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source of multidisciplinary information for the systems engineer-
ing and management of products and services, and processes of 
all types. Systems engi neering activities involve the technologies 

and system management approaches needed for
• definition of systems, including identi fication of user 

requirements and technological specifications;
• development of systems, including concep tual architectures, 

tradeoff of design concepts, configuration management during 
system development, integration of new systems with legacy 
systems, inte grated product and process development; and

• deployment of systems, including opera tional test and 
evaluation, maintenance over an extended life cycle, and 
re-engineering.

Systems Engineering is the archival journal of, and exists to serve the 
following objectives of, the International Council on Systems Engineer-
ing (INCOSE):

• To provide a focal point for dissemination of systems 
engineering knowledge

• To promote collaboration in systems engineering education 
and research

• To encourage and assure establishment of professional 
standards for integrity in the practice of systems engineering

• To improve the professional status of all those engaged in the 
practice of systems engineering

• To encourage governmental and industrial support for research 
and educational programs that will improve the systems 
engineering process and its practice

The journal supports these goals by provi ding a continuing, respected 
publication of peer-reviewed results from research and development in 
the area of systems engineering. Systems engineering is defined broadly 
in this context as an interdisciplinary approach and means to enable the 
realization of succes s ful systems that are of high quality, cost-effective, 
and trust worthy in meeting customer requirements.

The Systems Engineering journal is dedi cated to all aspects of the 
engineering of systems: technical, management, economic, and social. 
It focuses on the life cycle processes needed to create trustworthy and 
high-quality systems. It will also emphasize the systems management 
efforts needed to define, develop, and deploy trustworthy and high 
quality processes for the production of systems. Within this, Systems 
Engineer ing is especially con cerned with evaluation of the efficiency and 
effectiveness of systems management, technical direction, and integra-
tion of systems. Systems Engi neering is also very concerned with the 
engineering of systems that support sustainable development. Modern 
systems, including both products and services, are often very knowl-
edge-intensive, and are found in both the public and private sectors. 
The journal emphasizes strate gic and program management of these, 
and the infor mation and knowledge base for knowledge princi ples, 
knowledge practices, and knowledge perspectives for the engineering of 

systems. Definitive case studies involving systems engineering practice 
are especially welcome.

The journal is a primary source of infor mation for the systems engineer-
ing of products and services that are generally large in scale, scope, 
and complexity. Systems Engineering will be especially concerned with 
process- or product-line–related efforts needed to produce products that 
are trustworthy and of high quality, and that are cost effective in meeting 
user needs. A major component of this is system cost and operational 
effectiveness determination, and the development of processes that 
ensure that products are cost effective. This requires the integration of a 
number of engi neering disciplines necessary for the definition, devel-
opment, and deployment of complex systems. It also requires attention 
to the life cycle process used to produce systems, and the integration 
of systems, including legacy systems, at various architectural levels. 
In addition, appropriate systems management of information and 
knowledge across technologies, organi zations, and environments is also 
needed to insure a sustainable world.

The journal will accept and review sub missions in English from any 
author, in any global locality, whether or not the author is an INCOSE 
member. A body of international peers will review all submissions, and 
the reviewers will suggest potential revisions to the author, with the intent 
to achieve published papers that

• relate to the field of systems engineering;
• represent new, previously unpublished work;
• advance the state of knowledge of the field; and
• conform to a high standard of scholarly presentation.

Editorial selection of works for publication will be made based on con-
tent, without regard to the stature of the authors. Selections will include 
a wide variety of international works, recognizing and supporting the 
essential breadth and universality of the field. Final selection of papers 
for publication, and the form of publication, shall rest with the editor.
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hard-copy manuscript.

Systems Engineering operates an online submission and peer review 
system that allows authors to submit articles online and track their 
progress, throughout the peer-review process, via a web interface. 
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attachments will not be reviewed or acknowledged.
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William Miller, insight@incose.net

FROM THE 
EDITOR-IN-CHIEF

It is our pleasure to announce the April 
2021 INSIGHT issue published coop-
eratively with John Wiley & Sons as 
the systems engineering practitioners’ 

magazine. The INSIGHT mission is provid-
ing informative articles on advancing the 
systems engineering practice and to close 
the gap between practice and the state of 
the art as advanced by Systems Engineering, 
the Journal of INCOSE also published by 
Wiley. The issue theme is product line engi-
neering in context. We thank theme editor 
Drew Stovall, the Product Line Engineering 
International Working Group, and the 
authors for their contributions.

Your editor appreciates the author contri-
butions from professional experience in the 
early 1980s transformation from analog to 
digital telephone systems. I had a rota-
tional assignment in the early 1980s from 
Bell Labs to be the product manager for 
on-premises digital telephone system ad-
junct (feature) processors. This was the first 
commercial Unix operating system use. The 
growth of the installed base, each unique 
configuration, with churn in circuit pack 
upgrades, software versioning, enabled fea-
tures, along with customer-driven feature 
enhancements and new features over the 
adjunct processor platform architecture 
lifecycle was truly mind-boggling.

Paul Clements begins with “Temporal 
Management in Feature-Based Product 
Line Engineering.” Clements presents an ap-
proach for handling the temporal dimension 
of product line engineering (PLE) — man-
aging artifacts as they change and evolve. 
The approach relies on a proven traditional 
change control technique foundation but 
shows how they apply in the feature-based 
product line engineering context.

John Wood and Glenn Tolentino address 
“Product Line Re-Engineering for Mod-
ularity in a US Department of Defense 
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Project.” Their case study details the options 
evaluated and the path chosen by a software 
development organization to re-engineer 
four existing products with common 
features into a single product-line result-
ing in product sponsors taking advantage 
of cost savings, developers shortening 
implementation and testing timeframes, 
and users obtaining product features faster 
while sharing a common experience across 
product variants. Although they originally 
envisioned the software-intensive products 
to be a product line operating from a com-
mon code repository, they diverged due to 
different product sponsors having differing 
priorities and schedule commitments. The 
evaluated re-engineering options included 
merging common code and maintaining 
it in a single repository, re-using software 
code while keeping it in separate reposito-
ries for each product variant, and pursuing 
a modular open systems approach (MOSA) 
to create common modules that could 
insert, update, replace, and so forth within 
any product variant without disrupting the 
remaining product.

Clements next addresses “Funding the 
PLE Factory in a Multi-Customer Contract-
Based PLE Organization.” Feature-Based 
product line engineering employs the PLE 
factory concept, in which all development 
occurs for any products in a product 
line. Automatically configuring shared 
assets based on the feature choices for a 
product produces individual products. 
A product line organization’s personnel 
need to carry out tasks associated with 
creating, developing, delivering, and 
evolving products in its product line. Any 
organization employing this paradigm in 
a contract-based (as opposed to a mass 
market) context must answer the question: 
who pays for the work going on inside the 
factory that may benefit multiple contracts? 

The answer can be surprisingly complex, 
involving security, regulatory compliance, 
and intellectual property protection issues of 
both the PLE organization and its customers. 
This report offers a method for answering 
“Who pays for the activities in the PLE 
Factory?” Answering this question means 
establishing processes culminating with 
creating charge numbers to which everyone 
working in the PLE Factory can charge their 
effort. These processes must connect the 
funding supply to the funding consumption 
in a fair and equitable way that complies 
with applicable rules and regulations.

Evan Helmeid addresses “Development 
of a Hybrid Product Breakdown Structure 
and Variability Model.” Transforming from 
a project-based engineering approach to a 
product line engineering approach requires 
supporting the engineering teams through-
out the transition with evolving tools and 
methodologies. However, a traditional 
product breakdown structure (PBS) format 
provides insufficient detail and structure. 
The author developed a hybrid PBS-varia-
bility model (VM) using standard desktop 
software, combining the familiar PBS struc-
ture with variability modeling aspects based 
on feature modeling and decision modeling 
approaches, resulting in an engineering 
artifact recognizable as a PBS and easy to 
adapt to design evolution, yet sufficiently 
expansive to characterize initial variability.

Thomas Froment and Guillaume Angier 
de Loheac take on “The Convergence of 
Struggles! Reusability Assessment of In-
ner-Source Components for Product Lines.” 
Inner source establishes open source-like 
collaborations within an organization. 
Product line engineering is the approach 
for engineering a related product portfolio 
in an efficient manner, taking advantage of 
products’ similarities while managing their 

>  continued on page 11
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INTRODUCTION

  ABSTRACT
Feature-based product line engineering employs the PLE factory concept in which all development occurs for any product line 
product. Any organization employing this paradigm in a contract-based (as opposed to a mass market) context must answer 
the question: Who pays for the work inside the factory that may benefit multiple contracts? The answer can be surprisingly 
complex, involving security, regulatory compliance, and intellectual property protection issues of both the PLE organization and 
its customers. This article offers a method for answering this question by establishing processes to create charge numbers to which 
everyone working in the PLE factory can charge their effort. These processes must connect the funding supply to the funding 
consumption in a way that is fair, equitable, and compliant with applicable rules and regulations.

