
EntryControl

Indicator Lockout AutoLock

Physical LED Screen CenterConsole Speed Gear

Park Neutral Drive

EntryControl

Indicator Lockout AutoLock

Physical LED Screen CenterConsole Speed Gear

Park Neutral Drive

EntryControl

Indicator Lockout AutoLock

Physical LED Screen CenterConsole Speed Gear

Park Neutral Drive

EntryControl

Indicator Lockout AutoLock

Physical LED Screen CenterConsole Speed Gear

Park Neutral Drive

FEATURE CATALOGUE BILL-OF-FEATURES PORTFOLIO

PLE
FACTORY

CONFIGURATOR

PRODUCT ASSET INSTANCES
SHARED ASSET SUPERSETS

INSIGHT

APRIL 2O21
VOLUME 24 / ISSUE 1

A PUBLICATION OF THE INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING ®

This Issue’s Feature:
Product Line Engineering in Context

Systems Engineering: The Journal of The International Council on Systems Engineering

Call for Papers
he Systems Engineering journal is intend ed to be a primary
source of multidisciplinary information for the systems engineer-
ing and management of products and services, and processes of
all types. Systems engi neering activities involve the technologies

and system management approaches needed for
• definition of systems, including identi fication of user

requirements and technological specifications;
• development of systems, including concep tual architectures,

tradeoff of design concepts, configuration management during
system development, integration of new systems with legacy
systems, inte grated product and process development; and

• deployment of systems, including opera tional test and
evaluation, maintenance over an extended life cycle, and
re-engineering.

Systems Engineering is the archival journal of, and exists to serve the
following objectives of, the International Council on Systems Engineer-
ing (INCOSE):

• To provide a focal point for dissemination of systems
engineering knowledge

• To promote collaboration in systems engineering education
and research

• To encourage and assure establishment of professional
standards for integrity in the practice of systems engineering

• To improve the professional status of all those engaged in the
practice of systems engineering

• To encourage governmental and industrial support for research
and educational programs that will improve the systems
engineering process and its practice

The journal supports these goals by provi ding a continuing, respected
publication of peer-reviewed results from research and development in
the area of systems engineering. Systems engineering is defined broadly
in this context as an interdisciplinary approach and means to enable the
realization of succes s ful systems that are of high quality, cost-effective,
and trust worthy in meeting customer requirements.

The Systems Engineering journal is dedi cated to all aspects of the
engineering of systems: technical, management, economic, and social.
It focuses on the life cycle processes needed to create trustworthy and
high-quality systems. It will also emphasize the systems management
efforts needed to define, develop, and deploy trustworthy and high
quality processes for the production of systems. Within this, Systems
Engineer ing is especially con cerned with evaluation of the efficiency and
effectiveness of systems management, technical direction, and integra-
tion of systems. Systems Engi neering is also very concerned with the
engineering of systems that support sustainable development. Modern
systems, including both products and services, are often very knowl-
edge-intensive, and are found in both the public and private sectors.
The journal emphasizes strate gic and program management of these,
and the infor mation and knowledge base for knowledge princi ples,
knowledge practices, and knowledge perspectives for the engineering of

systems. Definitive case studies involving systems engineering practice
are especially welcome.

The journal is a primary source of infor mation for the systems engineer-
ing of products and services that are generally large in scale, scope,
and complexity. Systems Engineering will be especially concerned with
process- or product-line–related efforts needed to produce products that
are trustworthy and of high quality, and that are cost effective in meeting
user needs. A major component of this is system cost and operational
effectiveness determination, and the development of processes that
ensure that products are cost effective. This requires the integration of a
number of engi neering disciplines necessary for the definition, devel-
opment, and deployment of complex systems. It also requires attention
to the life cycle process used to produce systems, and the integration
of systems, including legacy systems, at various architectural levels.
In addition, appropriate systems management of information and
knowledge across technologies, organi zations, and environments is also
needed to insure a sustainable world.

The journal will accept and review sub missions in English from any
author, in any global locality, whether or not the author is an INCOSE
member. A body of international peers will review all submissions, and
the reviewers will suggest potential revisions to the author, with the intent
to achieve published papers that

• relate to the field of systems engineering;
• represent new, previously unpublished work;
• advance the state of knowledge of the field; and
• conform to a high standard of scholarly presentation.

Editorial selection of works for publication will be made based on con-
tent, without regard to the stature of the authors. Selections will include
a wide variety of international works, recognizing and supporting the
essential breadth and universality of the field. Final selection of papers
for publication, and the form of publication, shall rest with the editor.

Submission of quality papers for review is strongly encouraged. The
review process is estimated to take three months, occasionally longer for
hard-copy manuscript.

Systems Engineering operates an online submission and peer review
system that allows authors to submit articles online and track their
progress, throughout the peer-review process, via a web interface.
All papers submitted to Systems Engineering, including revisions or
resubmissions of prior manuscripts, must be made through the online
system. Contributions sent through regular mail on paper or emails with
attachments will not be reviewed or acknowledged.

All manuscripts must be submitted online to Systems Engineering at
ScholarOne Manuscripts, located at:
 http://mc.manuscriptcentral.com/SYS
Full instructions and support are available on the site, and a user ID and
password can be obtained on the first visit.

T

A
P

R
IL 2O

21
VOLUM

E 24/ ISSUE 1

3

W
H

A
T

’S IN
SID

E
TH

IS ISSU
E

Inside this issue

INSIGHT
APRIL 2O21  VOLUME 24 / ISSUE 1

A PUBLICATION OF THE INTERNATIONAL COUNCIL
ON SYSTEMS ENGINEERING

®

FROM THE EDITOR-IN-CHIEF	 6

SPECIAL FEATURE	 7

It’s About Time: Temporal Management in Feature-Based Product Line Engineering	 7

Product Line Re-Engineering for Modularity in a US Department of Defense Project	 12

Funding the PLE Factory in a Multi-Customer Contract-Based PLE Organization	 18

Development of a Hybrid Product Breakdown Structure and Variability Model	 22

The Convergence of Struggles! Reusability Assessment of Inner-Source Components
for Product Lines	 30

Product Line Engineering for Digital Product-Services	 35

Key Issues of Organizational Structure and Processes with Feature-based Product Line Engineering	 42

A
P

R
IL 2O

21
VOLUM

E 24/ ISSUE 1

4

A
B

O
U

T TH
IS

P
U

B
LIC

A
TIO

N

About This Publication

INCOSE’s membership extends to over 18, 000 individual
members and more than 100 corporations, government
entities, and academic institutions. Its mission is to share,
promote, and advance the best of systems engineering from
across the globe for the benefit of humanity and the planet.
INCOSE charters chapters worldwide, includes a corporate
advisory board, and is led by elected officers and directors.

For more information, click here:
The International Council on Systems Engineering
(www.incose.org)
INSIGHT is the magazine of the International Council on
Systems Engineering. It is published four times per year and

features informative articles dedicated to advancing the state
of practice in systems engineering and to close the gap with
the state of the art. INSIGHT delivers practical information
on current hot topics, implementations, and best practices,
written in applications-driven style. There is an emphasis on
practical applications, tutorials, guides, and case studies that
result in successful outcomes. Explicitly identified opinion
pieces, book reviews, and technology roadmapping comple-
ment articles to stimulate advancing the state of practice.
INSIGHT is dedicated to advancing the INCOSE objectives
of impactful products and accelerating the transformation of
systems engineering to a model-based discipline.
Topics to be covered include resilient systems, model-based

systems engineering, commercial-driven transformational
systems engineering, natural systems, agile security, systems
of systems, and cyber-physical systems across disciplines
and domains of interest to the constituent groups in the
systems engineering community: industry, government,
and academia. Advances in practice often come from lateral
connections of information dissemination across disciplines
and domains. INSIGHT will track advances in the state of the
art with follow-up, practically written articles to more rapidly
disseminate knowledge to stimulate practice throughout the
community.

INFORMATION ABOUT INCOSE OVERVIEW

EDITORIAL BOARD AND STAFF 2021 INCOSE BOARD OF DIRECTORS

* PLEASE NOTE:  If the links highlighted here do not take you to
those web sites, please copy and paste address in your browser.

Permission to reproduce Wiley journal Content:
Requests to reproduce material from John Wiley & Sons publications
are being handled through the RightsLink® automated permissions
service.

Simply follow the steps below to obtain permission via the Right-
slink® system:

•	 Locate the article you wish to reproduce on Wiley Online Library
(http://onlinelibrary.wiley.com)

•	 Click on the ‘Request Permissions’ link, under the ‹ ARTICLE
TOOLS › menu on the abstract page (also available from Table of
Contents or Search Results)

•	 Follow the online instructions and select your requirements from
the drop down options and click on ‘quick price’ to get a quote

•	 Create a RightsLink® account to complete your transaction (and
pay, where applicable)

•	 Read and accept our Terms & Conditions and download your
license

•	 For any technical queries please contact 
customercare@copyright.com

•	 For further information and to view a Rightslink® demo please visit
www.wiley.com and select Rights & Permissions.

AUTHORS – If you wish to reuse your own article (or an amended
version of it) in a new publication of which you are the author, editor
or co-editor, prior permission is not required (with the usual acknowl-
edgements). However, a formal grant of license can be downloaded free
of charge from RightsLink if required.

Photocopying
Teaching institutions with a current paid subscription to the journal
may make multiple copies for teaching purposes without charge, pro-
vided such copies are not resold or copied. In all other cases, permission
should be obtained from a reproduction rights organisation (see below)
or directly from RightsLink®.

Copyright Licensing Agency (CLA)
Institutions based in the UK with a valid photocopying and/or digital
license with the Copyright Licensing Agency may copy excerpts from
Wiley books and journals under the terms of their license. For further
information go to CLA.

Copyright Clearance Center (CCC)
Institutions based in the US with a valid photocopying and/or digital
license with the Copyright Clearance Center may copy excerpts from
Wiley books and journals under the terms of their license, please go
to CCC.

Other Territories:  Please contact your local reproduction rights
organisation. For further information please visit www.wiley.com and
select Rights & Permissions.
If you have any questions about the permitted uses of a specific article,
please contact us.

Permissions Department – UK
John Wiley & Sons Ltd.
The Atrium,
Southern Gate,
Chichester
West Sussex, PO19 8SQ
UK
Email:  Permissions@wiley.com
Fax:  44 (0) 1243 770620
or

Permissions Department – US
John Wiley & Sons Inc.
111 River Street MS 4-02
Hoboken, NJ 07030-5774
USA
Email:  Permissions@wiley.com
Fax:  (201) 748-6008

PERMISSIONS

ARTICLE SUBMISSION
insight@incose.net

Publication Schedule.  INSIGHT is published four times per year.
Issue and article submission deadlines are as follows:

  March 2021 issue  –  2 January
  June 2021 issue  –  2 April
  September 2021 issue  –  1 July
  December 2021 issue  –  1 October

For further information on submissions and issue themes, visit the
INCOSE website:  www.incose.org

© 2021 Copyright Notice.
Unless otherwise noted, the entire contents are
copyrighted by INCOSE and may not be reproduced in
whole or in part without written permission by INCOSE.
Permission is given for use of up to three paragraphs as
long as full credit is provided. The opinions expressed in

INSIGHT are those of the authors and advertisers and do
not necessarily reflect the positions of the editorial staff
or the International Council on Systems Engineering.
ISSN 2156-485X; (print) ISSN 2156-4868 (online)

Editor-In-Chief	 William Miller
insight@incose.net	 +1 908-759-7110

Assistant Editor	 Lisa Hoverman
lisa@hsmcgroup.biz

Theme Editor	 Paul Clements
pclements@biglever.com

Advertising Account Manager	 Susan Blessing
sblessin@wiley.com	 201-723-3129

Layout and Design	 Chuck Eng
chuck.eng@comcast.net

Member Services	 INCOSE Administrative Office
info@incose.net	 +1 858 541-1725

Officers
President:  Kerry Lunney, ESEP, Thales Australia
President-Elect:  Marilee Wheaton, INCOSE Fellow,

The Aerospace Corporation

Secretary:  Kyle Lewis, CSEP, Lockheed Martin Corporation
Treasurer:  Michael Vinarcik, ESEP, SAIC

At-Large Directors
Academic Matters:  Bob Swarz, WPI
Marketing & Communications:  Lisa Hoverman, HSMC
Outreach:  Julia Taylor, Taylor Success Systems
Americas Sector:  Antony Williams, ESEP, Jacobs
EMEA Sector:  Lucio Tirone, CSEP, OCSMP, Fincantieri
Asia-Oceania Sector:  Serge Landry, ESEP, Consultant
Chief Information Officer (CIO):  Barclay Brown, Raytheon
Technical Director:  Christopher Hoffman, CSEP, Cummins

Deputy Technical Director:  Olivier Dessoude, Naval Group
Technical Services Director: Don Gelosh, CSEP-Acq, WPI
Deputy Technical Services Director: Richard Beasley,

Rolls-Royce
Director for Strategic Integration: Tom McDermott,

Stevens Institute of Technology
Corporate Advisory Board Chair: Don York, CSEP, SAIC
CAB Co-chair:  Ron Giachetti, Naval Postgraduate School
Chief of Staff:  Andy Pickard, Rolls Royce Corporation

A
P

R
IL 2O

21
VOLUM

E 24/ ISSUE 1

5

A
B

O
U

T TH
IS

P
U

B
LIC

A
TIO

N

ADVERTISE

Readership
INSIGHT reaches over 18, 000 individual members and uncounted
employees and students of more than 100 CAB organizations worldwide.
Readership includes engineers, manufacturers/purchasers, scientists,
research & development processionals, presidents and CEOs, students and
other professionals in systems engineering.

Issuance	 Circulation
2021, Vol 24, 4 Issues	 100% Paid

Contact us for Advertising and Corporate Sales Services
We have a complete range of advertising and publishing solutions profes
sionally managed within our global team. From traditional print-based
solutions to cutting-edge online technology the Wiley-Blackwell corporate
sales service is your connection to minds that matter. For an overview of
all our services please browse our site which is located under the Resources
section. Contact our corporate sales team today to discuss the range of
services available:

•	 Print advertising for non-US journals
•	 Email Table of Contents Sponsorship
•	 Reprints
•	 Supplement and sponsorship opportunities
•	 Books
•	 Custom Projects
•	 Online advertising

Click on the option below to email your enquiry to your
nearest office:

•	 Asia & Australia  corporatesalesaustralia@wiley.com
•	 Europe, Middle East & Africa (EMEA)

corporatesaleseurope@wiley.com
•	 Japan  corporatesalesjapan@wiley.com
•	 Korea  corporatesaleskorea@wiley.com

USA (also Canada, and South/Central America):
•	 Healthcare Advertising  corporatesalesusa@wiley.com
•	 Science Advertising  Ads_sciences@wiley.com
•	 Reprints  Commercialreprints@wiley.com
•	 Supplements, Sponsorship, Books and Custom Projects

busdev@wiley.com

Or please contact:
Susan Blessing, Senior Account Manager Sciences
Sciences, Corporate Sales
mobile:  24/7  201-723-3129
e-mail:  sblessin@wiley.com

CONTACT

ADVERTISER INDEX� Apr  volume 24-1
Systems Engineering Call for Papers	 inside front cover
16th Annual Systems of Systems Engineering

Conference	 back inside cover
31st Annual INCOSE International Symposium	 back cover

CORPORATE ADVISORY BOARD — MEMBER COMPANIES

321 Gang, Inc.
Aerospace Corporation, The
Airbus
AM General LLC
Analog Devices, Inc.
Aras Corp
Australian Naitonal University
AVIATION INDUSTRY CORPORATION OF CHINA,

LTD
BAE Systems
Ball Aerospace
Bechtel
Beckton Dickinson
Blue Origin
Boeing Company, The
Bombardier Transportation
Booz Allen Hamilton Inc.
C.S. Draper Laboratory, Inc.
California State University Dominguez Hills
Carnegie Mellon University Software

Engineering Institute
Change Vision, Inc
Colorado State University
Cornell University
Cranfield University
Cubic Corporation
Cummins, Inc.
CYBERNET MBSE
Defense Acquisition University
DENSO Create, Inc.
Drexel University
Eindhoven University of Technology
Embraer S.A.
ENAC
Federal Aviation Administration (U.S.)
Ford Motor Company
Fundacao Ezute
General Dynamics Mission Systems
General Electric Aviation
General Motors
George Mason University

Georgia Institute of Technology
IBM
Idaho National Laboratory
ISAE SUPAERO
ISDEFE
iTiD Consulting, Ltd
Jacobs Engineering
Jama Software
Jet Propulsion Laboratory
John Deere & Company
Johns Hopkins University
KBR, Inc.
KEIO University
L3 Harris
Leidos
Lockheed Martin Corporation
Los Alamos National Laboratory
ManTech International Corporation
Maplesoft
Massachusetts Institute of Technology
MBDA (UK) Ltd.
Missouri University of Science & Technology
MITRE Corporation, The
Mitsubishi Heavy Industries
National Aeronautics and Space Administration
National Security Agency – Enterprise
Naval Postgraduate School
Nissan Motor Co, Ltd
No Magic/Dassault Systems
Noblis
Northrop Grumman Corporation
Pacific Northwest National Laboratories
Penn State University
Perspecta (formerly Vencore)
PETRONAS NASIONAL BERHAD
Prime Solutions Group, Inc.
Project Performance International
QRA Corporation
Raytheon Corporation
Roche Diagnostics
Rolls-Royce

Saab AB
SAIC
Sandia National Laboratories
Shell
Siemens
Sierra Nevada Corporation
Singapore Institute of Technology
Skoltech
SPEC Innovations
Stellar Solutions
Stevens Institute of Technology
Strategic Technical Services
Swedish Defence Materiel Administration
Systems Engineering Directorate
Systems Planning and Analysis
Thales
Torch Technologies
Trane Technologies
Tsinghua University
TUS Solution LLC
UK MoD
United Technologies Corporation
University of Alabama in Huntsville
University of Arkansas
University of California San Diego
University of Connecticut
University of Maryland
University of Maryland, Baltimore County
University of Michigan, Ann Arbor
University of New South Wales, The, Canberra
University of Southern California
University of Texas at El Paso, The
University of Washington, Industrial & SE Dept
US Department of Defense, Deputy Assistant

Secretary of Defense for Systems Engineering,
Veoneer, Inc
Vitech Corporation
Volvo Construction Equipment
Woodward Inc
Worcester Polytechnic Institute- WPI
Zuken, Inc

Questions or comments concerning:

Submissions, Editorial Policy, or Publication Management
Please contact:  William Miller, Editor-in-Chief
insight@incose.net

Advertising — please contact: 
Susan Blessing, Senior Account Manager Sciences
Sciences, Corporate Sales
mobile:  24/7  201-723-3129
e-mail:  sblessin@wiley.com

Member Services – please contact:  info@incose.net

A
P

R
IL 2O

21
VOLUM

E 24/ ISSUE 1

6

William Miller, insight@incose.net

FROM THE
EDITOR-IN-CHIEF

It is our pleasure to announce the April
2021 INSIGHT issue published coop-
eratively with John Wiley & Sons as
the systems engineering practitioners’

magazine. The INSIGHT mission is provid-
ing informative articles on advancing the
systems engineering practice and to close
the gap between practice and the state of
the art as advanced by Systems Engineering,
the Journal of INCOSE also published by
Wiley. The issue theme is product line engi-
neering in context. We thank theme editor
Drew Stovall, the Product Line Engineering
International Working Group, and the
authors for their contributions.

Your editor appreciates the author contri-
butions from professional experience in the
early 1980s transformation from analog to
digital telephone systems. I had a rota-
tional assignment in the early 1980s from
Bell Labs to be the product manager for
on-premises digital telephone system ad-
junct (feature) processors. This was the first
commercial Unix operating system use. The
growth of the installed base, each unique
configuration, with churn in circuit pack
upgrades, software versioning, enabled fea-
tures, along with customer-driven feature
enhancements and new features over the
adjunct processor platform architecture
lifecycle was truly mind-boggling.

Paul Clements begins with “Temporal
Management in Feature-Based Product
Line Engineering.” Clements presents an ap-
proach for handling the temporal dimension
of product line engineering (PLE) — man-
aging artifacts as they change and evolve.
The approach relies on a proven traditional
change control technique foundation but
shows how they apply in the feature-based
product line engineering context.

John Wood and Glenn Tolentino address
“Product Line Re-Engineering for Mod-
ularity in a US Department of Defense

FR
O

M
 TH

E
ED

ITO
R

-IN
-CH

IEF

Project.” Their case study details the options
evaluated and the path chosen by a software
development organization to re-engineer
four existing products with common
features into a single product-line result-
ing in product sponsors taking advantage
of cost savings, developers shortening
implementation and testing timeframes,
and users obtaining product features faster
while sharing a common experience across
product variants. Although they originally
envisioned the software-intensive products
to be a product line operating from a com-
mon code repository, they diverged due to
different product sponsors having differing
priorities and schedule commitments. The
evaluated re-engineering options included
merging common code and maintaining
it in a single repository, re-using software
code while keeping it in separate reposito-
ries for each product variant, and pursuing
a modular open systems approach (MOSA)
to create common modules that could
insert, update, replace, and so forth within
any product variant without disrupting the
remaining product.

Clements next addresses “Funding the
PLE Factory in a Multi-Customer Contract-
Based PLE Organization.” Feature-Based
product line engineering employs the PLE
factory concept, in which all development
occurs for any products in a product
line. Automatically configuring shared
assets based on the feature choices for a
product produces individual products.
A product line organization’s personnel
need to carry out tasks associated with
creating, developing, delivering, and
evolving products in its product line. Any
organization employing this paradigm in
a contract-based (as opposed to a mass
market) context must answer the question:
who pays for the work going on inside the
factory that may benefit multiple contracts?

The answer can be surprisingly complex,
involving security, regulatory compliance,
and intellectual property protection issues of
both the PLE organization and its customers.
This report offers a method for answering
“Who pays for the activities in the PLE
Factory?” Answering this question means
establishing processes culminating with
creating charge numbers to which everyone
working in the PLE Factory can charge their
effort. These processes must connect the
funding supply to the funding consumption
in a fair and equitable way that complies
with applicable rules and regulations.

Evan Helmeid addresses “Development
of a Hybrid Product Breakdown Structure
and Variability Model.” Transforming from
a project-based engineering approach to a
product line engineering approach requires
supporting the engineering teams through-
out the transition with evolving tools and
methodologies. However, a traditional
product breakdown structure (PBS) format
provides insufficient detail and structure.
The author developed a hybrid PBS-varia-
bility model (VM) using standard desktop
software, combining the familiar PBS struc-
ture with variability modeling aspects based
on feature modeling and decision modeling
approaches, resulting in an engineering
artifact recognizable as a PBS and easy to
adapt to design evolution, yet sufficiently
expansive to characterize initial variability.

Thomas Froment and Guillaume Angier
de Loheac take on “The Convergence of
Struggles! Reusability Assessment of In-
ner-Source Components for Product Lines.”
Inner source establishes open source-like
collaborations within an organization.
Product line engineering is the approach
for engineering a related product portfolio
in an efficient manner, taking advantage of
products’ similarities while managing their

>  continued on page 11

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

7

INTRODUCTION

  ABSTRACT
Feature-based product line engineering employs the PLE factory concept in which all development occurs for any product line
product. Any organization employing this paradigm in a contract-based (as opposed to a mass market) context must answer
the question: Who pays for the work inside the factory that may benefit multiple contracts? The answer can be surprisingly
complex, involving security, regulatory compliance, and intellectual property protection issues of both the PLE organization and
its customers. This article offers a method for answering this question by establishing processes to create charge numbers to which
everyone working in the PLE factory can charge their effort. These processes must connect the funding supply to the funding
consumption in a way that is fair, equitable, and compliant with applicable rules and regulations.

