Resilient Cyber Architectures Conference, McLean,
US-VA, 29 October.

■	 Hassell, S. 2015. “Using DoDAF and Metrics for Evaluation of
the Resilience of Systems, Systems of Systems, and Networks
Against Cyber Threats.” INSIGHT 18 (1): 26-28.

■	 Hassell, S., B. Wilson, and P. Williams. 2020. “Cyber Secure
and Resilient Techniques for Architecture.” Paper presented at
the INCOSE International Symposium, online virtual event,
20-22 July.

■	 Meyer, M. and A.P. Lehnerd. 1996. The Power of Product Plat-
forms: Building Value and Cost Leadership. New York, US-NY:
The Free Press.

ABOUT THE AUTHORS
Patrice Williams is a system security engineer with a focus

on cyber security, MBSE, DevSecOps and secure architecture.
Patrice joined Raytheon as a software engineer in 2009. She is
a Raytheon cyber security resiliency architecture framework
subject matter expert and has contributed to several cyber red
team activities. She is currently participating in the 2020 CODE
Center Cyber Rotational Engineering Program. Patrice has a BA
in computer science and a Masters in cyber security with a focus
in digital forensics.

Paula Moss is an engineering fellow at Raytheon Technologies
and is a Raytheon certified enterprise architect. She has extensive
experience with software, systems engineering, and architecture
for command and control systems and is a cyber resiliency subject
matter expert.

Susan Bataller is a senior engineering fellow at Raytheon
Technologies and is a Raytheon certified enterprise architect.
She has work extensively on military satellite communications
systems in the systems, architecture, and software domains. Susan
has been principally involved in conceptualizing, developing, and
maintaining a product line architecture for Raytheon’s military
SATCOM products.

Suzanne Hassell is a principal engineering fellow at Raytheon
Technologies and is a Raytheon certified enterprise architect.
She has been at Raytheon since 2005, and is the Raytheon cyber
resiliency subject matter expert and Raytheon Technologies
Raytheon Intelligence and Space Chief Cyber Architect. She
was the principal investigator for the US Army CERDEC
Morphing Network Assets to Restrict Adversarial Reconnaissance
(MORPHINATOR) program and led Raytheon resiliency research
projects. Prior to coming to Raytheon, Suzanne did systems
engineering, architecture, and software research and development
in the communications industry for 23 years. She has 12 US patents.

Step 2:  Identify Resiliency Concerns.
Table 5 describes the resiliency concerns
resulting from the tabletop discussion.

Step 3:  Identify Resiliency Capabilities
mitigating the Concerns. Table 5 describes
the resiliency concerns resulting from the
tabletop discussion.

Step 4:  Identify Gaps:
False information: Attacker cracks and

manipulates keys (inaccurate information,
malicious content attached).

Disrupt Communications: Keys stored
improperly.

False Representation: Observe Opera-
tions for future malicious intent.

Step 5:  Implement enhancements to
the system(s) to mitigate the Resiliency
Concerns.

The Resiliency Wheel should repeat
when there are significant design changes
to the system or changes to the operating
environment raise new threat vectors.
Cyber resiliency awareness should be an
integral part of program system engineer-
ing activities.

Increasing cyber resiliency has emerged
as a significant concern for both commer-
cial and defense systems. When related
systems belong to a product family, the
effectiveness of adding resiliency to product
modules accrues across the product family,
reducing cost, schedule, and, most impor-
tantly ensuring mission success.

SUMMARY
Product line engineering provides a

tremendous opportunity for organizations.
Utilizing proven practices and technology
allows an organization to focus on

enhancements and features benefiting
their customers. While many benefits to
engineering a product line exist, adding
Cyber Resilient practices need attention.
These Resiliency measures help ensure
mission success in a cyber-compromised
environment. Applying the cyber resiliency
wheel techniques and focusing on critical
mission threads throughout the system,
helps engineers evaluate the organization’s
most vital needs. Although, it is impossible
to build a product line hardened against
every cyber-attack, it is possible to build a
product line with confidence using Cyber
Resiliency techniques.  ¡

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

22

CONTEXT

  ABSTRACT
Product Line Engineering (PLE) builds upon an Agile Architectural Pattern—with reusable resources, evolving resource vari-
ations, and a standardized interconnect and sustainment infrastructure. Commercial PLE systems attract alternative resource
suppliers, such as automotive parts. Defense PLE systems typically result from acquirers encouraging Open System Architectures
to enable alternative resource suppliers. Alternative resource suppliers are a major resource variation source in product line engi-
neered systems. Product line engineered systems are systems of systems with potential for complex interactions and unintended
emergent behaviors. This article focuses on PLE cyber-physical-social system products, the security issues resource variation can
introduce, and security patterns for detecting and mitigating these security issues. Resource variations may cause security issues
unintentionally, but intentional introduction is also possible by malicious alternative resource suppliers, supply chain interdiction,
and insiders. This article assumes malicious intent in resource variation as its security issue base line, as patterns for effective de-
tection and mitigation of malicious variation intent encompass unintentional occurrences.

Rick Dove, dove@parshift.com
Copyright © 2020 by Rick Dove. Published and used by INCOSE with permission.

Security Issue Detection
and Mitigation Patterns
for Product Line
Resource Variation

  KEYWORDS:  social contract; techno-social contract

Product line engineering (PLE)
can be fractal. Military radios
produced as a product line can be
assembled for specific features from

an inventory of electronic circuit board
components pooled for variations on general
capabilities. One pool may have variations
in sensor signal processing, another in
transmission encryption. These radios may
become part of an aircraft avionics system
with an open systems architecture structured
as a product line to accommodate different
radio and other avionic devices. The avionics
systems in turn may provide variations for
use in an aircraft product family.

This article broadly addresses product
components architected and designed as a
product line part, and focuses on detection
and mitigation of security issues introduced
by component variation. Components
have cyber, physical, and techno-social
interactions with other components

collectively configured as a product.
Components adapt internally to facilitate
variation in component features fit for
different purposes. Variation may occur in
cyber, physical, and techno-social features.

More specifically, this article focuses on
PLE variation security from a techno-social
pattern point of view. The techno-social
viewpoint centers on the social contract
concept among components. The social
contract concept, introduced by the French
philosopher Jean-Jacque Rousseau (Rous-
seau 1762), recognizes humans aggregate
as communities for mutual preservation. A
social contract is an implicit cultural agree-
ment or contract among society members
that “essentially binds the members into a
community that exists for mutual preserva-
tion” (SparkNotes 2005).

We propose PLE variation security is
more effective when there is a techno-social
contract of mutual protection among prod-

uct components, we discuss why this is,
and we show ten patterns useful for social
contract compliance.

TECHNO-SOCIAL CONTRACT CONCEPT
A product assembled from PLE compo-

nent variants, built with intent to serve a
specific user need (or desire), is a compo-
nent collection which works to satisfy a
user’s total need. Ultimately, a component’s
task is to perform its intended functionality.
A security issue in any other component it
interacts with may affect its ability to func-
tion securely, but a security issue in any
component may affect the ability of other
components to function securely.

In a sense, we have a component com-
munity participating collectively to deliver
total product satisfaction for the user. If the
radio continues working in a disabled car
the user experiences considerable dissatis-
faction. This degrades the radio’s participa-

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

23

tive intent. We propose the radio (and other
components) should have a community
sense specifically in the security domain,
complying with a collective social contract
for mutual protection.

WHY TECHNO-SOCIAL ASPECTS ARE USEFUL
Long considered truth, no unit or system

testing, certification, and standards com-
pliance can guarantee secure product op-
eration. These practices are necessary, but
insufficient. Accidental or insider-malicious
security issues may occur undetected at
engineering time, but damage manifests at
operational time. Operational time is when
unexpected emergent behaviors can occur.

An Original Equipment Manufacturer
(OEM) initially assembles PLE products
and, we suggest, provides a mutual protec-
tion social contract among OEM compo-
nents. However, in deployed operation, 3rd
party components may replace the OEM
product components, or additional com-
ponents may add to the product from 3rd
party sources. Nevertheless, the OEM re-
mains the producer of record, and bears the
responsibility of product security failures. If
a 3rd party component has a security issue
not affecting other product components,
the OEM is innocent, but if a 3rd party
component acts as a gateway for security
issues spreading to OEM components the
OEM is at fault.

The 3rd party issue underscores the need
for PLE product components to distrust
other components. The OEM does not con-
trol the deployed product configuration.

A malicious OEM insider, the OEM’s
supply chain when procuring parts for
product components from a malicious
source, or the OEM ships a safe product
component but interdiction and malicious
alteration occurs in transit to the product
integration point, or when installation or
maintenance personnel maliciously intro-
duce a component variation are various
security issue introductions.

The malicious intent issue underscores
the need for distributed real-time op-
erational behavior assessment by OEM
components.

There are many ways to introduce a
vulnerable variation. Attempting to pre-
clude such introductions before deploying
a product is a form of perimeter defense.
Implementing a product techno-social
contract is a form of defense in depth.

For the reasons above, the operation
must actively detect and mitigate variation
vulnerability in a component-distributed
manner sensitive to abnormal operational
behavior. If the OEM product can detect
and mitigate the uncontrollable 3rd party
security issues and security issues intro-
duced with malicious intent, then it encom-

passes unintended OEM engineering issues
evading discovery.

TECHNO-SOCIAL PATTERNS
Peyton Quinn will provide a conceptual

example. Peyton has a conscience, or so it
seems. A voice saying you did something
probably causing others some problems,
and you ought to confess. Peyton resides in
a gated community with a mutual protec-
tion social contract. A bit like neighbor-
hood watch, but a lot more. The gate did
not stop an intruder, evidenced by a mess
made where a neighbor’s keys were kept.
Payton’s conscience gets the upper hand
and notifies the community association
as well as the neighbors. The association
responds shortly thereafter with a commu-
nity broadcast saying a few residents have
noticed security problems and recommends
all go on high alert. Peyton double locks
the doors, increases surveillance by cutting
back on editing some videos as planned,
and calls the cleaners to fix the mess the in-
truder made. Peyton Quinn is a blazing fast
hardware/software techno-social device—
pay a ton for edits, quintuple what software
would have cost.

A social focus has patterns to consider
from mutual security practices in human
and animal social groups. The social focus
in this article is technology-technology
relationships rather than relationships in-
volving humans or animals. Our concern is
with components of a cohesive techno-so-
cial product community. The following
ten patterns come from a paper discussing
security in the Future of Systems Engineer-
ing (Dove, Willett 2020).

Self-Protection
When a techno-social contract is present

there is an obligation for components to
perform the contract, seemingly benefiting
others but it is a contract for optimizing
self-protection. Self protection is an encom-
passing macro-pattern including the nine
following patterns and more.

Self Aware
Techno-social capabilities rely on self

awareness, as socialness is a relationship
between self and others. How much self
awareness does a component need? At
least awareness of the functional exchanges
establishing interactive relationships with
other components warranting attentive
interest. Maximally, perhaps, as follows.

Self Behavior Judgement
This is like a conscience, an indepen-

dent local agent evaluating behavior for
expected norms and deviations constituting
abnormality. This approach does not rely
on other components’ sustained integrity to

make judgement, it distributes watchfulness
diversely and widely and is independent
of potentially aberrant functional mecha-
nisms, regardless of cause. Such an agent
might exist within the component or as a
separate component-dedicated compan-
ion. See Horowitz 2015 for a functional
example.

Self Behavior Mitigation
A self judgement may have different con-

fidence levels. Some may be sufficient for
unilateral immediate action. An extreme
example proposed for ad hoc networks
includes the ability for a component (node)
to commit suicide for the greater good. An-
other component type might call for a wipe
and reload. A less confident judgement may
call for consensus among peer components
or appeal to a higher authority, perhaps
a component functioning as community
overwatch attentive to multiparticipant
appeals, or a human.

Peer Behavior Judgement
Peer-behavior monitoring and judge-

ment occurs naturally and constantly in so-
cial animals. Each group member evaluates
the others for adherence to social norms
and threats to social coherence and secu-
rity. Humans monitor others’ behavior in
more sophisticated and more complex ways
than animals of lesser cognitive capability.
A techno-social component interacts with
other components through communication
and observed behavior, can learn what to
expect as normal, and vet for normalcy
before, during, or after acting upon it. A
two-part journal paper in Dove 2009a
and 2009b reviews literature supporting
concepts and methods for peer behavior
monitoring among unmanned autonomous
systems. “Trust but verify” might be a polite
operable phrase but is fundamentally about
the need for distrust.

Peer Behavior Mitigation
Rogue elephants are the result of ban-

ishment for unacceptable behavior. Social
insects restrain and even kill group mem-
bers that overstep certain social bounds.
One of the 911 planes had passengers who
took preventive action against the attackers.
Nodes in some ad hoc networks will take
a vote on questionable communication
behaviors experienced with specific nodes
and take collective action to refuse further
interaction with a node receiving bad vote
results.

Peer Collaboration
Vehicular communication systems are

computer networks in which vehicles and
roadside units are the communicating
nodes, providing each other with

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

24

information, such as safety warnings and
traffic information. They can effectively
avoid accidents and traffic congestion.
Both node types are dedicated, short-
range communications devices. Vehicular
communications usually develops as
part of intelligent transportation systems
(Wikipedia: “Vehicular communication
systems”).

Adaptable Attention Priorities
Maslow’s [human] hierarchy of needs

(Wikipedia) contends fuel and security
are the first two of six, sustained existence
needs taking precedence over higher level
purpose needs. This occurs in robotic
mobile devices interrupting their tasks to
seek an electrical outlet, and in devices and
operating systems with various anti-tam-
per detection and prevention capabilities
(short of self-destruction). For a notional
technical hierarchy of needs see Dove and
Willett (2020).

Diversity
There is a socially attentive load on

components attempting to cover a large
awareness area, and inefficiency in dupli-
cating their neighbors’ same measures.
All components do not have to partici-
pate, and all components should not look
for the same things. One way this could
implement might be to have a selection of
(work intense) things to do randomly down
selected by or for each component. Gal
Kaminka makes this case in his doctoral
thesis (Kaminka 2000) for distributed social
behavior monitoring and detection, show-
ing a centralized monitor does not do as
well as multiple monitor/detectors among
socially aware components. He also shows

this can happen effectively without any one
component monitoring all components,
and without all the components having this
monitoring capability.

Heterogeneous Awareness
A recent study of grey squirrels (Lilly,

Lucore, and Tarvin 2019) found they
use signals from multiple bird species to
indicate a present threat is in the area, as
well as to indicate no imminent threat is
present. Normal calm bird chatter finds the
squirrels attending to foraging tasks, while
alarm notes cause heightened agitation
and evasive moves. Technical components
receiving signals about the general state of
alarm or calm in other components not in
direct peer communication can ratchet the
relative component attention level between
self protective activity and functional
purpose. Heterogeneity differs from
diversity in that different social sub-groups
have some cross communication, whereas
diversity addresses a single social subgroup.