It’s About Time: Temporal 
Management in Feature-
Based Product Line 
Engineering

Paul Clements, pclements@biglever.com
Copyright © 2020 by BigLever Software Inc. Permission granted to INCOSE to publish and use.

Feature-Based Product Line Engi
neering (PLE) is a well-known 
approach for efficiently engineering 
product lines, which numerous 

case studies have shown to yield substantial 
benefits in cost, quality, and time to market. 
The technical approach centers around the 
factory concept, configuring shared assets 
to support any product line member based 
on a product description in terms of its fea-
tures. However, we need another ingredient 
to this narrative before we can apply it in 
day-to-day operational practice: managing 
change and evolution. This article presents 
an approach for handling the product line 
engineering temporal dimension—manag-
ing artifacts as they change and evolve. The 
approach relies on a foundation of proven 
traditional change control techniques but 
shows how they apply in the context of 
Feature-Based PLE.

Feature-Based PLE Overview
A product line includes various engi-

neering assets, such as system or software 

requirements, design documentation, 
software source code, test cases and proce-
dures, and more, that play a role in product 
creation, deployment, and sustainment. 

The product line shares these engineering 
assets. These shared assets are supersets, 
meaning they contain any content needed 
to support any product. The configurator is 

Figure 1. The Feature-Based PLE factory configuring PLE shared asset supersets into 
product-specific instances according to a product’s bill-of-features
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a commercial software tool, such as Gears, 
producing product-specific instances by 
actuating a product—exercising variation 
points in the supersets according to the 
feature choices for that product.

Figure 1 shows the shared asset supersets 
in the bottom left “V.”. Gear symbols denote 
variation points defined in feature terms in 
the product line’s feature catalog. A bill-of-
features describes the particular product’s 
feature choices, which the configurator 
uses to produce product-specific shared 
asset instances. In Figure 1, the PLE factory 
comprises everything left of the product 
subsets.

In the Feature-Based PLE world, the 
factory naturally evolves over time—the 
shared asset supersets change, the fea-
ture catalog changes, the bills-of-features 
change all in response to changing needs 
of the customers or market. To change the 
product instances, a development team 
first changes the factory and then uses the 
configurator to produce the new version of 
the affected product or products.

This article focuses on managing this 
factory evolution.

Hereafter, the term production line will 
refer to the physical tool-and-technology-
based realization of a PLE factory’s 
feature catalog and bills-of-features. These 
comprise the physical artifacts (data files) 
that need managing over time, along with 
the shared asset supersets.

EVOLUTION OF SHARED ASSETS AND 
PRODUCTION LINE FILES

Production line files and shared asset 
supersets are both critical components of 
a valid and operational factory. Variation 
points within shared asset supersets refer to 
features defined in production line files; a 
variation point denotes content that applies 
to a product for which certain features 
have been selected. Conversely, production 
line files contain references to shared 
asset supersets. This coupling requires 
coordinating production line file baselines 
and shared asset baselines as the product 
line evolves.

One or more configuration management 
(CM) repositories should control the prod-
uct line’s shared asset supersets and produc-
tion line files to provide the production line 
history, version control, and reproducibility 
at specific points in time.

■	 Shared Asset Evolution: All shared 
asset supersets naturally evolve to 
support new functionality, provide 
improvements, and/or address defects. 
Development typically occurs on 
shared asset supersets using various 
tools, selected by the PLE organization 
for each asset type: requirements tools, 
modeling tools, software development 

environments, documentation tools, 
and so forth.

■	 Production Line File Evolution: Pro-
duction line files include files created 
by the configurator. In Gears, these 
are plain-text files representing the 
production line’s architecture, feature 
catalog, bills-of-features, and shared 
asset locations. As these artifacts change 
over time, the production line files will 
also evolve. This change occurs, for in-
stance, in conjunction with adding new 
capability to the product line, which 
may involve creating a new feature or 
a new “flavor” of an existing feature. 
Change can also occur when a custom-
er wants a capability that is already part 
of the product line’s repertoire leading 
to a new bill-of-features to support the 
customer’s product.

Of course, a single product line change 
can cause a change to both the production 
line files and shared asset supersets. A new 
feature, for example, will cause a change to 
the feature catalog, one or more bills-of-
features (for each product selecting the 
new feature), and one or more shared asset 
supersets to implement the new capability.

KEY PRINCIPLES FOR FEATURE-BASED PLE 
TEMPORAL MANAGEMENT

The temporal management approach 
for Feature-Based PLE builds on two key 
principles:

(1)	 Perform all development and 
maintenance modifications on PLE 
shared asset supersets and/or pro-
duction line files.

(2) Never use the read-only product-spe-
cific asset subsets (actuation results, 
the right side of Figure 1) for devel-
opment and maintenance.

These principles are independent of the 
CM tool, repository, or shared asset type 
under CM control.

Single-system temporal management 
(and older copy-based PLE approaches) 
maintain and manage the engineering 
artifacts for each product separately. The 
Feature-Based PLE temporal management 
strategy focuses on the shared asset super-
sets, not product-specific instances, and is 
a major cost avoidance source enjoyed by 
PLE organizations.

TEMPORAL BASELINES: THE KEY CONCEPT 
FOR TEMPORAL MANAGEMENT

The Feature-Based PLE temporal 
management is based on the temporal 
baseline concept, which is essentially a 
product-line-level baseline comprising the 
baseline set of each shared asset superset 
and the production line files themselves.

Thus, a temporal baseline, as Figure 2 
illustrates, includes:

■	 An individual shared asset baseline set;
■	 A baselined production line file set cor-

responding to the shared asset baselines.

The temporal baseline strategy uses 
whatever baseline strategy the organization 
has already chosen to put in place for each 
different CM repository. For example:

■	 Assets using a conventional commercial 
configuration management tool includ-
ing plain text files (text files containing 
computer source code or build scripts), 
documents in Microsoft® Word, spread-
sheets in Microsoft® Excel, and the like. 
These assets generally do not require a 
specialized viewing tool.

■	 Assets residing in a database or oth-
erwise managed by a special-purpose 
tool. Those can use the built-in host 
database or tool CM capabilities.

Figure 2. PLE Temporal Management with Temporal Baselines
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Figure 3. Temporal Baseline 3.0 plus working versions

Figure 4. Temporal Baseline 4.2

many times daily, as they evolve, depend-
ing upon an organization’s development 
practices. When we refer to baselines, 
we usually mean baselines that are part 
of a product release. Not everything has 
evolved; notice Design Package 4, Source 
Code Component 9, and Test Case Suite 10 
have not changed.

Now another release cycle coming due 
will include a Product B alpha version and 
a Product N beta version. We baseline the 
production line files and those shared asset 
supersets ready to support the product 
releases; in our figures, those white 
dots become black dots. Then we define 
the versions supporting and defining a 
temporal baseline, which we call Temporal 
Baseline 4.2. Figure 4 shows this. In 
Figure 4, Requirements Module 2 and 
Source Code Component 7 both evolved 
since their status in Temporal Baseline 
3.0, but they are not ready to support 
the next releases. So, we leave them in 
their working state and incorporate the 
previously baselined versions for Temporal 
Baseline 4.2.

As development continues, the 
production line files and the shared asset 
supersets are periodically baselined. These 
baselines combine as needed to form the 
temporal baselines supporting the specific 
versions of any or all products throughout 
the product line lifecycle. The process 
continues, resulting in the full picture 
shown in Figure 2.

Using a Temporal Baseline
Temporal baselines define and re-create 

any product version at any time. For exam-
ple, in Figure 2, using Temporal Baseline 
5.7 can re-create Product A’s public release 
(the green pentagon in the “Product A” 
line) at any time. To do so:

■	 use the shared asset versions specified 
in Temporal Baseline 5.7.

■	 use the production line file versions 
specified in Temporal Baseline 5.7.

■	 use the configurator to actuate those 
shared asset supersets according to the 
bill-of-features for Product A.

A temporal baseline should track all 
product line shared asset supersets, even 
those not containing variation points.

Storing a Temporal Baseline
A temporal baseline is essentially a list of 

shared asset supersets and version numbers 
of those shared asset supersets, plus a ver-
sion number for the production line files. 
Here are two recommended approaches for 
storing a temporal baseline:

■	 Option 1: Uniform version numbers 
for everything. Under this approach, 
the production line files, all shared asset 

■	 Assets effectively using content and 
naming convention copies to represent 
versions.

Figure 2 illustrates a product line 
temporal baseline series. A temporal 
baseline comprises the colored box across 
the top of the figure (such as Temporal 
Baseline 3.0), along with the “zigzag” line of 
the corresponding color running through 
shared asset supersets indicating a version 
of that shared asset contributing to the 
temporal baseline. The solid black dots 
represent the baselined versions of each 
shared asset of PLE models.