It’s About Time: Temporal
Management in Feature-
Based Product Line
Engineering

Paul Clements, pclements@biglever.com
Copyright © 2020 by BigLever Software Inc. Permission granted to INCOSE to publish and use.

Feature-Based Product Line Engi
neering (PLE) is a well-known
approach for efficiently engineering
product lines, which numerous

case studies have shown to yield substantial
benefits in cost, quality, and time to market.
The technical approach centers around the
factory concept, configuring shared assets
to support any product line member based
on a product description in terms of its fea-
tures. However, we need another ingredient
to this narrative before we can apply it in
day-to-day operational practice: managing
change and evolution. This article presents
an approach for handling the product line
engineering temporal dimension—manag-
ing artifacts as they change and evolve. The
approach relies on a foundation of proven
traditional change control techniques but
shows how they apply in the context of
Feature-Based PLE.

Feature-Based PLE Overview
A product line includes various engi-

neering assets, such as system or software

requirements, design documentation,
software source code, test cases and proce-
dures, and more, that play a role in product
creation, deployment, and sustainment.

The product line shares these engineering
assets. These shared assets are supersets,
meaning they contain any content needed
to support any product. The configurator is

Figure 1. The Feature-Based PLE factory configuring PLE shared asset supersets into
product-specific instances according to a product’s bill-of-features

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

8

a commercial software tool, such as Gears,
producing product-specific instances by
actuating a product—exercising variation
points in the supersets according to the
feature choices for that product.

Figure 1 shows the shared asset supersets
in the bottom left “V.”. Gear symbols denote
variation points defined in feature terms in
the product line’s feature catalog. A bill-of-
features describes the particular product’s
feature choices, which the configurator
uses to produce product-specific shared
asset instances. In Figure 1, the PLE factory
comprises everything left of the product
subsets.

In the Feature-Based PLE world, the
factory naturally evolves over time—the
shared asset supersets change, the fea-
ture catalog changes, the bills-of-features
change all in response to changing needs
of the customers or market. To change the
product instances, a development team
first changes the factory and then uses the
configurator to produce the new version of
the affected product or products.

This article focuses on managing this
factory evolution.

Hereafter, the term production line will
refer to the physical tool-and-technology-
based realization of a PLE factory’s
feature catalog and bills-of-features. These
comprise the physical artifacts (data files)
that need managing over time, along with
the shared asset supersets.

EVOLUTION OF SHARED ASSETS AND
PRODUCTION LINE FILES

Production line files and shared asset
supersets are both critical components of
a valid and operational factory. Variation
points within shared asset supersets refer to
features defined in production line files; a
variation point denotes content that applies
to a product for which certain features
have been selected. Conversely, production
line files contain references to shared
asset supersets. This coupling requires
coordinating production line file baselines
and shared asset baselines as the product
line evolves.

One or more configuration management
(CM) repositories should control the prod-
uct line’s shared asset supersets and produc-
tion line files to provide the production line
history, version control, and reproducibility
at specific points in time.

■	 Shared Asset Evolution: All shared
asset supersets naturally evolve to
support new functionality, provide
improvements, and/or address defects.
Development typically occurs on
shared asset supersets using various
tools, selected by the PLE organization
for each asset type: requirements tools,
modeling tools, software development

environments, documentation tools,
and so forth.

■	 Production Line File Evolution: Pro-
duction line files include files created
by the configurator. In Gears, these
are plain-text files representing the
production line’s architecture, feature
catalog, bills-of-features, and shared
asset locations. As these artifacts change
over time, the production line files will
also evolve. This change occurs, for in-
stance, in conjunction with adding new
capability to the product line, which
may involve creating a new feature or
a new “flavor” of an existing feature.
Change can also occur when a custom-
er wants a capability that is already part
of the product line’s repertoire leading
to a new bill-of-features to support the
customer’s product.

Of course, a single product line change
can cause a change to both the production
line files and shared asset supersets. A new
feature, for example, will cause a change to
the feature catalog, one or more bills-of-
features (for each product selecting the
new feature), and one or more shared asset
supersets to implement the new capability.

KEY PRINCIPLES FOR FEATURE-BASED PLE
TEMPORAL MANAGEMENT

The temporal management approach
for Feature-Based PLE builds on two key
principles:

(1)	 Perform all development and
maintenance modifications on PLE
shared asset supersets and/or pro-
duction line files.

(2) Never use the read-only product-spe-
cific asset subsets (actuation results,
the right side of Figure 1) for devel-
opment and maintenance.

These principles are independent of the
CM tool, repository, or shared asset type
under CM control.

Single-system temporal management
(and older copy-based PLE approaches)
maintain and manage the engineering
artifacts for each product separately. The
Feature-Based PLE temporal management
strategy focuses on the shared asset super-
sets, not product-specific instances, and is
a major cost avoidance source enjoyed by
PLE organizations.

TEMPORAL BASELINES: THE KEY CONCEPT
FOR TEMPORAL MANAGEMENT

The Feature-Based PLE temporal
management is based on the temporal
baseline concept, which is essentially a
product-line-level baseline comprising the
baseline set of each shared asset superset
and the production line files themselves.

Thus, a temporal baseline, as Figure 2
illustrates, includes:

■	 An individual shared asset baseline set;
■	 A baselined production line file set cor-

responding to the shared asset baselines.

The temporal baseline strategy uses
whatever baseline strategy the organization
has already chosen to put in place for each
different CM repository. For example:

■	 Assets using a conventional commercial
configuration management tool includ-
ing plain text files (text files containing
computer source code or build scripts),
documents in Microsoft® Word, spread-
sheets in Microsoft® Excel, and the like.
These assets generally do not require a
specialized viewing tool.

■	 Assets residing in a database or oth-
erwise managed by a special-purpose
tool. Those can use the built-in host
database or tool CM capabilities.

Figure 2. PLE Temporal Management with Temporal Baselines

Module 1
Module 2
Module 3

Requirements

Package 4
Package 5
Package 6

Design Models

Component 7
Component 8
Component 9

Source Code

Suite 10
Suite 11

Test Cases

PLE Models

Alpha Release

Beta Release

Public Release

Baselined

Working
version, not
baselined

Key

Product A

Product B

Product N

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

9

Figure 3. Temporal Baseline 3.0 plus working versions

Figure 4. Temporal Baseline 4.2

many times daily, as they evolve, depend-
ing upon an organization’s development
practices. When we refer to baselines,
we usually mean baselines that are part
of a product release. Not everything has
evolved; notice Design Package 4, Source
Code Component 9, and Test Case Suite 10
have not changed.

Now another release cycle coming due
will include a Product B alpha version and
a Product N beta version. We baseline the
production line files and those shared asset
supersets ready to support the product
releases; in our figures, those white
dots become black dots. Then we define
the versions supporting and defining a
temporal baseline, which we call Temporal
Baseline 4.2. Figure 4 shows this. In
Figure 4, Requirements Module 2 and
Source Code Component 7 both evolved
since their status in Temporal Baseline
3.0, but they are not ready to support
the next releases. So, we leave them in
their working state and incorporate the
previously baselined versions for Temporal
Baseline 4.2.

As development continues, the
production line files and the shared asset
supersets are periodically baselined. These
baselines combine as needed to form the
temporal baselines supporting the specific
versions of any or all products throughout
the product line lifecycle. The process
continues, resulting in the full picture
shown in Figure 2.

Using a Temporal Baseline
Temporal baselines define and re-create

any product version at any time. For exam-
ple, in Figure 2, using Temporal Baseline
5.7 can re-create Product A’s public release
(the green pentagon in the “Product A”
line) at any time. To do so:

■	 use the shared asset versions specified
in Temporal Baseline 5.7.

■	 use the production line file versions
specified in Temporal Baseline 5.7.

■	 use the configurator to actuate those
shared asset supersets according to the
bill-of-features for Product A.

A temporal baseline should track all
product line shared asset supersets, even
those not containing variation points.

Storing a Temporal Baseline
A temporal baseline is essentially a list of

shared asset supersets and version numbers
of those shared asset supersets, plus a ver-
sion number for the production line files.
Here are two recommended approaches for
storing a temporal baseline:

■	 Option 1: Uniform version numbers
for everything. Under this approach,
the production line files, all shared asset

■	 Assets effectively using content and
naming convention copies to represent
versions.

Figure 2 illustrates a product line
temporal baseline series. A temporal
baseline comprises the colored box across
the top of the figure (such as Temporal
Baseline 3.0), along with the “zigzag” line of
the corresponding color running through
shared asset supersets indicating a version
of that shared asset contributing to the
temporal baseline. The solid black dots
represent the baselined versions of each
shared asset of PLE models.

Each temporal baseline supports releas-
ing one or more products; represented by
the colored bands at the bottom of the fig-
ure labeled Product A through Product N.

The light blue band, labeled “PLE Mod-
els,” shown at the top of the asset type list

in Figure 2, represents the production line
files. These files, like the shared asset super-
sets, need CM repository revision-control.

Temporal Baselines and Product Line
Evolution

Figure 2 shows a product line after it has
undergone several evolutionary steps. To
delve deeper, let us return to the starting
point.

Figure 3 shows Temporal Baseline 3.0,
depicted as the dark red line connecting
each asset’s baseline. Temporal Baseline
3.0 supports Product A’s alpha, Product B’s
public release, and Product N’s alpha release.

Figure 3 also illustrates the production
line file evolution and at least some shared
asset supersets as development occurs. The
white dots represent the current working
versions and are the “tips” in the various
CM repositories. These “working versions”
may themselves baseline many times, even

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

10

supersets, and the product releases have
the same version number—3.0, 4.2, and
5.7—in the CM system(s) in which they
reside. Thus, in Figure 2, every Tempo-
ral Baseline 5.7 component has version
number 5.7 in its CM system, and the
Product A through N releases also have
the release number 5.7.
•	 This approach removes the need to

store the temporal baseline — every-
thing associated with a release has
the same number. This approach has
two caveats:
1. Even if a shared asset has not

evolved since the previous tem-
poral baseline, it can (and should)
simply receive a new label (version
number) as is, to keep its number-
ing in sync with other artifacts in
the new temporal baseline.

2. Some tools do not support assign-
ing user-defined labels to content
versions, and so their assets will
not participate in this scheme.

■	 Option 2: Table. A simple table (main-
tained, for example, in a spreadsheet)
can represent and store a temporal
baseline. Table 1 uses the Figure 2
temporal baselines as an example. This
table becomes a product line asset in
its own right and should remain under
configuration control.

BRANCHING
The fundamental approach is to maintain

Table 1: Temporal Baseline representation

Temporal baseline label: 3.0 4.2 5.7 6.0 7.1

Production line files 1.6 1.10 1.14 2.0 2.3

Requirements module 1 6.2.5 6.3.6 6.3.6 6.5.0 6.5.0

Requirements module 2 5.5.1 5.5.1 5.7.2 5.8.0 5.8.5

Requirements module 3 4.4.3 4.4.7 4.4.12 4.5.0 4.5.0

Design package 4 2.1 2.1 2.1 3.0 3.2

Design package 5 1.2 1.3 1.4 2.0 2.0

Design package 6 1.4 1.4.2 1.4.4 1.5.0 1.5.5

Source code component 7 3.6.3 3.6.3 3.6.14 4.0 4.0

Source code component 8 4.2.1 4.2.4 4.2.4 4.3.0 4.3.5

Source code component 9 4.9.1 4.9.1 4.9.17 5.0 4.9.17

Test case suite 10 4.1 4.1 4.2 4.3.0 4.3.9

Test case suite 11 4.5 4.7 4.8 5.0 5.1

Product A V1 Alpha - V1 Beta V1 Public -

Product B V1 Public V2 Alpha - V2 Beta V2 Public

… … … … … …

Product N V1 Alpha V1 Beta - V1 Public V2 Alpha

versions of all asset supersets plus the
production line files, as shown in Figure 2.
Taken together, this constitutes a temporal
baseline. Each can evolve as it needs to,
and we have an elegant, simplified picture
of change management for a PLE Factory
that eliminates all of the branching that
comes with clone-and-own approaches
and product-centric-CM approaches.
Everybody works on the “tip” (most recent
versions); re-producing an earlier version of
a product release simply means finding the
temporal baseline of that version, checking
out all of the associated versions of all of
the shared asset supersets and production
line files, and using the configurator to re-
produce the product.

It would be tempting to conclude at this
point but in the interest of practical appli-
cation we will point out that there are cases
where we still need branches — at least
short-lived ones.

Branching means to make a copy of an
artifact so that special-purpose develop-
ment can continue in parallel with “main”
development activity. (Some CM systems
use the word “stream” to refer to a branch.)
The “main” branch is called the trunk. A
branch generally ends when it is merged
back into the branch that spawned it.
Merging means reconciling changes in the
branch with the branch that spawned it; the
reconciliation happens in the latter.

A direct corollary of PLE Temporal
Management principles (1) and (2)
described earlier having to do with

branching is:
■	 Never use product-specific PLE subsets

(actuated artifacts) to create a branch.
Branch using only PLE Shared Asset
Supersets and the production line files
themselves.

Put another way, make sure that branch-
ing only occurs inside the PLE factory.

Because copying a shared asset and
making changes to the copy is generally
antithetical to PLE principles, take care
when branching to mitigate the effects of
having multiple copies in existence that
could require duplicative work to update
and keep in sync. Nevertheless, there are
cases when branching is appropriate in
Feature-based PLE and, in fact, a normal
aspect of Feature-based PLE development,
and these are described in Table 2.
Branching strategies apply to production
line files as well as to shared asset supersets,
although in the remainder of this section
we focus on shared asset supersets to
simplify the exposition.

CHANGE MANAGEMENT AND GOVERNANCE
In a disciplined temporal management

environment, changes to shared asset
supersets and the production line
files only occur under a well-defined
process including a documented change
artifact such as a change request or a
problem report and an appointed body
or board authorized to approve changes.
The policies associated with creating,

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

11

submitting, and handling these change
artifacts are critical, but beyond this
document’s scope. The article “Key
Issues of Organizational Structure and
Processes with Feature-Based Product
Line Engineering” elsewhere in this special
edition of INSIGHT addresses this issue.

SUMMARY
The distinguishing characteristic between

Feature-Based PLE and product-centric
development (and development under
earlier copy-based PLE forms) is its greatly
simplified strategy for managing change. It
eliminates the need for performing change
control on the generated products, instead
focusing the change management efforts
on the much smaller material in the shared
asset supersets and production line files.

This eliminates the bottomless branch-
ing-and-merging morass many organiza-
tions find themselves having to manage,
and that is for organizations that do not

simply give up the merging part and accept
separately-managed clones spiraling off on
their own separate evolutionary trajecto-
ries, resulting in a situation in which it is
almost impossible to economically carry
out a portfolio-wide upgrade.

It also provides an environment in which
engineers can spend the maximum time
on high-value new development, and not
low-value activities such as branching,
merging, and re-developing already-built
capabilities.

Just as Feature-Based PLE calls for all
development to occur in the shared asset
supersets and not the product instances—
that is, inside the PLE Factory—its change
management method takes the same
approach. Both maximize the extent to
which work applies to the entire product
line, and not just an individual product,
and contribute to the cost avoidance for
which Feature-Based PLE is known.  ¡

ABOUT THE AUTHOR
Dr. Paul Clements is the Vice President

of Customer Success at BigLever Software,
Inc., where he works to spread the adoption
of systems and software product line engi-
neering. Prior to this, he was a senior mem-
ber of the technical staff at Carnegie Mellon
University’s Software Engineering Institute,
where for 17 years he worked leading or
co-leading projects in software product
line engineering and software architecture
design, documentation, and analysis. Prior
to the SEI, he was a computer scientist
with the U.S. Naval Research Laboratory in
Washington, D. C., where his work involved
applying advanced software engineering
principles to real-time embedded systems.
Clements is the co-author of eight prac-
titioner-oriented books about software
architecture and product line engineering.
In addition, he has also authored over one
hundred of papers in software engineering
reflecting his long-standing interest in the
design and specification of challenging
software systems.

differences. These two approaches propose
smart techniques for reuse but use different
terminology to refer to equivalent concepts,
which can badly affect project performance
when evolving in a multi-domain context.
This paper shows it is possible to build a
common way to assess the components
(also called building blocks) contributing
to a product line, thanks to a process to
determine the component maturity level
using the similarity approach. The authors
introduce the inner sourcing process matu-
rity level (ISPML) as a simple engineering
practice for multi-domain organizations
to better determine whether sharing an
engineering asset is favorable or not.

Guillermo Chalé Góngora, Pierre-Ol-
ivier Robic, and Danilo Beuche address
the topic of “Product Line Engineering
for Digital Product-Services.” Digitizing
the value chain brings along new business
opportunities to organizations wishing
to adopt a service-oriented approach but

incurring implementation challenges. The
authors present a conceptual framework to
define a high-level strategy to implement
a product-service offer in an organization.
The distinctive framework aspects include
the product-service product line (PSPL)
concept, that is a product line of prod-
uct-services, the elements to define the
PSPL business model, a product-service
typology, and a product line engineering
method extension for architecting the
PSPL, notably, a specific service building
block type supporting a composable design
approach and a feature model including
service-related, socio-technical features.

The final article by William Bolander
and Paul Clements, “Key Issues of
Organizational Structure and Processes
with Feature-Based Product Line
Engineering,” describes the transformation
organizations should undertake to standup
feature-based PLE based on the factory
concept. The authors introduce the few

roles without analog in other development
disciplines but that are new to feature-
based PLE. They also describe how
traditional systems engineering roles doing
traditional systems engineering tasks but
with slight PLE-inspired extensions carry
out other factory roles.

We hope you find INSIGHT, the prac-
titioners’ magazine for systems engineers,
informative and relevant. Feedback from
readers is critical to INSIGHT’s quali-
ty. We encourage letters to the editor at
insight@incose.net. Please include “letter to
the editor” in the subject line. INSIGHT
also continues to solicit special features,
standalone articles, book reviews, and
op-eds. For information about INSIGHT,
including upcoming issues, see https://
www.incose.org/products-and-publications/
periodicals#INSIGHT. For information about
sponsoring INSIGHT, please contact the
INCOSE marketing and communications
director at marcom@incose.net .  ¡

From the Editor-In-Chief  cont. from page 6

mailto:insight@incose.org

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

12

BACKGROUND

  ABSTRACT
This case study details the options evaluated and path chosen by a United States (US) Department of Defense (DoD) software
development organization to re-engineer four existing products with common features into a single product-line resulting in
product sponsors taking advantage of cost savings, developers shortening implementation and testing timeframes, and users
obtaining product features faster while sharing a common experience across product variants. Although the software-intensive
products were originally a product line operating from a common code repository, they diverged due to different product sponsors
having differing priorities and schedule commitments. The mission scope of each variant differs leading to a commonality range
of approximately 20% to 70% based on the quantity of common features. The re-engineering options evaluated included merging
common code and maintaining it in a single repository; re-using software code while keeping it in separate repositories for each
product variant; and pursuing a Modular Open Systems Approach (MOSA) to create common modules for insertion, updating,
and replacement within any product variant without disrupting the rest of that product. With product sponsor support, the DoD
project decided to pursue a hybrid approach of immediate code re-use complemented with an agile approach to MOSA imple-
mentation. This solution allowed the project to re-engineer the four existing product variants while still meeting sponsor, DoD,
and end-user operational needs.

  KEYWORDS:  product line engineering; re-engineering; modular; modular open systems approach; MOSA

Product Line Re-Engineering
for Modularity in a US
Department of Defense
Project
John Wood, john.n.wood@navy.mil, and Glenn Tolentino, glenn.tolentino@navy.mil

This case study focuses on a US
DoD software development
organization that supports naval
aviation (Maley, Lofber, and Lasit-

er 2008, Maley et al. 2009, Schmidley 2011,
Tolentino and Wood 2018). The project’s
flagship product began as an informal com-
munity development model with the intent
of supporting multiple aircraft types (Maley
et al. 2009). Over time, this community
model devolved, resulting in four unique,
largely independently managed product
variants. This community development
model devolved due to several factors:
unique funding lines required of DoD pro-
grams based on US Congressional appro-
priations, introducing new and replacement
sponsors not part of the original informal
agreements, differing fielding environments
(DoD enterprise networks), and differing

user priorities. Now, 10 years later, there are
four product variants, three sponsors, two
support contracts, and one development
organization trying to manage and navigate
differences in features, requirements, fund-
ing levels, risk profiles, technical refresh
priorities, and fielding schedules. This
scenario creates pain points common to
other projects attempting to satisfy multiple
sponsors and stakeholders including those
related to leadership, authority, require-
ments, capabilities, integration, and testing
(Dahmann 2014).

Due to the issues discussed above, two
sponsors jointly requested the development
organization merge common feature source
code into a single repository. The spon-
sors’ desire is to experience the benefits
associated with a product line such as
shorter development timeframes, lower

total ownership costs, and higher quality
(Pohl, Böckle, and Der Linden 2005). Upon
receiving that guidance, the development
organization explored the effort required to
perform the code merge.

EXPLORING MERGED CODE
Wanting to see more economies of scale,

the sponsors of two of the four variants
asked the development organization to ex-
plore combining common features into a sin-
gle code repository for use by both variants.
This would involve merging separate code
branches dedicated to common features, re-
solving any design conflicts, testing the resul-
tant code, fixing any newly introduced bugs,
and retesting the updated code to ensure
successful bug fixes. As necessary, developers
introduce build-time configuration changes
to tailor the common features for each

mailto:john.n.wood@navy.mil
mailto:glenn.tolentino@navy.mil

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

13

Implementation

Operation
and

MaintenanceVerification
and

Validation

Integration,
Test, and
Verification

System
Verification

and Validation

Project
Definition

Time

Implementation

Project
Test and

Integration

Concept of
Operations

Detailed
Design

Requirements
and

Architecture

Figure 1. Systems engineering vee model (Osborne et al. 2005)

Implementation

Operation
and

MaintenanceVerification
and

Validation

Te
sti

ng
 R

eq
ui

re
d

Integration,
Test, and

Verification

System
Verification

and Validation

Project
Definition

Time

Implementation

Project
Test and

Integration

Code re-use results in some savings during the implementation
phase, but it still requires significant verification and validation
testing prior to fielding.

Concept of
Operations

Detailed
Design

Requirements
and

Architecture

Code Re-Use

Figure 2. Code re-use effort on vee model

Table 1: Code merge level of effort in Full Time Equivalent (FTE)-weeks

 Activity Level of Effort -Product A Level of Effort – Product B

Updates and Integration 12 weeks x 8 FTEs 4 weeks x 7 FTEs

Integration Testing 3 weeks x 9 FTEs Included in estimate above

Follow-on Development/Bug Fix 4 weeks x 8 FTEs Included in estimate above

System Testing 3 weeks x 9 FTEs Included in estimate above

Product Rollout 25 weeks x 2 FTEs 1 week x 1 FTE

Total Estimated Duration 47 weeks 5 weeks

Total Estimated Level of Effort 232 FTE-weeks 29 FTE-weeks

variant. Also, at build-time, the developers
compile variant-unique code; maintained in
an additional, separate repository.

Building and maintaining merged code
has happened before. In fact, as recently as
a few months prior, there was a shared code
repository for common features; however,
the two variants diverged because the spon-
sors had differing priorities, risk tolerances,
and schedule commitments.

The development organization explored
the costs of re-merging the common fea-
tures into a single repository. The develop-
ment organization realized that effort was
more extensive than the sponsors assumed
and the burden appeared to be uneven; one
sponsor would need to invest significantly
more labor than the other due to the prod-
uct scope differences. See Table 1 above.