ARCHITECTURAL VIEW
Engineered as systems, PLE components

and component variations should apply
good system security practices during their
engineering activity, as with any system
type. But a PLE product assembled from
components and their variations provides
an opportunity for security not readily
available in a non-PLE product. This is true
because of the PLE product architecture
and the PLE process architecture. Both
are classic agile architecture pattern forms
(Dove and Schindel 2019), structured
to facilitate reusable, reconfigurable,
and scalable product and process
configurations.

A PLE product has a standardized
infrastructure facilitating interconnection
among components and their variations to
configure a product. A PLE process has a
similar standardized infrastructure facilitat-
ing interconnection among engineering
assets, production assets, and component
assets, as depicted in Figure 1.

 Techno-social security assets are a
principle resource pool in the PLE process
architecture. It is a pool of social contract
variations because product intended for
use by different customer types may need
different capabilities. Figure 1 depicts a
military vehicle and a drive-around-town
vehicle as two possible product types in a
product family. Military acquirers and users
will likely want more security capability
and features. The drive-around-town
vehicle may have variations appropriate
for evolving driverless operation or vehicle
communication systems.

A techno-social contract for a PLE
product family has three aspects for
consideration: security assets associated with
specific products, security assets associated
with specific components, and system
engineering assets associated with the PLE
process. A product family employing a
techno-social contract concept will likely
have variants in all three asset classes.

Product security assets implement the
techno-social contract at the product level
of component-community interaction.
Peyton Quinn’s story referenced a
community association providing
security-related services to all community
members. A product security asset may
also phone home to the OEM with security
information indicating issues needing
attention in similar products.

Figure 1. Notional Concept: Security-Relevant PLE-Process Agile Architecture Pattern

Physical interconnect
Flow interconnect
Trust interconnect
Do-no-harm interconnect
ConOpsCon interconnect

Sockets
Signal
Security
Safety
Service

Resource readiness
Situational awareness
Product feature assembly
Infrastructure evolution

Resources

Portfolio Team
Engineers

Biz Mgmnt, Portfolio Team
Product Mgrs

Chief Engineer

Engineering
Asset Variants

Production
Asset Variants

Security
Variants

C1
Variants

C2
Variants

Cn
Variants

Component Variants

Engineering

Rules/Standards

Passive

Infrastructure

Integrity
Management

Active

Production Product 1 Product n

Biz Mgmnt
Product Mgrs
Acquirers
Users

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

25

Component security assets implement
the techno-social contract at the
component level. Some may also have
direct communication capability with
the OEM—to receive security updates
and wipe-and-reloads, and to transmit
component-specific security issues.

Systems engineering security assets
enable assembling a techno-social contract
for a product at two levels: resources
include various techno-social contract
assets which can draw upon various
component and product security assets
appropriate for a given techno-social
contract. In human societies a social
contract can be cultural, lawful, or both.
A techno-social contract will generally
rely upon a lawful approach governed by
the contract’s nature—short of artificial
intelligence approaches beyond this article’s
scope. An OEM may decide contract
governance includes contract enforcement,
depending upon tolerance for 3rd party
component inclusion.

CONCLUDING REMARKS
We cannot guarantee security. There

is nothing absolutely preventing the
possibility a PLE variation introduces
an exploitable security issue. Good and
improved security practices in the PLE
factory management processes will surely
help; but it is insufficient to believe good
security practice during PLE factory
operation will ensure a secure product.
This argues for security vigilance during
operational product behavior.

PLE invites 3rd party suppliers. With
a standardized component interface, the
OEM cannot control replacing components
in an operational product or adding
components for additional capability.
The automotive after market is a prime
example. Defense acquisition’s push to
open systems architecture intended to
enable componentry from other than
the OEM. In any event, operational
product augmentation or replacing OEM
componentry can cause security issues.

REFERENCES
■	 Dove, R. 2009a. “Paths for Peer Behavior Monitoring Among

Unmanned Autonomous Systems.” ITEA Journal 2009 30:
401–408. www.parshift.com/s/090901IteaJ-PathsForPeerBehav-
iorMonitoringAmongUAS.pdf.

■	 ——. 2009b. “Methods for Peer Behavior Monitoring Among
Unmanned Autonomous Systems.” ITEA Journal 2009 30:
504-512. www.parshift.com/s/091201IteaJ-MethodsForPeerBehav-
iorMonitoringAmongUas.pdf.

■	 Dove, R., and B. Schindel. 2019. “Agile Systems Engineering
Life Cycle Model for Mixed Discipline Engineering.” Paper
presented at the 29th Annual International Symposium of
INCOSE, Orlando, US-FL, 20-25 July. www.parshift.com/s/
ASELCM-05Findings.pdf .

■	 Dove, R., and K.D. Willett. 2020. “Techno-Social Contracts for
Security Orchestration in the Future of Systems Engineering.”
Proceedings 30th Annual International Symposium of
INCOSE, virtual event, 18-23 July. www.parshift.com/
s/200718IS20-FuSETechnoSocialContracts.pdf .

■	 Horowitz, B. (Principal Investigator). 2015. “Four part System
Aware Cyber-Security Project report.” Systems Engineering
Research Center. Report No. SERC-2015-TR-036-4.
https://apps.dtic.mil/dtic/tr/fulltext/u2/a626823.pdf .

■	 Kaminka, G.A. 2000. “Execution monitoring in multiagent
environments.” Ph.D. diss., University of Southern California
(Los Angeles US-CA).

Measures countering security issues in
the 3rd party operational environment
can inform security practices in the OEM
variant engineering activity.

A techno-social contract can provide
emergent security behavior adapting to a
varying threat. While instantiating techno-
social contracts will not address all threat
variations, it addresses more than the static
safeguard predecessors. The result has the
potential to act in a non-deterministic
manner.

This article introduced notional concepts
and patterns for a behavior-based techno-
social contract among components in an
operational PLE product. It also suggested
three areas needing consideration for
enabling, designing, and implementing a
techno-social contract. Fundamentally the
concepts and areas requiring work apply
to agile security in general and warrants
more attention for security in the Future of
Systems Engineering.  ¡

■	 Lilly, M.V., E.C. Lucore, and K.A. Tarvin. 2019.
“Eavesdropping Grey Squirrels Infer Safety From Bird
Chatter.” PLOS ONE, 4 September. https://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0221279 .

■	 Rousseau, J-J. 1762. On the Social Contract. Translated by
Maurice Cranston. New York, US-NY: Penguin Publishing
Group.

■	 SparkNotes. 2005. “The Social Contract.” www.sparknotes.com/
philosophy/socialcontract/characters .

ABOUT THE AUTHOR
Rick Dove is Paradigm Shift International’s CEO, specializing

in agile systems engineering and security research, engineering,
and project management, and an adjunct professor at Stevens
Institute of Technology teaching graduate courses in agile and
self-organizing systems. He chairs the INCOSE working groups
for Agile Systems and Systems Engineering, and for Systems
Security Engineering. He is an INCOSE Fellow, and author of
Response Ability, the Language, Structure, and Culture of the Agile
Enterprise.

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

26

INTRODUCTION

  ABSTRACT
Requirements engineering for complex software-intensive systems (and other systems) requires identifying, specifying, analyzing,
and reviewing system requirements early in the system development process. However, many cases overlook system security re-
quirements, treating them as an afterthought during this important initial process stage. Missing security requirements for these
system types cannot guarantee system integrity. It is not cost efficient to retrofit requirements at later stages to include missing
security capabilities specified earlier in-process. Detailed analysis and understanding of security requirements enable building
confidentiality and integrity into our systems. Thus, early process activities must include security requirements engineering.
	 Product Line Engineering development must guarantee system integrity and assurance for a “family of systems” borne from
a common design. Hence, detailed requirements elicitation and specification is important early in the product-line development
and must include security requirements. Further, security requirements must revisit applicability, extension, and new security
requirements specified to provide for security coverage of selected features contained within the product line’s instances.
	 This paper describes an approach to security requirements engineering identification and includes introducing a security pro-
file to facilitate developing and evolving a secure product line for software-intensive systems.

Ademola Adejokun, Ademola.Adejokun@lmco.com; and Michael F. Siok, Mike.Siok@uta.edu
Copyright © 2020 by Ademola Adejokun and Michael F. Siok. Published and used by INCOSE with permission.

Effective Systems
Security Requirements in
Product Line Engineering

  KEYWORDS:  product line engineering, security, trustworthy system

Deficiencies in requirements
engineering is a major risk am-
plifying and resulting in product
defects over the entire product

lifecycle. To develop a high quality and
secure product, eliciting, identifying, ana-
lyzing, and managing system requirements
is necessary (Insfran, Chastek, Donohoe,
and Cesar 2014; Clements and Northrop
2001; and Kuloor and Eberlein 2002).
Specifically, adequately specified security
requirements. Concise and unambiguous
requirements ensure a simple system design
and implementation. This also reduces
costly security-related defects found later
in development and production stages due
to requirements errors (Mellado, Fernan-
dez-Medina, and Piattini 2010; Arciniegas,
Duenas, Ruiz, Ceron, Bermejo, and Oltra
2006; and Baresi and Morasca 2007).

Product line engineering (PLE) includes
a group or family of similar systems borne
of a common design containing an allowed

variations portfolio (features) generating
instances of those systems for customers
(Insfran et al. 2014). This underlying PLE
nature enables continuous integration
and a faster more cost-efficient product
development and delivery by promoting
secured systematic reuse of a large reusable
Shared Asset Superset. The complexity and
extensivity PLE nature requires adequate
security requirements engineering for the
common reusable shared assets superset.

The key enabling factor to advance PLE is
generating a secure and trustworthy prod-
uct instance drawn from a stable common,
secure, and trustworthy base (the shared
asset supersets) with allowed product
features drawn from a features catalogue.
Product instances generated from these
trustworthy assets and features will inherit
PLE’s security capabilities and present an
acceptable system security posture for the
customer at delivery.

Figure 1. Security tenets

Security

Confidentiality Integrity Availability

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

27

This paper explores a requirement
engineering approach for PLE development
emphasizing system trustworthiness of the
common reusable product base (the shared
asset supersets) and the generated prod-
uct instances. The approach’s key focus is
reviewing, adopting, and tailoring relevant
security standards for the PLE process
lifecycle.

SECURE PRODUCT LINE ENGINEERING
Confidentiality, integrity, and availabil-

ity are the main security tenets to achieve
system security and trustworthiness
(Schramm and Grzemba 2011; Griglock
and Kleidermacher 2001; Clements and
Northrop 2001; Kuloor and Eberlein 2002;
and NIST 2018). See Figure 1. Require-
ments supporting these security tenets
establish a ‘root of trust’ to facilitate a secure
product line development and PLE product
asset instnaces deployment.

An effective and systematic approach to
define and manage product asset instance
security requirements, product features,
and feature portfolios ensures a secure
product line with a consistent underlying
and robust security policy and protection
profile. This ensures secure critical data
processing and continued PLE develop-
ment process and generated product asset
instance assurance.

The approach to achieve a secure product
line is to promote product line commonal-
ity alignment with the main security tenets
(Confidentiality, Integrity, and Availability)
and to provide compliance with appropri-
ate and relevant industry configuration
management, development environment,
and security requirements standards. Be-
cause PLE features are either infrastructure
commonality parts or defined as part of the
features portfolio, all product-line generat-
ed product asset instances can inherit com-
mon security requirements; specialized/
unique requirement(s) may be part of the

relevant feature within the feature portfolio
and that feature can manage it separately.

The following paragraphs provide this
approach’s key tenets descriptions.

Confidentiality Requirements:
Confidentiality requirements address

protection against disclosing sensitive and
critical data. The PLE should implement
security controls to achieve confidentiality
and ensure Data-at-Rest, Data-In-Transit,
and Data-In-Use processing protection.
Security engineering checklists should
contain data protection verification features
such as Encryption protocols.

Integrity Requirements:
Integrity requirements ensure PLE

system reliability and data and processing
accuracy. Verifying software functionality
achieves reliability. Verifying data modi-
fications occur in an authorized manner
and data is complete and consistent before
and after modification ensures accuracy.
Specifying security control protocols, such
as Hashing and Digital Signatures, ensures
system integrity and are part of the Securi-
ty Controls Checklist.

Availability Requirements:
Availability requirements ensure PLE

system protection against service disrup-
tion. These requirements are part of prod-
uct-line system infrastructure requirements
and provide a means to conduct business

impact analysis and define measurement of
the system’s maximum tolerable downtime
and recovery time objective.

Configuration Management Requirements:
Configuration management require-

ments help define and direct the PLE
infrastructure, application features, and
system functionality development control
and ensures the allowed product asset
instance’s integrity. Defining and enacting
specific configuration items, including
specifying effective management practices
and measures, ensures PLE work product
and process security and integrity.

Deployment Environment Requirements:
Deployment environment security

requirements address the needs and
methods to protect classified or sensitive
data once the system transfers or deploys
to the operational environment for systems
integration and test and/or delivery.

SECURITY STANDARDS APPROACH
Industry security standards and

frameworks exist to provide a systemat-
ic approach to managing, securing, and
processing sensitive and critical data. These
standards provide specifications to achieve
system resiliency, the system’s ability to
provide continued assurance and adaptable
response before, during, and after a security
event. Therefore, the approach here to
achieve resiliency is to identify and tailor

«block»
Security Requirements

«block»
Security Asset

«block»
Security Capability

«block»
Security Objective

«block»
Protection Profile

«block»
Use Cases

«block»
Shared Asset Supersets

«block»
Security Standards

«block»
Security Profile

«block»
Security Controls

«block»
Security Checklist

«block»
Feature Catalogue

«block»
PLE Factory Configurator

«block»
Product Asset Instances

«block»
Bill of Feature Variations

1.. n Feature
Variation

1 .. n instancesFigure 3. Generated and traceable
security requirements for the product line

Figure 2. Product variant inherits common requirements

«block»
Product Common Requirement

«block»
Security Requirement

«block»
Product Asset Instance 2 Requirement

«block»
Product Asset Instance n Requirement

«block»
Product Asset Instance 1 Requirement

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

28

relevant and critical elements of the chosen
security standards requirements and mea-
sures for the PLE.

Because of the PLE commonality and
variability (Yu et al. 2008) specification,
security requirements for critical system
features of the shared asset supersets intend
to align with a fundamental security profile.
The product commonality top level, the PLE
infrastructure, where generated product
instances will inherit and reuse the common
security features, must define and man-
age these requirements. Specific security
requirements, needed and specified for the
variable features, derive from and traced
back to the overarching commonality or in-
frastructure specifications contained in the
shared asset supersets. Figure 2 illustrates
the these relationship’s natures.The feature
catalogue contains allowed PLE features
that have been built with the appropriate
security tenets; each feature in the catalogue
complies with the security requirements
of the PLE. The bill of features variations
contain the definitions of each allowed vari-
ation of the PLE using the feature catalogue.
Then, the PLE factory generator uses the
reusable components from the shared assets
repository and the bill of features variations
(which draw components from the features
catalogue) to construct a predefined allowed
instance of the PLE. Figure 3 illustrates
these relationships.