Each temporal baseline supports releas-
ing one or more products; represented by 
the colored bands at the bottom of the fig-
ure labeled Product A through Product N.

The light blue band, labeled “PLE Mod-
els,” shown at the top of the asset type list 

in Figure 2, represents the production line 
files. These files, like the shared asset super-
sets, need CM repository revision-control.

Temporal Baselines and Product Line 
Evolution

Figure 2 shows a product line after it has 
undergone several evolutionary steps. To 
delve deeper, let us return to the starting 
point.

Figure 3 shows Temporal Baseline 3.0, 
depicted as the dark red line connecting 
each asset’s baseline. Temporal Baseline 
3.0 supports Product A’s alpha, Product B’s 
public release, and Product N’s alpha release.

Figure 3 also illustrates the production 
line file evolution and at least some shared 
asset supersets as development occurs. The 
white dots represent the current working 
versions and are the “tips” in the various 
CM repositories. These “working versions” 
may themselves baseline many times, even 
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supersets, and the product releases have 
the same version number—3.0, 4.2, and 
5.7—in the CM system(s) in which they 
reside. Thus, in Figure 2, every Tempo-
ral Baseline 5.7 component has version 
number 5.7 in its CM system, and the 
Product A through N releases also have 
the release number 5.7.
•	 This approach removes the need to 

store the temporal baseline — every-
thing associated with a release has 
the same number. This approach has 
two caveats:
1. Even if a shared asset has not 

evolved since the previous tem-
poral baseline, it can (and should) 
simply receive a new label (version 
number) as is, to keep its number-
ing in sync with other artifacts in 
the new temporal baseline.

2. Some tools do not support assign-
ing user-defined labels to content 
versions, and so their assets will 
not participate in this scheme.

■	 Option 2: Table. A simple table (main-
tained, for example, in a spreadsheet) 
can represent and store a temporal 
baseline. Table 1 uses the Figure 2 
temporal baselines as an example. This 
table becomes a product line asset in 
its own right and should remain under 
configuration control.

BRANCHING
The fundamental approach is to maintain 

Table 1: Temporal Baseline representation

Temporal baseline label: 3.0 4.2 5.7 6.0 7.1

Production line files 1.6 1.10 1.14 2.0 2.3

Requirements module 1 6.2.5 6.3.6 6.3.6 6.5.0 6.5.0

Requirements module 2 5.5.1 5.5.1 5.7.2 5.8.0 5.8.5

Requirements module 3 4.4.3 4.4.7 4.4.12 4.5.0 4.5.0

Design package 4 2.1 2.1 2.1 3.0 3.2

Design package 5 1.2 1.3 1.4 2.0 2.0

Design package 6 1.4 1.4.2 1.4.4 1.5.0 1.5.5

Source code component 7 3.6.3 3.6.3 3.6.14 4.0 4.0

Source code component 8 4.2.1 4.2.4 4.2.4 4.3.0 4.3.5

Source code component 9 4.9.1 4.9.1 4.9.17 5.0 4.9.17

Test case suite 10 4.1 4.1 4.2 4.3.0 4.3.9

Test case suite 11 4.5 4.7 4.8 5.0 5.1

Product A V1 Alpha - V1 Beta V1 Public -

Product B V1 Public V2 Alpha - V2 Beta V2 Public

… … … … … …

Product N V1 Alpha V1 Beta - V1 Public V2 Alpha

versions of all asset supersets plus the 
production line files, as shown in Figure 2. 
Taken together, this constitutes a temporal 
baseline. Each can evolve as it needs to, 
and we have an elegant, simplified picture 
of change management for a PLE Factory 
that eliminates all of the branching that 
comes with clone-and-own approaches 
and product-centric-CM approaches. 
Everybody works on the “tip” (most recent 
versions); re-producing an earlier version of 
a product release simply means finding the 
temporal baseline of that version, checking 
out all of the associated versions of all of 
the shared asset supersets and production 
line files, and using the configurator to re-
produce the product.

It would be tempting to conclude at this 
point but in the interest of practical appli-
cation we will point out that there are cases 
where we still need branches — at least 
short-lived ones.

Branching means to make a copy of an 
artifact so that special-purpose develop-
ment can continue in parallel with “main” 
development activity. (Some CM systems 
use the word “stream” to refer to a branch.) 
The “main” branch is called the trunk. A 
branch generally ends when it is merged 
back into the branch that spawned it. 
Merging means reconciling changes in the 
branch with the branch that spawned it; the 
reconciliation happens in the latter.

A direct corollary of PLE Temporal 
Management principles (1) and (2) 
described earlier having to do with 

branching is:
■	 Never use product-specific PLE subsets 

(actuated artifacts) to create a branch. 
Branch using only PLE Shared Asset 
Supersets and the production line files 
themselves.

Put another way, make sure that branch-
ing only occurs inside the PLE factory.

Because copying a shared asset and 
making changes to the copy is generally 
antithetical to PLE principles, take care 
when branching to mitigate the effects of 
having multiple copies in existence that 
could require duplicative work to update 
and keep in sync. Nevertheless, there are 
cases when branching is appropriate in 
Feature-based PLE and, in fact, a normal 
aspect of Feature-based PLE development, 
and these are described in Table 2. 
Branching strategies apply to production 
line files as well as to shared asset supersets, 
although in the remainder of this section 
we focus on shared asset supersets to 
simplify the exposition.

CHANGE MANAGEMENT AND GOVERNANCE
In a disciplined temporal management 

environment, changes to shared asset 
supersets and the production line 
files only occur under a well-defined 
process including a documented change 
artifact such as a change request or a 
problem report and an appointed body 
or board authorized to approve changes. 
The policies associated with creating, 
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submitting, and handling these change 
artifacts are critical, but beyond this 
document’s scope. The article “Key 
Issues of Organizational Structure and 
Processes with Feature-Based Product 
Line Engineering” elsewhere in this special 
edition of INSIGHT addresses this issue.

SUMMARY
The distinguishing characteristic between 

Feature-Based PLE and product-centric 
development (and development under 
earlier copy-based PLE forms) is its greatly 
simplified strategy for managing change. It 
eliminates the need for performing change 
control on the generated products, instead 
focusing the change management efforts 
on the much smaller material in the shared 
asset supersets and production line files.

This eliminates the bottomless branch-
ing-and-merging morass many organiza-
tions find themselves having to manage, 
and that is for organizations that do not 

simply give up the merging part and accept 
separately-managed clones spiraling off on 
their own separate evolutionary trajecto-
ries, resulting in a situation in which it is 
almost impossible to economically carry 
out a portfolio-wide upgrade.

It also provides an environment in which 
engineers can spend the maximum time 
on high-value new development, and not 
low-value activities such as branching, 
merging, and re-developing already-built 
capabilities.

Just as Feature-Based PLE calls for all 
development to occur in the shared asset 
supersets and not the product instances—
that is, inside the PLE Factory—its change 
management method takes the same 
approach. Both maximize the extent to 
which work applies to the entire product 
line, and not just an individual product, 
and contribute to the cost avoidance for 
which Feature-Based PLE is known.  ¡
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differences. These two approaches propose 
smart techniques for reuse but use different 
terminology to refer to equivalent concepts, 
which can badly affect project performance 
when evolving in a multi-domain context. 
This paper shows it is possible to build a 
common way to assess the components 
(also called building blocks) contributing 
to a product line, thanks to a process to 
determine the component maturity level 
using the similarity approach. The authors 
introduce the inner sourcing process matu-
rity level (ISPML) as a simple engineering 
practice for multi-domain organizations 
to better determine whether sharing an 
engineering asset is favorable or not.

Guillermo Chalé Góngora, Pierre-Ol-
ivier Robic, and Danilo Beuche address 
the topic of “Product Line Engineering 
for Digital Product-Services.” Digitizing 
the value chain brings along new business 
opportunities to organizations wishing 
to adopt a service-oriented approach but 

incurring implementation challenges. The 
authors present a conceptual framework to 
define a high-level strategy to implement 
a product-service offer in an organization. 
The distinctive framework aspects include 
the product-service product line (PSPL) 
concept, that is a product line of prod-
uct-services, the elements to define the 
PSPL business model, a product-service 
typology, and a product line engineering 
method extension for architecting the 
PSPL, notably, a specific service building 
block type supporting a composable design 
approach and a feature model including 
service-related, socio-technical features.

The final article by William Bolander 
and Paul Clements, “Key Issues of 
Organizational Structure and Processes 
with Feature-Based Product Line 
Engineering,” describes the transformation 
organizations should undertake to standup 
feature-based PLE based on the factory 
concept. The authors introduce the few 

roles without analog in other development 
disciplines but that are new to feature-
based PLE. They also describe how 
traditional systems engineering roles doing 
traditional systems engineering tasks but 
with slight PLE-inspired extensions carry 
out other factory roles.