Daunted by the numbers, the devel-
opment organization decided to explore
alternative options that could help the two
sponsors achieve their desires. The develop-
ment organization explored and ultimately
proposed two additional options: code
re-use and MOSA.

EXPLORING CODE RE-USE
Seemingly providing nearly the same

benefits of merged code is the code re-use
concept. In this scenario, developers from

each product team meet regularly to share
recent accomplishments, planned activities,
challenges, and lessons learned. Beyond
sharing approaches to solve common chal-
lenges, when practical, the development
teams can also share full code sections that
they can manually insert into the other
variant’s code base as-is or with some
tailoring. The implementation phase real-
izes the code re-use benefits, yet they still
require extensive testing by the receiving
organization. Figure 1 below is a systems
engineering vee model. Figure 2 below is
the vee model with an overlay showing the
required effort for code re-use.

While the initial effort level for code re-
use is the same as for code merge (See Table
1 above), the sponsor conflict level related
to the code base would be less, because
code re-use has the added benefit of
decoupling the product variants’ schedules.
This provides greater flexibility to each
sponsor as it lets each focus on different
priorities at any given time. It also allows
each sponsor to take advantage of previous
development efforts at the opportune time
for that product variant.

EXPLORING MODULAR OPEN
SYSTEMS APPROACH (MOSA)

The third option explored was re-archi-
tecting all products in a modular fashion
following the DoD’s MOSA (DoD 2016).
After re-architecting, product teams can
develop and test common features once
but use them many times. Additionally,
by defining and controlling the interfaces,
product teams can remove, replace, or
upgrade modules independently. Similar
to code re-use, this approach decouples the
variants’ schedules. Further, it significantly
reduces the receiving team’s testing burden.
Figure 3 shows the impact of this approach.

To execute the MOSA option, the
development organization expects to invest
in an initial effort increase followed by the
potential effort decrease during product
sustainment, achieving a positive return
on investment typical to a product line
approach (Walden 2015). More specifically,
the MOSA option requires significant
preparations (developing operating plans,
high-level architecture, and prioritization
schema) followed by re-developing
functionality in a modular manner. Once

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

14

Figure 4. Effort Level versus benefit for code merge, code
re-use, and MOSA

MOSA

EFFORT

BE
N

EF
IT

Low

Sm
al

l
La

rg
e

High

Re-Use Merge

Figure 3. MOSA effort on vee model

Implementation

Operation
and

MaintenanceVerification
and

Validation

Te
sti

ng
Re

qu
ire

d

Integration,
Test, and

Verification

System
Verification

and Validation

Project
Definition

Time

Implementation

Project
Test and

Integration

Software component modularity results in significant savings in design,
implementation, integration, and integration testing. It still requires
system-level verification and validation testing prior to fielding.

Concept of
Operations

Detailed
Design

Requirements
and

Architecture

Component
Modularity

1. Stand up IPT and Supporting Boards; Create Operating Plans

2. Create High-Level Architecture; Define Modular Component Functionality

3. Prioritize Component Modularization

4. Architect and Design Modular
Components

5. Implement & Test
Modular Components

Governing Board
• Governance Model and

Business Model
Architecture Change

Control Board
• Configuration Management

Plan
Certification Board
• Test and Evaluation Master Plan
Integrated Product Team
• Software Development Plan,

Performance Monitoring Plan,
and Continual Technology and
Standards Analysis Plan

Analyze total fuctionality

Evaluate architecture
options

Determine optimal
architecture

Document functionality
of architecture
components

Create prioritized list
based on:

• Planned modifications

• Insertion of new fuctionality

• Technical refreshes

• etc.

Define functional and
non-functional
requirements

Provide sufficient detail
for implementation,
verification, and
validation

Develop software code

Test

Certify

Publish and Make
available for T/M/S use

Figure 5. Five-step plan for product line re-engineering

the preparatory effort is complete, the
product managers envision operating at
their current staffing levels of systems
engineers, developers, and testers until they
implement, certify, and make all modular
components available for use. At that point,
the product managers envision either a
decrease in developers and testers, since the
four variants share sustainment efforts, or
the ability to leverage the existing developers
and testers to provide additional value to the
end-users through creating new features.

DECISION SUPPORT
While the development organization was

willing to execute any of the three options
described above, they believed relaying
each option’s effort level and benefit to
the sponsors was important. To accom-
plish this, the team created a presentation
detailing each option, a diagram depicting
the effort level to develop and sustain the
approach versus the expected benefit for
the three options (Figure 4), and the orga-
nization’s recommended approach.

After learning about the three options,
the sponsors made their decision. First,
they decided to abandon the merged code
idea. Second, they decided to immediately
implement developer exchanges to support
maximum code re-use as well as sharing
lessons learned. Third, they requested an
implementation plan for MOSA as they felt
that approach would provide the greatest
long-term stability and economies of scale
via reduced development timeframe terms,
reduced total lifecycle costs, and increased
quality.

IMPLEMENTATION
To formalize the interim code re-use,

the product managers for the different
variants created a charter and agreed to
facilitate three meetings per month. The
first meeting is the “Developers’ Sync”
where the development leads discuss recent
development efforts, planned development

efforts, and any associated challenges. At
the end of this meeting, the development
teams will choose two efforts or challenges
about which they would like more informa-
tion. Then, the program managers will set
up a separate “Deep Dive” meeting for each
topic so the developers can explore that
area in detail.

Next, the development organization set
out to explore what MOSA implementation
would require. A literature review provided
valuable insights, such as the MOSA frame-
work provided in the Program Manager’s
Guide to Open Systems (DoD 2004), the
success factors identified in “Managing
Software Productivity and Reuse” (Boehm
1999), and the heuristics-based approach to
software re-engineering provided in “An In-
telligent Tool for Re-Engineering Software
Modularity” (Schwanke 1991). Armed with
this information, the development team
created a five-step plan.

In Step 1, the development organization
will set up an Integrated Product Team
(IPT) that simultaneously focuses on both
product and process development to exe-
cute the MOSA implementation (Magrab
et al. 2009). Additionally, to help ensure
long-term sustainability, the development
organization will designate a governing
board and supporting boards that will

create and execute the necessary operating
plans. In Step 2, the development organi-
zation will create a high-level architecture
identifying the four variant’s functionality
overlaps, differences, and gaps. In Step 3,
the development team, following an agile
approach, will set the priority for converting
existing code into the re-usable modular
components (Fowler and Highsmith 2001,
Tolentino and Wood 2018). Note: Since this
is a re-engineering effort, and the devel-
opment organization is not starting with a
clean slate, they will need to balance MOSA
efforts with existing requirements, new fea-
ture development, technical refreshes, and
bug fixes. In Step 4, the development team
will create a detailed architecture and design
for each modular component. During this
step, the development team must ensure
the modular component’s architecture and
design contain sufficient detail to support
implementation, verification, and validation
efforts. Step 5 will create (implement with
software code), verify, and validate the mod-
ular components. Completing these efforts
for a given modular component certifies
that component as compliant with the
high-level architecture and makes it avail-
able for use by the development team of any
product variant. Steps 4 and 5 will repeat
for each modular component, following the
prioritized order developed in Step 3.

Figure 5 provides a high-level over-
view of this approach while the following
subsections provide further details on the
five steps.

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

15

Table 2: MOSA Integrated Product Team and Supporting Boards

Team/Board Responsibilities Operating Plans

MOSA Integrated
Product Team

Responsible for executing the technical portions of the
implementation plan.

Software Development Plan,
Performance Monitoring Plan,
and Continual Technology and
Standards Analysis Plan

Governing Board Responsible for establishing and executing the architecture’s
governance model and business model as well as providing
direction to the IPT and other boards.

Governance Model and
Business Model

Architecture Change
Control Board

Responsible for controlling technical changes to the
architecture.

Configuration Management
Plan

Certifications Board Responsible for performing independent testing on
completed software in order to verify whether or not that
software meets the standards set forth by the architecture.

Test and Evaluation Master
Plan

Table 3: MOSA Metrics

MOSA Goal Metric(s)

Be interoperable with and available for
use by all aircraft platforms supported by
the project

•	 Number of MOSA sponsors
•	 Number of programs actively using MOSA-certified modular

components
•	 Number of MOSA-certified modular components in use per program

Enable the rapid incorporation and
fielding of new capabilities

•	 Time from MOSA-certification of a modular component to fielding of
that modular component by a program

Reduce costs and timeframes associated
with development and test

•	 Development time per modular component
•	 Development level of effort per modular component
•	 Test time per modular component
•	 Test level of effort per modular component
•	 Test time for program integration test/system test
•	 Test level of effort for program integration test/system test

Be financially sustainable •	 Total MOSA-related costs
•	 MOSA costs per sponsor
•	 MOSA costs per modular component

Evolve with technology and standards •	 Number of standards adopted

Have an assigned test team that will
verify whether or not solutions comply
with the architecture’s standards

•	 Number of MOSA-certified modular components
•	 Pass rate of MOSA certification testing

Track MOSA implementation progress •	 Number of modular components identified
•	 Number of modular components with detailed design documentation
•	 Number of modular components in development
•	 Number of modular components completed
•	 Number of modular components certified

Step 1 — Set up IPT and Supporting
Boards; Create Operating Plans

During Step 1, the project will set up
an IPT, the governing board, architecture
change control board, and certifications
board. Table 2 summarizes the IPT and
boards’ responsibilities and products (oper-
ating plans) while the following paragraphs
provide additional details.

During Step 1, the project will set up
the MOSA IPT. This team is responsible
for executing the technical portions of the
implementation plan. They will operate
under the direction of the governing board
(described below) and will include the four

product managers (one for each product
variant), the four systems engineers, and
the project’s chief systems architect. During
Step 1, this team will create a software
development plan, a performance monitor-
ing plan, and a continual technology and
standards analysis plan. The software devel-
opment plan will follow the DoD specifica-
tions (DoD 2017) and will detail how the
development teams for the four variants
will implement the requirements associated
with each modular component. The perfor-
mance monitoring plan will detail MO-
SA-related metric tracking and reporting in
accordance with ISO/IEC/IEEE Standard

15288:2015 Clause 6.3.7 (ISO/IEC/IEEE
2015) to help ensure the project meets
its MOSA-related goals. Table 3 below
summarizes these metrics. The continual
technology and standards analysis plan
will detail how the IPT will stay current in
their knowledge of emerging technologies
and standards in accordance with DoD
Architecture Framework (DoDAF) Systems
Viewpoint (SV)-9 (DoD 2010) and how
the IPT will evaluate whether or not the
architecture should incorporate those tech-
nologies and standards in accordance with
ISO/IEC/IEEE Standard 15288:2015 Clause
6.3.3 (ISO/IEC/IEEE 2015).

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

16

During Step 1, the project will also
establish the governing board, architecture
change control board, and certifications
board. The governing board will be respon-
sible for establishing and executing the
architecture’s governance model and busi-
ness model as well as providing direction
to the IPT and other boards. The governing
board membership includes the project
manager, two deputy project managers, and
the project’s chief systems architect. The
architecture’s governance model will detail
the roles and responsibilities of sponsors,
product managers, the MOSA IPT, the
Governing Board, and supporting boards
in accordance with ISO/IEC/IEEE Standard
15288:2015 Clause 6.3.1 (ISO/IEC/IEEE
2015). The model will also include the
governing board reporting responsibilities;
conflict resolution methods the governing
board will use when sponsors have differing
priorities, such as modular component
development priorities; and procedures
for adding and removing governing board
and supporting board members. Addition-
ally, the governing board will develop the
architecture’s business model. This model
will define communal cost assessments and
allocations to the sponsors in accordance
with ISO/IEC/IEEE Standard 15288:2015
Clause 6.3.2 (ISO/IEC/IEEE 2015).

While it was impossible to accurately
quantify the expected cost savings within
the business model, the sponsors agreed
to divide the costs to sustain a MOSA
component among the sponsors who use
it. For example, if two variants use modular
component A, each sponsor would be
responsible for funding half of the sustain-
ment costs. If three variants use modular
component B, each sponsor would be re-
sponsible for funding a third of the sustain-
ment costs. With the variants having a 30 to
40-year life expectancy, the sponsors expect
the total lifecycle cost savings to be signif-
icant. Additionally, if introducing a new
variant, that sponsor would have a modular
feature “menu” from which to choose. That
sponsor would then be responsible for his/
her fair share of sustainment costs while the
sustainment costs of the existing sponsors
using that modular component would be
proportionally reduced.

The architecture change control board
will operate under the direction of the
governing board and will be responsible for
controlling technical changes to the archi-
tecture. The board membership includes
the project’s configuration manager plus
the four product variant product managers.
The board will review the project’s exist-
ing configuration management plan for
applicability and recommend any necessary
changes or additions while still adhering to
the DoD specifications (DoD 2013). Once

the governing board approves the modi-
fications, the architecture change control
board will ensure proper configuration
management plan execution as it relates to
the modular architecture.

The certifications board will operate
under the direction of the governing board
and will perform independent testing on
completed software to verify whether or
not the software meets the architecture
standards. The certifications board includes
the project’s test lead, the two deputy
project managers, and the project’s chief
systems architect. The certifications board
will develop and execute the architecture’s
test and evaluation master plan which will
detail the architecture’s testing strategy
and the resources (hardware, software,
and personnel) necessary to execute
independent testing in accordance with the
DoD’s Test and Evaluation Management
Guide (DoD 2012). Once approved by the
governing board, the certifications board
will ensure proper test and evaluation
master plan execution.

Step 2 — Create High-Level Architecture;
Define Modular Component Functionality

During Step 2, the IPT will develop a high-
level architecture in accordance with ISO/
IEC/IEEE Standard 15228 Clause 6.4.4
(ISO/IEC/IEEE 2015) and document it in
accordance with the DoDAF v2.02 (DoD
2010). To do this, the IPT must analyze
the total functionality of all four variants,
evaluate architecture options, determine
optimal architecture, and document major
component functionality. Lower-level
architecture and design efforts for each
modular component will occur in Step 4.

Step 3 — Prioritize Component
Modularization

During Step 3, the IPT will develop a
prioritization schema and then, using that
schema, create a prioritized development
backlog for modular components following
agile values and principles (Fowler and
Highsmith 2001). The IPT will prioritize
components based on various factors, such
as those listed below.

■	 Planned component upgrades
■	 New component functionality insertion
■	 Technical refresh of any major

component
■	 Component feature commonality

among product variants
■	 Number of product variants adopting

the component
■	 Modularizing component complexity

Step 4 — Architect and Design Modular
Components

During Step 4, the IPT will architect and

design modular components in accordance
with ISO/IEC/IEEE Standard 15228 Clauses
6.4.4 and 6.4.5 (ISO/IEC/IEEE 2015) and
document them in accordance with DoDAF
v2.02 (DoD 2010). The IPT must ensure the
details in the architecture and design can
sufficiently support future implementation,
verification, and validation activities. The
architecture and design work sequence
and timing will be in accordance with the
prioritization defined in Step 3. This step is
expected to further define the stakeholder
and component requirements in an iterative
fashion in accordance with ISO/IEC/IEEE
Standard 15288:2015 Clauses 6.4.2 and 6.4.3
(ISO/IEC/IEEE 2015). The configuration
control board will incorporate all related
DoDAF models into the architecture with
each modular component architecture
creation in accordance with the project’s
configuration management plan.

Step 5 — Implement and Test Modular
Components

During Step 5, the product development
teams will implement software to satisfy
the modular component requirements
defined in Step 4 according to the software
development plan developed in Step 1.
Once implemented, the software test will
occur under the certifications board’s
cognizance according to the test and
evaluation master plan developed in Step
1. When the certifications board certifies a
modular component, the board will publish
that component to a shared repository
and notify all product managers that the
component is available for their use.

CONCLUSIONS
The development organization of four

operational product variants evaluated
three options to regain the efficiencies
associated with a product line approach:
code merge, code re-use, and MOSA. They
found code re-use was the quickest to im-
plement while MOSA appeared to provide
the most long-term benefits. As such, the
sponsors directed the development organi-
zation to use code re-use as an intermediate
steppingstone as they pursued the long-
term product line re-engineering goal via a
modular architecture.

The development organization created a
detailed five-step plan to implement a mod-
ular architecture. Making this plan unique
is the fact the development organization
is not starting with a clean slate. In fact,
it has four operational product variants,
each with its own sponsors and end-us-
ers expecting continued product support
plus new feature development concurrent
with the technical refreshes necessary to
meet evolving cybersecurity requirements.
To balance this reality, the development

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

17

REFERENCES
■	 Boehm, B. 1999. “Managing Software Productivity and Reuse.”

Computer 32 (9): 111-113.
■	 Dahmann, J. 2014. “System of Systems Pain Points.” INCOSE

International Symposium 24 (1): 108-121.
■	 Department of Defense. 2004. Program Manager’s Guide

to Open Systems—A Modular Open Systems Approach to
Acquisition. Washington, US-DC.

■	 ———   . 2010. DoD Architecture Framework Version 2.02.
Washington, US-DC.

■	 ———   . 2012. DoD Test and Evaluation Management Guide.
Washington, US-DC.

■	 ———   . 2013. DI-SESS-81875, Data Item Description: Configu-
ration Management (CM) Plan. Washington, US-DC.

■	 ———   . 2016. “Chapter 3—Systems Engineering.” In Defense
Acquisition Guidebook. Washington, US-DC.

■	 ———   . 2017. DI-IPSC-81427B, Data Item Description: Software
Development Plan (SDP). Washington, US-DC.

■	 Fowler, M., and J. Highsmith. 2001. “The Agile Manifesto.”
Software Development 9 (8): 28-35.

■	 ISO (International Organization for Standardization)/IEC
(International Electrotechnical Commission)/IEEE (Institute
of Electrical and Electronics Engineers). 2015. ISO/IEC/
IEEE 15288:2015. Systems and Software Engineering-Content
of Systems and Software Life Cycle Process Information
Products (Documentation), International Organization for
Standardization/International Electrotechnical Commission:
Geneva, Switzerland.

■	 Magrab, E. B., S. K. Gupta, F. P. McCluskey, and P. Sandborn..
2009. Integrated Product and Process Design and Development:
The Product Realization Process. Boca Raton, US-FL: CRC
Press.

■	 Maley, S., G. Lofberg, and M. Lasiter. 2008. “Overview of the
Comprehensive Automated Maintenance Environment Opti-
mized (CAMEO) System.” Annual Forum Proceedings-Ameri-
can Helicopter Society 64 (3): 2069.

■	 Maley, S., M. Stonebraker, J. Schmidley, and M. Lasiter. 2009.
“Open-Source Development of an Automated Maintenance
Environment (AME) for Lower Cost, Collaborative
Implementation of CBM.” Paper presented at Sixth DSTO
International Conference on Health & Usage Monitoring,
Melbourne, AU, 09-12 March.

■	 Osborne, L., J. Brummond, R. D. Hart, M. Zarean, and S.
M. Conger . 2005. Clarus Concept of Operations. Publication
No. FHWA-JPO-05-072, Federal Highway Administration
(FHWA). Washington, US-DC.

■	 Pohl, K., G. Böckle, and F. J. van Der Linden. 2005. Software
Product Line Engineering: Foundations, Principles, and
Techniques. Berlin, DE: Springer Science & Business Media.

■	 Schmidley, J. 2011. “Enabling Maintenance in a Net-centric
Environment.” Paper presented at Department of Defense
Maintenance Symposium & Exhibition, Fort Worth, US-TX,
14-17 November.

■	 Schwanke, R. W. 1991. “An Intelligent Tool for Re-Engineering
Software Modularity.” In Proceedings of the 13th International
Conference on Software Engineering: 83-92. IEEE Computer
Society Press.

■	 Tolentino, G., and J. Wood. 2018. “Balancing Systems
Engineering Rigor with Agile Software Development
Flexibility.” INSIGHT 21 (2): 25-28.

■	 Walden, D. D., G. J. Roedler, K. J. Forsberg, R. D. Hamelin,
and T. M. Shortell. eds. 2015. Systems Engineering Handbook:
A Guide for System Life Cycle Processes and Activities.
Hoboken, US-NJ: John Wiley & Sons.

ABOUT THE AUTHORS
John Wood, PhD has spent his career pursuing perfection

in areas where less-than-perfect performance can be deadly.
During more than two decades in military service, civilian sector
innovation, and academia, he has applied his systems engineering
expertise to advance high-profile programs in healthcare, aviation,
and defense. John earned a Bachelor of Science in electrical
engineering from the US Naval Academy and a PhD in systems
engineering from the George Washington University.

Glenn Tolentino, PhD has been an engineering practitioner,
researcher, and innovator in the Command and Control (C2)
and Enterprise Engineering competency for over 25 years. He
has been a major contributor in designing and deploying C2 and
Intelligence Systems. Glenn earned a B.S. in Applied Mathematics
from San Diego State University. He also holds an MS in Software
Engineering and a PhD in Computer Science from Southern
Methodist University.

organization incorporated agile values and
principles into their five-step plan (Fowler
and Highsmith 2001). This approach allows
the designing and building of modular
components in a prioritized order. Each
modular component built provides value in
feature sets as well as in reduced sustain-
ment burden due to cost-sharing among
the sponsors. Each modular component
aligns to the high-level architecture vision,
ensuring previously built and subsequent
modular components will interact seam-
lessly based on well-defined interfaces

adhering to industry standards. Since
the components are modular, the variant
sponsor may choose when to implement
a component. This decouples the variants’
schedules and permits sponsors to pursue
different priorities at any given time.

This product line re-engineering effort is
underway, so the final results are unknown.
However, the project and sponsors are
seeing the immediate results related to code
re-use, the end-users continue to have all
products meet current operational needs,

and the groundwork is being established
so future sustainment of the four product
variants will be more efficient and effective
by eliminating the code merge schedule
dependencies and avoiding the manual
code re-use testing inefficiencies. Overall,
the sponsors and development organization
are optimistic the approach chosen will
deliver the modular product line benefits
and be enacted with the concurrent
commitments associated with supporting
operational products.  ¡

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

18

INTRODUCTION

  ABSTRACT
Feature-based Product Line Engineering is a well-defined, repeatable, automation-centric PLE method that is delivering even
improvements in time, cost, and quality. An organization intent on adopting it so they can reap the benefits for their product line
or product lines needs a viewpoint focusing on the people involved and what they do to keep the PLE factory operational on a day-
to-day basis. This article describes an organizational structure for Feature-Based PLE based on the factory concept. It introduces
the few roles that have no analog in other development disciplines; they are new to Feature-Based PLE. It also describes how tradi-
tional systems engineering roles carry out traditional systems engineering tasks, but with slight PLE-inspired extensions. Finally,
we will explain why these changes are necessary.

Paul Clements, pclements@biglever.com
Copyright © 2020 by BigLever Software Inc. Permission granted to INCOSE to publish and use.

Funding the PLE Factory
in a Multi-Customer
Contract-Based PLE
Organization

Figure 1: A PLE organizational structure

Feature-based product line
engineering (INCOSE 2019)
employs the PLE factory concept
in which all development

occurs for any product line product.
Automatically configuring shared assets
based on the feature choices for a product
produces individual products. A product
line organization’s personnel need to carry
out numerous tasks associated with the
product creation, development, delivery,
and evolution in its product line. Any
organization employing this paradigm in
a contract-based (as opposed to a mass
market) context must answer the question:
Who pays for the work inside the factory
that may benefit multiple contracts? The
answer can be surprisingly complex,
involving security, regulatory compliance,
and intellectual property protection issues
of both the PLE organization and its
customers. This article offers a method
for answering this question. Answering

mailto:pclements@biglever.com

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

19

this question means establishing processes
to create charge numbers to which
everyone working in the PLE factory can
charge their effort. These processes must
connect the funding supply to the funding
consumption in a way that is fair, equitable,
and compliant with applicable rules and
regulations.