Standards such as the National Insti-
tute of Standards and Technology (NIST)
Framework for Improving Critical Infra-
structure Cybersecurity (Version 1.1), ISO/
IEC 27001:2013 (the Information Secu-
rity Management System), and ISO/IEC
15408:2005 (Common Criteria), identify
and tailor relevant security requirements for
the PLE Lifecycle application. For example:

•	 The NIST Framework for Improving
Critical Infrastructure Cybersecurity is a
risk-based approach to managing cyberse-
curity risk. The framework lists Functions
and Categories/Controls describing
specific cybersecurity activities common
across critical infrastructure sectors. These
categories can further align to the security
tenets essential for the PLE requirement
specifications. Table 1 illustrates this rela-
tionship (ISO/IEC 2013).

•	 The ISO/IEC 27001:2013 standard pro-
vides requirements for an information
security management system (ISMS)
necessary to keep identified information
assets secure. The ISMS preserves the
fundamental security tenets of con-
fidentiality, integrity, and availability
of the identified information assets by
directing application of risk management
techniques. These techniques provide

Framework Function Category/Control Security Tenet
Alignment

1 IDENTIFY Asset Management Availability

Risk Management Strategy Availability

Supply Chain Risk Management Availability

2 PROTECT Access Control Confidentiality/
Integrity

Information Protection Confidentiality/
Integrity

Protective Technology Confidentiality/
Integrity

Data Security Confidentiality/
Integrity

Maintenance Availability

3 DETECT Anomalies and Events Availability

Anomalies and Events Availability

Detection Processes Availability

4 RESPOND Response Planning Availability

Communications Availability

Analysis Availability

Mitigation Availability

Improvements Availability

5 RECOVER Recovery Planning Availability

Improvements Availability

Communications Availability

Table 1. NIST framework for managing cybersecurity risk mapping to security tenets

confidence the information system
management assures the security mecha-
nisms. Table 2 illustrates this relationship
(Arciniegas et al. 2006).

The Common Criteria process (https://
www.commoncriteriaportal.org/pps/) focuses
on the protection profiles for the security
targets. The protection profiles specify se-
curity requirements facilitating the protec-
tions for the evaluated system. In this con-
text, applicable Protection Profile standards
tailor to the identified PLE security assets;
the derived security requirements facilitate
a secure PLE development again ensuring
alignment with the security tenets. Table 3
specifies the Protection Profiles to extend
the PLE security requirements.

SUMMARY AND CONCLUSIONS
Security requirements are essential in

the PLE development lifecycle. Lacking ef-
fective and adequate security requirements
in early product line system development
stages is a major risk manifesting in costly
PLE infrastructure and generated system
instances defects.

The infrastructure components of PLE
provide the product-line commonality
contained in the shared assets superset; the
generated system instances is provided in
the bill-of-features variations allowed vari-
ability that provides the delivered product
instances with required and specialized se-
curity features. Thus, the PLE commonality
and variability features promote a leveraged
reuse approach enabling faster and more
cost-effective product delivery over mul-
tiple system instance deliveries. Adequate
security requirements specification and
management across the product line is the
key factor in developing and delivering

29

Category Control Security Tenet Alignment

Information Classification Classification Confidentiality/Integrity

Labelling of information Confidentiality/Integrity

Handling of assets Confidentiality/Integrity

Access control Access control policy Confidentiality/Integrity

Access to networks and network services Confidentiality/Integrity

Cryptography Policy on using cryptographic controls Confidentiality/Integrity

Key management Confidentiality/Integrity

Operations security Change management Integrity

Capacity management Control Integrity

Separation of development, testing and operational
environments Integrity

Logging and monitoring Event logging Integrity

Protection of log information Integrity

Security in development
and support processes Secure development policy Confidentiality/Integrity

System change control procedures Integrity

Secure system engineering principles Confidentiality/Integrity

Secure development environment Confidentiality/Integrity

System security testing Integrity

System acceptance testing Integrity

Information security
continuity Planning information security continuity Integrity

Implementing information security continuity Integrity

Redundancies Availability of information processing facilities Availability

Table 2.  ISO/IES 27001 ISMS risk management mapping to security tenets

Protection Profile Security Tenet Alignment

1 Access Control Confidentiality/Integrity

2 Data Protection Confidentiality/Integrity

3 Key Protection Confidentiality/Integrity

4 Operating System Confidentiality/Integrity

5 Product for Digital
Signature Confidentiality/Integrity

6 Trusted Computing Confidentiality/Integrity

Table 3. Common criteria protection profiles mapped to security tenets a product instance with specific security
assurance properties efficiently.

Paradigms for specifying and managing
security requirements across PLE lifecycles
are a necessity. Systemically aligning and
categorizing the PLE requirements with
fundamental security tenets and compliance
with the relevant industry security stan-
dards promotes a leveraged reuse develop-
ment approach and infuses a working “plug
and play concept” for generated system
instances within the product line “family of
systems.” Bringing security into the open
standard PLE lifecycle compliance will help
advance the PLE lifecycles and the current
state-of-the-practice for engineering future
complex software-intensive systems.  ¡

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

30

REFERENCES
■	 Arciniegas, J. L., J. C. Duenas, J. L. Ruiz, R. Ceron, J.

Bermejo, and M. A. Oltra. 2006. “Architecture Reasoning for
Supporting Product Line Evolution: An Example on Security.”
In Software Product Lines: Research Issues in Engineering and
Management, edited by T. Kakola, and J.C. Duenas, 327-372.
Berlin, DE: Springer-Verlag Berlin Heidelberg.

■	 Baresi, L., and S. Morasca. 2007. “Three Empirical Studies
on Estimating the Design Effort of Web Applications.” ACM
Transactions on Software Engineering and Methodology 16
(4):15-55. DOI:https://doi.org/10.1145/1276933.1276936.

■	 Clements, P. and L. M, Northrop. 2001. Software Product Lines:
Practices and Patterns. Boston, US-MA: Addison-Wesley
Professional.

■	 Common Criteria Portal. 2020. “Common Criteria Protection
Profiles.” https://www.commoncriteriaportal.org/pps/ .

■	 Griglock, M., and D. Kleidermacher. 2001. “Safety-Critical
Operating Systems.” Embedded. https://www.embedded.com/
design/prototyping-and-development/4023830/Safety-Criti-
cal-Operating-Systems.

■	 Insfran, E., G. Chastek, P. Donohoe, and J.C.S.P Leite. 2014.
“Requirements Engineering in Software Product Line Engi-
neering.” Requirements Engineering 19, 331-332. DOI 10.1007/
s00766-013-0189-0.

■	 ISO (International Organization for Standardization). 2013.
Framework for Improving Critical Infrastructure Cybersecu-
rity. ISO/IEC 27001:2013(E). Information Security Manage-
ment. Geneva, CH.

■	 Kuloor, C., and A. Eberlein. 2002. “Requirements Engineering
for Software Product Lines.” Paper presented at the
15th International Conference on Software and Systems
Engineering and their Applications, Paris, FR, 3-5 December.

■	 Mellado, D., E. Fernandez-Medina, and M. Piattini. 2010.
“Security Requirements Engineering Framework for Software
Product Lines.” Information and Software Technology, 52(10):
1094-1117. DOI:10.1016/j.infsof.2010.05.007 .

■	 NIST. 2018. “Framework for Improving Critical Infrastructure
Cybersecurity”, version 1.1, 16 April. https://www.nist.gov/
cyberframework/framework .

■	 Schramm, M. and A. Grzemba. 2011. “Trustworthy Building
Blocks for a More Secure Embedded Computing Environ-
ment.” Paper presented at the 2011 International Conference
on Applied Electronics. Pilsen, CZ. 7-8 Sept.

■	 Yu, Y., A. Lapouchnian, S. Liaskos, J. Mylopoulos, and
J. C. S. P. Leite. 2008. “From Goals to High-Variability
Software Design.” Foundations of Intelligent Systems, 17th
International Symposium Proceedings. Springer Lecture
Notes in Computer Science, 4994: 1–16.About the Authors

ABOUT THE AUTHORS
Ademola (Peter) Adejokun has over 20 years’ experience in

systems and software engineering; he currently works as a cyber
security systems engineer at Lockheed Martin Aeronautics in
Fort Worth, Texas. Ademola is a licensed professional engineer
in Texas, an INCOSE ESEP, Six Sigma Black Belt, a certified PMP,
and holds the Security+ certification. Ademola is a senior member
of the IEEE and ACM. He serves on the Object Management
Group’s UML Testing Profile and UAF subgroups; he also
serves on the National Council of Examiners for Engineering
and Surveyors (NCCEES) Software and Electrical/Computer
Engineering PE Licensure Exam Committees. Ademola holds a BS
in computer science & engineering and a BS in physics from the
University of Texas at Arlington. In his spare time, Ademola is
pursuing a Master’s degree in security engineering from Syracuse
University.

Michael F. Siok is currently an adjunct with the Computer
Science and Engineering Department at the University of Texas
in Arlington, Texas. Mike’s previous experience includes 34
years as systems and software engineer at Lockheed Martin
Aeronautics Company working in avionics systems, software
engineering, and avionics test equipment systems development
areas. Mike is an INCOSE ESEP, a senior member of the IEEE,
and a registered professional engineer in the great state of Texas.
He holds a Bachelor’s of Engineering Technology in electronics
from Southwest State University in Marshall, MN and MS and
Doctorate degrees in engineering management from Southern
Methodist University in Dallas, Texas.

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

31

INTRODUCTION

  ABSTRACT
Systems security engineering is a discipline to engineer a system of interest ensuring system functionality under disruptive
conditions associated with misuse and malicious behavior. Today’s cyber-physical systems must survive in a constantly changing
threat environment. Cybersecurity controls and cyber resiliency capabilities require continuous delivery to meet this challenge.
This article describes creating and using a rule base as an integral part of a systems and software product line engineering
(PLE) factory enabling continuous resilient and secure cyber-physical systems delivery ensuring the system can function under
disruptive conditions. A hypothetical intelligence gathering network comprising unmanned vehicles, a ground control segment,
and an intelligence analytics segment is the system of interest. Systems engineering activities include continuously analyzing
the cyber-attack surface for each system variant in the product portfolio; creating or amending cyber resiliency capabilities and
cybersecurity controls for each system variant addressing each attack vector; and a living rule base maintained within a PLE
factory ensuring each system variant automatically generated by the factory contains the requisite system capabilities. Applying
this approach results in rule-based verification of continuously delivered cyber resiliency capabilities and cybersecurity controls
for each fielded system variant. Moving at the speed of mission need is essential, and automated rule-based verification of system
deliveries meets that need.

Rule-based Verification
of System Security using
Feature-Based Product
Line Engineering

James K. Teaff, James.K.Teaff@rtx.com
Copyright © 2020 by James K. Teaff. Published and used by INCOSE with permission.

“Software is eating the world,” Marc
Andreesen famously declared in
his August 2011 Wall Street Journal
article. This trend ultimately resulted

in modern cyber-physical systems com-
prising people, hardware, and software
fielded supporting diverse missions. These
cyber-physical systems must survive in a
constantly changing threat environment,
which mandates continuous cyber resilien-
cy capabilities and cybersecurity controls
delivery. The software malleability lends
itself to implementing the majority of the
requisite system capabilities, and software,
as noted by the United States Defense Inno-
vation Board, is immortal—ever evolving
long after its initial delivery to the field
(McQuade et al. 2019) (McQuade, Medin,
and Murray 2018). Recognizing speed and
cycle time as the most important metrics
for managing software, the Defense Inno-

vation Board states system developers need
to deploy and update software working for
its users at the speed of relevance. Clearly,
whatever can automate needs automation,
removing human-in-the-loop processes in
order to move at the speed of mission need;
improve system quality, cyber resiliency,
and cybersecurity; and enable users to trust
the tools they use in the field.

To meet the continuously fielding secure
systems challenge, organizations leverage
feature-based systems and software product
line engineering (FB-PLE). The key to
FB-PLE is automation through a product
line engineering factory. At the factory’s
center is a rule base used to verify each
system variant created by the factory. A rule
base is a specialized knowledge base or a
knowledge repository obtained from sub-
ject matter experts and digitized as a rule

set. A product rule is a system constraint
represented in a rule base as an assertion.
Each assertion is a Boolean expression—a
true or false expression. Creating and
using a rule base begins with analyzing the
cyber-attack surface for each system variant
in the product portfolio. Systems engineers
then design invariant and variant system
capabilities for each fielded system address-
ing the identified attack vectors. The factory
digitizes and subsequently uses product
rules to automatically ensure each output
product configuration is secure, delivery
after delivery to the field.

For the systems engineer, rule-based
system security verification enables
knowledge capturing from subject matter
experts and then each field delivery’s
tireless, error-free verification by the
factory using the rule base as the single

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

32

truth source. Contrast this with the typical
systems engineer’s writing requirements
in a requirements management tool,
developers interpreting the natural
language requirements when creating a
module, and finally testers independently
interpreting the requirements when
creating and executing a test. Each process
step has the potential for introducing
verification faults through inconsistencies
inherent in multiple truth sources.

With the rule-based verification context
established, the remainder of this article
details the hands-on tasks a systems
engineer performs creating and using a
product rule base.

HYPOTHETICAL INTELLIGENCE GATHERING
NETWORK

This article uses a hypothetical intel-
ligence gathering network (H-IGN), as
depicted in Figure 1, as a rule-based system
variant verification example.

The H-IGN system mission is to support
the intelligence analyst via capturing and
processing sensor data collected by sensor
platforms. The H-IGN system comprises
one or more unmanned vehicles (UxV),
a ground control segment, and an intelli-
gence analytics & dissemination segment.
The H-IGN product portfolio supports
three primary configurations:

■	 Small area of interest (AOI): line of
sight UxV control and one analyst such
as covering a city block

■	 Medium AOI: less than 200 square
miles and up to five analysts such as
covering a city

■	 Large AOI: less than 125,000 square
miles and up to twenty analysts

Additionally, the H-IGN system supports
the following variations in sensor plat-
forms:

■	 One or more unmanned aerial vehicles
■	 One or more unmanned ground

vehicles

■	 One or more maritime unmanned
surface vehicles

The H-IGN system supports the follow-
ing sensor platform control options:

■	 Continuous active ground control
■	 Autonomous vehicle control

The system capabilities and total lifecycle
cost for each product variant in the port-
folio differs based on its product specifica-
tion: its factory bill-of-features.

CYBER RESILIENCY CAPABILITIES AND
CYBERSECURITY CONTROLS RULE BASE

The systems engineering activities for
creating the factory product rule base
include:

■	 Continuously analyzing the cyber-at-
tack surface for each system variant in
the product portfolio

■	 Creating or amending cyber resiliency
capabilities and cybersecurity controls
for each system variant addressing each
identified attack vector

■	 Digitizing cyber resiliency and
cybersecurity verification rules forming
a living rule base

■	 Using the factory’s living rule
base ensuring each system variant
automatically generated by the factory
contains the requisite cyber resiliency
capabilities and cybersecurity controls

The cyber-attack surface analysis for
the H-IGN system identifies the ground
control to UxV communications system
(COMMS) as an attack vector. Potential
attacks include:

■	 Passive data interception
■	 Covert data modification
■	 COMMS disruption

COMMS system feature’s engineering
ensures ongoing human and/or auton-
omous sensor platform control for each
system variant, each differing in capabilities
and cost. Features include:

■	 Wireless COMMS—radio frequency
(RF); microwave radio
•	 Encryption algorithms
•	 Frequency hopping algorithms

■	 Line of sight COMMS
■	 Wired COMMS—essentially the UxV

tethered to a ground operator

Modeling the sensor platform control
modes results in a variant feature model,
depicted in Figure 2, comprising the
“Ground Control” feature and the
“Autonomous” control feature.