We hope you find INSIGHT, the prac-
titioners’ magazine for systems engineers, 
informative and relevant. Feedback from 
readers is critical to INSIGHT’s quali-
ty. We encourage letters to the editor at 
insight@incose.net. Please include “letter to 
the editor” in the subject line. INSIGHT 
also continues to solicit special features, 
standalone articles, book reviews, and 
op-eds. For information about INSIGHT, 
including upcoming issues, see https://
www.incose.org/products-and-publications/
periodicals#INSIGHT. For information about 
sponsoring INSIGHT, please contact the 
INCOSE marketing and communications 
director at marcom@incose.net .  ¡
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BACKGROUND

  ABSTRACT
This case study details the options evaluated and path chosen by a United States (US) Department of Defense (DoD) software 
development organization to re-engineer four existing products with common features into a single product-line resulting in 
product sponsors taking advantage of cost savings, developers shortening implementation and testing timeframes, and users 
obtaining product features faster while sharing a common experience across product variants. Although the software-intensive 
products were originally a product line operating from a common code repository, they diverged due to different product sponsors 
having differing priorities and schedule commitments. The mission scope of each variant differs leading to a commonality range 
of approximately 20% to 70% based on the quantity of common features. The re-engineering options evaluated included merging 
common code and maintaining it in a single repository; re-using software code while keeping it in separate repositories for each 
product variant; and pursuing a Modular Open Systems Approach (MOSA) to create common modules for insertion, updating, 
and replacement within any product variant without disrupting the rest of that product. With product sponsor support, the DoD 
project decided to pursue a hybrid approach of immediate code re-use complemented with an agile approach to MOSA imple-
mentation. This solution allowed the project to re-engineer the four existing product variants while still meeting sponsor, DoD, 
and end-user operational needs.

  KEYWORDS:  product line engineering; re-engineering; modular; modular open systems approach; MOSA

Product Line Re-Engineering 
for Modularity in a US 
Department of Defense 
Project
John Wood, john.n.wood@navy.mil, and Glenn Tolentino, glenn.tolentino@navy.mil

This case study focuses on a US 
DoD software development 
organization that supports naval 
aviation (Maley, Lofber, and Lasit-

er 2008, Maley et al. 2009, Schmidley 2011, 
Tolentino and Wood 2018). The project’s 
flagship product began as an informal com-
munity development model with the intent 
of supporting multiple aircraft types (Maley 
et al. 2009). Over time, this community 
model devolved, resulting in four unique, 
largely independently managed product 
variants. This community development 
model devolved due to several factors: 
unique funding lines required of DoD pro-
grams based on US Congressional appro-
priations, introducing new and replacement 
sponsors not part of the original informal 
agreements, differing fielding environments 
(DoD enterprise networks), and differing 

user priorities. Now, 10 years later, there are 
four product variants, three sponsors, two 
support contracts, and one development 
organization trying to manage and navigate 
differences in features, requirements, fund-
ing levels, risk profiles, technical refresh 
priorities, and fielding schedules. This 
scenario creates pain points common to 
other projects attempting to satisfy multiple 
sponsors and stakeholders including those 
related to leadership, authority, require-
ments, capabilities, integration, and testing 
(Dahmann 2014).

Due to the issues discussed above, two 
sponsors jointly requested the development 
organization merge common feature source 
code into a single repository. The spon-
sors’ desire is to experience the benefits 
associated with a product line such as 
shorter development timeframes, lower 

total ownership costs, and higher quality 
(Pohl, Böckle, and Der Linden 2005). Upon 
receiving that guidance, the development 
organization explored the effort required to 
perform the code merge.

EXPLORING MERGED CODE
Wanting to see more economies of scale, 

the sponsors of two of the four variants 
asked the development organization to ex-
plore combining common features into a sin-
gle code repository for use by both variants. 
This would involve merging separate code 
branches dedicated to common features, re-
solving any design conflicts, testing the resul-
tant code, fixing any newly introduced bugs, 
and retesting the updated code to ensure 
successful bug fixes. As necessary, developers 
introduce build-time configuration changes 
to tailor the common features for each 

mailto:john.n.wood@navy.mil
mailto:glenn.tolentino@navy.mil
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Figure 1. Systems engineering vee model (Osborne et al. 2005)
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Code re-use results in some savings during the implementation
phase, but it still requires significant verification and validation
testing prior to fielding.

Concept of
Operations

Detailed
Design

Requirements
and

Architecture

Code Re-Use

Figure 2. Code re-use effort on vee model

Table 1: Code merge level of effort in Full Time Equivalent (FTE)-weeks

 Activity Level of Effort -Product A Level of Effort – Product B

Updates and Integration 12 weeks x 8 FTEs 4 weeks x 7 FTEs

Integration Testing 3 weeks x 9 FTEs Included in estimate above

Follow-on Development/Bug Fix 4 weeks x 8 FTEs Included in estimate above

System Testing 3 weeks x 9 FTEs Included in estimate above

Product Rollout 25 weeks x 2 FTEs 1 week x 1 FTE

Total Estimated Duration 47 weeks 5 weeks

Total Estimated Level of Effort 232 FTE-weeks 29 FTE-weeks

variant. Also, at build-time, the developers 
compile variant-unique code; maintained in 
an additional, separate repository.

Building and maintaining merged code 
has happened before. In fact, as recently as 
a few months prior, there was a shared code 
repository for common features; however, 
the two variants diverged because the spon-
sors had differing priorities, risk tolerances, 
and schedule commitments.

The development organization explored 
the costs of re-merging the common fea-
tures into a single repository. The develop-
ment organization realized that effort was 
more extensive than the sponsors assumed 
and the burden appeared to be uneven; one 
sponsor would need to invest significantly 
more labor than the other due to the prod-
uct scope differences. See Table 1 above.

Daunted by the numbers, the devel-
opment organization decided to explore 
alternative options that could help the two 
sponsors achieve their desires. The develop-
ment organization explored and ultimately 
proposed two additional options: code 
re-use and MOSA.

EXPLORING CODE RE-USE
Seemingly providing nearly the same 

benefits of merged code is the code re-use 
concept. In this scenario, developers from 

each product team meet regularly to share 
recent accomplishments, planned activities, 
challenges, and lessons learned. Beyond 
sharing approaches to solve common chal-
lenges, when practical, the development 
teams can also share full code sections that 
they can manually insert into the other 
variant’s code base as-is or with some 
tailoring. The implementation phase real-
izes the code re-use benefits, yet they still 
require extensive testing by the receiving 
organization. Figure 1 below is a systems 
engineering vee model. Figure 2 below is 
the vee model with an overlay showing the 
required effort for code re-use.

While the initial effort level for code re-
use is the same as for code merge (See Table 
1 above), the sponsor conflict level related 
to the code base would be less, because 
code re-use has the added benefit of 
decoupling the product variants’ schedules. 
This provides greater flexibility to each 
sponsor as it lets each focus on different 
priorities at any given time. It also allows 
each sponsor to take advantage of previous 
development efforts at the opportune time 
for that product variant.

EXPLORING MODULAR OPEN 
SYSTEMS APPROACH (MOSA)

The third option explored was re-archi-
tecting all products in a modular fashion 
following the DoD’s MOSA (DoD 2016). 
After re-architecting, product teams can 
develop and test common features once 
but use them many times. Additionally, 
by defining and controlling the interfaces, 
product teams can remove, replace, or 
upgrade modules independently. Similar 
to code re-use, this approach decouples the 
variants’ schedules. Further, it significantly 
reduces the receiving team’s testing burden. 
Figure 3 shows the impact of this approach.

To execute the MOSA option, the 
development organization expects to invest 
in an initial effort increase followed by the 
potential effort decrease during product 
sustainment, achieving a positive return 
on investment typical to a product line 
approach (Walden 2015). More specifically, 
the MOSA option requires significant 
preparations (developing operating plans, 
high-level architecture, and prioritization 
schema) followed by re-developing 
functionality in a modular manner. Once 
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Figure 4. Effort Level versus benefit for code merge, code 
re-use, and MOSA
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Figure 3. MOSA effort on vee model
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Software component modularity results in significant savings in design, 
implementation, integration, and integration testing. It still requires 
system-level verification and validation testing prior to fielding.
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Figure 5. Five-step plan for product line re-engineering

the preparatory effort is complete, the 
product managers envision operating at 
their current staffing levels of systems 
engineers, developers, and testers until they 
implement, certify, and make all modular 
components available for use. At that point, 
the product managers envision either a 
decrease in developers and testers, since the 
four variants share sustainment efforts, or 
the ability to leverage the existing developers 
and testers to provide additional value to the 
end-users through creating new features.

DECISION SUPPORT
While the development organization was 

willing to execute any of the three options 
described above, they believed relaying 
each option’s effort level and benefit to 
the sponsors was important. To accom-
plish this, the team created a presentation 
detailing each option, a diagram depicting 
the effort level to develop and sustain the 
approach versus the expected benefit for 
the three options (Figure 4), and the orga-
nization’s recommended approach.