In this article, we assume the PLE
organization has adopted a structure
similar to Figure 1. The PLE factory
is on the left; the systems engineering

“V” model at the bottom represents the
shared assets. The configurator receives a
feature-based product descriptions (Bill-
of-Features) and produces “V” subsets
corresponding to the product. Product
teams, who receive outputs from the PLE
factory and deliver products and interface
with customers are on the right. Ideally,
all development happens inside the PLE
factory.

We also assume the products will deliver
to specific customers under a contract,
as opposed to mass-market product line
products with anonymous customers. In a
PLE Factory, all development and engineer-
ing work occurs once inside the factory and
applies through automated configuration to
each product to which the work applies.

SIX STEPS TO CREATE A PLE FACTORY
FUNDING MODEL

We describe the steps in our method for
building a funding model below.

Step 1:  Identify the Funding Model Goals
and Requirements

This step lists goals can and should be
the basis for reviewing the resulting fund-
ing model. Typical goals include the ones
described below.

■■ Goal: Compliance with standards
and regulations. A multi-customer,
multi-contract environment acquires
the systems under one or more
contracts, possibly with contract clauses
specifying what the customer will, and
will not, pay for. In the case where the
customer is the United States (US)
Government, if the contract does not
specify this then federal regulations do.
The US embodies these in a regulation
body as the Federal Acquisition
Regulations (FAR). Cost accounting
standards also apply. Individuals
familiar with the applicable standards
and statutes should review the funding
model to ensure this compliance.

■	 Goal: Fair and equitable customer
treatment. The FAR considers the US
Government, including different US
Government agencies, may purchase
more than one system from the same
supplier. It contains stipulations to

ensure each procuring agency receives
“fair and equitable” treatment from the
supplier. Fair and equitable customer
treatment is also a key PLE funding
model goal and would be even if not
enshrined in the law.

■	 Goal: Insulate PLE Factory staff from
obligation to a specific customer. A
third goal is to insulate PLE factory staff
from funding flowing from a specific
customer or customers. One way PLE
can fail is to let the PLE factory turn
into a dedicated job shop for one or
two customers who happen to have
the largest budgets. It is human nature
to tailor solutions to those paying
the bills. But it is vital every solution
aims towards the overall product line
health and robustness. Rather than
have an engineer charge an activity to a
product’s account, it would be better if
there were a charge number associated
simply with the work type. Ideally,
the contract funds for all contracts in
the product line pool together to fund
product line development. Of course,
the PLE organization itself must track
the individual contract contributions
so they can bill each customer
appropriately and calculate profit from
each contract.

■	 Goal: Capture truth. Activities should
charge to accounts set up to pay for
those activities. This is true to aid
internal cost understanding of various
activities, but also true because (again)
of contracting realities. Each con-
tract will have a specific effort scope,
meaning the activities charged to that
contract need accurate recording. Prop-
er accounting for the effort to service
each contract is essential to support an
audit. In addition, contracting compa-
nies bid on future contracts using past
performance on similar contracts as a
guide, or “basis of estimates.” If the ac-
tivity levels, as reflected by the amount
charged to various charge numbers, are
not accurate then the basis of estimates
is valueless.

■	 Goal: Be neutral concerning contract
types. Rules must make it clear which
contract pays for which activities and
in what proportion to the activity cost.
This allays fears of allocating charges
to cost-plus contracts instead of
fixed-price contracts, in effect, shifting
work from one contract to another to
maximize company profits.

■■ Goal: Protect the PLE organization’s
own intellectual property (IP). Every
business needs to protect IP improving
its competitive position. Under
contracts with the US Government,
the government typically manages

the associated IP through data
rights assignment. The government
uses the FAR to prescribe policies
and procedures for acquiring data
rights, which give the government
nonexclusive license rights. Certain
data rights types can compromise a
company’s competitive position because
the government can simply hand over
any material with these types to another
bidder or producer.
•	 For this reason, many organizations

choose to treat the critical product
line IP as protected corporate IP and
specially call out activities associated
with creating that IP. They will
construct their funding model in a
way to protect IP ownership.

•	 In a PLE setting, the feature
catalog is a prime example. If the
feature catalog goes to a single
customer, then that customer could
conceivably produce not only its
own product but any product for
any customer. To best protect against
this scenario, companies can treat
the feature catalog as a trade secret
and not deliver it to any customer.
To prevent delivering the feature
catalog, activities related to it
must use internal funding sources
exclusively—never contract funds.

Step 2: Enumerate the Activities to Fund
The ultimate funding model purpose

is to ensure activities charge to the right
funding source. Thus, it is necessary to
enumerate the activates that need funding
resolution. Figure 1 gives a good start
at such a list. From it, we can identify
activities related to:

■	 PLE factory management
■	 Change control
■	 Feature catalog creation and evolution
■	 Portfolio (Bills-of-Features) creation

and evolution
■	 Lead engineers for the share PLE asset

supersets
■	 Shared asset engineering

Not shown in Figure 1 are the activities
associated with starting up, operating, and
optimizing the IT environment—the tools
and technologies—the PLE factory uses,
as well as training and capturing processes
and best practices.

A typical funding model will be
much more fine-grained than what we
discussed here when it comes to mapping
activities to funding sources. The company
should review the list to ensure it has the
granularity necessary to provide the basis of
estimate data for the next contract if that is
a funding model goal.

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

20

Step 3:  Identify and Implement Protected
Intellectual Property Policy

Call out any tasks identified in Step 2
involving company IP creation or evolution
that need protection.

Step 4:  Identify Available Funding Sources
Funding can be usefully divided

between internal and external sources.
External sources typically originate from
customers or customer organizations
via contracts. Internal funding includes
sources originating within the product
line organization, such as research and
development or overhead.

The internal/external distinction is
important because regulations often
stipulate what the company may or may
not use customer funds for, as well as the
data rights, a company forfeits when it uses
customer-derived funding for a particular
activity. Internal funding usually comes
with more discretionary privilege about how
to spend it.

Step 5: Map from Activities to Funding
Sources

This step associates a charging meth-
od with each activity. Under a contract,
contract documents describe the work
scope for each contract. It is important to
charge the appropriate contract according
to the scope defined in the contract. Some
overriding principles include:

■	 If multiple contracts define the same
development scope, they should share
the cost. Charging to one contract
when multiple contracts have the same
development scope may not comply
with regulations.

■	 Level-of-effort tasks involving manag-
ing work across the entire product line
portfolio can share costs proportionally.

■	 It is acceptable to charge a single
contract for a capability reused in the
future by other contracts assuming
the future contracts either are not yet
awarded or the proposal and contract
both document the reuse assumption.

The goal is charging the contracts
benefiting from an activity proportionally
according to the benefit they derive from
the activity. A company should base any
distribution algorithm calculating the
proportion applicable to a specific contract
on quantifiable data relevant to the work
performed.

Some activities (PLE factory
management) will benefit every product.
Other activities (such as updating a shared
asset or adding a new feature only some
products will use) will only benefit some
products. In some cases, an activity will
benefit a single product (such as reviewing

or delivering that product from the PLE
factory). In all cases, proportionally
charging the benefiting contract(s) still
applies.

How do we calculate the proportion?
We need to create a distribution algorithm
defining the proportional benefit of each
contract, such as basing it on the contract
size or the product complexity.

Lockheed Martin describes a cost-
sharing approach they use for the AEGIS
weapon system product line, for which
they are the prime contractor (Gregg et al.
2014):

The government, representing all AEGIS
“consumers,” has also instituted a cost-
sharing approach to equitably allocate
the cost of fixing a defect… If a program
introduces an upgrade or new capability,
it pays for it. Other programs are free to
pick it up, or not, as they wish, but they
pay for any required testing unique to their
context. After a development is complete
and time has elapsed, newly found defects
become difficult to associate with any one
program. In these cases, all programs pitch
in to correct the defect. Lockheed Martin has
a special funding account to fix all defects,
across the entire product line, not related to
unique capability content in development.
Any program receiving special development
funding pays for defects in that development,
up to its demonstration milestone, at which
point the cost-sharing approach starts.

This step results in a three-column table:
■	 Column 1 contains all tasks identified

in Step 2.
■	 Column 2 names the funding source for

the task, taking care to choose a source
appropriately to protect IP.

■	 Column 3 identifies any information
known upfront affecting the propor-
tional cost allocation described above.
Examples:
•	 A planning activity for a specific

contract might have the annotation
“Charge to the (single) relevant
contract.” If this applies, replace the
generic row with a set of rows; one
for each contract.

•	 PLE factory management activities
might have the annotation “Charge
to all contracts equally.”

•	 An activity to change a source code
shared asset might have the annota-
tion “Charge to all affected contracts
proportionally based on each affected
product’s SLOC count.”

Step 6: Establish Charge Numbers
This step begins with the activi-

ty-to-funding-source table produced in the
previous step. To this table, add a column
for charge numbers. Fill it in as follows:

■	 For those activities that will always
charge to a specific source in a specific,
known proportion, add a charge
number for the activity funded by that
source.
•	 For any activity touching protected

contractor IP, provide a charge num-
ber funded by internal funding.

•	 For any activity benefiting (by
definition) a single contract, provide
a charge number funded by that
contract. You will need one charge
number for each contract.

•	 For any activity benefiting (by defi-
nition) all contracts equally, provide
a charge number funded by all con-
tracts, either equally or in proportion
to some metric, such as contract size.

■	 All other activities will receive funding
on a case-by-case basis by some but not
all contracts, or by all contracts but in
a proportion specific to the exact task.
For example, “Update a shared asset” is
an activity. We cannot charge for it until
a specific task (Update this shared asset
in this way for these specific products) is
at hand. For this category, choose from
these strategies:
•	 Produce a charge number set up

front covering all possible contract
combinations. This can quickly
become extremely unwieldy. For an
organization managing 20 contracts,
this scheme would produce 220 or
about a million charge numbers.
This scheme might be useful,
however, to handle a small number
of specific contract-sharing scenarios
the organization expects to occur
frequently.

•	 Enter “TBD” in the table and create
a charge number when needed. In
this way, an activity such as “Update
a shared asset” is a placeholder for
specific tasks. When the PLE factory’s
change authority approves a change,
it will know which products that
change will affect. Then, either the
change authority or an intermediary
accounting function can create a
charge number for the task and
attach it to the change order the PLE
factory staff will implement. The
correct contracts can proportionally
fund that charge number.

•	 Enter “Spread-charge” in the table.
In some organizations, creating a
new charge number is a burdensome
task, and so should only occur at
project launch. This case may use a
spread-charging approach. Spread-
charging is allocating hours across
multiple charge numbers according
to some algorithm. This has the

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

21

same effect as establishing new
charge numbers based on a fixed
percentage allocation using multiple
charge numbers. However, spread-
charging skips creating new charge
numbers but has the risk of relying
on executing the algorithm reliably
by each employee. To avoid this
risk, automation should handle the
allocation to multiple contracts and
charge numbers automatically.

SUMMARY
Table 1 shows a very cursory example

of the table resulting from the method
outlined above. A real table would have
many more activities listed, and specific
information about each one, but Table 1
illustrates the general ideas outlined above.
The various rows reflect the different needs
discussed: Charging all contracts equally,
charging to internal funding to protect IP,
charging to a single contract, and charging
proportionally to benefitting contracts.

Every product line organization must
answer the question: “Who pays for the
product line activities?” Organizations
building products under contract for
specific customers need a funding model
that provides a mapping between PLE
activities and, essentially, charge numbers
product line engineers use to pay for their
work. The funding model needs to satisfy
the organization’s overall goals, such as
protecting intellectual property and ensure

compliance with applicable statutes and
contractual requirements. The result should
be a charging model complying with
contractual requirements and applicable
regulations, protects the organization’s
IP, keeps PLE factory staff from working
directly for individual customers, captures
truth, and provides a fair and equitable way
to charge customers for work. We based
the method presented in this paper on our
work with PLE practitioners who operate in
a government contract environment.  ¡

ACKNOWLEDGMENTS
We adapted this paper from an internal

BigLever technical report, to which several
people contributed. Our thanks go to those
people for their helpful insights and contri-
butions.

REFERENCES
■■ Gregg, S., R. Scharadin, E. LeGore,

and P. Clements. 2014. “Lessons from
AEGIS: Organizational and Governance
Aspects of a Major Product Line in a
Multi-Program Environment.” Paper
presented at the 18th Software Product
Line Conference, Florence, IT, 15-19
September.

■■ International Council on Systems
Engineering (INCOSE). 2019. Feature-
based Systems and Software Product
Line Engineering: A Primer. San Diego,
US-CA: INCOSE.

Activity Funding source What do we know
upfront? Charge #

PLE Factory
management and CCB

Contract funds We will charge each
contract equally

CF-xxx-yyyyy (staff charges one charge
number, funded by all contracts

Feature catalog work Internal funding
source, to protect IP

We will never use
customer funds for this.

INT-xxx-yyyyy

Meeting to plan work
for Contract #4

Contract #4’s funds We will charge solely to
Contract #4

CF-aaa-bbbbb (funded solely by
Contract #4)

Any activity updating
a shared asset

Contract funds Any activity here receives
funding proportionally
by contracts that benefit,
where “proportionally”
means [fill in allocation
algorithm]

TBD. (When CCB approves a change,
they list the affected programs.
Assign a task-specific charge number
then, funded proportionally by those
contracts.)

Table 1. A skeleton PLE factory funding model

ABOUT THE AUTHOR
Dr. Paul Clements is the vice president

of Customer Success at BigLever Software,
Inc., where he works to help organizations
adopt feature-based systems and software
product line engineering. Prior to this, he
was a senior member of the technical staff
at Carnegie Mellon University’s Software
Engineering Institute, where for 17 years
he worked leading or co-leading projects
in software product line engineering and
software architecture documentation and
analysis. Prior to the SEI, Paul was a com-
puter scientist with the US Naval Research
Laboratory in Washington, DC. Paul has
both a BS and MS in computer science
from the University of North Carolina at
Chapel Hill and a PhD in computer science
from the University of Texas at Austin.

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

22

INTRODUCTION

  ABSTRACT
In transforming from a project-based engineering approach to a product line engineering (PLE) approach, the engineering teams
must have support throughout the transition from evolving tools and methodologies. As an example, the Product Breakdown
Structure (PBS) is traditionally a construction-based decomposition of a complex system, where subsystems reflect a breakdown
of the engineering elements with appropriate technical interfaces, subassemblies, and team responsibility delineations. However,
when used for a product line with myriad variants, a traditional PBS format provides insufficient detail and structure. As such, us-
ing standard desktop software, the author developed a hybrid PBS-Variability Model (VM), combining the familiar PBS structure
with variability modeling aspects based on feature modeling and decision modeling approaches. This resulted in an engineering
artifact recognizable as a PBS and easy to adapt to design evolution, yet sufficiently expansive to initially characterize variability. In
this way, the traditional PBS evolves to the hybrid PBS-VM before transitioning to a complete variability model, thereby support-
ing the engineering teams transitioning from a project-based engineering approach to a PLE approach. In this paper, the author
describes the traditional PBS limitations, the hybrid model development process with a custom-developed syntax description, the
resulting hybrid model, and conclusions on appropriate product line usage.

Evan R. Helmeid, evan.helmeid@safrangroup.com
Copyright © 2020 by Evan R. Helmeid. Published and used by INCOSE with permission.

Within high-tech industry,
transforming an engineering
team from project-based 1

development into product
line engineering (PLE) involves transitioning
concepts, working methods, project man-
agement tools, and engineering tools and
methods. A large, geographically distributed
organization must make this transition
gradually and deliberately, allowing the team
to continue supporting current projects
while preparing for and implementing future
product lines. Along with this evolution
in the “way of thinking,” the tools and
methodology changes must also support an
evolution, Figure 1 (INCOSE 2019).

Development of a Hybrid
Product Breakdown
Structure and Variability
Model

Figure 1: All concepts of an organization must transition from a legacy project-
based engineering approach to a new product line-based approach; the hybrid
PBS-VM bridges this transition for the constructional model representation. CCB is
configuration control board

Configuration
Management

Change
Control Project-Specific CCB

Product-Project
Integrated CCB

Hybrid PBS-VM

Transitional
methodologies,

tools, etc.

Constructional
Model

Systems
Engineering

Engineering
Approach

Concept Intermediate New ParadignLegacy Paradigm

Project-Based
Engineering

Product-Based
Engineering

Product Line-Based
Engineering

Product Line & Cross
Project Integrated CCB

Model-Based with
integrated variability

Part-Centric

Variability Model

Drawing-Centric

PBS

Requirements-Based

Bridges the transition from the legacy
PBS to the new Variability Model

Figure 1

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran.
Safran name of the activity / Date / Department (menu "Insert / Header and footer") 1 1.  Project-based teams working in a “silo” environment

may have little visibility into other engineering
artifact use and little incentive, interest, or
opportunity to promote reusing designs, whether
opportunistic or intentional.

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

23

In designing and manufacturing aircraft
seats, the engineering teams are distrib-
uted across multiple countries, research
and technology groups, industrialization
teams, and manufacturing facilities. A new
product line development includes the
technical architecture definition. A Product
Breakdown Structure (PBS) traditionally
describes this architecture for the construc-
tional view. However, for a product line
approach, the PBS shows insufficient de-
tail—namely, variants. As such, models can
add variation points to identify the product
variants as perceived by the customer and
the impacts of those variations on the tech-
nical solutions. Designing and managing an
effective product line architecture requires
understanding planned variants to promote
a viable lifecycle, as well as the ability to
convey this information to the sales team
and other stakeholders.

Accomplishing this requires accurate
variation characterization and conveyance
to the engineering, management, and sales
teams, as well as to the customer (via a
“product catalog”).

In evolving the tools to support the
product line approach, the author devel-
oped a hybrid PBS-variability model (VM)
using standard desktop software to bridge
the gap between the traditional PBS and the
capabilities of a complete VM.

ARRIVING AT A NEED FOR A HYBRID PBS-VM
Context: Product Line Complexity

When considering aircraft seats, the PLE
problem is not as simple as considering the
different features a passenger or an airline

Long Range Business Class Seat from Safran Seats

In-Flight
Entertainment

Screen

Headrest Shell

Sliding Door Control Unit

Ambient Lighting

Passenger Seat

Example Only

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran
Safran name of the activity / Date / Department (menu "Insert / Header and footer") 1

Handedness: left, right
Aircraft OEM: multiple
Regulatory body:
multiple

Location: storage,
footwell, reading,
literature pocket
Type: monochrome,
multi-color

Suite-Level

Supplier: multiple
Size: 20 inches, 22
inches, 24 inches

In-Flight
Entertainment Screen

Handedness: left, right
Mechanism: manual,
motorized

Sliding Door Adjustability: fixed, tilt,
height, wings
Material: multiple

Headrest

Handedness: left, right
Side: front, back

Shell

Handedness: left, right
Comfort: massage,
adjustable lumbar,
heating, cooling
Material: multiple

Passenger Seat

Ambient Lighting

Buttons: 3, 4, 6
Type: touchscreen,
capacitative, mechanical

Control Unit

Figure 2

Figure 2: A business class aircraft seat contains many variation points—including passenger-facing and non-passenger-facing
features—with multiple drivers, inductors, and constraints (passenger, airline, regulatory body, manufacturer, supplier).

may request. Regulatory and airframe
requirements highly constrain the design
space, the airlines have wide-ranging needs
to meet the specific flight route needs as
well as the airline values and branding, and
the passengers have broad expectation and
demand ranges for high-quality products.
Every aircraft type, lavatory and galley
configuration, in-flight entertainment (IFE)
solution, and regulatory revision results
in a new product variant—whether major
or minor. Indeed, the features a customer
interacts with are only the beginning of the
challenge (Figure 2).

Initial Problem Statement
The need for a hybrid PBS-VM solu-

tion appeared after receiving direction
to develop a PBS for a new business class
aircraft seat product line. Specifically, the
intent was to create a PBS providing insight
into the reusability and commonality level
between customer program product line
instantiations.

Initially perceived as a straightforward
task, a conventional PBS quickly showed
inherent limitations and lack of adapt-
ability to provide the requested insight
into product line architecture efficiency or
effectiveness.

The initial PBS request came from a tra-
ditional systems engineering approach con-
text, which is insufficient for a product line
approach. However, even adding the con-
cept of a “150% PBS,” where “the maximal
product breakdown structure is generated
by identifying the components necessary to
implement all of the functions” (Krob and

Le Sauce 2015), is still insufficient—a 150%
PBS is useful as a way to perceive the PLE
breadth, but it remains based on the basic
PBS principles and, therefore, has inherent
limitations when trying to provide insight
into a complete product line (CESAM 2017,
and Krob and Le Sauce 2015), as discussed
in the following sections.

Discovering Traditional PBS Limitations
The first attempt began with a traditional

PBS expanded to achieve a 150% PBS mod-
el, representing the product line scope, but
easily recognizable as a PBS from the tradi-
tional systems engineering tools and meth-
ods. If using a small number of levels, this
is a conceivable solution. Major subsystems
have variations—such as ambient lighting
options, IFE providers and peripherals, and
left- and right-handed suites (Figure 2).

Figure 3 shows a simple, single-solution
PBS example for an IFE system. Figure 4
shows an expanded 150% PBS for the same
IFE system; note the 150% PBS is similar
to a feature model with variation points
(Czarnecki et al. 2012).

Within a business class cabin context,
the IFE system is only a small part. But
even this small part is highly customizable
with implications to other parts of the suite
(mechanical integration and power supply)
and with dependencies on other systems
(ability to support a suite-level active
acoustic control system).

In pursuing reusing technical solutions
across the product line and in understand-
ing major variations can occur at different
PBS levels with or without affectations at

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

24

Monitor
22” non-

touchscreen

Monitor support
non-touchscreen

Handset support

Audio Module
support

Active Acoustic
Control support

Dependency

External
Dependency

Power Data Box
support

USB & AC Power
Outlet Module

support

Handset
touchscreen

IFE Power & Data
Harness

IFE System
Supplier B

Audio module
2-prong

USB & AC Power
Outlet Unit module

2x USB with
grounded AC

Figure 3: A PBS for a single
customer IFE system configuration
(demonstration purposes only).
AC is alternating current, and
USB is universal serial bus.

sub-tier levels, the low-fidelity of the 150%
PBS is therefore insufficient.

For example, one chooses seat handed-
ness at a high PBS level, but elements lower
in the PBS are independent of handedness
and can actually be common. Looking
closely at the IFE system shown in Figure 3
and Figure 4, we can already see even this
simple example cannot capture the supplier

IFE System

Monitor

Too many
variations to show

Handset

Handset –
touchscreen type

Handset –
keyboard type 1-prong audio jack

USB-A x2
Grounded AC

Outlet

USB-C x1
Grounded AC

Outlet

USB-C x1 Un-
grounded AC

Outlet

USB-C x2
Grounded AC

Outlet

USB-C x2 Un-
grounded AC

Outlet

USB-A x2 Un-
grounded AC

Outlet

USB-A x1
Grounded AC

Outlet

USB-A x1 Un-
grounded AC

Outlet
3-prong audio jack

2-prong audio jack

Monitor – 20-inch
touchscreen

Monitor – 20-inch
non-touchscreen

Monitor – 22-inch
touchscreen

Monitor – 22-inch
non-touchscreen

IFE Power & Data
Harness Audio module Bluetooth module USB & AC Power

Outlet Unit module

Figure 4: A 150% PBS with identified variability for an IFE system (demonstration purposes only).

nor the common elements (such as screen
and power outlet module). Additionally,
designs can be reusable—such as for seat
covers or cushions—but customers can
select different materials.

In essence, different components or
subsystems can be reusable depending on
different inductor sets—aircraft type, airline
branding, seat position in the cabin, and
seat handedness. These decisions may not
be mutually exclusive, resulting in complex
relationships between allowed variations
and, therefore, complex relationships to
understand the product line’s efficiency
with reusability and commonality.