Modeling the configurable COMMS
capability set results in a variant feature
model, depicted in Figure 3, comprising the
“Wireless COMMS” feature and the “Line
Of Sight COMMS” feature.

«Block»
SensorPlatforms

«Block»
VehicleGroundControl

«Block»
IntelligenceAnalyticsAndDissemination

«flow»

«flow»

«flow»

VehicleControl

Telemetry

SensorData

Figure 1. Hypothetical intelligence gathering
network (H-IGN)

SensorPlatformControlModes ?

SensorPlatformControlModes

GroundControl

Text Structure Graph

Autonomous

Set

Atom Atom

?

??

Mixin Features

Figure 2. H-IGN sensor platform control modes

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

33

The H-IGN subject matter experts provide the following speci-
fication:

■	 All product variants shall have redundant COMMS capabilities
for greater cyber resiliency

■	 All product variants shall encrypt data to ensure cybersecurity
■	 RF COMMS shall use a frequency hopping algorithm to ensure

cybersecurity

Additionally, for each AOI variant the subject matter experts
provide the following specification:

■	 The small AOI variant:
•	 Shall have both wireless radio frequency and line of sight

COMMS for greater cyber resiliency
•	 Customers may additionally choose to add “Basic” or “En-

hanced” wired COMMS, but not both (this drives capability
and cost variation)

•	 Shall not support autonomous vehicle control (this drives
capability and cost variation)

■	 The medium AOI variant:
•	 Shall have both wireless radio frequency and microwave

radio COMMS for greater cyber resiliency
•	 Customers may additionally choose to add line of sight

COMMS for greater cyber resiliency
•	 Shall not support wired COMMS
•	 Shall support autonomous vehicle control for greater cyber

resiliency
■	 The large AOI variant:

•	 Shall have both wireless radio frequency and microwave
radio COMMS for greater cyber resiliency

•	 Shall not support line of sight COMMS
•	 Shall not support wired COMMS
•	 Shall support autonomous vehicle control for greater cyber

resiliency

Each subject matter expert specification digitizes into a product
rule. The product rules exist in the factory rule base as assertions.
Assertions use a Boolean expression language including Boolean
operators and comparison operators as described in Appendix
A—Product Rule Boolean Expression Language. The set operators
frequently used are: “>” and “>=”. ({TheSet} > A) is true when
TheSet contains A and at least one other member. ({TheSet} >= A)
is true when TheSet contains A.

For example, the subject matter expert specification “All product
variants shall have redundant COMMS capabilities for greater
resiliency” results in the product rule:

While the specifications “All product variants shall encrypt data”,
and “RF COMMS shall use a frequency hopping algorithm”, results
in the product rule set:

?

? ?

?
Set Set

Set Atom

WirelessCOMMS LineOfSightCOMMS

Microwave?
Set

RF BasicLOSSCOMMS

?
Atom

BasicRFCOMMS ?
Atom

BasicMicrowaveCOMMS

Figure 3. Subset of COMMS capabilities

Assert ((COMMS.COMMSTypes > {WirelessCOMMS}) OR
((COMMS.COMMSTypes > {LineOfSightCOMMS}) OR
(COMMS.COMMSTypes > {WiredCOMMS})));

Assert ((COMMS.COMMSTypes.WirelessCOMMS.RF >=
{BasicRFCOMMS}) REQUIRES (COMMS.COMMSCyberse-
curity.EncryptionAlgorithm == {EncryptionAlgo_Alpha}));

Assert ((COMMS.COMMSTypes.WirelessCOMMS.RF >= {Ba-
sicRFCOMMS}) REQUIRES (COMMS.COMMSCybersecuri-
ty.FrequencyHoppingAlgorithm == {FreqHopAlgo_Bravo}));

Adding these assertions to the factory’s product rule base results
in the initial rule base for COMMS as presented in Figure 4.

Figure 4.  Initial COMMS Rule Base

Features of Mixin “COMMS”
guideline:
Feature Declarations
Assertions

Assert ((COMMS.COMMSTypes > {WirelessCOMMS}) OR ((COMMSTypes>
{LineOfSightCOMMS}) OR (COMMS.COMMSTypes > {WiredCOMMS})))
Assert ((COMMS.COMMSTypes.WirelessCOMMS.RF >= {BasicRFCOMMS})
REQUIRES (COMMS.COMMSCybersecurity.FrequencyHoppingAlgorithm=
 = {FreqHopAlgo_Bravo}))

RULE-BASED SYSTEM VARIANT VERIFICATION
Once the digitized product rules are in place, the factory checks

the assertions in the rule base and issues an error to the systems
engineer for every rule violation as they work. For example, if a
systems engineer attempts to design a system variant with basic
RF COMMS without a frequency hopping algorithm, the factory
throws an “assertion failed” when evaluating the product rule base:

Assertion failed: Assert ((COMMS.COMMSTypes.Wireless-
COMMS.RF >= {BasicRFCOMMS}) REQUIRES (COMMS.
COMMSCybersecurity.FrequencyHoppingAlgorithm ==
{FreqHopAlgo_Bravo}))

Figure 5 (next page) depicts an example product rules evalua-
tion report. Once the systems engineer adds a frequency hopping
algorithm to the system variant, and re-evaluates the product rule
base, the assertion passes.

RESPONDING TO THREAT ENVIRONMENT CHANGES
After fielding various hypothetical H-IGN systems, a compro-

mise in the frequency hopping algorithm appears. A new algo-
rithm installs, and the factory COMMS feature model updates
adding frequency hopping algorithm “Charlie,” while retaining
frequency hopping algorithm “Bravo” for audits and traceability.
The product rule base updates with an assertion deprecating the
old algorithm using the “EXCLUDES” operator; and an assertion
requiring the new algorithm added as follows:

Assert ((COMMS.COMMSTypes.WirelessCOMMS.RF >=
{BasicRFCOMMS}) EXCLUDES (COMMS.COMMSCyberse-
curity.FrequencyHoppingAlgorithm == {FreqHopAlgo_Bra-
vo}));

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

34

Boolean operators

And Boolean AND Boolean

Or Boolean OR Boolean

Not NOT Boolean

Requires Boolean REQUIRES
Boolean

Excludes Boolean EXCLUDES
Boolean

Comparison operators

Equals Expression == Expression

Not equals Expression != Expression

Less than Expression < Expression

Greater than Expression > Expression

Less than or equal Expression <= Expression

Greater than or equal Expression >= Expression

Comparison operators used for expressions involving Sets

({TheSet} == A) is true when TheSet
contains A and only A

({TheSet} >= A) is true when TheSet
contains A

({TheSet} > A) is true when TheSet
contains A and at least one other
member

APPENDIX A—PRODUCT RULE BOOLEAN EXPRESSION LANGUAGE

Figure 5. Example product rules evaluation report

The systems engineer performs an impact assessment to deter-
mine the product variant specifications requiring refactoring and
redelivery, depicted in Figure 6. The systems engineer updates
each impacted product variant. Subsequently the PLE factory
automatically verifies the updated cyber resiliency capabilities and
cybersecurity controls deliver to the fielded systems during each
production run.

Figure 6. Example impact analysis report

Semantic Check Report

Checked: Profile “MedAOICOMMS_Variant_Omega” of Mixin “COMMS”

**************** Errors ****************

Assertion failed: Assert ((COMMS.COMMSTypes.WirelessCOMM.RF >= {BasicRFCOMMS]) EXCLUDES
(COMMS.COMMSCybersecurity.FrequencyHoppingAlgorithm == {FreqHopAlgo_Bravo}));
Found in:
Features of Mixin “COMMS”
Profile “MedAOICOMMS_Variant_Omega” of Mixin “COMMS”

Assertion failed: Assert ((COMMS.COMMSTypes.WirelessCOMM.RF >= {BasicRFCOMMS]) REQUIRES
(COMMS.COMMSCybersecurity.FrequencyHoppingAlgorithm == {FreqHopAlgo_Charlie}));
Found in:
Features of Mixin “COMMS”
Profile “MedAOICOMMS_Variant_Omega” of Mixin “COMMS”

Output

Semantic Check Report

Checked: Profile “MedAOICOMMS_Variant_Omega” of Mixin “COMMS”

**************** Errors ****************

Assertion failed: Assert ((COMMS.COMMSTypes.WirelessCOMM.RF >= {BasicRFCOMMS]) REQUIRES (COMMS.COMMSCybersecurity.FrequencyHoppingAlgorithm == {FreqHopAlgo_Bravo}));
Found in:
Features of Mixin “COMMS”
Profile “MedAOICOMMS_Variant_Omega” of Mixin “COMMS”

??

?

Set

Atom

WiredCOMMS
Set

/* UNDEFINED */

LineOfSightCOMMS ?
Set

/* UNDEFINED */

FrequencyHoppingAlgorithm

EnhancedWiredCOMMS?
Atom

BasicWiredCOMMS ?
Atom

EncrptionAlgo_Alpha

?
Set

EncrptionAlgorithm?
Set

WiredCOMMS

?
Set

RF ?
Set

Microwave

Output

SUMMARY
Moving at the speed of relevance is today’s organizational man-

date. Modern cyber-physical systems must survive in a constantly
changing cybersecurity threat environment. This article described
how to meet the continuous cybersecurity controls and cyber re-
siliency capabilities delivery challenge using a rule base embedded
within a systems and software product line engineering factory to
automatically create, verify, and deliver system variants. Systems
engineering tasks included continuously analyzing the cyber-at-
tack surface for each product line system variant, creating or
amending cyber resiliency capabilities and cybersecurity controls
for each system variant addressing each attack vector, and a living
rule base maintained within a factory ensuring each system variant
automatically generated by the factory contains the requisite
system capabilities. By creating a single truth source and remov-

Assert ((COMMS.COMMSTypes.WirelessCOMMS.RF >=
{BasicRFCOMMS}) REQUIRES (COMMS.COMMSCyberse-
curity.FrequencyHoppingAlgorithm == {FreqHopAlgo_Char-
lie}));

ing human-in-the-loop faults from verification processes, system
developers improve system quality, cyber resiliency, and cyberse-
curity, enabling users to trust the tools they use in the field.  ¡

>  continued on page 38

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

35

INTRODUCTION

  ABSTRACT
This paper presents a method for leveraging Model Based Systems Engineering to facilitate systems security architecture develop-
ment, with product line engineering considerations. The sensitivity of systems security information constrains the development of
the system security model. Creating a tailored subset of the system of interest (SOI) model can generate value as a system security
decision driver, and serve as the cornerstone for system security model development. This establishes clear correlation points
between the SOI model and system security model. Conducting this collaboration early in the SOI lifecycle enables engineers to
implement security considerations in the system design, reducing the cost and schedule impact of delaying system security devel-
opment. For product line systems, common features are quickly identified with their associated security considerations. Variants
retain these common features, preventing rework.

Leveraging a System
Model to Initiate Security
Architecture Development
for Product Lines
Angel Agrawal, agrawal.angel95@gmail.com
Copyright © 2020 by Angel Agrawal. Published and used by INCOSE with permission.

Model-Based Systems Engineer-
ing (MBSE) principles, when
combined with a modeling
tool, enable creating numer-

ous system of interest (SOI) views. The
Systems Modeling Language (SysML®)
provides a standardized syntax and view
set for defining the SOI. These views focus
on the SOI from various stakeholders’
perspectives. Systems Security Engineer-
ing’s (SSE) primary concern, as defined by
the United States Department of Defense,
is “… to identify security vulnerabilities and
minimize or contain risks associated with
these vulnerabilities (SEBoK 2018).” The
product’s (or product line’s) systems model,
whether it be physical, logical, or functional
in nature, can adapt to address security
considerations. Security Aware, Model
Based Systems Engineering with SysML
by Herries et al. (2013) provides a funda-
mental groundwork for tools necessary to
initiate modeling security architecture for a
SOI. This paper will expand on their work,
proposing additional views and efforts in
SysML to leverage a systems model to sup-
port the security perspective. Additionally,

this paper incorporates considerations for
modeling product line engineering (PLE)
as part of the security views. The follow-
ing views leverage a SOI systems model,
combined with PLE and security modeling
techniques to create a fundamental SysML
views set for capturing a security aware
system architecture.

FOREWORD ON MBSE FOR PRODUCT LINE
ENGINEERING

Feature-based product line engineering
has been described as a factory (Clements
and Young 2017). This factory uses shared
asset supersets, a feature model, and bills of
features to deliver product instances. The
factory analogy can extend to developing
a SysML systems model for a product, de-
rived from a model capturing the product
line’s asset superset. As a model captures
the SOI design elements, the assets in a
model are the various model elements
within it. Variation points apply to these
model elements as a tool for the configura-
tor to understand what model elements to
keep and which to remove when generating
a model instance. Variation points coincide

with the various features defined in the
feature model, not with the anticipated
model output. The complete feature model
can then instantiate as a bill of features
(analogously as a product specification).
The configurator tool assembles an instance
of the systems model, resembling a product
satisfying the bill of features.

FUNDAMENTAL SSE MODEL VIEWS
The following is a collection of views

generated in a SOI systems model, with
the primary objective of supporting
security architecture development. These
views bridge the gap between the systems
model and security model by focusing
on the system architecture aspects which
will drive the security architecture’s
development. They are developed
utilizing pre-existing model elements and
relationships, focusing on the sensitive
system elements. Creating these views
requires access to information regarding
these sensitive items and their usage. We
assume the model (and consequently
SOI) elements characterized as ‘sensitive’
are known. Modifying the feature model

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

36

for this product line can capture security
related model elements which are intrinsic
features. This may not be necessary for
security related model elements which are
a direct composition of pre-existing model
elements already associated with a feature
from the feature model.

Stereotypes
Stereotypes can easily be used to identify

security related model elements. Herries
et al. suggests stereotypes for defining
model elements from a security perspec-
tive (Herries, Oates, and Thom 2013). The
profile constructed in their paper suggests
using the stereotype “Vulnerable Item” to
indicate the resources which may be the
target of attacks. The stereotype “Threat”
captures the effort(s) conducted by a
malicious user (misuse cases). Elements
or activities stereotyped by “Counter-
measure” mitigate “Threats.” The profile
created in Herries, Oates, and Thom (2013)
suggests a “Countermeasure” stereotyped
block’s function is to protect vulnerable
items. In this paper, activities stereotyped
as “Countermeasure” capture efforts to
address different misuse cases directly.
From the PLE perspective, this paper will
use stereotypes to serve as variation points,
indicating the variations corresponding
to the different features. “Variant 1” and
“Variant 2” are two stereotypes used in this
paper. They denote the potential for includ-
ing marked elements in the SOI’s different
configurations.