After learning about the three options, 
the sponsors made their decision. First, 
they decided to abandon the merged code 
idea. Second, they decided to immediately 
implement developer exchanges to support 
maximum code re-use as well as sharing 
lessons learned. Third, they requested an 
implementation plan for MOSA as they felt 
that approach would provide the greatest 
long-term stability and economies of scale 
via reduced development timeframe terms, 
reduced total lifecycle costs, and increased 
quality.

IMPLEMENTATION
To formalize the interim code re-use, 

the product managers for the different 
variants created a charter and agreed to 
facilitate three meetings per month. The 
first meeting is the “Developers’ Sync” 
where the development leads discuss recent 
development efforts, planned development 

efforts, and any associated challenges. At 
the end of this meeting, the development 
teams will choose two efforts or challenges 
about which they would like more informa-
tion. Then, the program managers will set 
up a separate “Deep Dive” meeting for each 
topic so the developers can explore that 
area in detail.

Next, the development organization set 
out to explore what MOSA implementation 
would require. A literature review provided 
valuable insights, such as the MOSA frame-
work provided in the Program Manager’s 
Guide to Open Systems (DoD 2004), the 
success factors identified in “Managing 
Software Productivity and Reuse” (Boehm 
1999), and the heuristics-based approach to 
software re-engineering provided in “An In-
telligent Tool for Re-Engineering Software 
Modularity” (Schwanke 1991). Armed with 
this information, the development team 
created a five-step plan.

In Step 1, the development organization 
will set up an Integrated Product Team 
(IPT) that simultaneously focuses on both 
product and process development to exe-
cute the MOSA implementation (Magrab 
et al. 2009). Additionally, to help ensure 
long-term sustainability, the development 
organization will designate a governing 
board and supporting boards that will 

create and execute the necessary operating 
plans. In Step 2, the development organi-
zation will create a high-level architecture 
identifying the four variant’s functionality 
overlaps, differences, and gaps. In Step 3, 
the development team, following an agile 
approach, will set the priority for converting 
existing code into the re-usable modular 
components (Fowler and Highsmith 2001, 
Tolentino and Wood 2018). Note: Since this 
is a re-engineering effort, and the devel-
opment organization is not starting with a 
clean slate, they will need to balance MOSA 
efforts with existing requirements, new fea-
ture development, technical refreshes, and 
bug fixes. In Step 4, the development team 
will create a detailed architecture and design 
for each modular component. During this 
step, the development team must ensure 
the modular component’s architecture and 
design contain sufficient detail to support 
implementation, verification, and validation 
efforts. Step 5 will create (implement with 
software code), verify, and validate the mod-
ular components. Completing these efforts 
for a given modular component certifies 
that component as compliant with the 
high-level architecture and makes it avail-
able for use by the development team of any 
product variant. Steps 4 and 5 will repeat 
for each modular component, following the 
prioritized order developed in Step 3.

Figure 5 provides a high-level over-
view of this approach while the following 
subsections provide further details on the 
five steps.
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Table 2: MOSA Integrated Product Team and Supporting Boards

Team/Board Responsibilities Operating Plans

MOSA Integrated 
Product Team 

Responsible for executing the technical portions of the 
implementation plan.

Software Development Plan, 
Performance Monitoring Plan, 
and Continual Technology and 
Standards Analysis Plan

Governing Board Responsible for establishing and executing the architecture’s 
governance model and business model as well as providing 
direction to the IPT and other boards.

Governance Model and 
Business Model

Architecture Change 
Control Board

Responsible for controlling technical changes to the 
architecture.

Configuration Management 
Plan

Certifications Board Responsible for performing independent testing on 
completed software in order to verify whether or not that 
software meets the standards set forth by the architecture.

Test and Evaluation Master 
Plan

Table 3: MOSA Metrics

MOSA Goal Metric(s)

Be interoperable with and available for 
use by all aircraft platforms supported by 
the project

•	 Number of MOSA sponsors
•	 Number of programs actively using MOSA-certified modular 

components
•	 Number of MOSA-certified modular components in use per program

Enable the rapid incorporation and 
fielding of new capabilities

•	 Time from MOSA-certification of a modular component to fielding of 
that modular component by a program

Reduce costs and timeframes associated 
with development and test

•	 Development time per modular component
•	 Development level of effort per modular component
•	 Test time per modular component
•	 Test level of effort per modular component
•	 Test time for program integration test/system test
•	 Test level of effort for program integration test/system test

Be financially sustainable •	 Total MOSA-related costs
•	 MOSA costs per sponsor
•	 MOSA costs per modular component

Evolve with technology and standards •	 Number of standards adopted

Have an assigned test team that will 
verify whether or not solutions comply 
with the architecture’s standards

•	 Number of MOSA-certified modular components
•	 Pass rate of MOSA certification testing

Track MOSA implementation progress •	 Number of modular components identified
•	 Number of modular components with detailed design documentation
•	 Number of modular components in development
•	 Number of modular components completed
•	 Number of modular components certified

Step 1 — Set up IPT and Supporting 
Boards; Create Operating Plans

During Step 1, the project will set up 
an IPT, the governing board, architecture 
change control board, and certifications 
board. Table 2 summarizes the IPT and 
boards’ responsibilities and products (oper-
ating plans) while the following paragraphs 
provide additional details.

During Step 1, the project will set up 
the MOSA IPT. This team is responsible 
for executing the technical portions of the 
implementation plan. They will operate 
under the direction of the governing board 
(described below) and will include the four 

product managers (one for each product 
variant), the four systems engineers, and 
the project’s chief systems architect. During 
Step 1, this team will create a software 
development plan, a performance monitor-
ing plan, and a continual technology and 
standards analysis plan. The software devel-
opment plan will follow the DoD specifica-
tions (DoD 2017) and will detail how the 
development teams for the four variants 
will implement the requirements associated 
with each modular component. The perfor-
mance monitoring plan will detail MO-
SA-related metric tracking and reporting in 
accordance with ISO/IEC/IEEE Standard 

15288:2015 Clause 6.3.7 (ISO/IEC/IEEE 
2015) to help ensure the project meets 
its MOSA-related goals. Table 3 below 
summarizes these metrics. The continual 
technology and standards analysis plan 
will detail how the IPT will stay current in 
their knowledge of emerging technologies 
and standards in accordance with DoD 
Architecture Framework (DoDAF) Systems 
Viewpoint (SV)-9 (DoD 2010) and how 
the IPT will evaluate whether or not the 
architecture should incorporate those tech-
nologies and standards in accordance with 
ISO/IEC/IEEE Standard 15288:2015 Clause 
6.3.3 (ISO/IEC/IEEE 2015).



SP
ECIA

L 
FEA

TU
R

E
A

P
R

IL 2O
21

VOLUM
E 24/ ISSUE 1

16

During Step 1, the project will also 
establish the governing board, architecture 
change control board, and certifications 
board. The governing board will be respon-
sible for establishing and executing the 
architecture’s governance model and busi-
ness model as well as providing direction 
to the IPT and other boards. The governing 
board membership includes the project 
manager, two deputy project managers, and 
the project’s chief systems architect. The 
architecture’s governance model will detail 
the roles and responsibilities of sponsors, 
product managers, the MOSA IPT, the 
Governing Board, and supporting boards 
in accordance with ISO/IEC/IEEE Standard 
15288:2015 Clause 6.3.1 (ISO/IEC/IEEE 
2015). The model will also include the 
governing board reporting responsibilities; 
conflict resolution methods the governing 
board will use when sponsors have differing 
priorities, such as modular component 
development priorities; and procedures 
for adding and removing governing board 
and supporting board members. Addition-
ally, the governing board will develop the 
architecture’s business model. This model 
will define communal cost assessments and 
allocations to the sponsors in accordance 
with ISO/IEC/IEEE Standard 15288:2015 
Clause 6.3.2 (ISO/IEC/IEEE 2015).

While it was impossible to accurately 
quantify the expected cost savings within 
the business model, the sponsors agreed 
to divide the costs to sustain a MOSA 
component among the sponsors who use 
it. For example, if two variants use modular 
component A, each sponsor would be 
responsible for funding half of the sustain-
ment costs. If three variants use modular 
component B, each sponsor would be re-
sponsible for funding a third of the sustain-
ment costs. With the variants having a 30 to 
40-year life expectancy, the sponsors expect 
the total lifecycle cost savings to be signif-
icant. Additionally, if introducing a new 
variant, that sponsor would have a modular 
feature “menu” from which to choose. That 
sponsor would then be responsible for his/
her fair share of sustainment costs while the 
sustainment costs of the existing sponsors 
using that modular component would be 
proportionally reduced.

The architecture change control board 
will operate under the direction of the 
governing board and will be responsible for 
controlling technical changes to the archi-
tecture. The board membership includes 
the project’s configuration manager plus 
the four product variant product managers. 
The board will review the project’s exist-
ing configuration management plan for 
applicability and recommend any necessary 
changes or additions while still adhering to 
the DoD specifications (DoD 2013). Once 

the governing board approves the modi-
fications, the architecture change control 
board will ensure proper configuration 
management plan execution as it relates to 
the modular architecture.