Table 1 (next page) provides more de-
tailed variability descriptions of each major
PBS element in the IFE system example.

As is evident, both PBS versions, shown
in Figure 3 and Figure 4, lose this informa-
tion. As such, understanding our product
line requires a more advanced model.

Creation of the hybrid PBS-VM
After reviewing further PLE documenta-

tion and recommended practices and tools,
the feature modeling and decision modeling
concepts provided a potential solution,
combined with standard desktop tools
(Microsoft® Excel® and Visio® with import
capabilities, as described in the “Tools”
section) (Czarnecki et al. 2012). However,
incorporating these ideas into the construc-
tional model required developing a hybrid
solution merging the 150% PBS with the
tree notation of feature modeling and lever-
aging the syntax complexity and flexibility
of decision modeling.

options or dependencies on other PBS
elements (the power and data harness being
able to support an active acoustic control
system). As such, indicating two completely
new variants at such a high level in the
assembly (duplicating the IFE system to
reflect multiple suppliers) does not reflect
the actual reusable amount of engineering
(such as common mechanical interfaces)

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

25

Monitor
enum [20in | 22 innn} {

touchscreen] <1:1, 0:1>

Handset
enum [touchscreen |

keyboard] <1:1>

Monitor support
enum [touchscreen | non

touchscreen} <1:1>

IFE Power & Data
Harness

Audio module
enum [1-prong | 2-prong |

3-prong} <1:1>

Audio Module
support

Power Data Box
support

Handset support

USB & AC Power
Outlet Unit module

enum {USB-A | USB-C} {
grounded | un-grounded} <

1:2, 1:1> (QTY n)

Bluetooth module
bool { T | F } <1:1>//

IFE.supplier <> SupplierB | |
ifSelected

Support.Module.Bluetooth
= true

Bluetooth Module
support

bool { T | F } <1:1>//
Module.Bluetooth = true

Supplier.IFE <> SupplierB

Active Acoustic
Control support

bool { T | F } <1:1>//
ActiveAcousticControlSys

tem = true

IFE System
enum { SupplerA |
SupplierB } < 1.1>

USB & AC Power
Outlet Module

support

Figure 5: Because of the simplified structure combined with embedded syntactical descriptions, this hybrid PBS-VM retains the
visual simplicity and recognizability as a basic PBS (Figure 3) while showing the variability of a 150% PBS (Figure 4) and capturing
complex relationships and dependencies (Table 1).

The resulting solution provides the
complexity needed to characterize the total
product line and representative variability
with the familiarity of viewing a traditional

PBS. Refer to Figure 5 for the hybrid PBS-
VM of the previous IFE system example.

After peer-reviewing with the engineer
ing teams, it was apparent this hybrid

Table 1: Description of the variability for the IFE System

PBS Element Description of Variability Dependencies

Monitor Dependent upon airline selection Affects monitor shroud,
mounting bracket, power
consumption

Handset Dependent upon airline selection Affects mounting bracket

IFE Power & Data
Harness

The harness must provide support (e.g., pigtail and connector)
to all connected peripherals and systems. Some peripherals
are always present (e.g., monitor, audio module), but some are
optional and may be omitted (e.g., Bluetooth module).

Affected by selection of all IFE
peripherals, selection of suite-
level Active Acoustic Control
system

Audio module Dependent upon airline selection May affect mounting bracket

Bluetooth
module

Dependent upon the selected IFE Supplier (only available from
some suppliers), and dependent upon airline selection

Affects Power & Data Harness,
mounting bracket

USB & AC Power
Outlet Unity
module

Numerous options available, dependent upon airline selection.
The actual choice is nested—first choose the AC outlet, then
choose the number USB ports, then choose the type of USB
ports. Even with this variation, the mechanical form factor and
integration may be unchanged.

Affects Power & Data Harness;
may affect mounting bracket

PBS-VM approach met its objectives and
allowed the multi-disciplinary team to
review and agree upon the new product
line architecture and initial variability

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

26

approach without having to understand the
complexity of a dedicated variability model.
This approach bridged the gap between the
traditional engineering methodologies with
their inherent restrictions and the new PLE
paradigm and the associated complexity.

It is important to note, however, this meth-
od still has limitations in the amount of data
shown and, therefore, in the level of detailed
engineering represented. As a rule, maintain
this relative simplicity, while providing just
enough detail to address the question within
the current design detail level context. Of
course, additional engineering artifacts need
developing to fully define the product line,
and design and development can recursively
use these methods throughout.

VM for Full PLE Implementation
When ready for the full PLE tool and

terminology set, a proper VM should ad-
dress the remaining concerns of the hybrid
PBS-VM and its ability to support viewing
the product line architecture effectiveness,
including reusability and commonality.
Additionally, a dedicated variability mod-
eling tool can interface with configuration
management (CM) and product lifecycle
management (PLM) tools to properly con-
trol the product line evolution throughout
the lifecycle. As such, the hybrid PBS-VM
usefulness may reduce as the product line
systems engineering capabilities mature
within the organization or as a program
progresses through the design process.

GUIDE FOR DEVELOPING AND USING A
HYBRID PBS-VM

The necessity to describe a product
line’s complexity in the traditional systems
engineering practice and tool context
created the hybrid PBS-VM, thereby easing
the transformation to a product line-
based organization. Furthermore, with the
ability to describe the product line and its
variability comes the ability to manage the
variability and the architecture.

The new model merges four key concepts:
1.	 PBS: constructional system decom-

position, presented in a hierarchical
form

2.	 150% PBS: a PBS adapted to address
the product line breadth by adding
the product line variability to over-
define a product solution

3.	 Decision model: a decision set
adequately distinguishing among
application engineering product
family members and to guide adapta-
tion of application engineering work
products (Software Productivity Con-
sortium Services Corporation 1993)

4.	 Feature model: captures features
—“distinguishing characteristic[s]
that [describe] how the members

of the product line differ from each
other” (INCOSE 2019)—and the
relationships among them (Kang et
al. 1990)

The following sections discuss the steps
to create an effective hybrid PBS-VM and
define the syntax developed to describe
variability.

Recipe
The following recipe can create an effec-

tive hybrid PBS-VM for a technical system.
So far, only four aircraft seat product lines
have deployed this method—two premium
business class seats, one basic business class
seat, and one economy class seat. However,
the recipe can adapt to other industries and
systems and is usable for smaller systems
as well as extensible to larger and more
complex systems.

Step 1: Create a basic PBS (refer to Figure
3). Use a top-down method to develop a
traditional PBS, focusing on capturing the
overall physical system architecture in the
constructional feature context. It may be
useful to consider an anticipated “standard”
product version to capture the generic sys-
tem architecture and to begin defining the
scope. Also, recall a PBS should not intend
to match either a work breakdown structure
or a drawing tree—these are supplemental
system visions that work in complement to
fully define a system and facilitate the man-
agement, engineering, procurement, and
manufacturing activities (INCOSE 2019 and
United States Department of Defense 2018).

Step 2: Develop into a 150% PBS (refer
to the top two levels of Figure 4). Add detail
to the basic PBS to capture the full option
range offered on the product line. The focus
is on identifying the scope and overarching
architecture and decomposition—defining
relationships, rules, and logic between
options or features happens later. This PBS
version is not instantiable into a single
customer solution, as it over-defines the
system (Krob and Le Sauce 2015).

Step 3:  Identify variation points (refer
to Figure 4). Identify each feature of the
150% PBS possessing variability, focusing
on identifying the highest level in the PBS
(assembly level instead of component
level) where the variation is capturable.
For example, identify the handset assem-
bly as variable (touchscreen system versus
mechanical keyboard system) rather than
separately identifying the front face, rear
face, wiring, and connector as having their
own variability. Identifying the “correct”
place to capture variability depends on
the product, procurement strategy, and
design strategy. Leverage the team member
knowledge—product line manager, archi-
tects, and domain experts—as needed to

create an accurate picture (Haughey 2020).
Step 4: Define the variability (refer to

Figure 5). Defining the variability involves
employing the syntax described in the
following section. The syntax describes the
variability level and type of each variation
point, as well as dependencies between
features—whether physical dependencies
or market-based dependency decisions. By
adding variability definition directly into
the 150% PBS model, this step represents
the key hybrid PBS-VM approach
capability.

Step 5: Collaborate with the teams.
Throughout the process, and especially to
obtain final product buy-in, iterate with
the development teams. This ensures the
hybrid PBS-VM represents the intended
as-specified product, ensures consistency
with the engineering team organization,
and ensures the hybrid PBS-VM supports
the other stakeholder needs. For example,
the PBS may be the basis for defining scope
for suppliers and work packages; therefore,
the new hybrid PBS-VM must also support
this use case.

Syntax
The syntax used for the hybrid PBS-VM

is a modified version of the decision model
syntax presented in Czarnecki et al. (2012)
Figure 1 (original sources are Dhungana,
Grünbacher, and Rabiser 2011; Software
Productivity Consortium Services Corpo-
ration 1993; and Schmid and John 2004).
The syntax, implemented in a tabular
format, enables formulaic development and
eases data management.

Each model element uses the attributes
identified in Table 2 (next page) to define
the variation definition. If the attribute
does not apply, then the visual model
omits it. Together, these attributes define
the element, if the element varies, how
the element varies, the variability options
available, and dependencies with other
elements.

As examples of the above approach, we
will use two elements from the IFE system
installed in a business class suite: the USB
& AC Outlet Unit module (Figure 6) and
the Bluetooth Module (Figure 7). We want
to understand if the inclusion is required or
optional, the types allowed, how many to
include, and if there are any dependencies.

From the Figure 6 information block, we
can determine the following information:

■■ Name:  the element name is “USB & AC
Power Outlet Unit module”

■■ The following defines variability:
•	 enum { USB-A | USB-C } { grounded

| un-grounded }  there are two
‘enumerated’ type decisions to make.
The first decision is for the USB port

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

27

type, with the range of options being
USB-A or USB-C. The second deci-
sion is for the AC outlet type, with
the range of options being grounded
or ungrounded.

•	 < 1:2, 1:1 >  Cardinality tells us to
choose 1 or 2 of the available options
from the first decision and to choose
only 1 of the available options for
the second decision. In this way, a
customer may choose to include both
USB-A and USB-C ports.

•	 (QTY n)  The element quantity
must be selected. For example, an
airline may choose to include 2 “USB
& AC Power Outlet Unit module”
assemblies in the instantiated prod-
uct, which would prompt the airline
to choose the features of both block
instances.

From the Figure 7 information block, we

can determine the following information:
■■ Name:  the element name is “Bluetooth
Module”

■■ The following defines variability:
•	 bool { T | F }  There is one ‘Bool-

ean’ type decision to make: whether
to include the module (T = True) or
not (F = False).

•	 < 1:1 >  Cardinality tells us to
choose 1 of the available options from
the first decision—True or False.

•	 // IFE.supplier <> SupplierB  This
constraint indicates this block can
only activate if the IFE Supplier is not
Supplier B.

•	 || ifSelected Support.Module.
Bluetooth = true  This condition
indicates an outward dependency. If
selecting the Bluetooth Module, then
the Bluetooth Module Support (of
the IFE Data & Electrical Harness)
must also be True.

The hybrid PBS-VM visual model can
directly use these blocks, and formatting
can adjust to suit the user needs (refer to
Figure 5 for the formatting used by the
author).

Tools
The author developed the present ex-

amples using a combination of Microsoft®
Excel® and Microsoft® Visio®. The author
used formulas to assemble the syntax in
Microsoft® Excel® (Table 3). The Microsoft®
Visio® then imported the Microsoft® Excel®
using the “Hierarchical Import Wizard”
and custom blocks for formatting (Figure
5). Formatting occurs automatically using
custom blocks and conditional formatting
based on metadata.

However, Microsoft® Excel® could
feasibly solely maintain the hybrid PBS-
VM, with or without Macros for assistance
in visualization. Additionally, using

Bluetooth Module
bool { T | F } < 1:1 > // IFE.supplier <> SupplierB || ifSelected Support.Module.Bluetooth = true

Figure 7: The hybrid PBS-VM syntax example for the Bluetooth Module.

USB & AC Power Outlet Unit module
enum { USB-A | USB-C } { grounded | un-grounded } < 1:2, 1:1 > (QTY n)

Figure 6: A hybrid PBS-VM syntax example for the USB & AC Power Outlet Unit module.

Table 2: Explanation of the attributes and syntax used to define variability of each element of the hybrid PBS-VM. These fields
correspond to the example in Table 3

Name Description Syntax

 To assist in identification of major points of variation or
joining of sub-product lines; also used for visual aid in
the visual representation

Top = top of the tree,
Leaf = lowest defined element,
Abstract = no direct physical
implementation (e.g., Spare Parts
System)

Variability
Type

Identify where an element is invariant across all
instantiations of the product line; otherwise, variation is
dependent upon higher level variation points

Variable = element has variants,
Invariant = element is unchanging
across all instantiations,
None = element variability is defined by
other elements

Decision Identify the type of variation—item is required, item is
optional, item is purely custom

Choose = select from enumerated list,
Include = select to include or exclude,
Custom = customized element

Decision Type
and Range

Identify the type of decision to be made, and identify the
variants available for each decision

bool {T/F} for type Boolean,
enum {list} for type enumerated

Cardinality Identify the minimum and maximum number of each
item that may be selected from the identified options

< min : max >

Quantity Identify the number of elements that exist within each
product instantiation; implies recursive selection of the
element block

(QTY integer)

Condition Must be met in order for the variation point to be
activated

// logic statement

Constraint Dependency with other elements || function statement

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

28

basic Microsoft® Visio® tools, Microsoft®
PowerPoint®, yEd® Graph Editor, or other
similar types of tools presenting graphical
hierarchies can create the model. The
author recommends programs possessing
capabilities for automatic reorganization
and spacing for ease of manipulation
and visualization, especially with larger
datasets.

Indeed, a hybrid PBS-VM benefit is its
reactivity—because typical desktop tools
can develop and manage the model, there is
a low barrier to its usage in an organization.

Usage
While adjustable to individual orga

nization needs, the hybrid PBS-VM

is specifically useful in the following
situations:

■	 For organizations already using a PBS,
or organizations looking to introduce
variability management capabilities

■	 Developing initial models supporting
architecture trade studies

■	 As a complete VM for small systems
or subsystems reasonably controlling
configuration and variants without
dedicated software tools

■	 As an intermediary or tool to aid in
developing a formal VM

■	As a means of communication to
internal or external teams, suppliers,
or customers; to facilitate an under-
standing of the breadth, complexity,

and interdependencies of a product
line and architecture

Additionally, the hybrid PBS-VM is
extensible for hardware-only systems,
software-only systems, and combined
hardware-software systems. Additional
syntax may be necessary to differentiate
between configuration item types.

CONCLUSIONS
The work presented leads to the

following conclusions:
■	 A traditional PBS is insufficient to

describe the product line architecture
and its effectiveness

ID1 top IFE System

ID2 leaf Monitor ID1 variable choose size
and type

enum { 20in | 22in }
{ touchscreen }

< 1:1,
0:1 >

ID3 leaf Handset ID1 variable choose type enum { touchscreen |
non-touchscreen }

<1:1 >

ID4 none FE Power & Data
Harness

ID1 variable configure

ID5 leaf Audio module ID1 variable choose type enum { 1-prong | 2-prong
| 3-prong }

<1:1 >

ID6 leaf Bluetooth module ID1 include? { T | F } // IFE.supplier <>
SupplierB

|| ifSelected
Support.Module.
Bluetooth = true

ID7 leaf USB & AC Power
Outlet Unit module

ID1 variable choose type enum { USB-A | USB-C }
{ grounded | un-
grounded }

<1:2, 1:1 > n

ID8 leaf Monitor support ID4 variable choose type enum { touchscreen |
non-touchscreen }

<1:1 >

ID9 leaf Handset support ID4

ID10 leaf Audio Module
support

ID4

ID11 leaf Power Data Box
support

ID4

ID12 leaf Bluetooth Module
support

ID4 include? bool { T | F } <1:1 > // Bluetooth.module
= true, IFE.Supplier <>
SupplierB

ID13 leaf USB & AC Power
Outlet Module
support

ID4

ID14 leaf Active Acoustic
Control support

ID4 include? bool { T | F } <1:1 > // ActiveAcousticControl
= true

**Unique Identifier

*Elem
ent Type

*Nam
e

**Hierarchy

Variability Type

Decision

*Decision Type

*Range

*Cardinality

*Quantity

*Condition

*Constraint
Table 3: Tabular form of the syntax used to define each hybrid PBS-VM element. (*) denotes information visible in the element
block. (**) denotes information used expressly during import into Microsoft® Visio® to create the hierarchy. Retain other
information as meta-data and to assist in item definition. The data fields correspond to the descriptions in Table 2.

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

29

■	 A hybridized syntax, combining
decision model and feature model
concepts, can concisely capture product
line reusability and variability

■	 A hybrid PBS-VM can provide an
effective bridge between traditional
project-based engineering and PLE
approaches
•	 A hybrid model is readily under-

standable, yet captures the product
line approach effects

•	 A hybrid model can be an inter
mediate step to developing a formal
VM

■	 Effectiveness maximizes when used
early in the product line lifecycle, with
small systems, or with organizations
with a low maturity level in formal PLE

FUTURE WORK
In developing this new model, future

work will exercise the model over a broader
product line range—both hardware and
software—to discover and resolve deficien-

cies; investigate how to integrate the model
with enterprise tools; and ensure consistent,
high-quality, and reproducible approach
implementation. Specifically, the author has
identified the following activities:

■	 Use the hybrid PBS-VM in developing
new product lines and systems includ-
ing hardware, software, and integrated
systems, both large and small.

■	 Develop the tools to enable automation
and enforce implementation and syntax
consistency.

■	 Identify means to integrate the hybrid
PBS-VM into enterprise tools, such
as model-based systems engineering
(MBSE) tools, requirements-based
systems engineering (RBSE) tools, CM
tools, PLM tools, and computer-aided
design (CAD) tools.

■	 Develop detailed usage guidelines, in-
cluding decision logic in decomposing
systems to maximize the correctness
and utility of the resulting model.

■	 Expand the model to support additional
approaches for variability and reuse  —
reusable modules, standardized
interfaces, and product lines-of-product
lines.

■	 Expand the model to support
additional techniques for variety—fixed
versus variable, combination, multi-
functionality, range, and trend and
margins (Safran 2020).

■	 Align the methodology and terminol-
ogy with the upcoming standard ISO/
IEC DIS 26580 “Software and Systems
Engineering—Methods and Tools
for The Feature-Based Approach to
Software and Systems Product Line
Engineering.”  ¡

REFERENCES
■	 CESAM. 2017. CESAM: CESAMES Systems Architecting

Method, A Pocket Guide. Paris, FR.
■	 Czarnecki, K., P. Grünbacher, R. Rabiser, K. Schmid, and A.

Wasowski. 2012. “Cool Features and Tough Decisions: A Com-
parison of Variability Modeling Approaches.” White paper,
Association for Computing Machinery. https://dl.acm.org/
doi/10.1145/2110147.2110167

■	 Dhungana, D., P. Grünbacher, and R. Rabiser. 2011. “The DO-
PLER Meta-Tool for Decision-Oriented Variability Modeling:
A Multiple Case Study.” Automated Software Engineering 18
(1): 77–114.

■	 Haughey, D. 2020. “Project Management Tools.” Project Smart,
20 October. https://www.projectsmart.co.uk/project-manage-
ment-tools.php

■	 International Council on Systems Engineering (INCOSE).
2019. “Feature-based Systems and Software Product Line
Engineering: A Primer.” INCOSE, San Diego, US-CA.

■	 Kang, K., S. Cohen, J. Hess, W. Nowak, and S. Peterson. 1990.
“Feature-Oriented Domain Analysis (FODA) Feasibility
Study.” Technical report, CMU/SEI-90TR-21.

■	 Krob, D., and L. Le Sauce. 2015. “Product Families
Architecture.” CESAMES, Paris, FR.

■	 Safran. 2020. “Develop Handbook 3 Predesign and Design the
System.” In Internal Handbook, 20. Paris, FR.

■	 Schmid, K., and I. John. 2004. “A Customizable Approach to
Full-Life Cycle Variability Management.” Science of Computer
Programming, 53 (3): 259–284.

■	 Software Productivity Consortium Services Corporation.
1993. “Reuse-Driven Software Processes Guidebook” Version
02.00.03. Technical Report, SPC-92019-CMC.

■	 United States Department of Defense. 2018. “Work Breakdown
Structures for Defense Materiel Items.” United States Depart-
ment of Defense Standard Practice, MIL-STD-881D.

ABOUT THE AUTHOR
Evan Helmeid is currently the product line systems engineer

at Safran Seats in Paris, France. He is responsible for developing,
implementing, and advocating for product line engineering
processes across the Safran Seats division, including locations in
the United States, Great Britain, and France. Since beginning his
career in 2011, he has supported private start-ups, large public
companies, and various government entities. He has held technical
leadership, project management, project engineering, and systems
engineering roles across launch vehicle, satellite, drone, and
ground systems programs. He received his BS in aeronautics
and astronautics from Purdue University and his MS from the
University of Alabama in Huntsville.

https://dl.acm.org/doi/10.1145/2110147.2110167
https://dl.acm.org/doi/10.1145/2110147.2110167

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

30

INTRODUCTION:
Why it is a linguistic issue?

  ABSTRACT
Inner source is establishing open source-like collaborations within an organization. Product Line Engineering (PLE) is the ap-
proach for engineering a related product portfolio in an efficient manner, taking advantage of products’ similarities while manag-
ing their differences. These two well-documented approaches propose smart techniques for reuse, but they use different terminol-
ogy. A language characteristic is to be polysemic and polymorphic. Indeed, PLE and inner source do not use the same words to
refer to equivalent concepts. This could badly affect project performance when evolving in a multi-domain context. What if there
was a way to better integrate PLE, inner source, modeling, data management, hardware and software engineering, and integration,
verification, validation, and qualification (IVVQ) through the similarity concept?
	 This paper shows it is possible to build a common way to assess the components (also called building blocks) contributing to
a product line, thanks to a process to determine the component maturity levels using the similarity approach. After detailing the
commonalities between the inner source and PLE domains, we present the Inner Sourcing Process Maturity Level (ISPML) as a
key engineering practice. Why is it important for engineering? If engineers reuse components defined by their engineering assets,
it is important to have a formalized, common way to do this across the company to integrate reusable multi-domain assets with
a certain confidence level. This paper introduces a simple method for multi-domain organizations to better determine whether
sharing an engineering asset is favorable or not.

The Convergence of
Struggles! Reusability
Assessment of Inner-
Source Components for
Product Lines
Thomas Froment, thomas.froment@thalesgroup.com, and Guillaume Angier de Lohéac, guillaume.angierdeloheac@
thalesgroup.com

There are multitudes of
ambiguous words in all
languages (Cisse 2007), which
can create misunderstandings.

Approximately one in two words out of its
context is ambiguous in Indo-European
languages. There is no exception in day-
to-day professional context. For instance,
engineering domains like PLE and inner
source do not use the same words to refer
to equivalent concepts. This could badly
affect project performance when evolving
in a multi-domain context. Before focusing
on engineering areas, it is necessary to

clarify the problem. Philosophy and
linguistics are the correct domains to define
the problem properly.

Language is the capacity to express a
thought and communicate by a system of
signs endowed with semantics, and most
often a syntax (Bergounioux 2021).