Level 0 (Program Level) State Diagram
Every SOI state and configuration must

take into account system security. System

State Diagrams may describe the SOI
states throughout its operation and usage
(operational level). An abstraction level
above the operational level is the lifecycle
level. Lifecycle states captured here include
development, testing, production, retire-
ment, and other similar states surrounding
the SOI’s life from conception through
retirement. The included vulnerable items,
countermeasures, systems, interfaces, and
activities may all be different between those
states, so understanding and capturing this
is important. Creating State Do, Entry, and
Exit Activities occurs as necessary from the
security perspective.

To a certain degree these states may be
trivial. However, for the system security
perspective, defining two things is essential:
A state indicating a compromised system,
and all the transitions between the other
states and the “compromised” state. The
compromised state captures the SOI state
when an unintended or malicious user
has accessed the SOI and now intends on
gaining access to the vulnerable items.
Defining a Do Activity here should serve
as the groundwork for understanding the
activities associated with exploiting and
defending SOI vulnerabilities. From a
PLE perspective, placing variation points
on states and their transitions captures
the differences across this program level
features based view. Subsequent diagrams
account for deeper abstraction levels tied to
features.

Block Definition Diagram (BDD) for Item
Containment

Employing block definition diagrams
can create views capturing subsystem and

component architecture. From the security
perspective, it can identify the relationship
between vulnerable items, countermea-
sures, and the system’s general components.
Defining all vulnerable items and relation-
ships to the SOI is essential to understand-
ing their context within the system. From a
functional modeling perspective, decom-
posing down to the abstraction level(s)
using vulnerable items provides insight to
their role in the system’s behavior. From a
physical and logical perspective, thorough
decomposition provides insight as to the
system elements which will comprise the
vulnerable item(s) context. Figure 1 pro-
vides an example system composition for
a SOI as a part of the SOI’s environment,
modeling the relationships as directed
composition or aggregation. Personnel with
need to know access may need to model
the definition of the countermeasure model
elements. However, modeling relationships
to “Threat” activities will generate value as
it will enforce countermeasure inclusion
throughout the system architecture. Prod-
uct line engineering considerations in this
view should already exist. As mentioned
previously, this example uses “Variant 1”
and “Variant 2” stereotypes. Primary con-
siderations for PLE when creating these
views involve ensuring vulnerable items
and countermeasures tied to components
receive variation points consistent with the
variation points applied to their owning el-
ement. For features which apply to vulner-
able items and countermeasures separately
than their owning components, variation
points must apply separately.

BDD’s for Item Exposure During Transit.
Expanding the concept of identifying

the model elements storing or using
a program’s defined vulnerable items,
creating another Block Definition Diagram
(BDD) can describe vulnerable items
transitioning between different locations.
Conventionally, using an Internal Block
Diagram (IBD) would be used to show the
connections amongst internal components
to the SOI (a white box perspective).
However, including the “Threats” and
“Countermeasures” as activities as opposed
to properties forces the use of a BDD.
Fortunately, BDDs also permit creating
ports and connectors similar to IBDs, and
pre-existing IBDs can define the ports and
connectors before pulling model elements
into this particular view. Figure 2 shows
this concept. Item flow on the connectors
between ports represents the vulnerable
items when exposed during transit from
one domain to another. Directed allocation
relationships can come from “Threat”
activities to the various connectors
representing an attempt to exploit a system

Figure 1: System Composition

«block»
System Environment

«block»
SOI

«block»
Subsystem 1

«block»
Component 1.1

«block»
Component 1.2

«block»
«Vulnerable Item»

Item A

«block»
«Vulnerable Item»

«Variant 1»
Item B

«block»
«Vulnerable Item»

«Variant 2»
Item C

«Countermeasure»
«Variant 1»

Countermeasure 5

«Countermeasure»
«Variant 2»

Countermeasure 8

«Countermeasure»
«Variant 1»

Countermeasure 3

«Countermeasure»
«Variant 2»

Countermeasure 4

«Countermeasure»
Countermeasure 2

«Countermeasure»
Countermeasure 6

«Countermeasure»
Countermeasure 7

«Countermeasure»
Countermeasure 1

«block»
«Variant 1»

Subsystem 3

«block»
«Variant 2»

Subsystem 2

«block»
«Variant 2»

Component 2.1

«block»
«Variant 1»

Component 3.1

«block»
«Variant 1»

Component 3.2

Vulnerable Item

Countermeasure

Legend

Threat

bdd [Package] SOI Security Architecture [System Composition]

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

37

Figure 2: Transit Attack BDD

vulnerability. Relationships between
“Threat” activities, modeled as directed
use relationships, define a dependency
on one activity’s success for the other’s
application. “Countermeasure” activities
integrate at this level and draw a directed
association to “Threat” activities based

on the 1 to 1 correspondence between a
system’s countermeasures and the misuse
cases they mitigate. Placing the variation
points on the various interfaces involved,
easily accounts for feature variation as
well as the blocks associated with them (if
not already defined). The value of having

this view is understanding the transit
path as a potential exposure point for
these vulnerable items. Capturing such
information here facilitates developing
adequate countermeasures to prevent
exploitation during those processes.
Furthermore, this view, as well as the
following view, capture the fundamental
relationships between “Threat” and
“Countermeasure” activities, serving as
the basis for the countermeasure coverage
matrix and potentially systems security
attack trees (not discussed in this paper).

BDD’s for Static Attack Allocation
In similar regard to using BBDs for iden-

tifying when sensitive items are vulnerable,
a different misuse case allocation BDD
can capture the SOI access points, SOI
subsystems, and eventually the vulnerable
information itself. Ports define and repre-
sent vulnerabilities in the system for which
a malicious user may gain access to the
vulnerable items. Much like the previously
described view; allocations, usage relation-
ships, and associations occur amongst the
various model elements. Figure 3 provides a
simple example of this, similar to Figure 2.
The previously applied variation points on
the blocks throughout the model account
for product line considerations. Variation
points can thus apply to the “Threat” and
“Countermeasure” activities accordingly
based on their relationship with the BDD
view elements.

This view and the previous view’s
advantage is not requiring fully defined
“Threat” or “Countermeasure” activities.
Their existence and relationships are
the important subject here. The scope
of this work does not extend to a level
infringing need to know restrictions,
beyond identifying the vulnerable items.
A modeling engineer’s responsibility
without need to know access ends at
creating the “Threat” activities as undefined
placeholders as well as creating the
coverage matrix without creating any
actual “Countermeasure” activities or
defining them. Naming these “Threat”
and “Countermeasure” activities can be
simple enough to understand their role in
the system life cycle. Fully defining these
activities is a subsequent activity in the
development of the security architecture.

Attack Coverage Matrix
The quintessential value of creating

directed association relationships between
“Threat” activities and “countermeasure”
activities is the ability to create a Counter-
measure Coverage Matrix, shown in Figure
4. One axis represents the misuse cases cap-
tured by “Threat” activities. The other axis
represents the “countermeasure” activities.

Vulnerable Item

Countermeasure

Legend

Threat

«Countermeasure»
Countermeasure 2

«Countermeasure»
Countermeasure 1

«Threat»
Attack B |v| 1

«Threat»
Attack B |v| 2

«block»
SOI

«allocate»

«use»

«allocate»

item C : Item C

item C : Item C

item C : Item C

item B : Item B

item B : Item B

«Threat»
Attack C |v| 1

«Threat»
Attack C |v| 2

«allocate»

«use»
«Countermeasure»

«Variant 1»
Countermeasure 3

«Countermeasure»
«Variant 2»

Countermeasure 4

item B : Item B

component 3.2 : Component 3.2component 2.1 : Component 2.1

bdd [Package] SOI Security Architecture [Transit Attack BDD]

subsystem 3 : Subsystem 3subsystem 2 : Subsystem 2

«allocate»

Figure 3: Static Attack BDD

item A : Item A

component 1.2 : Component 1.2

component 1.1 : Component 1.1

subsystem 1 : Subsystem 1

«block»
SOI

«allocate»

«use»

«use»

«use»

«allocate»

«allocate»

«allocate»

«Threat»
Attack A |v| 1

«Threat»
Attack A |v| 2

«Threat»
Attack A |v| 3

«Threat»
Attack A |v| 4

«Countermeasure»
«Variant 1»

Countermeasure 5

«Countermeasure»
«Variant 2»

Countermeasure 8

«Countermeasure»
Countermeasure 6

«Countermeasure»
Countermeasure 7

Vulnerable Item

Countermeasure

Legend 1

Threat

bdd [Package] SOI Security Architecture [Static Attack BDD]

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

38

REFERENCES
■	 Clements, P., and B. Young. 2017. “Model Based Engineering

and Product Line Engineering: Combining Two Powerful
Approaches at Raytheon.” Paper presented at the 27th Annual
International Symposium of INCOSE, Adelaide, AU-SA, 15-20
Jul.

■	 Herries, H., R. Oates, and F. Thom. 2013. “Security-Aware,
Model-Based Systems Engineering with SysML”. Paper
presented at the First International Symposium for ICS
& SCADA Cyber Security Research, Leicester, UK, 16-17
September.

■	 SEBoK Editorial Board. 2018. The Guide to the Systems
Engineering Body of Knowledge (SEBoK), v. 1.9.1, R.J. Cloutier
(Editor in Chief). Hoboken, US-NJ: The Trustees of the
Stevens Institute of Technology.

ABOUT THE AUTHOR
Angel Agrawal is a systems engineer for Raytheon Technol-

ogies, and operates on the MBSE team for his program. He is a
graduate from the University of Illinois at Urbana – Champaign
where he earned his MS in aerospace engineering along with a
certificate in aerospace systems engineering.

REFERENCES
■	 Clements, P., and L. Northrop. 2002. Software Product Lines:

Practices and Patterns. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, US-PA.

■	 Krueger, C., and P. Clements. 2013. “Systems and Software
Product Line Engineering.” In Encyclopedia of Software
Engineering, edited by Philip A. LaPlante. New York, US-NY:
Taylor and Francis.

■	 McQuade, J., M. Medin, and R. Murray. 2018. “Defense Inno-
vation Board Do’s and Don’ts for Software.” White paper, US
Department of Defense Software Acquisition and Practices
Study. https://innovation.defense.gov/software .

■	 McQuade, J., R. Murray, G. Louie, M. Medin, J. Pahlka, and
T. Stephens. 2019. “Software is Never Done: Refactoring the
Acquisition Code for Competitive Advantage.” White paper,
US Department of Defense Software Acquisition and Practices
Study. https://innovation.defense.gov/software .

ABOUT THE AUTHOR
Jim Teaff wrote his first line of code as a professional in the early

1980’s while working for a tech startup. Subsequently over the past
several decades he has worked for numerous commercial and aero-
space and defense companies across the full system development
lifecycle–from principal investigator at a research lab, to a proposal
writer, IPT lead, chief architect, SEIT lead, requirements analyst,
scrum master, programmer, tester, 2nd tier O&M support, engi-
neering manager … and more. Jim holds a Master of Engineering in
engineering management degree from the University of Colorado;
a Bachelor of Science degree in computer science from Colorado
State University; and a graduate certificate in information systems
security from Regis University. He is an INCOSE Certified Systems
Engineering Professional (CSEP), and is an active member of the
INCOSE Product Line Engineering International Working Group.
Jim joined Raytheon Technologies in 2016 as a product lines cham-
pion and is assisting the organization with the continued rollout of
product line engineering and management methods and tools.

Teaff  continued from page 36

the assessment to determine if any anticipated misuse cases do
not have an associated countermeasure prescribed and captured
as part of the SOI. The same can occur for blocks and ports to
understand what system components are the most vulnerable:
what subsystems contain vulnerabilities which are left unguarded.
When configuring the system model (as an asset superset) to meet
a bill of features, and removing feature specific variants, any exist-
ing gaps in countermeasure coverage will be easy to recognize. It
is imperative to generate this view for a countermeasure coverage
assessment after the configuration step in the PLE process, to en-
sure coverage after removing non-associated superset assets from
the final product. Then the countermeasure matrix will provide
accurate information as to the correspondence between all misuse
cases and countermeasures.

CONCLUSION
This paper proposes a standardized diagram set, using the

SysML modeling language and PLE modeling tools, for capturing
a high level system security views. By creating security focused
views, systems modelers can create a high-level security architec-
ture while requiring little need to know access. Effective MBSE
and PLE execution can ensure any resulting asset configuration
has an adequate system security architecture defined for it. This
method’s potential value is twofold. First, it leverages MBSE tech-
niques to facilitate collaboration and communication between SOI
architects and SOI Security engineers. Secondly, it extends PLE
capabilities to another systems engineering specialization.  ¡

Figure 4: Countermeasure Coverage Matrix

Activities [Model]

Association
Legend

Attack A |v| 1
Co

un
te

rm
ea

su
re

 1

Co
un

te
rm

ea
su

re
 2

Co
un

te
rm

ea
su

re
 3

Co
un

te
rm

ea
su

re
 4

Co
un

te
rm

ea
su

re
 5

Co
un

te
rm

ea
su

re
 6

Co
un

te
rm

ea
su

re
 7

Co
un

te
rm

ea
su

re
 8

Co
un

te
rm

ea
su

re
 9

Activities [Model]

Attack A |v| 2
Attack A |v| 3
Attack A |v| 4
Attack B |v| 1
Attack B |v| 2
Attack C |v| 1
Attack C |v| 2

1
1
1
1
1
1
1
1
1

1 1 1 1 1 1 1

The interior indicates the existence of the association relationship
from the “countermeasure” to the “Threat.” The applicable domain
is the largest model containment span, accounting for all counter-
measure and attack activities. Creating this matrix facilitates

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

39

  ABSTRACT
As cybersecurity threats multiply and global public opinion becomes aware of cybersecurity attack’s potential consequences,
customers become more demanding regarding cybersecurity concerns in the products they acquire. Consequently, product
providers should consider such concerns early in their solution’s development life cycle. This paper presents how a model-based
approach can contribute to an effective co-engineering effort between cybersecurity and product engineering during product
architecture definition.

Towards a Model-Based
approach to Systems and
Cybersecurity
Co-engineering in a Product Line context

Juan Navas, juan.navas@thalesgroup.com; Jean-Luc Voirin; Stephane Paul; and Stephane Bonnet
Copyright © 2020 by Thales Corporate Engineering, Thales Airborne Systems, Thales Research & Technologies, and Thales Avionics.
Published and used by INCOSE with permission.

SYSTEMS AND CYBERSECURITY
CO-ENGINEERING CHALLENGES

Society is crossing the threshold into
the fourth industrial revolution
where dependency on cyber-physical
systems will dramatically increase.

As these services’ complexity will rise due
to the new and unexpected system combi-
nations, the cybersecurity vulnerabilities
and potential cybersecurity attack targets
will increase as well. Not surprisingly, the
INCOSE Systems Engineering Vision 2025
(Beihoff et al. 2014) included security, and
particularly cybersecurity, as one of the
eight key system characteristics desired
by stakeholders. It encourages systems
engineers to treat cybersecurity as a key
system attribute they shall understand and
incorporate in their designs.