The certifications board will operate 
under the direction of the governing board 
and will perform independent testing on 
completed software to verify whether or 
not the software meets the architecture 
standards. The certifications board includes 
the project’s test lead, the two deputy 
project managers, and the project’s chief 
systems architect. The certifications board 
will develop and execute the architecture’s 
test and evaluation master plan which will 
detail the architecture’s testing strategy 
and the resources (hardware, software, 
and personnel) necessary to execute 
independent testing in accordance with the 
DoD’s Test and Evaluation Management 
Guide (DoD 2012). Once approved by the 
governing board, the certifications board 
will ensure proper test and evaluation 
master plan execution.

Step 2 — Create High-Level Architecture; 
Define Modular Component Functionality

During Step 2, the IPT will develop a high-
level architecture in accordance with ISO/
IEC/IEEE Standard 15228 Clause 6.4.4 
(ISO/IEC/IEEE 2015) and document it in 
accordance with the DoDAF v2.02 (DoD 
2010). To do this, the IPT must analyze 
the total functionality of all four variants, 
evaluate architecture options, determine 
optimal architecture, and document major 
component functionality. Lower-level 
architecture and design efforts for each 
modular component will occur in Step 4.

Step 3 — Prioritize Component 
Modularization

During Step 3, the IPT will develop a 
prioritization schema and then, using that 
schema, create a prioritized development 
backlog for modular components following 
agile values and principles (Fowler and 
Highsmith 2001). The IPT will prioritize 
components based on various factors, such 
as those listed below.

■	 Planned component upgrades
■	 New component functionality insertion
■	 Technical refresh of any major 

component
■	 Component feature commonality 

among product variants
■	 Number of product variants adopting 

the component
■	 Modularizing component complexity

Step 4 — Architect and Design Modular 
Components

During Step 4, the IPT will architect and 

design modular components in accordance 
with ISO/IEC/IEEE Standard 15228 Clauses 
6.4.4 and 6.4.5 (ISO/IEC/IEEE 2015) and 
document them in accordance with DoDAF 
v2.02 (DoD 2010). The IPT must ensure the 
details in the architecture and design can 
sufficiently support future implementation, 
verification, and validation activities. The 
architecture and design work sequence 
and timing will be in accordance with the 
prioritization defined in Step 3. This step is 
expected to further define the stakeholder 
and component requirements in an iterative 
fashion in accordance with ISO/IEC/IEEE 
Standard 15288:2015 Clauses 6.4.2 and 6.4.3 
(ISO/IEC/IEEE 2015). The configuration 
control board will incorporate all related 
DoDAF models into the architecture with 
each modular component architecture 
creation in accordance with the project’s 
configuration management plan.

Step 5 — Implement and Test Modular 
Components

During Step 5, the product development 
teams will implement software to satisfy 
the modular component requirements 
defined in Step 4 according to the software 
development plan developed in Step 1. 
Once implemented, the software test will 
occur under the certifications board’s 
cognizance according to the test and 
evaluation master plan developed in Step 
1. When the certifications board certifies a 
modular component, the board will publish 
that component to a shared repository 
and notify all product managers that the 
component is available for their use.

CONCLUSIONS
The development organization of four 

operational product variants evaluated 
three options to regain the efficiencies 
associated with a product line approach: 
code merge, code re-use, and MOSA. They 
found code re-use was the quickest to im-
plement while MOSA appeared to provide 
the most long-term benefits. As such, the 
sponsors directed the development organi-
zation to use code re-use as an intermediate 
steppingstone as they pursued the long-
term product line re-engineering goal via a 
modular architecture.

The development organization created a 
detailed five-step plan to implement a mod-
ular architecture. Making this plan unique 
is the fact the development organization 
is not starting with a clean slate. In fact, 
it has four operational product variants, 
each with its own sponsors and end-us-
ers expecting continued product support 
plus new feature development concurrent 
with the technical refreshes necessary to 
meet evolving cybersecurity requirements. 
To balance this reality, the development 
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organization incorporated agile values and 
principles into their five-step plan (Fowler 
and Highsmith 2001). This approach allows 
the designing and building of modular 
components in a prioritized order. Each 
modular component built provides value in 
feature sets as well as in reduced sustain-
ment burden due to cost-sharing among 
the sponsors. Each modular component 
aligns to the high-level architecture vision, 
ensuring previously built and subsequent 
modular components will interact seam-
lessly based on well-defined interfaces 

adhering to industry standards. Since 
the components are modular, the variant 
sponsor may choose when to implement 
a component. This decouples the variants’ 
schedules and permits sponsors to pursue 
different priorities at any given time.

This product line re-engineering effort is 
underway, so the final results are unknown. 
However, the project and sponsors are 
seeing the immediate results related to code 
re-use, the end-users continue to have all 
products meet current operational needs, 

and the groundwork is being established 
so future sustainment of the four product 
variants will be more efficient and effective 
by eliminating the code merge schedule 
dependencies and avoiding the manual 
code re-use testing inefficiencies. Overall, 
the sponsors and development organization 
are optimistic the approach chosen will 
deliver the modular product line benefits 
and be enacted with the concurrent 
commitments associated with supporting 
operational products.  ¡
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INTRODUCTION

  ABSTRACT
Feature-based Product Line Engineering is a well-defined, repeatable, automation-centric PLE method that is delivering even 
improvements in time, cost, and quality. An organization intent on adopting it so they can reap the benefits for their product line 
or product lines needs a viewpoint focusing on the people involved and what they do to keep the PLE factory operational on a day-
to-day basis. This article describes an organizational structure for Feature-Based PLE based on the factory concept. It introduces 
the few roles that have no analog in other development disciplines; they are new to Feature-Based PLE. It also describes how tradi-
tional systems engineering roles carry out traditional systems engineering tasks, but with slight PLE-inspired extensions. Finally, 
we will explain why these changes are necessary.

Paul Clements, pclements@biglever.com
Copyright © 2020 by BigLever Software Inc. Permission granted to INCOSE to publish and use.

Funding the PLE Factory 
in a Multi-Customer 
Contract-Based PLE 
Organization

Figure 1: A PLE organizational structure

Feature-based product line 
engineering (INCOSE 2019) 
employs the PLE factory concept 
in which all development 

occurs for any product line product. 
Automatically configuring shared assets 
based on the feature choices for a product 
produces individual products. A product 
line organization’s personnel need to carry 
out numerous tasks associated with the 
product creation, development, delivery, 
and evolution in its product line. Any 
organization employing this paradigm in 
a contract-based (as opposed to a mass 
market) context must answer the question: 
Who pays for the work inside the factory 
that may benefit multiple contracts? The 
answer can be surprisingly complex, 
involving security, regulatory compliance, 
and intellectual property protection issues 
of both the PLE organization and its 
customers. This article offers a method 
for answering this question. Answering 

mailto:pclements@biglever.com
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this question means establishing processes 
to create charge numbers to which 
everyone working in the PLE factory can 
charge their effort. These processes must 
connect the funding supply to the funding 
consumption in a way that is fair, equitable, 
and compliant with applicable rules and 
regulations.

In this article, we assume the PLE 
organization has adopted a structure 
similar to Figure 1. The PLE factory 
is on the left; the systems engineering 

“V” model at the bottom represents the 
shared assets. The configurator receives a 
feature-based product descriptions (Bill-
of-Features) and produces “V” subsets 
corresponding to the product. Product 
teams, who receive outputs from the PLE 
factory and deliver products and interface 
with customers are on the right. Ideally, 
all development happens inside the PLE 
factory.

We also assume the products will deliver 
to specific customers under a contract, 
as opposed to mass-market product line 
products with anonymous customers. In a 
PLE Factory, all development and engineer-
ing work occurs once inside the factory and 
applies through automated configuration to 
each product to which the work applies.

SIX STEPS TO CREATE A PLE FACTORY 
FUNDING MODEL

We describe the steps in our method for 
building a funding model below.

Step 1:  Identify the Funding Model Goals 
and Requirements

This step lists goals can and should be 
the basis for reviewing the resulting fund-
ing model. Typical goals include the ones 
described below.

■■ Goal: Compliance with standards 
and regulations. A multi-customer, 
multi-contract environment acquires 
the systems under one or more 
contracts, possibly with contract clauses 
specifying what the customer will, and 
will not, pay for. In the case where the 
customer is the United States (US) 
Government, if the contract does not 
specify this then federal regulations do. 
The US embodies these in a regulation 
body as the Federal Acquisition 
Regulations (FAR). Cost accounting 
standards also apply. Individuals 
familiar with the applicable standards 
and statutes should review the funding 
model to ensure this compliance.