Ferdinand de Saussure (1857-1913), a
linguistics founder, declares two things
constitute the linguistic sign: the signifier
and the signified (Bergounioux 2021). You
cannot tell the two apart, but you have to
understand the two together to make sense.
The relationship between the signifier and
the signified is conventional. All people in

a linguistic community must learn which
words correspond to which images. For
instance, to mean “car,” French speakers
use voiture and Spanish carro. However,
translation is rarely a “one for one.”

The Sapir-Whorf Hypothesis better
understands the translation issue. It states
native languages strongly affect the way
people think. It is a controversial theory
championed by linguist Edward Sapir
(1884-1939) and his student Benjamin
Whorf (1897-1941). A well-known example
to support their theory is the numerous
words the Eskimo language has for snow
when the English language has only one. In

mailto:thomas.froment@thalesgroup.com
mailto:guillaume.angierdeloheac@thalesgroup.com
mailto:guillaume.angierdeloheac@thalesgroup.com

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

31

English-speaking literature, we find exam-
ples such as George Orwell who will exploit
this idea in his novel 1984. In this work,
a totalitarian power modifies the official
language so the thoughts questioning it are
not, in the long term, even expressible (the
famous “Novlangue”). Beyond this example
from popular culture, we must consider
the relationship between the signifier and
the signified involves variability. Context
and social interaction influence language
variability. Ferdinand de Saussure used
“paradigm” to refer to a class of elements
with similarities (Bergounioux 2021).

Another domain, philosophy of sciences,
uses “paradigm” to refer to variability
and studying social influence. Thomas
Kuhn (1922-1996) defines paradigm
as “universally recognized scientific
achievements that, for a time, provide model
problems and solutions for a community
of practitioners.” Kuhn reckons science
does not progress via a linear knowledge
accumulation but undergoes periodic
revolutions, also called “paradigm shifts.”
Kuhn saw the sciences as going through
alternating “normal science” periods,
when an existing reality model dominates
a protracted puzzle-solving period, and
“revolution,” when the reality model
itself undergoes a sudden drastic change.
Generally, guided by the paradigm, normal
science is extremely productive: “when the
paradigm is successful, the profession will
have solved problems its members could
scarcely have imagined and would never
have undertaken without commitment to
the paradigm” (Kuhn 1962). According
to Kuhn, adherence to a paradigm is
a sociological phenomenon, which
requires creating a community of thought,
methods, and objectives around common
tools (journals or conferences). The term
“paradigm” developed by Thomas Kuhn,
which he moreover suggested disciplinary
matrix should replace, tends to designate all
the beliefs, values, and techniques shared
by scientific community members during a
theoretical consensus period.

According to him, “the paradigm is a
framework which defines problems and
legitimate methods, and which thus allows
a greater research efficiency: a common
language favors disseminating the work
and channels the investigations.” The
most typical paradigm examples cited by
Thomas Kuhn are the Ptolemy paradigm
(geocentrism), the Copernicus paradigm
(heliocentrism), the Newton paradigm, and
the general relativity paradigm (Einstein).

In an engineering context, PLE and inner
source are two paradigms (or disciplinary
matrices) with common methods. One
way to better integrate them is to first
check commonalities and gaps, then share

problems to solve and solutions to make
a common vision possible. Before getting
to the heart of the matter, we need to
introduce inner source.

Inner Source Definition and Motivation in
Corporate Companies

Inner source takes the lessons learned
from developing open-source software and
applies them to the way companies develop
software internally. In other words, inner
source stands for “group-wide” internal
open source.

Why is the inner source practice
developing on a large scale in an ever-
increasing number of large and even
medium-sized technology companies?

The observation is: the open-source
world is, without any discussion today,
where innovation is the most dazzling
and has been for more than 20 years now.
Companies sometimes find it hard to
innovate and, even when they have good
ideas, putting engineering into practice for
a multi-domain, multi-entity, or multi-
country project often comes up against
major difficulties and often leads to failure.

So why implement inner source in the
industrial world?

■	 Reuse: This is the most obvious reason.
Reusing components, building blocks
made by other entities, is a way to save
time and therefore optimize costs while
reducing time to market.

■	 Transparency and serendipity: Beyond
the financial aspect, the founding
inner source practice element is an
engineering practice that is very
disruptive and based not on a method
strictly speaking, but on a principle:
transparency. All the actions, all the
stakeholder decisions are in full view
of everyone, even those who are very
indirectly involved in the company.
Beyond the behavioral change
this induces, which is part of the
transforming management mode (REF)
general logic, this transparency in itself
generates new opportunities—not
foreseen at project start—techniques
and even business, within the company.
We will address “serendipity” which
literally means finding a new idea “by
a happy coincidence.” But applying
transparency at all times somehow
“provokes” this chance, and this is
where we often find major innovations.

■	 Quality: Finally, it is also a marker,
counter-intuitive for some, of open
source: excellence in the delivered
quality. Although not guaranteed, best
practices in software craftsmanship
such as delivering well-tested code,
implementing test-driven development,
doc as code, code reviews, and a

complete continuous integration
chain are not optional. Indeed, project
stakeholders are often extremely
diverse; do not share the same practices,
even within the same company; and,
are often unable to physically work in
the same room or at the same time. The
only “viable” way to deliver a working
product then becomes not to break
away from best practices and to be
extremely rigorous in configuration
management, continuous integration,
and governance rules, especially for
everything related to the product’s
“common parts.”

COMMONALITIES AND GAPS BETWEEN THE
INNER SOURCE AND PLE DOMAINS

In this chapter, we compare signifier and
signified (or word and definition, the two
linguistic sign parts defined by Ferdinand
de Saussure), to check commonalities and
gaps between the inner source and PLE
domains.

Common sign: Same Signified and Same
Signifier

The following words share the same
definition in both domains.

Product: Intended to sell, directly or in-
directly (internal product), to customers for
satisfying their expectations and meeting
their operational requirements. A product
can be hardware or software equipment, a
service, a system, a replicable combination
of the previous items (Thales Group 2015).

Product Roadmap: The product
lifecycle master plan, typically showing
the major update releases with new
features over time, the phase-out, and their
associated estimated budgetary needs. It
starts with the market rendezvous (market
events, must-wins, and major targeted bids
and projects). The product roadmap is part
of the product plan.

Solution: A consistent set of systems,
equipment, and services provided to the
customer to meet his requirements. Rule:
The solution should maximize product
use according to its competitiveness and
attractiveness (Thales Group 2015).

Unique to PLE
Business Plan: A financial modelling

describing a business activity with a specific
focus on its profitability over time. Formal-
izes the company’s future development plan
and profitability in product terms.

Feature: A distinguishing characteristic
describing how the product line members
differ from each other (INCOSE 2019).
This provides a common language and
defines the product line’s scope of variation
for the organization. Feature-Based Product
Line Engineering is a specialized and highly

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

32

Assets
TISS

Assets
TISS

Assets
TISS

Projects
TISS

A single TISS project may share one or many TISS Asset(s).

efficient PLE form. Feature-Based PLE
relies on a managed feature set to describe
the distinguishing characteristics setting
the products in the product line apart from
each other (INCOSE 2019).

Even if feature is unique to PLE, it is
a known concept in inner source, and it
could then apply in some circumstances.
We discuss its applicability for inner source
later.

Product Line: A product group related
in they have similar technical and func-
tional specifications and address the same
market segments or the same customer
groups, same operational requirements
(Thales Group 2015). Products and/or
services for specific markets with explicitly
identified commonalities and variabilities
and developed on the same architecture.

Product Line Family: Product line
groups designed to meet the common and
variable needs of several market segments
(Thales Group 2015).

Unique to Inner Source
TISS: Thales Inner Source Software is

the inner-source program in Thales. This
follows the internal open-source founda-
tion model.

Contributor:  Someone who contributed
to a TISS project: contributions range from
simple comments all the way to software
code. A contributor or anyone else who is
not a committer has no right to force their
contribution to integrate into the main
project. They can create a derivative project
(a fork) to integrate their contribution.

Committer: A TISS project technical
authority. A committer is either a Thales
project team member who initially devel-
oped the asset(s) or a contributor who has
received commit rights in a TISS project.

Project Management Committee
(PMC):  A TISS project product authority.
Any TISS project PMC has one or many
members. The PMC has authority regard-
ing publishing TISS assets.

Core Team: The group of people includ-
ing committer(s) and PMC member(s)

Gaps:

Same signified but a different signifier
Program (PLE)/Top-Level Project

(Inner Source): A program is a group of
interdependent projects coordinated to ob-
tain benefits and control not available from
managing them individually.

Building Block (PLE)/TISS Asset
(Inner Source): A reusable modular
element of a higher level product not sold
directly to customers. It can be managed
as a product as a configuration item
engineered for re-use purposes (long-
lasting interfaces and design).

Derivation (PLE)/Fork (Inner
Source):  Operations allowing project
initialization with the relevant product
assets (product instances) that require
product reuse.

Through inner source, a project fork
happens when developers take a source
code copy from one software package
and start independent development on it,
creating a distinct and separate software
piece. The term often implies not merely a
development branch.

Generalisation (PLE)/Pull (or merge)
Request (Inner Source): Operation
enriching the product by integrating
re-usable assets developed in a customer
contract to positively contribute to the
product value. This operation either adds
new product capabilities compatible with
the product roadmap or contributes to
technical debt reduction.

Through inner source, pull (or merge)
requests mean pulling changes from another
branch or fork into your branch and merging
the changes with your existing code. This
generally associates with contributing rules
(typically, a code review and test coverage).

Different signified but the same
signifier

Project (PLE): A unique time and
cost-constrained activity set using resourc-
es to achieve stated objectives (usually
deliverables up to quality standards and
fulfilling requirements).

A “project” refers to the temporary
organization and means established by
the company to execute a contract with
an external customer and to deliver the
required goods and services (the solution),
from which the company expects profits,
as well as other business benefits such as
growth, strategic market placement, and
industrial footprint.

TISS Project:  Software components
shared in TISS (assets) built by teams
working on Thales projects. So, a TISS

asset, at least initially, designs and develops
in a Thales project context. A TISS project
is home to one or many shared TISS assets.
Note TISS project and Thales projects do
not have the same meaning: one Thales
team working on a Thales project may
share one or many TISS assets through one
or many TISS projects.

Shared assets (PLE): Artifacts support-
ing product creation, design, implementa-
tion, deployment, and operation. They can
be digitally represented and configured, and
share across the product line.

TISS Asset (Inner Source): A reusable
modular element of a higher-level product
and not sold directly to customers. We
can manage it as a product as a configura-
tion item engineered for re-use purposes
(long-lasting interfaces and design).

Chapter outcome
This review shows how any collaboration

between the PLE domain and inner source
would be difficult because of the language
gaps. On the other hand, it illustrates how
close the domain activities are. A way to
find a solution is marrying two practices
from each domain to build a common
practice with common words. It is a first
step to our convergence of struggles. The
two selected practices are Inner Sourcing
Process Maturity Level (ISPML) and
Feature-based PLE.

INNER SOURCING PROCESS MATURITY LEVEL
(ISPML)
Context: Current Thales Implementation
The process described below is the result of
the Thales Inner Source Software (TISS)
program deployment in Thales.

This program aims at:
■	 Providing facilities to share source code

or components between any Thales
entities, by applying best practices from
the open-source communities.

■	 Fostering Thales engineer’s group-
wide collaboration by better reuse

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

33

RETIRED

TH
ALES INNER SOURCE

TH
ALES INNER SOURCE

ACTIVEI N C U B AT I N G

TH
ALES INNER SOURCE

I N I T I A L I Z I N G
TH

ALES INNER SOURCE

P E N D I N G

TH
ALES INNER SOURCE

Function

Micro ServiceFeatures

Big

Small

High

Low High

High Low

Low

Library, Building Block

Potential benefitSize of asset Cost for reuse
And sharing

Ease of
collaboration

Full application, platform,
solution

and adaptation of existing code and
components.

■	 Supporting inner source governance
including Intellectual Property Rights
(IPR) and licensing policies.

■	 Enabling a collaborative infrastructure
including a full-fledged forge, a new
engineering community, and any other
relevant services (search engine and
maturity assessment) improving collab-
oration between Thales developers.

Workflow overview
This part describes how the TISS pro-

gram measures the project maturity level
regarding the inner source engineering
practices.

■	 Pending: This is a preliminary step
where the project team and organiza-
tion evaluate the opportunity to go/not
go for sharing a new TISS Asset.

■	 Initializing: This state corresponds to
the phase where the project team gath-
ers all prerequisite information to be
ready for the collaboration. It includes:
•	 Checking it complies with the

product strategy, by getting official
approval from product management
and owner.

•	 Legal Item Verification: confiden-
tiality, export regulation, contracts,
and IPR

•	 Project pitch redaction describing its
main purpose and positioning

•	 Registration in a public catalog. This
catalog allows project searchability. It
is available from any place within the
company.

■	 Incubating: Reached when the collabo-
ration is in place. Thus, the TISS project
team is ready to look for new external
contributors. It implies:
•	 Initial stakeholders clearly define

roles
•	 Open source inspires inner source

roles, defined in the “Unique to Inner
Source” section

•	 Source code is available within the
company

•	 Legal license is packaged
•	 Documentation is available, includ-

ing: (1) product vision, (2) how to
use, and (3) contributions rules. The
project technical and product author-
ities define the contribution rules.

■	 Active: Reached when:
•	 The TISS Project receives contri-

butions from external contributors

for at least one shared TISS asset.
Contributions range from simple
comments to software code. A
contributor or anyone else who is
not a committer has no right to force
their contribution to integrate into
the main project. They can create a
derivative project (a fork) to integrate
their contribution.

•	 The project checks open source com-
pliance and cybersecurity rules.

•	 All regulation and legal questions
lift, allowing any other user in the
company to integrate TISS assets in
a commercial product.

■	 Retired: Project is still in the TISS
Project catalog and marked as retired,
but it may still revive. It occurs when:
•	 There are 18 months (or more)

without any project activity.
•	 There is no active member in the

core team, and nobody is ready to
take the role in the company.

Key Criteria and Tradeoffs for a
Successful Reuse

Over the TISS program time and
experience, which started 4 years ago, the
ISPML evaluates the inner source project

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

34

chances of success. Indeed, the program
only achieves its objectives when reaching
the ACTIVE state, even if the preliminary
states (INITIALIZING or INCUBATING)
demonstrate the heterogeneous teams’ abil-
ity to work collaboratively. In this context,
the following decisive criteria appear:

■	Granularity:  The shared TISS asset
size. The smaller it is (a Feature —
equivalent to a PLE Feature, or a
Micro Service), the easier sharing it
will be, and the easier collaboration
will be. Conversely, sharing an entire
application, a platform comprising
multiple services, or a solution will be
much less likely to reach the ACTIVE
state.

■	 Architecture: The shared asset architec-
ture also plays a key role in the success
criteria. The more dependencies on the
environment, other assets, or third-party
libraries the higher the reuse cost and
the fewer contributors it will find.

■	 Cost vs Benefit: On these two axes
(granularity and architecture), there is
obviously a trade-off with the expected
reuse benefit. Indeed, if the assets are

small, or if they are completely self-
supporting, this will be very favorable
to collaboration, but the value and
therefore the benefit will be less.
Conversely, sharing a complex platform
(for example, a solution for cloud
computing) may take several months
or even years to be ACTIVE, but will
give the organization a huge benefit and
therefore a potentially major advantage
over its competitors.

CONCLUSION
Introducing ISPML in collaboration

maturity monitoring helps measure the
success criteria of multi-entity, multi-
country cooperation in an industrial
company framework.

Trade-offs must emerge to estimate
the success probabilities in return on
investment terms of reuse, quality, and
new induced cooperation—innovation
and serendipity. We present here the
recapitulative pyramid of these tradeoffs.

So today, we in Thales work towards
this convergence between PLE and
inner source, allowing us to work on an
assessment system to:

■	 Evaluate the opportunity to start an
inner source process (or not) within the
PLE approach framework.

■	 Confirm the appropriateness (or not) of
adopting a Feature-Based PLE approach
for inner source projects when sharing
the following asset tip: function, micro-
service, library, and building block.

The obstacles to overcome before imple-
menting these tools were:

■	 The linguistic issue, which this article
has highlighted.

■	 The difference in approach: Inner
source comes from a very bottom-up
culture built through experimentation,
and is at the beginning, far from a
structured approach through theory
like PLE.

The two worlds come together, allowing
field experience to confirm theory and
theoretical contributions to enrich practice.
This is a new field opening up promising
perspectives.  ¡

REFERENCES
■	 Bergounioux, G. 2021. «Cours de Linguistique Générale,

Ferdinand de Sausssure – Fiche de Lecture.» Encyclopædia
Universalis. https://www.universalis.fr/encyclopedie/cours-de-
linguistique-generale/

■	 Cisse, M. 2007. «Analyse Distributionnelle et Approche
Pragmatique. Recherches sur les Phénomènes d’Ambiguïté et
de Désambiguïsation Linguistiques.» Annales de la Faculté des
Lettres et Sciences Humaines de Dakar 31 (1): 1-16.

■	 INCOSE. 2019. Feature-Based Systems and Software Product
Line Engineering: A Primer. San Diego, US-CA: INCOSE.

■	 Kuhn, T. 1962. The Structure of Scientific Revolutions. Chicago,
US-IL: University of Chicago Press

■	 Thales Group. 2015. “Product Line.” Chorus Reference System.

ABOUT THE AUTHORS
Thomas Froment is Thales Inner Source Initiative Lead

supporting engineering transformation deploying open-source
best practices (tools and culture) as an enabler of Thales Digital
Transformation. He previously worked on Thales Cloud Com-
puting Infrastructure & Management (IaaS) Automation solu-
tion. Thomas holds 14 patents, is an IETF RFC author, Certified
Scrum Master, and Certified SAFe Agilist. He has earned an MS
in computer science and two additional engineering degrees.

Guillaume Angier de Lohéac is a product line engineering
specialist at Thales. He supports and trains project teams in the
deployment of methods and tools in the product line engineering
domain. He monitors deployments, promotes sharing of infor-
mation within the internal Thales community, and participates in
the continuous improvement of engineering practices. Guillaume
earned an degree in mechanical and electrical engineering and a
license in philosophy.

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

35

1.  SERVICE-ORIENTED APPROACH ORIGINS

  ABSTRACT
Digitizing the value chain brings along new business opportunities to organizations wishing to adopt a service-oriented approach.
This trend, referred to as digital transformation, has taken over the business world in recent years. Digital technologies allow a
company to move towards outcome-based commitments, pricing, and contracts with its customers. However, these technologies
can also make product portfolio management more challenging. Whereas transforming a product offering into a product-service
offering through digitization does not in itself revolutionize product line systems engineering processes and methods, it is of the
utmost importance to consider this transformation concerns more than a new culture or using new technology and requires, first
and foremost, an alignment with an organization’s global strategy and structure.
	 In this paper, we present a conceptual framework that helps define a high-level strategy to implement a product-service offer in
an organization. The distinctive framework aspects include the Product-Service Product Line or PSPL concept (a product line of
product-services), the elements to define the PSPL business model (pricing model, pricing metrics, and commitment types), a prod-
uct-services typology, and a product line engineering method extension for architecting the PSPL (notably, a specific service building
block type to support a composable design approach and a feature model including service-related, socio-technical features).

Product Line Engineering
for Digital Product-
Services
Guillermo Chalé Góngora, hugo-guillermo.chalegongora@thalesgroup.com; Pierre-Olivier Robic,
pierre-olivier.robic@thalesgroup.com; and Danilo Beuche, danilo.beuche@pure-systems.com
Copyright © 2020 by Thales. Published by INCOSE with permission. All rights reserved.

In recent years, growing numbers
of manufacturing companies have
integrated more services into their
product offerings. Some have even

changed their business models radical-
ly and started to sell their products as a
service. The notion behind this approach
is to better address the customer needs by
assigning customer value to the operation
performance, utility, or quality of a product
and not to the physical product owner-
ship. This new business model changes the
manufacturing company’s motivations and
objectives. Their target is to maximise their
product utility and to make them perform
well for as long as possible, instead of
selling the highest possible product volume.
This usually happens by monitoring, main-
taining, repairing, upgrading, and reusing
their products more.

Turning to service-oriented business
models represents a logical move to identify
growth opportunities by manufacturing
companies. To move into service-oriented
business models, most companies will

try developing new capabilities providing
customers increased value through new
technologies or by leveraging the compa-
ny’s expertise while trying to build longer
and more profitable customer relationships
(Queinnec and Tan 2018).

Observing a manufacturing company
enhancing its commercial offer through
service provisions is nothing new. Sales, de-
livery (including documentation and train-
ing), after-sales warranty, maintenance,
spare parts, and repair are examples of
services that have accompanied many com-
mercial products for years, from household
appliances to automobiles and airplanes.
Yet, in most organizations, different teams
working mostly in silos and following
different processes carry out the service and
product design and development (Polaine,
Løvlie, and Reason 2014, and Schnürmacher,
Haygazun, and Stark 2015). This silo effect
amplifies when a company adopts digital
technologies to support the services they
provide. Besides incorporating personnel
with different cultures and competencies,

the most common reason for this amplifi-
cation is many people in the company lose
sight of the digital transformation pur-
pose; digital technologies are suddenly the
objective instead of the means by which a
business can succeed in the new landscape.
Whilst digital technologies offer a company
enriched support for decision-making and
the possibility to propose to its customers a
higher engagement level in its core services,
they can also make the product portfolio
management challenging if they do not use
a structured approach.

2.  A PRODUCT LINE SYSTEMS ENGINEERING
FRAMEWORK FOR PRODUCT-SERVICES

To face the challenges presented above,
we propose a conceptual framework to
define a structured approach for Product-
Service Product Line Engineering. Observe
the proposed framework is a complement
to reference architectures or existing
architecture frameworks and must be
considered as such, rather than as a stand-
alone, complete framework for architecting

mailto:hugo-guillermo.chalegongora@thalesgroup.com
mailto:danilo.beuche@pure-systems.com

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

36

a Product-Service Product Line. The framework components
can indeed supplement existing reference architectures or easily
incorporate into commercial frameworks by identifying the
viewpoints to which our conceptual framework elements better
relate (for instance the strategic, operational, service-oriented,
or systems viewpoints in the Ministry of Defence Architectural
Framework).

Adapted from Baines et al. (2007), the proposed framework
comprises three main components plus a template set (not pre-
sented in this paper) to facilitate formalizing the different elements
resulting from applying the framework (Figure 1):

■	 A PSPL typology to characterize the product type composing
a product line, for example from traditional products (tangible
and physical products) to services and product-services;

■	 Processes and methods for architecting and engineering
the PSPL, in particular, for managing the PSPL variability,
dependent on the product types composing the PSPL;

■	 Guidelines to align the traditional product line business strat-
egies with those of their corresponding, and less traditional,
service product lines.

Applying the framework results in characterising the elements
typically defined in the business or mission analysis process: the
business or mission problem or opportunity, characterising the
solution space including identifying effectiveness measures, and
determining potential solution classes to address the problem or
take advantage of an opportunity (INCOSE 2015). These elements
effectively frame or orient the remaining systems engineering
technical processes requiring execution to achieve a successful
Product-Service Product Line.

The triangle base and left side in Figure 1 have been the object
of several studies (Ducq, Chen, and Alix 2012), but little has been
said about the right side or the triangle apex. References are also
scarce when considering the methodology definitions needed to
implement a service-oriented approach in an organization that
has historically developed complex products. Using Product Line
Engineering to address these gaps appears extremely promising to
the authors.

Compared to previous research on service typologies and prod-

uct service systems (Cook, Chon-Huat, and Chen 1999, Wild et al.
2007, and SEBoK 2019), the proposed framework presents some
distinctive characteristics:

■	 Extending service typologies to encompass the different
service and product dimensions developed by our company
(from “pure” products and services to integrated Product-Ser-
vice Product Lines);

■	 Considering services as products and applying a product line
approach to structure their development;

■	 Applying Feature-Based Product Line Engineering (INCOSE
2019) to the Product-Service Product Line design and
development (that is, to a Product-Services family), as opposed
to applying service engineering to developing individual
product-service systems as often described in literature (Tan
and McAloone 2010, Polaine, Løvlie, and Reason 2014, Kumar
et al. 2017).