 The way a system shall be protected
against cybersecurity threats is deter-
mined by the context on which the system
operates, its interactions with the external
actors, the components of the system and
their properties and interactions. In a
Product Line context, in which the system
is a product portfolio part, analyzing the

commonalities and variabilities between
products and between the elements com-
posing them is a key input for designing
effective cybersecurity controls.

Hence, the development process’ very be-
ginning, and each subsequent development
stage, should address and consider cyber
security concerns. Such a security-by-design
co-engineering approach not only diminish-
es the project’s technical costs and schedule
risks, but also permits trade-offs between
cybersecurity concerns and other functional
and non-functional system concerns.

Implementing this co-engineering
approach in a Product Line context
encounters the following barriers:

■	 Cybersecurity engineering requires
specialized skills and has its own vo-
cabulary, which usually varies following
regulatory frameworks. Acquiring these
skills requires a substantial investment,
and human resources with both systems
and cybersecurity engineering skills are
difficult to find.

■	 Experience shows cybersecurity
engineering activities have their own

lifecycle potentially uncorrelated with
the systems engineering activities and
to the product roadmaps. This is mainly
due to constraints from certification au-
thorities and need-to-know constraints.

■	 The needs and constraints relative to
the cybersecurity concerns, as well as
the elements constituting the prod-
uct architecture, may strongly differ
according to the market, the product
addresses, and the available technolo-
gies, among other factors. Furthermore,
cybersecurity concerns’ priorities may
change in time. These factors make
implementing reuse strategies difficult.

The authors present Model-Based
Systems Engineering (MBSE) practices
contributing to incorporating cybersecu-
rity concerns into the systems engineering
activities, and particularly in product’s
architectural definition, in Product Line
Engineering contexts.

FINDING A COMMON GROUND
To enable effective and efficient collabo-

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

40

ration between cybersecurity and systems
engineering, both worlds need to agree on
a common vocabulary. The concepts each
one needs to understand from the others’
will be a body of knowledge subset: this
binds the co-engineering efforts to a limited
discussion scope. It is also the basis for de-
fining the cybersecurity properties assigned
to the architecture elements.

Regarding product architecture engineer-
ing, we rely on the Arcadia model-based
engineering method. Arcadia has been
implemented in many real-life contexts for
several years. Arcadia has experimented in
and validated many real-life contexts for
several years. Its large adoption in many
different engineering contexts demon-
strates an industry-proven comprehensive
method for systems engineering, capable
of adapting to each context in a dedicated
manner. Our Arcadia implementation uses
the open-source workbench Capella.

Arcadia intensively relies on functional
analysis. It introduces four engineering
perspectives with specific intents (Figure 1):
Operational Analysis, System needs Anal-
ysis, Logical Architecture and Physical
Architecture. By doing so, it promotes a clear
distinction between the need’s expression
(the first two perspectives) and the solution’s
expression (the last two perspectives). Each
perspective provides a concept set, relations,
architectural design tasks, and diagrams,
guiding the architect into reaching a good
quality design. For details on Arcadia per-
spectives please refer to Voirin (2017).

Regarding cybersecurity concerns, in
this article we avoid referring to a specific
standard or methodology. We use a well-
known or generic concept set to map
domain-specific cybersecurity concepts.

A Threat Source is the intent and method
targeted at the intentional exploitation of
a vulnerability or a situation and method
that may accidentally exploit a vulnerability.
Threat Sources map to system stakeholders
in Arcadia, Entities and Actors, which are
external to the system and to the Activities
and Functions.

A Threat is a situation to avoid that is
unwanted by the stakeholders. Different

attack kinds, affecting the system
Confidentiality, Integrity and Availability
(CIA) properties, concretize threats.
Arcadia does not include any concept
directly mapped to Threats, so it adds
the concept. Arcadia’s Scenarios or (Mis)
Functional Chains can represent the attacks.

What the stakeholders aim to protect
from cyberattacks is what they value the
most. This may include tangible items such
as system components (software, hardware,
devices, networks) and intangible ones such
as the services provided by the system, sen-
sitive information stored or manipulated by
the system, and the organization’s repu-
tation. Cybersecurity standards, such as
IEC 62443; Ross, M. McEvilley, and Oren,
2016; and NIST SP 800-30, commonly call
these items Assets. However, the Product
Line Engineering community also uses the
term shared assets for a different meaning
(please refer to the Feature-based Product
Line Engineering overview in this edition).
To avoid misunderstandings here, we will
call Resources the tangible and intangible
items with potential or actual value to an
organisation.

A Primary Resource is information or
services deemed important by the organisa-
tion. Primary Resources relate to Arca-
dia concepts encapsulating information
manipulated and services provided by the
system, including Capabilities, Functions
and Exchange Items. A Supporting Resource
is an item supporting primary resources or
security controls. They include information
systems, organisations, and premises. In
Arcadia, Components (including Actors)
represent such elements. Security Controls
are the management, operational, and tech-
nical controls (safeguards or countermea-
sures) prescribed to protect the system CIA
and its information. In Arcadia, Functions
and Components represent them.

Operational Analysis
What the users of
the system need to
accomplish

Viewpoints

Reqs

Viewpoints

So
lu

tio
n

ar
ch

ite
ctu

ra
l d

es
ig

n
Ne

ed
 u

nd
er

sta
nd

in
g

Viewpoints

Viewpoints

A3

A2

F2

F5

F3

F4

F1

F1

C1

C2

C3

C11 C1’

C2C12

C3 C4
F1

F3
F6

F7

F6

F21A:Operational activity
F:Function
C:Component

F21

F22

F22

A1

Functional &
NonFunctional Need
What the system has to
accomplish for the users

Logical Architecture
How the system
will work to fulfill
expectations

Physical Architecture
How the system will be
developed and built

Buses Processors

Figure 1. Arcadia engineering perspectives

Figure 2. Threats diagram describing how system actors affect
a meteorological balloon system’s main mission (provide
meteorological data) and sensitive information

PF
Provide meteo data

capability

Meteo data

Obtain meteo data without
authorization

(EAVESDROPPING)

Scientific User

Spy

« i »

« i »

« a »

« a »

« a »

« i »

« i »

Subcontrator

Obtain images from
forbidden areas

(THEFT AND DATA ALTERATION)

Sabotage meteo
collection system

(TAMPERING)

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

41

ANALYZING THE PRODUCT’S CYBERSECURITY
CONTEXT AND NEEDS

Systems engineering emphasizes analyz-
ing the problem before jumping straight to
the solution, as a means to develop systems
effectively contributing to achieving stake-
holders’ missions. In Arcadia, this analysis
occurs in the Operational Analysis and
System Analysis perspectives and compris-
es all the problem space elements, including
cybersecurity ones.

Analyzing the product context and the
stakeholder expectations leads to: i) iden-
tifying threat sources and other malicious
agents, ii) defining threat sources goals and
intents, iii) identifying the valuable primary
resources these agents may attack, and iv)
defining the mechanisms threat sources
may use to attack the product. Formalizing
the threats relevant to the system and its
context can use a dedicated Threats dia-
gram such as Figure 2. Figure 3 describes
how a specific attack may take place.

This practice, when performed in col-
laboration, supports the technical dialogue
between systems and cybersecurity teams
and produces the following results:

■	 A common and shared comprehension
of the operational context in which
the product will evolve, the applicable
requirements, and the constraints

■	 Characterizing cybersecurity needs
and defining requirements on CIA the
product’s cyber-protection capabilities
shall address

■	 The product’s first cybersecurity-spe-
cific features set, related to business
(targeted markets, applicable standards,
industrial configuration) and/or oper-
ational (users and interfaces with other
systems) aspects

■	 Identifying the commonalities and
variabilities induced by these features,
and how they impact the product
architecture definition

■	 Multi-criteria evaluations including
cyber-security aspects, allowing
identifying necessary trade-offs and
cybersecurity-related requirement
prioritizations in the Product
Requirements Specification

These results may feed a formal cyber-
security risks analysis beyond this article’s
scope.

DESIGNING CYBERSECURITY-AWARE
PRODUCT ARCHITECTURES

The solution’s design occurs in Arcadia’s
Logical Architecture and Physical Archi-
tecture perspectives. The former aims at
defining a preliminary, technology-agnos-
tic product architecture focusing on the
expected behavior to fulfill stakeholders’
needs. The latter will be the main refer-
ence for subsystems and/or components’
development teams. It aims at defining the
final architecture addressing specific tech-
nologies and geographical considerations,
and at specifying the interfaces between the

subsystems and/or components and with
the external actors.

Performing a functional analysis elicits
the security controls to implement and
secures the product against the identified
threats. Integrating cybersecurity functions
to the product architecture leads to defining
protected services and implementing pat-
terns for managing sensitive data.

Identifying the supporting resources
occurs at this point. In a Product Line
context it is important to identify how
the solution’s building blocks (regardless
of their nature, previous product version
reuse, vendor integration, existing library
part) implement the primary resources
and how security controls impact them.
This leads to defining cybersecurity-
related properties applied to the product
components and the interfaces between
them, as shown in Figure 4.

This practice leads to an architectural
design considering and providing proper
cybersecurity concern consideration evi-
dence, through the following results:

■	 A common and shared product
architecture comprehension between
systems and cybersecurity teams

■	 Incrementally identifying and char-
acterizing the supporting resources,
beginning with the Logical Compo-
nents and ending with the finer-grained
Physical Components

■	 The product’s second cybersecurity-
specific feature set, related to

Figure 3. A Functional Chain (bold blue functional exchanges) describing an attack and the impacted functions: other user IDs
can supply meteorological data

SF

SF

SF

SF

SF

SF SF

SF

SF

SF

collected imagesAcquire
images

Manage
subscription

Trigger
publication

Webmaster

[SEC][MISUSE] Obtain meteo data using another user’s id

Forecaster

Webmaster UI

EOLE

Forecaster UI

internet

[SEC] login and password

[SEC] illegal weather forecast

[SEC] agreement terms

Prepare
publication

Forecast
weather

[SEC] Make an
agreement with

the Scientific user

[SEC] Make an
agreement with the

forecaster

[SEC] Access to the
service using

another ID

Consult forecast

Elaborate
current

situation

publication
authorization

published forecast

publication request

current situation

requested forecast

weather forecast

Scientific user

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

42

PF

PF

PF

PF

PFPF

PF

PF

Consult
forecast

[SEC] Manage
communication with
user prior to transfer

[SEC] encrypted forecast

[SEC] key [SEC] key

[SEC] Transfer
encrypted package

[SEC] Encrypt

[SEC] Encryption Management
Software

Supervision Software

Publication Software

Transmission
Software

[SEC] Thales Encryption Product (R)

[SEC] Encrypted transfer
Software

Forecast
weather

Trigger
publication

published forecast

publication
request

requested forecast

forecast

weather forecast

Cyber, Physical Supporting Asset

Supported Primary Asset = Distribute forecast FC

published forecast

[SEC] Ensure secured
communication with
forcast service

Webmaster

Ground Station

Internet

Ground Computer

W MMI F MMI

LAN

[SEC] Protected distribution of forecast FC

Forecaster

Scientific user

Sensitivity High

Prepare
Publication

architectural choices (technologies,
reusable building block capabilities)

■	 Identifying the commonalities and
variabilities induced by the whole
product feature set, and how they
impact defining the final architecture

■	 Defining product configurations inte-
grating cybersecurity concerns, ready to
derive into project-specific architectures

■	 Multi-criteria evaluations including
cyber security aspects, allowing consid-
ering cybersecurity constraints while
defining the best possible architecture.

These results can feed a formal cyberse-
curity risks assessment and risk treatment
decisions, which may induce architectural
modifications, and are beyond this article’s
scope.

HANDLING VARIATION MANAGEMENT
The MBSE practices presented here

lead to progressively defining the feature
catalog, which is the feature superset any
given product configuration may include,

Figure 4. Cybersecurity aware system’s physical architecture. Ground Computer component is a supporting resource, imple
menting a primary resource (provide meteo data capability), colored (in pink) according to its cybersecurity properties. Thales
Encryption Product and its subcomponents are also supporting resources (purple borders) as they implement the security
controls represented by the [SEC]-prefixed functions in the diagram

including cybersecurity-related ones,
and the dependencies and/or exclusions
between the product features.

The architectural design model will
also be the model element superset
included in all product configurations. A
given configuration’s feature choices, the
dependencies between the features, the
mapping between the features and the
model elements, and the dependencies
between the model elements either remove
from the model or tailor cybersecurity-
relevant elements. At this point, it is
important to verify the consistency between
cybersecurity features and other system-
wide features.

In Figure 5 below, the features catalog
includes two mandatory features. The
Market feature determines the product’s
selling region (Region 1, Region 2, or
both). The Cyber Performance feature
relates to using a proprietary encryption
component providing high performance,
or a third-party component providing low
performance (one option between High

and Low performance). Choosing Region 2
requires selecting the third-party compo-
nent (reason may include costs or national
production policies).

The architectural model ensures pro-
posing the required cybersecurity-related
services in any product configuration. In
this particular example, it secures a future
encryption component integration with the
Ground Computer and the Scientific User
by ensuring the physical and functional
interfaces are compatible between them.
In Figure 5, the forecast service distribu-
tion, identified as a primary resource, can
happen through either the high or low
performance encryption components, as
their interfaces are compatible even if the
component’s internal behavior may differ or
even be unknown to the product architect.

SUMMARY AND PERSPECTIVES
This article presented a model-based

engineering practice and technique set
enabling an effective co-engineering
effort between cybersecurity and systems

Feature Catalog

Market
Region 1

requires

Region 2

High

Low

Cyber
Performance

Feature
Catalog

Webmaster Forecaster

publication request weather forecast

requested forecast

forecast
published forecast

Ground Station

Ground Computer

TransmissionPSupervisionP

PublicationP

Third-party Encryption ComponentP

Encryption and TransferP

Scientific user

Ensure
secured

communication
with forcast

service

Consult
forcast

PF

PF

Forcast weatherPFTrigger publicationPF

Encrypt and TransferPF

LAN internet

published
forecast

Prepare publicationPF

Protected distribution of forecast – Region 2

Architectural model of
a given configuration

(1)

LAN

Webmaster Forecaster

publication request weather forecast

key

forecast

requested forecast

forecast

key
encrypted
forecast published forecast

published forecast

Ground Station

Ground Computer

Encryption ManagementP

TransmissionPSupervisionP

PublicationP

Third-party Encryption ComponentP

Proprietary Encryption ComponentP

Encryption and TransferP

P Encrypted Transfer

Scientific user

Ensure
secured

communication
with forcast

service

Consult
forcast

PF

PF

Forcast weatherPFTrigger publicationPF

Manage Communication
with user

Encrypt

PF

Transfer encrypted
package

PFPF

Encrypt and TransferPF

internet

LAN internet

published
forecast

Prepare publicationPF

Superset
Architectural Model

LAN

Webmaster Forecaster

publication request weather forecast

key

forecast

requested forecast

key
encrypted
forecast published forecast

Ground Station

Ground Computer

Encryption ManagementP

TransmissionPSupervisionP

PublicationP

Proprietary Encryption ComponentP

P Encrypted Transfer

Scientific user

Ensure
secured

communication
with forcast

service

Consult
forcast

PF

PF

Forcast weatherPFTrigger publicationPF

Manage Communication
with user

Encrypt

PF

Transfer encrypted
package

PFPF

internet

published
forecast

Prepare publicationPF

Architectural model of
a given configuration

(2)

Protected distribution of forecast – Region 1 AND High Performance

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

43

engineering in a Product Line context.
These practices are based on a common
vocabulary, allowing collaboration
between engineering domains, and on the
Arcadia and Capella systems engineering
methodology and tool.