■	 Goal: Fair and equitable customer 
treatment. The FAR considers the US 
Government, including different US 
Government agencies, may purchase 
more than one system from the same 
supplier. It contains stipulations to 

ensure each procuring agency receives 
“fair and equitable” treatment from the 
supplier. Fair and equitable customer 
treatment is also a key PLE funding 
model goal and would be even if not 
enshrined in the law.

■	 Goal: Insulate PLE Factory staff from 
obligation to a specific customer. A 
third goal is to insulate PLE factory staff 
from funding flowing from a specific 
customer or customers. One way PLE 
can fail is to let the PLE factory turn 
into a dedicated job shop for one or 
two customers who happen to have 
the largest budgets. It is human nature 
to tailor solutions to those paying 
the bills. But it is vital every solution 
aims towards the overall product line 
health and robustness. Rather than 
have an engineer charge an activity to a 
product’s account, it would be better if 
there were a charge number associated 
simply with the work type. Ideally, 
the contract funds for all contracts in 
the product line pool together to fund 
product line development. Of course, 
the PLE organization itself must track 
the individual contract contributions 
so they can bill each customer 
appropriately and calculate profit from 
each contract.

■	 Goal: Capture truth. Activities should 
charge to accounts set up to pay for 
those activities. This is true to aid 
internal cost understanding of various 
activities, but also true because (again) 
of contracting realities. Each con-
tract will have a specific effort scope, 
meaning the activities charged to that 
contract need accurate recording. Prop-
er accounting for the effort to service 
each contract is essential to support an 
audit. In addition, contracting compa-
nies bid on future contracts using past 
performance on similar contracts as a 
guide, or “basis of estimates.” If the ac-
tivity levels, as reflected by the amount 
charged to various charge numbers, are 
not accurate then the basis of estimates 
is valueless.

■	 Goal: Be neutral concerning contract 
types. Rules must make it clear which 
contract pays for which activities and 
in what proportion to the activity cost. 
This allays fears of allocating charges 
to cost-plus contracts instead of 
fixed-price contracts, in effect, shifting 
work from one contract to another to 
maximize company profits.

■■ Goal: Protect the PLE organization’s 
own intellectual property (IP). Every 
business needs to protect IP improving 
its competitive position. Under 
contracts with the US Government, 
the government typically manages 

the associated IP through data 
rights assignment. The government 
uses the FAR to prescribe policies 
and procedures for acquiring data 
rights, which give the government 
nonexclusive license rights. Certain 
data rights types can compromise a 
company’s competitive position because 
the government can simply hand over 
any material with these types to another 
bidder or producer.
•	 For this reason, many organizations 

choose to treat the critical product 
line IP as protected corporate IP and 
specially call out activities associated 
with creating that IP. They will 
construct their funding model in a 
way to protect IP ownership.

•	 In a PLE setting, the feature 
catalog is a prime example. If the 
feature catalog goes to a single 
customer, then that customer could 
conceivably produce not only its 
own product but any product for 
any customer. To best protect against 
this scenario, companies can treat 
the feature catalog as a trade secret 
and not deliver it to any customer. 
To prevent delivering the feature 
catalog, activities related to it 
must use internal funding sources 
exclusively—never contract funds.

Step 2: Enumerate the Activities to Fund
The ultimate funding model purpose 

is to ensure activities charge to the right 
funding source. Thus, it is necessary to 
enumerate the activates that need funding 
resolution. Figure 1 gives a good start 
at such a list. From it, we can identify 
activities related to:

■	 PLE factory management
■	 Change control
■	 Feature catalog creation and evolution
■	 Portfolio (Bills-of-Features) creation 

and evolution
■	 Lead engineers for the share PLE asset 

supersets
■	 Shared asset engineering

Not shown in Figure 1 are the activities 
associated with starting up, operating, and 
optimizing the IT environment—the tools 
and technologies—the PLE factory uses, 
as well as training and capturing processes 
and best practices.

A typical funding model will be 
much more fine-grained than what we 
discussed here when it comes to mapping 
activities to funding sources. The company 
should review the list to ensure it has the 
granularity necessary to provide the basis of 
estimate data for the next contract if that is 
a funding model goal.
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Step 3:  Identify and Implement Protected 
Intellectual Property Policy

Call out any tasks identified in Step 2 
involving company IP creation or evolution 
that need protection.

Step 4:  Identify Available Funding Sources
Funding can be usefully divided 

between internal and external sources. 
External sources typically originate from 
customers or customer organizations 
via contracts. Internal funding includes 
sources originating within the product 
line organization, such as research and 
development or overhead.

The internal/external distinction is 
important because regulations often 
stipulate what the company may or may 
not use customer funds for, as well as the 
data rights, a company forfeits when it uses 
customer-derived funding for a particular 
activity. Internal funding usually comes 
with more discretionary privilege about how 
to spend it.

Step 5: Map from Activities to Funding 
Sources

This step associates a charging meth-
od with each activity. Under a contract, 
contract documents describe the work 
scope for each contract. It is important to 
charge the appropriate contract according 
to the scope defined in the contract. Some 
overriding principles include:

■	 If multiple contracts define the same 
development scope, they should share 
the cost. Charging to one contract 
when multiple contracts have the same 
development scope may not comply 
with regulations.

■	 Level-of-effort tasks involving manag-
ing work across the entire product line 
portfolio can share costs proportionally.

■	 It is acceptable to charge a single 
contract for a capability reused in the 
future by other contracts assuming 
the future contracts either are not yet 
awarded or the proposal and contract 
both document the reuse assumption.

The goal is charging the contracts 
benefiting from an activity proportionally 
according to the benefit they derive from 
the activity. A company should base any 
distribution algorithm calculating the 
proportion applicable to a specific contract 
on quantifiable data relevant to the work 
performed.

Some activities (PLE factory 
management) will benefit every product. 
Other activities (such as updating a shared 
asset or adding a new feature only some 
products will use) will only benefit some 
products. In some cases, an activity will 
benefit a single product (such as reviewing 

or delivering that product from the PLE 
factory). In all cases, proportionally 
charging the benefiting contract(s) still 
applies.

How do we calculate the proportion? 
We need to create a distribution algorithm 
defining the proportional benefit of each 
contract, such as basing it on the contract 
size or the product complexity.

Lockheed Martin describes a cost-
sharing approach they use for the AEGIS 
weapon system product line, for which 
they are the prime contractor (Gregg et al. 
2014):

The government, representing all AEGIS 
“consumers,” has also instituted a cost-
sharing approach to equitably allocate 
the cost of fixing a defect… If a program 
introduces an upgrade or new capability, 
it pays for it. Other programs are free to 
pick it up, or not, as they wish, but they 
pay for any required testing unique to their 
context. After a development is complete 
and time has elapsed, newly found defects 
become difficult to associate with any one 
program. In these cases, all programs pitch 
in to correct the defect. Lockheed Martin has 
a special funding account to fix all defects, 
across the entire product line, not related to 
unique capability content in development. 
Any program receiving special development 
funding pays for defects in that development, 
up to its demonstration milestone, at which 
point the cost-sharing approach starts.

This step results in a three-column table:
■	 Column 1 contains all tasks identified 

in Step 2.
■	 Column 2 names the funding source for 

the task, taking care to choose a source 
appropriately to protect IP.

■	 Column 3 identifies any information 
known upfront affecting the propor-
tional cost allocation described above. 
Examples:
•	 A planning activity for a specific 

contract might have the annotation 
“Charge to the (single) relevant 
contract.” If this applies, replace the 
generic row with a set of rows; one 
for each contract.

•	 PLE factory management activities 
might have the annotation “Charge 
to all contracts equally.”

•	 An activity to change a source code 
shared asset might have the annota-
tion “Charge to all affected contracts 
proportionally based on each affected 
product’s SLOC count.”

Step 6: Establish Charge Numbers
This step begins with the activi-

ty-to-funding-source table produced in the 
previous step. To this table, add a column 
for charge numbers. Fill it in as follows:

■	 For those activities that will always 
charge to a specific source in a specific, 
known proportion, add a charge 
number for the activity funded by that 
source.
•	 For any activity touching protected 

contractor IP, provide a charge num-
ber funded by internal funding.

•	 For any activity benefiting (by 
definition) a single contract, provide 
a charge number funded by that 
contract. You will need one charge 
number for each contract.

•	 For any activity benefiting (by defi-
nition) all contracts equally, provide 
a charge number funded by all con-
tracts, either equally or in proportion 
to some metric, such as contract size.

■	 All other activities will receive funding 
on a case-by-case basis by some but not 
all contracts, or by all contracts but in 
a proportion specific to the exact task. 
For example, “Update a shared asset” is 
an activity. We cannot charge for it until 
a specific task (Update this shared asset 
in this way for these specific products) is 
at hand. For this category, choose from 
these strategies:
•	 Produce a charge number set up 

front covering all possible contract 
combinations. This can quickly 
become extremely unwieldy. For an 
organization managing 20 contracts, 
this scheme would produce 220 or 
about a million charge numbers. 
This scheme might be useful, 
however, to handle a small number 
of specific contract-sharing scenarios 
the organization expects to occur 
frequently.