The following sections briefly explain the different framework
elements.

2.1. Product-Services Product Lines Typology
2.1.1. Extended Products. Figure 2 shows the extended product

concept. The core product is the traditional physical good offered
on the market by a manufacturing company. In general, this core
product completes with a product shell describing the “tangible
packaging” of the product (delivery, installation, and user man-
uals). Supporting services are “intangible” additions to the core
product facilitating or guaranteeing proper product use (main-
tenance plans or mobility warranties). Differentiating services
allow individualizing the extended product and usually relate to
operation services.

Product-
Service PL
Product-

Service PL

Products
& Services

Product Lines

Processes & Methods
(Product-Service PLE & Variability Management)

Product-Service Product Line Strategy
(Product & Service Business Alignment)

Templates

Se
rvi

tiz
ati

on
 of

 Pr
od

uc
ts

Productization of Services

Typology

Services
& Products

Services

Figure 1. Conceptual framework for product-service PLSE

Tangible
Product

Product and
supporting

Services

Product and
differentiating

Services

Product as a
Service

Product+
Service

Product2
Service

Figure 2. Extended product and the servitization process
(Ducq, Chen, and Alix 2012)

2.1.2. Services. To classify product shells, supporting, and
differentiating services, the service typology proposed in our
framework somewhat follows principles from those typically used
in service engineering. Service engineering usually bases classifi-
cations on the responsibility level and risk taken by the manufac-
turer (which follows a linear economic model), and range from
services supporting a product to services supporting customers.
Our framework bases service classification on the lifecycle stage
delivering the service and on the scope of the service. Table 1
shows a partial view of the proposed service typology.

2.1.3. Product-Service Product Lines. As exposed above,
products tend to come with a set of associated supporting and
differentiating services. Service industries, on the other hand, tend
to offer supporting systems (tangible products, such as infra-
structure and platforms) associated with their services. These two
tendencies (respectively known as product servitization and service
productization) converge towards integrated Product Service Sys-
tem (PSS) offers in today’s business world (Baines et al. 2007). We
have adopted this notion in the proposed framework, but we have

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

37

expanded the PSS scope with the Product-Service Product Lines
(PSPL) concept: a family of similar product-service systems.

The objective of a product-service is providing an effective
operational performance to customers. Properly engineering
a PSPL requires considering not only the tangible products plus
the systems supporting their differentiating supporting services
but also the system of operation as part of the whole ecosystem.
This means considering the customer’s organization, procedures,
and stakeholders along with the technological PSPL components.
Consequently, the PSPL consideration scope migrates from
technological concerns to socio-technological concerns including
human factors and organizational aspects.

2.2. Processes and Methods for Product-Service Product Lines
Product Line Systems Engineering (PLSE) broadens the systems

engineering process activity scope with methods and tools from
Product Line Engineering devoted to engineering a family of simi-
lar products exhibiting variations in their characteristics (INCOSE
2019, Chalé and Greugny 2017). This occurs through defining,
using, and managing a shared configurable engineering asset
set leveraging the commonality within the family, and through
systematic and rigorous variation management amongst the family
products using a feature model (Beuche 2008).

For an effective PLSE application to Product-Service Product
Lines, certain enhancements of our traditional PLSE processes and
methods appeared necessary. The next paragraphs present these
enhancements.

2.2.1. Shared Assets and Feature Models. While the product
line shared assets typically associate with the engineering product
lifecycle in published case studies, Product-Service Product Lines
require us to enhance these assets with aspects related to people,
organizational governance, and business. These aspects represent
new variability sources within the Product-Service Product Line,

implying they introduce features differing from those found in
feature-based case studies and raise the need to manage variability
at different but interdependent levels (Figure 3):

■	 Business: commitment types, service level agreement, and
pricing models

■	 Operational processes and governance: linked enterprise
architectures and actors

■	 Means: a contact center based on PABX, Front Office, portal,
or customer relationship management

■	 Technical interfaces and flow types: information, money,
goods, or human resources

■	 People: skills, competencies, and job roles.

In Product-Service Product Lines, an additional feature
modeling goal is supporting the efficient variability management
stemming from contract commitment and from the product-
service itself (including the variability of the enabling systems
of the Product-Service, as explained in the next section). This
facilitates the customer value extraction that can translate into
higher performance and/or into a competitive advantage for the
company.

2.2.2. Service-System Building Blocks. Service-systems
(Service BoK AFIS 2018) are basic constructs possessing the
capabilities and encompassing all the elements needed to ensure
service delivery. A service-system (Figure 4) is a socio-technical
system comprising:

■	 A System of Interest—Typically, a product expected to
provide some service type by satisfying specified performance,
behavioural, and operational needs;

■	 A System of Support enhancing the operational system of
interest capabilities (equipment and systems delivered under
availability or output-based commitments);

■	 A System of Operation enhancing operational capabilities

Studies – Service Engineering
phase

Service Engineering &
In service phases

Service Delivery –
In service phase

•	 Provide Logistic Support Analysis
(LSA)

•	 Perform Reliability, Availability,
Maintainability & Testability
(RAMT) studies

•	 Perform Life Cycle Cost studies

•	 Produce customer
documentation

•	 Provide customer
training

•	 Provisioning

•	 Manage obsolescence
•	 Provide consultancy or technical assistance
•	 Repair equipment or systems
•	 Manage the information security of a system
•	 Provide contact service to customers
•	 Provide online service to customers
•	 Manage spares, consumables & materials
•	 Manage Support & Test Equipment (STE)
•	 Deploy equipment or systems
•	 …

Table 1: Service typology of the Product-Service PLSE Framework

Product-Service

Pricing modelPeople Infrastructure

BusinessService system

Subscription Pay-per-use Availability Mission achievement

CommitmentProcess & organization

Figure 3. Service-Related feature examples for a product-service product line

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

38

to achieve overall operational perfor-
mance for the customers and contribut-
ing to the success of their core missions
(education, training, supply chain
management, fleet management, and
mission preparation).

Whatever their nature, behind any
service there is always a socio-technical
service-system.

To perform efficiently, the different
service-system elements must operate
under the same governance, using com-
mon infrastructures, assets and tools, and
share common core competencies. Figure 5
shows a service-product description from
this holistic perspective. Each element in
this figure can configure and transform us-
ing a selected feature set (like those shown
in Figure 3) which “activates” the required
element variation points (for instance,
including specific skills and competencies
needed to operate the service-system). The
service-system also provides interfaces to
allow interactions across its boundary with
other service-systems.

2.2.3. Composable Product-Services.
The service-systems described above are the
elementary, configurable building blocks
(or cells) to define the product-services
architecture via composition. Configuring
and combining various service-system
building blocks yields different service
capacities (Figure 6). The composed service-
system resulting from combining service-
systems building blocks supports these
service capacities.

Efficiently assembling different ser-
vice-systems demands commonality analysis
of its constituent building blocks. This
analysis aims to optimize using and allocat-
ing means and people across the different
composed service-system building blocks,
as well as the coupling of the building blocks
(the information, money, goods, and human
resource flows they exchange), as advo-
cated in socio-technical practices. In our
approach, the configuration and automation
mechanisms provided by Feature-Based
PLSE effectively control and operate the
optimization of the composed service-sys-
tem. The feature selections to configure the
overall service-system in fact cascade to all
its building blocks, which in turn configure
and transform via internal variation points.
A user-defined ruleset, evaluated when
operating the configuration and automation
mechanisms, guarantees the consistency of
the different transformations. Examples of
these rules include: producing named data
by one unique element or the presence of
only one invoicing system.

These optimization mechanisms also
enable us to guarantee service continuity,
a key challenge in service-products. We

System
of Interest

System
of Support

System
of Operation

System
of Support

System
of Interest

System
of Operation To Operational Performances

System of interest
System of support
System of Operation

To Operational capabilities

From intrinsic
performances
System of interest

System of interest
System of support

Figure 4. A service-system and its three main components (Service BoK AFIS 2018)

Figure 5. Common product-service building block elements

Organisation

Infrastructure
Tools

Assets

Certification
Process

Governance

People

Means

Terms of Ref

Core
Competences

Job Role A
Job Role B
Job Role C Sp

ec
ifi

c S
kil

ls

Standard Service Building Block

Note: All or part of the SBB
may be outsourced to a
subcontract or partner

organisation

System
of Interest

System
of Support

System
of Operation

System
of Support

System
of Interest

System
of Operation

Interfaces

Documentation

Training

Spares

Technical
assistance

IT
Management

Data
Management

Security
Management Supply Chain

Inventory &
Asset Mngt

Repairs

Incident &
Request Mngt

Configuration
Management

Figure 6. A composable service-system and service capacities example
(Service BoK AFIS 2018)

39

obtain this by setting-up the service-system as a dynamic product
line, which simultaneously embeds different actionable prod-
uct-service configurations (different product-service building
blocks compositions). The resulting product-service can then sup-
port multi-modal operation so the product-service can work in dif-
ferent configurations to provide the same service. Means, person-
nel, and functionality dynamically allocate to the service-system
components (either by auto-configuration or via human action)
according to the consistency rules mentioned above.

Service-systems depend largely on an agreed common purpose
for its building blocks to work together towards the collective
objective of providing an expected service set to a customer.
Composed service-systems explicitly address challenges relating
to authority, funding, and leadership, typically arising in sys-
tems-of-systems, through configuring a governance element for
the overall service-system, as depicted in Figure 7.

2.3. Product-Service Product Line Strategy
The highest-level component of the proposed framework

concerns the product and service business alignment to define the
PSPL business strategy within an organization. Those applying
the framework should instantiate this component first as it helps
define the following elements.

2.3.1. PSPL Value, Pricing Models, and Pricing Metrics. One
key aspect to consider when setting up a PSPL is the variability
induced by the business dimension. The service value and its
associated pricing model and pricing metrics are important
elements since they are one of the more perceptible parts of the
overall service experience offered to a customer. An inspiring
example of service value enabled by digital technologies is the
one proposed by the Brazilian advertising agency Mood, who
teamed up with their customer Huggies to improve the customer
experience using 3D printing technology. In this example
(Figure 8), through using new technology, a blind pregnant
woman experienced what so many other women cherish and
enjoy: perceiving the baby to be born for the first time.

A 3D printer used the 3D data from a regular ultrasound scan-
ner to print the results so the future mother could come into con-
tact with her baby. The top of the 3D print even read in Braille “I
am your son.” This product-service has remarkably fully integrated
into the patient’s journey; the patient’s experience measures the
value of the delivered service. In this example, digital technology
really acts as an enabler to enhance the patient’s experience, even

if there is a tangible outcome through the 3D print. The woman
in Figure 8 is not emotionally charged by 3D printing; she is over-
joyed at the experience 3D printing has enabled.

In the current business trend to move towards service-
oriented business models, different possible pricing models and
pricing metrics exist: subscription-based, pay-as-you-go, one-
time upfront fee, deployment option-based, one-time fee for a
preconfigured solution, and value sharing. Amongst the pricing
metrics associated with these pricing models, we can cite the
following examples: Messages or amount of cellular data, feature
set, devices connected to a platform, base annual subscription,
number of users, and property rights (class member).

Pricing models and metrics should entice the customer; they are
a crucial part of a product-service offering. A formative example
of a pricing metric supported by digital technologies is the “pay-
per-laugh” pricing practiced at the Teatre Neu in Barcelona, Spain
(La Réclame 2014). To implement this pricing model, sensors
placed in the back of auditorium seats facing theatregoers detected
smiles and laughs on the faces of every patron. They based the
ticket price paid by a given patron on the number of smiles and
laughs measured during the show for that individual, directly
linking their price paid to their user experience.

2.3.2. Commitment Type. The second dimension of the PSPL
business model is the commitment type between product-service
providers and their customers. Indeed, various commitment
levels can propose different services, such as quotation on
request, warranty, availability, capability, or other outcome-based
commitments. Here again, digital technologies can play a major
role in helping an organization extend the commitment level it
proposes to its customers and enhance its product-services with
innovative features.

2.3.3. Configuring the Product Service Business Strategy.
The service type, the commitment level, the pricing models, and
their associated pricing metrics are all part of the PSPL variability
domain. These elements, formalized as features in the PSPL
feature model, configure a product-service matching a given
customer’s needs.

As in typical feature-based approaches, the PSPL feature model
also reduces the possible number of service, commitment, pricing
model, and pricing metric combinations. This occurs by declaring
the permissible combinations among the features (through
exclusion or inclusion constraints) and by defining standard

Figure 7. Service-System composition element including a
specific governance element

Organisation

Infrastructure
Tools

Assets

Certification
Process

Governance
People

Governance

Means

Terms of Ref

Core
Competences

Job Role A
Job Role B
Job Role C Sp

ec
ifi

c S
kil

ls

Standard Service Building Block

Organisation

Infrastructure
Tools

Assets

Certification
Process

Governance
People

Means

Terms of Ref

Core
Competences

Job Role A
Job Role B
Job Role C Sp

ec
ifi

c S
kil

ls

Standard Service Building Block
Organisation

Infrastructure
Tools

Assets

Certification
Process

Governance
People

Means

Terms of Ref

Organisation

Certification

Process

Terms of Ref

Core
Competences

Job Role A
Job Role B
Job Role C Sp

ec
ifi

c S
kil

ls

Standard Service Building Block

Standard Service Solution

In
te

rfa
ce

s

Interfaces

Interfaces Interfaces

Interfaces

Figure 8. A successful use of digital technologies (Adweek 2015)

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

40

PSPL configurations (pre-defined PSPL configurations including
undecided feature choices). Many organizations transcribe
standard configurations and the constraints among the PSPL
features into a service catalogue. Table 2 shows an example of the
metadata to structure a product-service catalogue. For a given
product-service, a given PSPL configuration would generate the
data to appear in the cells under the three columns in Table 2 (a
set of selected PSPL features).

CONCLUSION
Digitizing the value chain brings new business opportunities

to organizations wishing to adopt a service-oriented approach.
Indeed, digital technologies allow a company to move towards
outcome-based commitments, pricing, and contracts with its
customers. When transforming a product offering into a product-
service offering through digitization, it is nevertheless crucial to
consider this transformation concerns more than a new culture or
using new technology. It requires an alignment with the company
strategy and organization (and not the other way around).
Conducting appropriate change management is necessary to
operate this alignment.

This paper proposed a conceptual framework to define a
high-level strategy to implement a product-service offer in an
organization. Its distinctive aspects include:

■	 The product line of product-services concept itself (Product-
Service Product Line)

■	 The elements defining the PSPL business model (pricing
model, pricing metrics, and commitment types)

■	 A product-services typology
■	 An extension of product line engineering methods for

architecting the PSPL (notably, a specific product-service
building block type to support composable architectures and
a feature model including service-related, socio-technical
features)

The PSPL feature model is a central part of the proposed
approach since it allows configuring different PSPL business
model elements, configuring the composable service-
system service building blocks, and defining standard PSPL

configurations. Configuring the business model elements for
a given product-service is a crucial step. Whilst the proposed
framework does not provide an infallible technique to validate
the business model effectiveness, it does support a “test-fail-and-
learn-fast” approach by providing mechanisms to reconfigure a
new business model that an organisation can test quickly.  ¡

Table 2: Example of a service catalogue meta data

Reference

Name

Reference

Description

Interest (customer point of view) –
Value Proposition

Business Domain

Type of Customer (Internal,
external, both)

Target Customer segment

Link with technological product
functions (if needed)

Quality Management System
Reference

…

Commitment

Service Performance Level

Service hours

SLA

KPI & metrics

Quality of Service

Service Level Monitoring (HUMS)

Risk level

…

Business

Type of price

Acceptance criteria

Cost (internal view)

Price (customer view)

Invoicing type (lump sum / on unit)

Delivery status (under design,
provisioned, closed)

Service provider

Capability Management (potential
dimensioning)

Escalation process

…

REFERENCES
■	 Adweek. 2015. “Huggies Helped This Blind Mom See Her

Pregnancy Ultrasound by 3-D Printing the Baby.” https://www.
adweek.com/creativity/huggies-3-d-printed-fetus-so-blind-mom-
could-see-her-ultrasound-164511/

■	 AFIS. 2013. Systems Product Line Engineering. Toulouse, FR:
Cépaduès.

■	 Baines, T.S., H. Lightfoot, E. Steve, A. Neely, R. Greenough, J.
Peppard, R. Roy, E. Shehab, A. Braganza, A. Tiwari, J. Alcock,
J. Angus, M. Bastl, A. Cousens, P. Irving, M. Johnson, J.
Kingston, H. Lockett, V. Martinez, P. Michele, D. Tranfield,
I. Walton, and H. Wilson. 2007. “State-of-the-Art in Product
Service-Systems.” Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture 221
(10): 15431552. DOI: 10.1243/09544054JEM858.

■	 Beuche, D. 2008. “Modeling and Building Software Product
Lines with Pure: Variants.” Paper presented at the 15th
International Software Product Line Conference, Limerick, IE,
08-12 Sept.

■	 Chalé Góngora, H.G., and F. Greugny. 2017. “Where the
Big Bucks (Will) Come From—Implementing Product Line
Engineering for Railway Rolling Stock.” Paper presented at the
27th Annual International Symposium of INCOSE, Adelaide,
AU, 15-20 July.

■	 Cook, D.P., G. Chon-Huat, and H.C. Chen. 1999. “Service
Typologies: A State-of-the-Art Survey.” International Journal
of Production and Operations Management 8 (3): 318-338.

■	 Ducq, Y., D. Chen, and T. Alix. 2012. “Principles of
Servitization and Definition of an Architecture for Model
Driven Service System Engineering.” Paper presented at
the International IFIP Working Conference on Enterprise
Interoperability, Harbin, CN, 6-7 September.

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

41

■	 INCOSE. 2015. “Definition of Systems of Systems.” In INCOSE
Systems Engineering Handbook: A Guide for System Lifecycle
Processes and Activities, 4th Edition, edited by D. D. Walden,
G. J. Roedler, K. J. Forsber, R. D. Hamelin and T. M. Shortell,
8-10. INCOSE, San Diego, US-CA: Wiley.

■	 ———. 2015. “Application of Systems Engineering for Servic-
es.” In INCOSE Systems Engineering Handbook: A Guide for
System Lifecycle Processes and Activities, 4th Edition, edited
by D. D. Walden, G. J. Roedler, K. J. Forsber, R. D. Hamelin
and T. M. Shortell, 171-175. INCOSE, San Diego, US-CA:
Wiley.

■	 ———. 2019. Feature-based Systems and Software Product
Line Engineering: A Primer. Product Line Engineering
International Working Group. San Diego, US-CA: INCOSE.

■	 Kumar, A., D. S. Lokku, N. R. Zope, and J. K. Reddypogu.
2017. “Value Based Architecture for Digital Product-Service
Systems.” Paper presented at the 27th Annual International
Symposium of INCOSE, Adelaide, AU, 15-20 July.

■	 La Réclame. 2014. “Ne Payez Votre Place de Théâtre Que Si
Vous Riez.” http://lareclame.fr/105885-theatre-pay-per-laugh .

■	 Polaine, A., L. Løvlie, and B. Reason. 2014. Service Design—
From Insight to Implementation. New York, US-NY: Rosenfeld
Media LLC.

REFERENCES  (continued)

■	 Queinnec, G., and Tan. 2018. “Product-as-a-Service Business
Models – Preliminary study.” White Paper, Movin’On Labs.

■	 Service BoK AFIS. 2018. “System Engineering and Service
Engineering.” https://afis.sharepoint.com .

■	 SEBoK. 2019. “Applications of Systems Engineering—Service
Systems Engineering.” https://sebokwiki.org/w/index.php?title=-
Service_Systems_Engineering&oldid=54449 .

■	 Schnürmacher, C., H. Haygazun, and R. Stark. 2015.
“Providing Product-Service-Systems — The long way from a
Product OEM Towards an Original Solution Provider (OSP).”
Paper presented at the Seventh Industrial PSS Conference,
Saint-Etienne, FR, 21-22 May.

■	 Tan, A. R., and T. C. McAloone. 2010. “Service-Oriented
Product Development Strategies: Product-Service-Systems
(PSS) Development.” PhD diss., Technical University of
Denmark (Kongens Lyngby, DK).

■	 Wild, J.P., J. Jupp, W. Kerley, W. Eckert, and P. J. Clarkson.
2007. “Towards a Framework for Profiling of Products
and Services,” Paper presented at the Fifth International
Conference on Manufacturing Research (ICMR), Leicester,
GB, 11-13 September.

ABOUT THE AUTHORS
Hugo Guillermo Chalé Góngora, PhD, CPRE, is the product

line engineering director for the Thales Group. Formerly the
head of requirements engineering, train system functional
architecture, and MBSE for Alstom’s rolling stock division,
he has over 16 years of experience in systems engineering in
the energy, infrastructure, automotive, and railway industries.
His topics of interest include formal methods, architecture
description languages, safety-critical systems, and autonomous
systems. He holds an engineering degree in mechanical-
electrical engineering, an MS in energy conversion and internal
combustion engines, and a PhD on thermal and energy systems.
Guillermo is founder and chair of the PLE International Working
Group of INCOSE.

Pierre-Olivier is head of innovative services and digital
champion services at Thales. He is a modeling expert in costs,
risks, and services. Pierre-Olivier has an Master of Science in
Telecommunication and Networks and a Master of Economics.

Danilo Beuche is CEO at Pure-Systems GmbH and an
honorary professor for information systems at Leipzig University.
His experience is in development of complex (embedded)
systems, object-oriented development, change management,
and requirements management. Danilo’s main focus is support
of product line engineering activities. He has a diploma and a
Doctor of Engineering in computer science.

https://sebokwiki.org/w/index.php?title=Service_Systems_Engineering&oldid=54449
https://sebokwiki.org/w/index.php?title=Service_Systems_Engineering&oldid=54449

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

42

INTRODUCTION

  ABSTRACT
Feature-Based Product Line Engineering (PLE) is a well-known approach for efficiently engineering product lines, which numer-
ous case studies have shown to yield substantial benefits in cost, quality, and time to market. This article presents an approach for
a necessary ingredient of successful PLE: Handling the temporal dimension, which is concerned with managing artifacts as they
change and evolve. The approach relies on a foundation of proven traditional change control techniques but shows how they apply
in the context of Feature-Based PLE.

Key Issues of
Organizational Structure
and Processes with
Feature-based Product
Line Engineering

William J. Bolander, william.bolander@methodpark.de; and Paul C. Clements, pclements@biglever.com
Copyright © 2020 by William J. Bolander and Paul C. Clements. Permission granted to INCOSE to publish and use.

Product Line Engineering (PLE)
has long been known for deliver-
ing significant improvements in
time to market, quality, and cost

of systems. Feature-based Product Line
Engineering is a well-defined, repeatable,
automation-centric PLE specialization that
is now delivering even greater improve-
ments throughout the most challenging
engineering industries (INCOSE 2019).
Feature-Based PLE centers around the
factory metaphor. In a PLE factory, a con-
figurator operates on shared asset supersets
containing variation points to produce
instances of those assets corresponding to a
product (a product line member) described
by a bill-of-features, which is a selection set
made from a feature catalog.

That now-familiar narrative and its
illustrating diagram (Figure 1) cover an
up-and-running Feature-based PLE factory
workflow. This workflow is important to
convey how Feature-Based PLE works,

so we can understand how it differs from
earlier PLE forms and, for that matter, from
system and software development forms
that do not employ PLE principles at all.