One of this work’s perspectives is

Figure 5. Top-left: the Feature Catalog. Top-right: the superset architecture model containing all the architectural variants, here
the two encryption component types Bottom left and right: two possible product configurations, the first only suitable for Region
2 market, the second is suitable for Region 1 market.

REFERENCES
■	 AFNOR (Association Française de Normalisation). 2018.

AFNOR-XP Z67-140. Information Technology—ARCADIA—
Method for Systems Engineering Supported by its Conceptual
Modelling Language—General Description: Specification
of the Engineering Definition Method and the Modelling
Language. Paris, FR: AFNOR.

■	 Beihoff, B., C. Oster, S. Friedenthal, C. Paredis, D. Kemp, H.
Stoewer, D. Nichols, and J. Wade. 2014. A World in Motion—
Systems Engineering Vision 2025. San Diego, US-CA: INCOSE.

■	 Capella. 2020. “Capella Homepage.” https://www.eclipse.org/
capella/

■	 Voirin, J-L. 2017. Model-Based System and Architecture Engi-
neering with the Arcadia Method. Oxford, UK: Elsevier.

■	 IEC (International Electrotechnical Commission). 2009. IEC
62443-1-1:2009. Industrial Communication Networks—Net-
work and System Security—Part 1-1: Terminology, Concepts,
and Models. Geneva, CH: IEC.

■	 Joint Task Force Transformation Initiative. 2012. “Guide for
Conducting Risk Assessments.” NIST Special Publication
800-30.

■	 Ross, R., M. McEvilley, and J.C. Oren. 2016. “Systems Security
Engineering—Considerations for a Multidisciplinary
Approach in the Engineering of Trustworthy Secure Systems.”
NIST Special Publication 800-160 1: 1-260.

ABOUT THE AUTHORS
Juan Navas is in charge of the modelling & simulation coaching

team at Thales Corporate. He accompanies systems engineering
managers and systems architects to implement model-based
systems engineering (MBSE) and product-line engineering (PLE)
approaches on operational projects and product roadmaps. He
has over 12 years of experience applying systems engineering
practices in oil & gas, telecommunications, nuclear, defense and
aerospace industries. He holds a PhD in computer science, a
Master degree in software-intensive and automation systems, and
Engineering degrees in electronics and electrical engineering.

to implement practices to integrate
cybersecurity-dedicated models into the
product architecture model. In many
cases the cybersecurity effort must
occur separately from the main systems
engineering effort, due either to the
high cybersecurity architectural analysis

complexity itself, or to confidentiality
constraints. To perform system-wide
tradeoffs analysis including cybersecurity
concerns but also safety, human factors
and others, we need an integration model
providing the relevant information (and no
more) for each concern.  ¡

>  continued on page 50

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

44

INTRODUCTION

  ABSTRACT
At the systems of systems and enterprise levels, systems engineers and architects must plan for system security from system con-
cept inception ensuring security embeds into every process, procedure, system, and component as well as the enterprise’s mindset.
While the various United States Department of Defense Architecture Framework (DoDAF) views contain security attributes, there
is no integrated view set defining system security goals, threats, risks, mitigating elements, and demonstrating how these integrate
and implement into the operational, system, standards, and services views. The Unified Architecture Framework (UAF) imple-
ments DoDAF using the Systems Modeling Language (SysML) as well as the British Ministry of Defence Architecture Framework
(MODAF) and NATO Architecture Framework. In addition, UAF has integrated a security view set facilitating engineers defining
security goals and requirements and demonstrating how these implement throughout the architecture. By using these integrated
security views, engineers can design system protection as well as system protection options and variants.

  KEYWORDS:  Security, UAF, MBSE, SoS, Modeling, Architecture Frameworks

Integrating Security into
Enterprise Architecture
with UAF and PLE

Matthew Hause, mhause@designxi.com
Copyright © 2020 by System Strategy, Inc. Published and used by INCOSE with permission.

The INCOSE Systems Engineering
Vision 2025 defines model-based
systems engineering (MBSE) as
“the formalized application of

modeling to support system requirements,
design, analysis, verification, and validation
activities beginning in the conceptual
design phase and continuing throughout
development and later life cycle phases”
(INCOSE 2007). The Systems Modeling
Language (SysML) is the most widely used
standardized systems modeling language
and notation. It models systems in both the
abstract and concrete (logical and physical)
views including behavioral, structural,
parametric, and requirements views (Object
Management Group 2013). For enterprise
modeling, understanding systems of
systems and how they change over time
requires an architecture framework. DoDAF
is the United States Department of Defense
Architecture Framework and MODAF
is the Ministry of Defence Architecture

Framework. The Unified Architecture
Framework (UAF) builds on SysML
and defines the overall goals, strategies,
capabilities, interactions, standards,
operational and systems architecture, and
systems patterns (UAF 2019). Security
and human factors (personnel) views
added to DoDAF and MODAF improve
these frameworks’ coverage. The Object
Management Group (OMG) ratified the
UAF, previously called the Unified Profile
for DoDAF and MODAF (UPDM). Several
papers cover the UPDM/UAF and its
system of systems (SoS) modeling support
including Hause, and Dandashi 2015 and
Hause 2014. This paper does not include
full SysML and UAF details for space
reasons. Please see the references for more
information. The purpose here is to describe
the UAF security views and how they can
describe system features and variants for
applying security throughout the enterprise
and over time.

MOTIVATION FOR THE UPDM/UAF
UPDM provided a standardized DoDAF

and MODAF frameworks expression
means using a common metamodel, and
provided interoperability between the
frameworks. UPDM also leveraged SysML’s
extensibility to include new concepts
including complete views.

UAF Views
Before modeling a system or system of

systems, one must understand both the
system and model’s purposes. UAF has a
view set defining a capability set over its
life-cycle phases. These define the goals,
vision, enterprise phases, evolution over
time, the capabilities, and how systems and
subsystems realize these. The UAF provides
traceability from these elements to the
other UAF views including the operational
architecture which defines the system’s
abstract, logical, and solution independent
expression. This defines what must happen

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

45

and traces directly to the systems views
defining how to realize these capabilities
and operational architectures. To use an
analogy, the operational view could define
a need to generate power, and the systems
views define fossil fuel, solar, wind, tidal,
and other power providing methods. Stan-
dards views define system standards and
systems conforming to them, services views
define services systems will implement, and
the project views define when to deploy and
retire the systems. In addition, the UAF’s
latest version also defines security and
human factors views. The systems assur-
ance group at the OMG is also working to
integrate threat and risk analysis as a cross
cutting concern set.

ARCHITECTURE CROSS CUTTING CONCERNS
Cross cutting concerns are an architec-

ture’s non-modular characteristics which
cut across other aspects. A simple example
would be vehicular safety. When designing
a car, there is no specific safety module car
component. Safety must be inherent and
intrinsic to the car design and implemen-
tation or the car will not be safe. Further-
more, overall safety performance, as well as
the vehicle’s operating environment, is the
vehicle operator’s responsibility. In the same
way, a system of systems contains various
cross cutting concerns we must address.
These include security, safety, resilience,
flexibility, robustness, and others. Defining
the vulnerability points for security and
resilience allows engineers to perform
trade-off and threat and risk analysis on the
entire architecture. Integrating the analysis
tools with the UAF architecture provides a
means of defining the problem, designing
possible solutions, and then performing
trade-off analysis to determine the best fit.

These possible solutions can narrow to a
single solution implemented in the final
system. They can also provide an alternative
set linked to system features providing a
product line or product line family.

THE UAF SECURITY VIEWS
The DoDAF and MODAF lacked securi-

ty views. Adding these to the UAF helped
define requirements, strategies, imple-
mentations, and solutions for all security
forms throughout the enterprise. The UAF
security views illustrate the security assets,
security constraints, security controls,
families, and measures required to address
specific security concerns. Their purpose
is to address the security constraints and
information assurance attributes existing
on exchanges between systems and opera-

tional elements. The stakeholders for these
views include security architects, security
engineers. systems engineers, and opera-
tional architects.

The Example Model
The example model shown below applies

the UAF to a common civilian maritime
Search and Rescue (SAR) operations
scenario—a Yacht in distress. A Monitor
Unit picks up the yacht’s distress signal and
passes it on to the Command and Control
(C2) Center. The C2 Center coordinates
the search and rescue operation among
the Rescue Helicopter, a Naval Ship, and
a Rescue Boat. A UK Ministry of Defence
example model is this model’s base. The
system contains a systems’ set with different
stakeholders, owners, command hierar-

«ResourceMitigation»
Communication Redunancy

«CapabilityConfiguration»
SAR Field Organization

«System»
Cell Phone

«System»
EMS Dispatch System

«ResourceRole»
ems

«ResourceRole»
eml

Sc-Sr Security Structure [Sc-Sr Structure]

«ResourceRole»
sfo

«ResourceRole»
shqcp «ResourceRole»

sfocp

«ResourceRole»
shq

1 1

1

11

1

1

1 1

111

1

1

«ResourceRole»
cpn

«CapabilityConfiguration»
SAR HQ

«CapabilityConfiguration»
Cell Phone Network

«ResourcePort» enet : Ethernet

«System»
Email Communication System

SysML Sec : Security Classification Level

Figure 2. Security structure for communication redundancy

Figure 1. Security taxonomy for the search and rescue architecture

Sc-Tx Security Structure [Sc-Tx Taxonomy

«Software»
Security Software

«Software»
Cross Domain Software

«SecurityEnclave»
UNCLAS-Area

«Software»
Cyber Defense Software

«SecurityEnclave»
Sec-Enclave-1

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

46

chies, purposes, security and safety levels,
and constraints. In short it is a complex
system of systems. Communications and
interactions involve naval vessels and heli-
copters, first responders, civilian and fed-
eral government vessels and vehicles. There
is a need to communicate and cooperate,
but also a need to ensure system, personnel,
and communication security. The example
will demonstrate how the UAF security
views can define secure architecture. For
the complete model, refer to the example
model in the UAF specification (Object

Management Group
2019).

The Security Taxon-
omy (Sc-Tx) domain
shows the security
assets and security
enclaves. The diagram
defines the security
asset and asset owner
hierarchy available to
implement located (se-
curity enclaves) security,
security constraints
(policy, guidance, laws
and regulations) and de-
tails as Figure 1 shows.

In addition to the
security elements, the
Security Taxonomy di-

agram can also define system resources. In
this way the different security elements can
group in the same diagram and package
hierarchy. Since the UAF does not constrain
where to define and store elements, this
contributes to more modular architec-
tures. Figure 1 shows the security software
resources and security enclaves.

The security structure captures asset allo-
cation (operational and resource, informa-
tion and data) across the security enclaves,
showing applicable security controls
necessary to protect organizations, systems,

and information during processing, while
in storage, and during transmission. It also
captures Asset Aggregation and allocates
aggregated information usage at a location
as shown in Figure 2.

A Resource Mitigation is a security mea-
sure set intended to address specific cyber
risks. It comprises a tailored security control
subset protecting the asset at resource
(Resource Role). In this case, Communica-
tion Redundancy comprises the SAR Field
Organization, SAR HQ, and communication
technology. The communication technol-
ogy choices are the email communication
system, EMS dispatch system, and the cell
phone network. Not all these systems will
take part in the final configuration but this
stage does include them as trade-off analysis
will compare them. Along with performance
and cost, security controls, levels, and
methods can, in the evaluation, compare the
communication method efficacy. Product
line engineering can define the available
trade-off analysis choices.

Variability
The communication method is an

architecture’s feature with communication
elements to allow communication as shown
in Figure 3.

Figure 3 shows the usable comms meth-
od variations. These include the internet,

Figure 3. System communication variability

Comms
Method

var Comms Variants

Internet Radio

«requires»

2..3

VP

V V V

Wireless

Figure 4.  Internal communication redundancy view

V

Wireless

V

Internet

V

Wireless

V

Radio

«ResourceConnector»
«ResourceConnector»

«ResourceConnector»

«ResourcePort»
enet : Ethernet

«ResourcePort»
enet : Ethernet

«ResourcePort»
cpn : GSM

«ResourcePort»
cpn : GSM

«ResourcePort»
enat : Ethernet

«ResourcePort»
civrad : Civilian radio

«ResourcePort»
cpn : GSM

«ResourcePort»
civrad : Civilian radio

«ResourcePort»
sfocp : GSM

«ResourceRole»
shqcp : Cell Phone

«ResourceRole»
shocp : Cell Phone

«ResourceRole»
sfo : SAR Field Organization

«ResourceRole»
cpn : Cell Phone Network

«ResourceRole»
eml : Email Communication System

«ResourceMitigation»
Communication Redundancy

Sc-Sr Communication Redundancy [Sc-Sr]

«ResourceRole»
ems : EMS Dispatch System

«ResourcePort»
civ rad : Civilian radio

«ResourceExchange»
cr : CrewRoster

«ResourceExchange»
cr : CrewRoster

«ResourceConnector»

«ResourceExchange»
cr : CrewRoster

«ResourceExchange»
cr : CrewRoster

cr : CrewRostercr : CrewRostercr : CrewRoster

cr : CrewRoster

«ResourceRole»
shq : SAR HQ

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

47

radio, and wireless. The multiplicity, shown
as 2..3, requires using at least two and not
more than three. This ensures a backup
method in case the main one fails. This
enables the communication redundancy
resource mitigation defined in Figure 2. In
addition, Figure 3 shows the Internet re-
quires Wireless as a solution part. Because
some locations are remote, wired internet
connections are not always available.

The security connectivity view lists secu-
rity exchanges across security assets, the ap-
plicable security controls, and the security
enclaves housing the exchange’s producers
and consumers. Figure 4 shows the internal
structure for the communication redun-
dancy resource mitigation.

Figure 2 described the structural com-
munication redundancy breakdown. Figure
4 shows how the parts communicate. In
this case the crew roster must distribute
from the SAR HQ to the SAR Field Organi-
zation. Figure 2 shows the communication
paths at a very high level. For example, the
crew roster travels from the SAR HQ to
the cell phone to the cell phone network to
the Field Organization through the other
cell phone. The diagram can automatically
and directly generate interface control. In
addition, the variants defined in Figure
3, can link to the various elements. The
engineer selects the required variants and
generates a product model removing the
other elements. This applies to all model
parts including functional elements such as
activities, operations, and parameters.

The architecture can define and reuse
measurement definitions and actual mea-
surements. They can link to systems, ac-
tivities, and interactions as well as directly
integrate into systems as shown in Figure 5.

 Figure 5 shows an actual measurement
set defining the security categories of
unclassified and Sec27. It also shows the

email communication system’s actual
resource with its security category and the
security classification level.

The security processes view provides a
security control set and any possible en-
hancements as applicable to assets. Figure 6
shows a security control activity set, the
software performing them, and the assets
they protect.

In addition, defined security processes
can execute behaviors associated with
security as shown in Figure 7. The activity
diagram describes operational or resource
level processes applying (operational level)
or implementing (resource level) security
controls/enhancements to assets located
in and across enclaves. This demonstrates
interactions crossing security levels and in
and out of systems. The security processes
can demonstrate how to protect the data as
well as the assets themselves.

Figure 7 shows an activity set taking
place to access the SAR system. These
can, once added to operational activity
diagrams, demonstrate logical security
measure requirements as well as system
function activity diagrams to describe

Figure 5. Actual security measurements and actual resource with measurements

«ActualMeasurementSet»
SecCat1 : Security Category

Pm-Me Security Measurements Actual [Pm-Me Security]

«ActualMeasurementSet»
SecCat2 : Security Category

«ActualResource»
Email : Email Communication System

securityClassification : Security Classification Level = UNCLAS

sec : Security Category = UNCLAS

securityClassification : Security Classification Level = Sec27

SysML Sec : Security Classification Level = Restricted

Figure 6. Processes, the elements performing them, and the things they protect

«ResourceArtifact»
Search System

«Protects»«Protects»

«IsCapableToPerform»«IsCapableToPerform»

«Protects»

«Software»
Cyber Defense Software

«ResourceArtifact»
C2 System

«SecurityControl»
«activity»

AC-1-Access Control policy and procedures

«SecurityControl»
«activity»

AC-2 Account Management

Sc-Pr [Architecture Description] Security Processes

Figure 7. Security behavior as part of system functions

Sc-Pr Security Behavior [Sc-Pr]
«Function»

Access SAR System

«SecurityProcess»
Enter Name

«SecurityProcess»
Insert ID Card

«SecurityProcess»
Provide Access

«SecurityProcess»
Confirm Access Privileges

«SecurityProcess»
Access Granted

«SecurityProcess»
Enter Password

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

48

specific security measures and technologies.
State diagrams can also show them to
describe state-based security behavior.

The security constraints view specifies
textual rules/non-functional requirements
as security constraints on resources,
information, and data (security-related
in the form of rules, access control
policy). Identifying risks and specifying
risk likelihood, impact, asset criticality,
and other measurements enables risk
assessment. Figure 8 shows the Search and
Rescue architecture security constraints.

Figure 8. Security constraints for the search and rescue

Sc-Ct Security Constraints [Sc-Ct]

«System»
C2 System

{Anti-Virus Software shall
be installed on all systems
and updated daily and/or
when new releases are
available.}

«SecurityControl»
AC-1-Access Control Policy and Procedures

«SecurityControl»
AC-2 Account Management

«Protects»
Protects

«Protects»
Protects

«Protects»
Protects

«Affects»

«OwnsRisk»

«Affects»

«Enhances»
Enhances

«EnhancedSecurityControl»
Two-Srep Authentication

«System»
Search System

«Software»
Cyber Defense Software «CapabilityConfiguration»

SAR Field Organization
«Post»

SAR C2 Manager

«Risk»
Cyber Hackers

enet : Ethernet

«SecurityConstraint»

{All SAR Personnel shall undergo yearly
Security clearance checks.}

{All security software shall
be audited by an external
consultant to determine
security riskd.}

«SecurityConstraint»

«SecurityConstraint»

Figure 9. Maritime rescue architecture with security enclaves and systems

«ResourceArchitecture»
Maritime Rescue Architecture v1

«CapabilityConfiguration»
Maritime Rescue Unit v1

«CapabilityConfiguration»
Naval Ship

«CapabilityConfiguration»
Civilian Boat

«System»
C2 System

«Security Enclave»
UNCLAS-Area

«Security Enclave»
Sec-Enclave-1

«ResourceRole»
SecEn1

«ResourceRole»
MRU11 1 1 1

11

1 1

1

«ResourceRole»
C2

«ResourceRole»
NS

«ResourceRole»
PID

«ResourceRole»
UNC

Rs-Sr Resource Structure [Rs-Sr Marine Arch v1]

Figure 8 shows the systems, software,
and their relationships to the security
constraints and controls. It also shows
the risks and the systems they affect as
well as the person who owns the risks. An
enhanced security control demonstrates
how to add additional security, in this
case, adding two-step authentication to the
access control policy and procedures.

The Security Traceability domain
depicts mapping a risk to the: risk owner,
risk mitigations, and affected asset roles.
Security Controls to Risks Mapping matrix

shows which operational or resource
asset roles mitigate risks and represents
the Security Traceability. Risks to Assets
Mapping matrix shows which risks apply
to Asset Roles. The model automatically
generates these and is beyond the scope of
this article.

Security Integrated into Other views
As stated earlier, security is a cross

cutting construct. As a result, it must
integrate into the architecture. The previous
security figures demonstrate this. UAF also
defines security elements in other UAF
views. Figure 9 shows a Maritime Rescue
Architecture resource/systems diagram.

The figure shows the Maritime Rescue
Architecture’s structural breakdown with
two different level security enclaves. The
rescue and control systems are in security
enclave 1 and the civilian boat is in the un-
classified area. Figures 3 and 4 shows how
to include other security elements such as
security mitigations.

Figure 10 (on the next page) shows the
Maritime Rescue Architecture’s internal
structure.

Figure 10 shows the security enclaves;
the enclosed systems, colored blue to em-
phasize their location and extent; and their
classification levels. The right shows the ci-
vilian boat, personnel, and communication
systems. The left shows the rescue systems,
personnel, and communication systems.

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

49

REFERENCES
■	 Dahmann, J., G. Rebovich, J. Lane, and R. Lowry. 2010.

“System Engineering Artifacts for SoS.” Paper presented at
the Fourth Annual Institute of Electrical and Electronics
Engineers Systems Conference, San Diego, US-CA, 5-8 April.

■	 Department of Defense (DoD). 2013. “Defense Acquisition
Guidebook.” http://at.dod.mil/docs/DefenseAcquisitionGuidebook.
pdf

■	 Hause, M. 2014. “SOS for SoS: A New Paradigm for System
of Systems Modeling.” Paper presented at the Institute of
Electrical and Electronics Engineers and American Institute of
Aeronautics and Astronautics Aerospace Conference, Big Sky,
US-MT, 1-8 March.

■	 Hause, M., and F. Dandashi, 2015. “UAF for System of
Systems Modeling, Systems Conference (SysCon).” Paper

Figure 10. Maritime rescue architecture internal view

Rs-Sr Maritime Rescue Architecture [Rs-Sr]

«ResourceArchitecture»
Maritime Rescue Architecture v1

«ResourceRole»
SecEn1 : Sec-Enclave-1

«ResourceRole»
C2 : C2 System

«ResourceRole»
L16 : Tactical Radio

L16 : Link 16

«ResourceRole»
MRU1 : Maritime Rescue Unit v1

«ResourceRole»
HC : Helicopter

«ResourceRole»
CD : Tactical Radio

L16 : Link 16ET : Ethernet

«ResourceRole»
MR : Marine Radio MR : Marine Radio

«ResourceRole»
Monitor : ESM System DS : DS

ET : Ethernet

«ResourceRole»
RS : Rescue Ship

«ResourceRole»
CD : Tactical Radio

L16 : Link 16 ET : Ethernet

«ResourceRole»
Monitor : ESM System

ET : Ethernet

DS : DS

«ResourceRole»
: Marine Radio

MR : Marine Radio

«ResourceRole»
LD : Lighting Device

«ResourceRole»
NS : Naval Ship

«ResourceRole»
L16 : Tactical Radio

L16 : Link 16

«ResourceRole»
UNC : UNCLAS-Area

«ResourceRole»
PID : Civilian Boat

«ResourceRole»
LD : Lighting Device

DSOut : DS

«ResourceRole»
MR : Marine Radio

MR : Marine Radio

«ResourceRole»
MRTS : MRT Searcher

PID-RS:DS : DistressSignal

L16-ESM:TRK : Track

PID-HC:RI : RadioInstructionHC-PID:RI : RadioInstruction

HC-RS:RI : RadioInstructionRS-HC:RI : RadioInstruction

C2-RS:TO : TaskOrder

C2-NS:TO : TaskOrder

C2-HC:TO : TaskOrder

L16-ESM:TRK : Track

LD-ESM:DS : DistressSignal

Blue boxes are
security enclaves

Presented at the Ninth Annual Institute of Electrical and
Electronics Engineers Systems Conference, Vancouver, CA-
BC, 13-16 April.

■	 INCOSE. 2007. “Systems Engineering Vision 2020.”
http://www.ccose.org/media/upload/SEVision2020_20071003_
v2_03.pdf .

■	 Object Management Group. 2012. OMG2012-06-01.
OMG Systems Modeling Language (OMG SysML™), V1.3,
http://www.omg.org/spec/SysML/1.3/PDF/ .

■	 ——. 2013. OMG2013-08-04:2013. Unified Profile for DoDAF/
MODAF (UPDM) V2.1, http://www.omg.org/spec/UPDM/2.1/
PDF

■	 ——. 2019. “The Unified Architecture Framework (UAF).”
https://www.omg.org/spec/UAF

This emphasizes the data and interactions
across the security boundaries. PLE can
demonstrate various configurations and
security options.

SUMMARY AND CONCLUSIONS
The UAF describes enterprise and system

architectures and an integrated security
view set. The security views define the
security requirements and issues at the

project’s start in a separate view set. They
also integrate security into the different
views to highlight security vulnerabilities
and demonstrate how to mitigate
them. These security views provide the
architecture options expressed to assist in
trade off analysis and alternative evaluation.
The UAF views promote a proactive cyber
security and cyber resilience treatment
in the architecture during development.

Resource mitigation defines the
alternatives for mitigating security risks
in the architecture. The measures shown
in the UAF sample problem show the
benefit of addressing vulnerabilities while
developing the architecture. These provide
a quantitative and qualitative security
alternative analysis.  ¡

SP
ECIA

L
FEA

TU
R

E
SEP

TEM
B

ER
 2O

20
VOLUM

E 23/ ISSUE 3

50

Jean-Luc Voirin is Director, Engineering and Modeling, in
Thales Defense Missions Systems business unit and Technical
Directorate. He holds a MSc & Engineering degree from ENST
Bretagne, France. His fields of interests include architecting,
system engineering, modeling and simulation. He has been an
architect of real-time and near real-time computing and mission
systems on civil and mission aircraft and fighters. He is the
principal author of the Arcadia method and an active contributor
to the definition of methods and tools. He is involved in coaching
activities across all Thales business units, and in charge of research
on future engineering tooled processes.

Stéphane Paul has a Masters in computer science (1988) and
PhD in microelectronics (1991). In 1993, he joined Alcatel to
work on object-oriented analysis. Starting from 1996, he was
involved in European R&D projects, dealing with advanced
surface movement guidance and control systems (A-SMGCS).
From 2000 to 2008, he acted as technical authority on airport
systems at Thales ATM’s technical directorate. From 2008 to mid-
2010, he was head of the Collaborative Technologies Laboratory
at Thales Research & Technology. From July 2010, he started
research on model-driven security engineering, with a particular

focus on security risk assessment, methods and tools. He was also
involved in safety & security co-engineering, system of systems
engineering (SoSE with UPDM), security for service-oriented
architecture, and security solutions for critical embedded systems.
He delivers a 3-day cybersecurity engineering course within
Thales since mid-2016. He developed an agile approach to risk
assessment. In parallel, he provides risk assessment support to
different Thales entities. Outside of Thales, during 2014-17, he
also gave UML courses to Master 2 students, and since 2019
teaches risk management to Master 1 students at ESME Sudria
(Paris). He is a certified adult trainer since Jan 2020.

Stéphane Bonnet is systems design authority for the avionics
business unit of Thales. He oversees system architectures for all
business lines and leads the system-level R&T. Over the last 15
years, he has played a key role in the development of the Capella
and Arcadia MBSE open solution, and has spent a considerable
amount of time helping engineering managers and systems
architects implement the MBSE cultural change, with a range of
activities spanning from strategic engineering transformation
planning to project-dedicated assistance to modeling objectives
definition and monitoring.

Navas et al.  continued from page 43

ABOUT THE AUTHOR
Matthew Hause is a principal at Systems Security Innovation

(SSI), the INCOSE liaison to the OMG UAF group, a member
of the OMG architecture board for 12 years, and a member of
the OMG SysML specification team. He has been developing
multi-national complex systems for over 40 years. He started
out working in the power systems industry then transitioned to
command and control systems, process control, communications,

SCADA, military systems, energy management systems,
distributed control, and many other areas of technical and real-
time systems. He is an expert in SysML, UML, UAF, systems
engineering and architecture frameworks. His role at SSI
includes consulting, mentoring, presentations at conferences,
and developing and presenting training courses.

2020 KEY NUMBERS
170
Meetings

618h
of Productive Workshop

13h
of Social Events

Annual INCOSE International Workshop
29 - 31 January 2021

www.incose.org/iw2021

join us for the first virtual

2021
international workshop
Annual INCOSE

Don’t miss an opportunity to join one of the regional conferences

Next regional events

INCOSE Japan Symposium 2020 Virtual Event - hosted by JCOSE
02 - 03 September 2020
Japan
www.js2020.online/

2020 Annual INCOSE Western States Regional Conference
(WSRC) - Now Virtual!
17 - 19 September 2020
United States
www.incose.org/wsrc2020

INCOSE Brasil Virtual Conference 2020
28 - 29 September 2020
Brasil
incose.com.br/conference/

CSER 2020 - Conference on Systems Engineering Research
08 - 11 October 2020
United States
cser2020.org

2nd Annual INCOSE New England Fall Workshop
15 - 17 October 2020
United States
www.neincose.org/incose-ne-fall-workshop-2020

HSI 2020 Workshop
27 - 29 October 2020
Israel

14th Annual INCOSE Great Lakes Regional
Conference (GLRC14)
11 - 14 April 2021
Detroit, United States
www.incose.org/glrc

SEPT

OCT

APR

	Front Cover–Volume 23 Issue 3
	Inside this issue
	About This Publication
	From the Editor-In-Chief
	Special Feature
	Exploring Cyber Secure and Resilient Approaches with Feature Based Product Line Engineering
	Introduction to Systems Security Engineering Vocabulary
	Introduction to Product Line Engineering Vocabulary
	System Security Engineering and Feature-based Product Line Engineering: A Productive Marriage
	Engineering a Cyber Resilient Product Line
	Security Issue Detection and Mitigation Patterns for Product Line Resource Variation
	Effective Systems Security Requirements in Product Line Engineering
	Rule-based Verification of System Security using Feature-Based Product Line Engineering
	Leveraging a System Model to Initiate Security Architecture Development for Product Lines
	Towards a Model-Based approach to Systems and Cybersecurity
	Integrating Security into Enterprise Architecture with UAF and PLE