But an organization intent on setting up
one or more PLE factories so they can reap
the benefits for their product line or prod-
uct lines needs a different viewpoint—one

Figure 1. The Feature-Based PLE factory

mailto:william.bolander@methodpark.de
mailto:pclements@biglever.com

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

43

focusing on the people involved and what
they do to keep the factory operational
on a day-to-day basis. In other words, the
organization needs to know the roles and
processes to add to the workflow.

Through many PLE applications in com-
plex systems development, we have learned
the needed organizational structures and
the required roles to enable a successful
transformation. This article describes an
organizational structure for Feature-Based
PLE based on the factory concept. It intro-
duces the few roles that have no analog in
other development disciplines; they are new
to Feature-Based PLE. It also describes how
traditional systems engineering roles carry
out traditional systems engineering tasks,
but with slight PLE-inspired extensions.
Finally, we will explain why these changes
are necessary.

WHY MUST THE ORGANIZATIONAL
STRUCTURE CHANGE?

Organizations adopting Feature-Based
PLE often start from an organizational
structure focusing on products rather than
the product line. At the extreme, this entails
one separately staffed project for each
product in the product line. Each project
executes the entire system engineering
process to produce their product. The chief
engineer for the product controls exactly
what features and changes the product
takes on without considering the others.
When one product team finds an error, it is
fairly easy for them to find the source and
fix it; the other teams may not even know
whether that defect is in their products.

In this setting, suppose a change request
comes to the organization from a customer
(or customer base segment). It might be
a request to fix a defect, or a request for a
new feature some (if not all) of the products
need, or a request for an improvement.
Every project affected by the change request
will carry out the work on their respective
products. Even if each team does the work
as efficiently as humanly possible, as soon
as we take a product line (not just a single
product) perspective it becomes apparent
the organization overall is not very efficient
at all.

Feature-based PLE relegates this
duplicative work to automation—the PLE
factory configurator. All work happens
inside the PLE factory—to the shared
assets, the feature catalog, or the bills-of-
features. Thus, no piece of work can occur
more than once.

WHAT ORGANIZATIONAL STRUCTURE DOES
FEATURE-BASED PLE NEED?

From the roles and responsibilities
perspective, moving to Feature-Based PLE
primarily means staffing the PLE factory

with the engineering resources formerly
allocated to individual product teams.

Figure 2 shows the organizational struc-
ture for a Feature-Based PLE factory. Any
traditionally organized systems engineering
project contains most of the roles shown:

■	 PLE Factory Management: A key
insight in understanding Feature-Based
PLE is the PLE factory is analogous
to an engineering development
project in a traditional (non-PLE)
engineering context. Rather than
engineering and developing a product,
however, the goal is engineering and
developing an automated capability to
develop products. Where a traditional
engineering project would result in an
engineering artifact set supporting and
reifying a system, the Feature-Based
PLE Factory project results in shared
asset superset, a feature catalog, and a
set of bills-of-features that support and
reify all the products in the product
line. To re-state the point succinctly: In
Feature-Based PLE, the PLE factory is a
project. This project needs management
support, oversight, and governance,
just like any other. PLE Factory
Management is responsible for ensuring
the factory works on schedule and
within budget, employs trained people
in the right roles, and delivers high-
quality results to its clients.

■	 PLE Factory Strategy Authority and
PLE Change Control Authority: These
are the governance bodies for PLE
factory change management. Change
requests can originate from any role
in the organization. Typically, they
originate from a product manager
or product lead engineer, satisfying
a customer need. They could also
originate from business leadership (not

shown in Figure 2) responding to a
technology or product roadmap setting
the PLE factory’s over-arching direction
for the future. Change requests causing
the factory to do something new or
different than what it currently does
arrive at the PLE factory strategy
authority. Change requests causing the
factory to do what it currently does—a
request to fix a defect—arrive at the
PLE factory change control authority,
which adjudicates the change and
parcels it out to the affected individual
roles for enactment.

■	 Lead Engineers: Various disciplines
ensure the solution is technically sound.

■	 PLE Factory Shared Asset Engineers:
Responsible for the project’s specific
engineering artifacts (requirements,
code, tests, documents, models, parts
lists, and so forth) just as they would
be in a traditional project. Except here,
the artifacts are supersets with feature-
based variation points.

■	 Product Managers and Product
Lead Engineers: Responsible, on the
Product Instantiation side of Figure
2, to individual customers, and serve
as the go-between (programmatic
and technical, respectively) between
a customer and the PLE factory. They
are responsible for delivering feedback
to the development organization, and
for delivering solutions built by the
organization to the customer.

This means people who learned these
roles in a traditional engineering environ-
ment can be effective in a Feature-Based
PLE environment with little or no addition-
al training.

In Figure 2, the new roles Feature-Based
PLE adds are across the middle of the PLE
factory side.

Figure 2. Roles in the Feature-Based PLE factory

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

44

■	 Feature-Based PLE may represent sys-
tems of systems products as a product
line of product lines. The Production
Line Architect is responsible for de-
signing this structure.

■	 The Feature Catalog Owner is
responsible for a PLE factory’s overall
feature catalog content, fidelity, and
quality. In Feature-Based PLE, a feature
catalog may decompose into separate
pieces; the feature catalog owner crafts
standards and style guides to ensure
the feature catalog style and content
overall is consistent, any features are
appropriately modelled and clearly
explained, and represent useful
differentiation abstractions not heavily
tilted towards one particular shared
asset type.

■	 Feature Catalog Engineers create and
evolve the feature models for individual
product line areas.

■	 A Bill-of-Features Owner is responsi-
ble for the feature-based description of
a product in the product line

WHAT ARE THE KEY PROCESSES ISSUES FOR
FEATURE-BASED PLE?

The organizational structure for
Feature-Based PLE exists to facilitate
the organization members executing the
Feature-Based PLE processes. We describe
some key process issues associated with
Feature-Based PLE below.

Dealing with Product-Unique Content
If a product has unique functionality

no other product requires, some organi-
zations trying to practice PLE principles
might let the product team for the affected
product provide that unique functionality.
However, our experience has shown the
factory should provide all functionality
and not delegate it to the team for the
individual product needing it. The product
can select it by choosing it as a feature in
its bill-of-features. All other products can
leave it unselected in their respective bills-
of-features unless they also desire it, since
it is now available as a feature across the
product line.

If product teams can create their own
content, it is extremely likely product teams
will independently create redundant but
different solutions to the same problems,
which is exactly the situation PLE tries to
avoid. This redundancy is also a signal that,
whereas product teams may think they have
special content, a good idea in one product
is often a good idea for other products as
well. When recognizing redundancy after
the fact, agreement to move to a common
solution is nearly impossible. There are all
kinds of good reasons. The product may
already have validated the solution. There

would be an additional risk to the program
by making a change to the common
solution. It may even be too late—the
product is near or already in production.
Allowing this to happen is to step on the
slippery slope back to product silos, and the
death knell for the product line.

Defects Found by a Product Team
A key Feature-Based PLE tenet is when a

defect is found, it is fixed inside the factory,
not in the product discovering it. That way,
every product benefits from the defect fix,
even those who may not yet have discov-
ered the defect. Fixing it inside the factory
means the shared assets change, not the
product-specific instances.

Unless the defect fix occurs inside the
factory, the product teams will develop
redundant but different solutions, and once
validated or even shown to customers,
convergence back to a common solution is
nearly impossible. In any case, when one
product team finds an issue, it is likely the
defect also lurks in another product.

We don’t want the inefficiency of
multiple product teams making the same
changes to engineering assets. Rather, we
want the PLE factory to fix the defects once,
in the shared PLE assets, and to propagate
the changes everywhere.

Work Performed by the Product Tea
Whereas Product Teams are no longer

responsible for development under the
Feature-Based PLE paradigm, they still play
a vital role, including:

■	 The product team works with the bill-
of-features owner for the product, to
make and capture the correct selections
for all the features made available in the
feature catalog.

■	 The product team will verify and
validate the product produced by the
PLE factory for their application.

■	 The product team will calibrate or tune
the product to meet their customer’s
requirements, oversee delivery and
deployment, and gather customer
feedback.

PLE and Agile
The PLE factory is a project view

described in the section on PLE factory
management enabling Feature-Based PLE
and agile to work seamlessly together. The
core concept is to treat the PLE factory
development and operation as a “project”
managed using Agile (Gregg et al. 2020).
In the Scaled Agile Framework (SAFe)—
an Agile methodology for large projects
(Scaled Agile Inc. 2020) — a value stream is
the activity set undertaken to deliver value
to a customer. Developing and operating
the PLE factory is exactly that—it is

developing the capability to deliver value to
the customer. So, a program’s value streams
should align to its PLE factories (a program
may have more than one). An agile release
train receiving its work assignments from
the PLE factory strategy authority can plan
and coordinate the work in a PLE factory.
In short, PLE factories can optimize using
agile practices, thus achieving the best of
both worlds.

WHAT TRANSITION ISSUES MUST WE
CONSIDER?

Overall, our advice is: Be careful not to
underestimate the cultural shift. PLE is a
big transformation. The organization must
move from absolute product team control
to joint product team decisions. This trans-
formation may require changes to product
team management incentivization.

Incremental Transition is Key
Incremental, not big-bang, transition is

the recommended approach for moving
your organization to the preferred
Feature-Based PLE structure (Gregg et al.
2020). “Incremental” may mean moving
some, but not all, product line members
under the PLE umbrella immediately
and moving the rest over time. It might
mean initially converting some, but not
all, of your engineering artifacts to shared
asset supersets with variation points and
converting the rest over time. It might
mean using a PLE factory to produce
certain subsystems of your products
initially and adding the remaining
subsystems over time. Or it might mean a
combination of these options. In any case,
your PLE Factory will require a feature
catalog (and a feature catalog owner), and
bills-of-features to define the products
(or the subsystems) the PLE factory will
produce. As the PLE factory gains traction
and capability, move people away from
their work supporting individual products
and into the PLE factory, where their work
shifts to the entire product line. Each
incremental step in growing the factory can
bring more people in until the individual
products’ development resources have
migrated into the PLE factory.

Importance of Adopting the Organizational
Structure Right Away

Some organizations might allow people
to remain attached to project teams, but
tell them their work should support the
entire product line. This, in our experience,
usually does not work and organizations
should avoid it. Here is what an experience
report from one of the most successful
Feature-Based PLE applications on record
says in that regard (emphasis added):

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

45

“[We] first tried to instill the product
line approach throughout the… program
by senior management fiat. Despite
sincere management intent, including a
number of intense meetings in which the
technical leaders were asked one by one
to say how they were going to support
the product line approach, the paradigm
shift was never completely fulfilled.
People doing the day-to-day work were
allowed to drift back into configura-
tion-centric activities and mindsets. It
was only after re-organizations occurred
that re-structured the customer-specific
teams (replacing them with smaller, leaner
product delivery teams) and moved the
resources into product-line-wide shared
asset groups did the transition finally find
traction. [We] did a good job launching
the product line, but the institutional-
izing was not fully successful until after
reorganization. This manifested itself
during a delivery cycle for one of the
[products] in which work was done
under the new approach but under the
old organizational structure. The deliv-
ery was eventually successful, but not
without an alarming amount of re-work”
(Gregg et al. 2014).

Lead Engineer and Product Team Buy-in
Buy-in for the PLE transformation by the

lead engineers and product team leadership
is key. These stakeholders need to under-
stand the benefits to the company, and their
customers, for the PLE factory to balance
work for the company’s different products.
They must help manage what work the
factory does for them based, not just on their
own product’s needs, but all the company’s
products. Everyone naturally wants what is
best for them; it can be very difficult to give
up something you want so a higher priority or
higher revenue generator gets what they need.

The Power of the Purse
Resource allocation can play a large role

in staffing product teams so they behave
as desired. If the product teams have the
capability to design and create unique solu-
tions, they will! Therefore, the PLE factory
resources must increase, while the product
team’s resources need to shrink to be the
right size to perform only what they are
responsible for. In one PLE adoption effort,
a product team undertook some develop-
ment work the PLE factory should have
handled. The PLE manager “rewarded” the
product team by moving one of their pro-
grammers from the product team into the
PLE factory. It sent a powerful message.

Apply a Three-Tiered Adoption Strategy
We find three organization parts must

engage to ensure successful adoption. An
adoption strategy neglecting one or more
of them is likely to fail. These so-called
organizational tiers employ people who
have different skillsets, motivations, orga-
nizational responsibilities, and therefore
different perspectives when it comes to
adopting a new methodology. Recognizing
and addressing these three tiers is the first
successful adoption strategy ingredient
(Gregg et al. 2020). Figure 3 illustrates the
three tiers.

The base technology tier places and
maintains the tool and technology envi-
ronment to operate the PLE factory. This
tier is about installing tools and making
them work together: The PLE factory
configurator (such as BigLever’s Gears),
engineering tools with which the configu-
rator integrates, CM tools, workflow tools,
and whatever other tools are part of the
organization’s tool ecosystem needed to
take products through their entire lifecycle.
The tools must work together and perform
well in the organization’s IT and network

environments, and users must have access
to them. Think of this as the fully function-
al factory (in the conventional manufactur-
ing sense) but without any people inside to
run the machines.

The middle technical organization
management tier focuses on the people,
roles, and processes operating the PLE
factory, and it contains the roles described
in Figure 2. In combination with the
technology layer, this layer provides a fully
operational Feature-Based PLE factory
producing the product asset instances for
all products in a product line portfolio. To
continue the analogy, this tier is about the
people who walk into the technology tier’s
factory, trained and ready to operate the
machines.

The top business organization man-
agement tier focuses on the people, roles,
and processes using and leveraging the
Feature-Based PLE factory to achieve the
enterprise’s business objectives. But it also
focuses on the required processes for enter-
prise leadership to establish the PLE facto-
ry, oversee the adoption, remove obstacles
to organizational change, and provide
the necessary support for the PLE factory
during its operation. Using the analogy to a
conventional factory, the business organi-
zation tier provides guidance and support
for the executive leadership. Think of this
group as working in the office high-rise
overlooking the factory.

All tiers aim to develop, operate, and
maintain a PLE factory to build and deliver
products.

The obvious tendency with a transition
to Feature-Based PLE practice is to think
bottom-up. That is, begin with the tech-
nology tier, and then start on the middle
technical organization management tier,
in sequence, after fully establishing the
technology.

While this transition style is tempting,
we have found it is more effective to
address the tiers incrementally and in
parallel. Imagine the incremental transition
effort growing from left-to-right rather
than bottom-up. Initially, the technology
tier is incrementally addressed. Once
it establishes sufficient capability, then
activities can begin in the middle tier.
The top tier activities can commence
immediately, motivating and driving
activities in the other two tiers.

SUMMARY
Feature-Based PLE is producing

unprecedented improvements in
engineering productivity, product cost
and quality, and return on investment.
Compared to other engineering disciplines,
it requires more collaboration and

Technology
Tier

Technical
Organization

Tier

Business
Organization

Tier

Figure 3. Three Tiers of a Feature-Based PLE Organization

SP
ECIA

L
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

46

organizational support to be effective.
This article highlighted the organizational
structure, key processes, and important
transition issues associated with Feature-
Based PLE. It may seem like these issues,
taken together, present a barrier to entry.
However, this article has aimed to show no
issues present an insurmountable challenge.
On the contrary, there is a plethora of
practical experience codified and formulated
that can allow any organization to deal with
these issues quickly and effectively.  ¡

REFERENCES

■	 Gregg, S., D. Hartley, M. McAfee, R. Pitz, J. Teaff, and P. Clements. 2020. “Patterns
for Success in the Adoption and Execution of Feature-Based Product Line
Engineering: A Report from Practitioners.” Paper presented at the 30th Annual
International Symposium of INCOSE, virtual event, 20-22 July.

■	 Gregg, S., R. Scharadin, and P. Clements. 2016. “The Best of Both Worlds: Agile
Development Meets Product Line Engineering at Lockheed Martin.” Paper
presented at the 26th Annual International Symposium of INCSOE, Edinburgh,
GB-SC, 18-21 July.

■	 Gregg, S., R. Scharadin, E. LeGore, and P. Clements. 2014. “Lessons from AEGIS:
Organizational and Governance Aspects of a Major Product Line in a Multi-Pro-
gram Environment.” Paper present at the 18th International Software Product Line
Conference, Florence, IT, 15-19 September.

■	 International Council on Systems Engineering (INCOSE). 2019. “Feature-based
Systems and Software Product Line Engineering: A Primer.” Technical Product IN-
COSE. https://connect.incose.org/Pages/Product-Details.aspx?ProductCode=PLE_Prim-
er_2019 .

■	 Scaled Agile Inc. 2020 “SAFe 5 for Lean Enterprises.” https://www.scaledagileframe-
work.com

ABOUT THE AUTHORS
William Bolander is a principal consultant at Method Park America where, for

the last 3 years, he has focused on engineering process improvement and Automotive
SPICE. Before this, Bill spent 5 years as the Global Automotive Solution Executive
with IBM’s Rational team, where he strove to help the industry adopt smarter product
development tools and processes. Prior to IBM, Bill spent 32 years at General Motors.
This started at Saturn Powertrain, being part of the team that developed Saturn’s engine
control system. Bill then transferred to GM Powertrain to manage the Algorithm
Development Group. In 2000, Bill was promoted to GM Technical Fellow responsible
for GM Powertrains Global Control Engineering Processes. In this role, he led the
Controls Engineering Process Group responsible for process improvement activi-
ties, including Product Line Engineering and CMMi. In 2009, Bill’s role expanded to
include all of GM’s Electrical, Controls and Software development, for both Powertrain
and Vehicle Product Development. Bill holds 16 US patents for automotive related
innovations, including traction control system, coolant loss protection, clutch to clutch
transmissions and several in the field of combustion knock control. Bill’s contributions
to GM’s technology have earned him four “Boss” Kettering Awards, this award is GM’s
highest recognition for engineering invention. Bill was the first winner of the $500,000,
Lemelson-MIT Prize, the USA’s largest single prize for invention and innovation.

Paul Clements is the vice president of Customer Success at BigLever Software,
Inc., where he works to help organizations adopt feature-based systems and software
product line engineering. Prior to this, he was a senior member of the technical staff
at Carnegie Mellon University’s Software Engineering Institute, where for 17 years he
worked leading or co-leading projects in software product line engineering and soft-
ware architecture documentation and analysis. Prior to the SEI, Paul was a computer
scientist with the US Naval Research Laboratory in Washington, DC. Paul has both a
BS and MS in computer science from the University of North Carolina at Chapel Hill
and a PhD in computer science from the University of Texas at Austin.

SMC

16th Annual System of Systems Engineering Conference
Conference theme: Autonomous Cyber-Physical Systems of Systems

June 14-18, 2021, Online from Västerås, Sweden

Highlights
IEEE System, Man, and Cybernetics Society (SMC),
in cooperation with the International Council on
Systems Engineering (INCOSE), is organizing the
16th International Conference on System of
Systems Engineering (SoSE) to be held online, June
14-18 2021.

Systems of systems have vast ramifications in
numerous engineering fields such as control,
computing, communication, information
technology and in applications such as
manufacturing, defense, national security,
aerospace, aeronautics, energy, environment,
healthcare, and transportation. Papers on theories,
methodologies, and applications of System of
Systems Engineering in science, technology,
industry, and education are welcome.

Papers should be five to six pages in length, in
standard two-column IEEE Conference Proceedings
format. Detailed instructions for paper submission
and format can be found on the conference web
site.

Invitations will be made to the authors of the best
papers to submit an extended version of papers to
IEEE Systems Journal and Journal of Enterprise
Transformation.

Key dates for submissions
Special session proposals: Nov. 29, 2020
Notification of special session: Dec. 13, 2020
Technical papers & panels: Feb. 14, 2021
Notification, papers & panels: March 21 , 2021
Final manuscript: April 18, 2021

Organizers
General Chair
Jakob Axelsson, Mälardalen University and RISE
Founding Chair
Mo Jamshidi, University of Texas San Antonio
Program Chairs
Martin Törngren, KTH, Sweden
Gerrit Muller, University of South-East Norway
Local Chair
Malin Rosqvist, RISE and Mälardalen University
Industry Liaison
Erik Herzog, Saab and INCOSE Sweden
Publication Chair
Patrick Benavidez, Univ. of Texas San Antonio
INCOSE and US industry liaison
Garry Roedler, INCOSE

Contact
For general and technical program inquiries
about the conference, please contact the
conference General Chair, Jakob Axelsson
(jakob.axelsson@mdh.se).

Academic sponsors Technical co-sponsors

®

http://sosengineering.org/

 INCOSE Newsletter 2021 Q1 10

The Premier International Systems Engineering Conference
Accelerating through Adversity

6 Days, 5 Tracks, 4 Keynotes, 95+ Presentations, Panels, Tutorials and More!

Lots of possibilities to interact with systems engineering communities

RELATIONSHIPS
Develop sustainable business
relationships

1 VISIBILITY
Unique brand of recognition
and visibility for your organization

2 PRACTICE
Access to the latest thinking relevant
to the practice of Systems Engineering

3 SPOTLIGHT
Put a spotlight on your organization’s
competency in Systems Engineering

4 ASSOCIATION
Be associated with the highest culture
of professionalism and innovation

5 SUPPORT
Demonstrate organizational support
to INCOSE’s mission 6

4 Inspiring Keynote Speakers

95 + Papers, Presentations on Systems Engineering
Monday - Thursday

19 Countries Represented
Australia, Austria, Canada, Colombia, France, Germany, India, Israel, Italy, Japan, Lithuania, Netherlands, New Zealand, Norway, Saudi Arabia,
South Africa, Sweden, Turkey, United Kingdom, United States

24 Application Domains
Top Domains
Defense, Enterprise SE, Aerospace, Academia, Automotive, Social/Sociotechnical and Economic Systems, Industry 4.0 & Society 5.0,
Biomed/Healthcare/Social Services, Infrastructure, Oil and Gas

39 Topics Represented
Top Topics
System Architecture/Design Definition, MBSE, Systems Thinking, Needs and Requirements Definition, Modeling/Simulation/Analysis, Processes,
Systems of Systems, Resilience, decision Analysis and/or Decision Management, Complexity, Product Line Engineering, Project Planning, Project
Assessment, and/or Project Control, Technical Leadership, Verification/Validation, System Security, Measurement and Metrics, Artificial
Intelligence, Machine Learning

11 Panels
Including Topics Like These Discussed With Global Leaders in Systems Engineering, Academia, Defense, Industry 4.0 & Society 5.0, Enterprise
SE, Aerospace

12 Tutorials
Including Topics Like These Discussed With Global Leaders in Systems Engineering, Enterprise SE, Defense, Aerospace, Automotive,
Biomed/Healthcare/Social Services, Industry 4.0 & Society 5.0

more information at www.incose.org/symp2021

Virtual Event
July 17 to 22, 2021

Annual INCOSE
international symposium31st

Preliminary Technical Program

SPONSOR INCOSE IS 2021!

	Front Cover–Volume 24 Issue 1
	Systems Engineering: Call for Papers
	Inside this issue
	About This Publication
	From the Editor-In-Chief
	Special Feature
	It’s About Time: Temporal Management in Feature-Based Product Line Engineering
	Product Line Re-Engineering for Modularity in a US Department of Defense Project
	Funding the PLE Factory in a Multi-Customer Contract-Based PLE Organization
	Development of a Hybrid Product Breakdown Structure and Variability Model
	The Convergence of Struggles! Reusability Assessment of Inner-Source Components for Product Lines
	Product Line Engineering for Digital Product-Services
	Key Issues of Organizational Structure and Processes with Feature-based Product Line Engineering

	16th Annual System of Systems Eng Conf
	31st Annual INCOSE Int'l Symposium