•	 Enter “TBD” in the table and create 
a charge number when needed. In 
this way, an activity such as “Update 
a shared asset” is a placeholder for 
specific tasks. When the PLE factory’s 
change authority approves a change, 
it will know which products that 
change will affect. Then, either the 
change authority or an intermediary 
accounting function can create a 
charge number for the task and 
attach it to the change order the PLE 
factory staff will implement. The 
correct contracts can proportionally 
fund that charge number.

•	 Enter “Spread-charge” in the table. 
In some organizations, creating a 
new charge number is a burdensome 
task, and so should only occur at 
project launch. This case may use a 
spread-charging approach. Spread-
charging is allocating hours across 
multiple charge numbers according 
to some algorithm. This has the 
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same effect as establishing new 
charge numbers based on a fixed 
percentage allocation using multiple 
charge numbers. However, spread-
charging skips creating new charge 
numbers but has the risk of relying 
on executing the algorithm reliably 
by each employee. To avoid this 
risk, automation should handle the 
allocation to multiple contracts and 
charge numbers automatically.

SUMMARY
Table 1 shows a very cursory example 

of the table resulting from the method 
outlined above. A real table would have 
many more activities listed, and specific 
information about each one, but Table 1 
illustrates the general ideas outlined above. 
The various rows reflect the different needs 
discussed: Charging all contracts equally, 
charging to internal funding to protect IP, 
charging to a single contract, and charging 
proportionally to benefitting contracts.

Every product line organization must 
answer the question: “Who pays for the 
product line activities?” Organizations 
building products under contract for 
specific customers need a funding model 
that provides a mapping between PLE 
activities and, essentially, charge numbers 
product line engineers use to pay for their 
work. The funding model needs to satisfy 
the organization’s overall goals, such as 
protecting intellectual property and ensure 

compliance with applicable statutes and 
contractual requirements. The result should 
be a charging model complying with 
contractual requirements and applicable 
regulations, protects the organization’s 
IP, keeps PLE factory staff from working 
directly for individual customers, captures 
truth, and provides a fair and equitable way 
to charge customers for work. We based 
the method presented in this paper on our 
work with PLE practitioners who operate in 
a government contract environment.  ¡
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Activity Funding source What do we know 
upfront? Charge #

PLE Factory 
management and CCB

Contract funds We will charge each 
contract equally

CF-xxx-yyyyy (staff charges one charge 
number, funded by all contracts

Feature catalog work Internal funding 
source, to protect IP

We will never use 
customer funds for this.

INT-xxx-yyyyy

Meeting to plan work 
for Contract #4

Contract #4’s funds We will charge solely to 
Contract #4

CF-aaa-bbbbb (funded solely by 
Contract #4)

Any activity updating 
a shared asset

Contract funds Any activity here receives 
funding proportionally 
by contracts that benefit, 
where “proportionally” 
means [fill in allocation 
algorithm]

TBD. (When CCB approves a change, 
they list the affected programs. 
Assign a task-specific charge number 
then, funded proportionally by those 
contracts.)

Table 1. A skeleton PLE factory funding model
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INTRODUCTION

  ABSTRACT
In transforming from a project-based engineering approach to a product line engineering (PLE) approach, the engineering teams 
must have support throughout the transition from evolving tools and methodologies. As an example, the Product Breakdown 
Structure (PBS) is traditionally a construction-based decomposition of a complex system, where subsystems reflect a breakdown 
of the engineering elements with appropriate technical interfaces, subassemblies, and team responsibility delineations. However, 
when used for a product line with myriad variants, a traditional PBS format provides insufficient detail and structure. As such, us-
ing standard desktop software, the author developed a hybrid PBS-Variability Model (VM), combining the familiar PBS structure 
with variability modeling aspects based on feature modeling and decision modeling approaches. This resulted in an engineering 
artifact recognizable as a PBS and easy to adapt to design evolution, yet sufficiently expansive to initially characterize variability. In 
this way, the traditional PBS evolves to the hybrid PBS-VM before transitioning to a complete variability model, thereby support-
ing the engineering teams transitioning from a project-based engineering approach to a PLE approach. In this paper, the author 
describes the traditional PBS limitations, the hybrid model development process with a custom-developed syntax description, the 
resulting hybrid model, and conclusions on appropriate product line usage.

Evan R. Helmeid, evan.helmeid@safrangroup.com
Copyright © 2020 by Evan R. Helmeid. Published and used by INCOSE with permission.

Within high-tech industry, 
transforming an engineering 
team from project-based 1 

development into product 
line engineering (PLE) involves transitioning 
concepts, working methods, project man-
agement tools, and engineering tools and 
methods. A large, geographically distributed 
organization must make this transition 
gradually and deliberately, allowing the team 
to continue supporting current projects 
while preparing for and implementing future 
product lines. Along with this evolution 
in the “way of thinking,” the tools and 
methodology changes must also support an 
evolution, Figure 1 (INCOSE 2019).

Development of a Hybrid 
Product Breakdown 
Structure and Variability 
Model

Figure 1: All concepts of an organization must transition from a legacy project-
based engineering approach to a new product line-based approach; the hybrid 
PBS-VM bridges this transition for the constructional model representation. CCB is 
configuration control board

Configuration
Management

Change
Control Project-Specific CCB

Product-Project
Integrated CCB

Hybrid PBS-VM

Transitional
methodologies,

tools, etc.

Constructional
Model

Systems
Engineering

Engineering
Approach

Concept Intermediate New ParadignLegacy Paradigm

Project-Based
Engineering

Product-Based
Engineering

Product Line-Based
Engineering

Product Line & Cross
Project Integrated CCB

Model-Based with
integrated variability

Part-Centric

Variability Model

Drawing-Centric

PBS

Requirements-Based

Bridges the transition from the legacy
PBS to the new Variability Model

Figure 1

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran.  
Safran name of the activity / Date / Department (menu "Insert / Header and footer") 1 1.  Project-based teams working in a “silo” environment 

may have little visibility into other engineering 
artifact use and little incentive, interest, or 
opportunity to promote reusing designs, whether 
opportunistic or intentional.
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In designing and manufacturing aircraft 
seats, the engineering teams are distrib-
uted across multiple countries, research 
and technology groups, industrialization 
teams, and manufacturing facilities. A new 
product line development includes the 
technical architecture definition. A Product 
Breakdown Structure (PBS) traditionally 
describes this architecture for the construc-
tional view. However, for a product line 
approach, the PBS shows insufficient de-
tail—namely, variants. As such, models can 
add variation points to identify the product 
variants as perceived by the customer and 
the impacts of those variations on the tech-
nical solutions. Designing and managing an 
effective product line architecture requires 
understanding planned variants to promote 
a viable lifecycle, as well as the ability to 
convey this information to the sales team 
and other stakeholders.

Accomplishing this requires accurate 
variation characterization and conveyance 
to the engineering, management, and sales 
teams, as well as to the customer (via a 
“product catalog”).

In evolving the tools to support the 
product line approach, the author devel-
oped a hybrid PBS-variability model (VM) 
using standard desktop software to bridge 
the gap between the traditional PBS and the 
capabilities of a complete VM.

ARRIVING AT A NEED FOR A HYBRID PBS-VM
Context: Product Line Complexity

When considering aircraft seats, the PLE 
problem is not as simple as considering the 
different features a passenger or an airline 

Long Range Business Class Seat from Safran Seats  
  

In-Flight 
Entertainment 

Screen 

Headrest Shell 

Sliding Door  Control Unit 

Ambient Lighting  

Passenger Seat 

Example Only

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran
Safran name of the activity / Date / Department (menu "Insert / Header and footer") 1 

Handedness: left, right
Aircraft OEM: multiple
Regulatory body:
multiple

Location: storage, 
footwell, reading,
literature pocket
Type: monochrome,
multi-color

Suite-Level

Supplier: multiple
Size: 20 inches, 22 
inches, 24 inches

In-Flight
Entertainment Screen

Handedness: left, right
Mechanism: manual,
motorized

Sliding Door Adjustability: fixed, tilt,
height, wings
Material: multiple

Headrest

Handedness: left, right
Side: front, back

Shell

Handedness: left, right
Comfort: massage,
adjustable lumbar,
heating, cooling
Material: multiple

Passenger Seat

Ambient Lighting

Buttons: 3, 4, 6
Type: touchscreen,
capacitative, mechanical

Control Unit

Figure 2

Figure 2: A business class aircraft seat contains many variation points—including passenger-facing and non-passenger-facing 
features—with multiple drivers, inductors, and constraints (passenger, airline, regulatory body, manufacturer, supplier).

may request. Regulatory and airframe 
requirements highly constrain the design 
space, the airlines have wide-ranging needs 
to meet the specific flight route needs as 
well as the airline values and branding, and 
the passengers have broad expectation and 
demand ranges for high-quality products. 
Every aircraft type, lavatory and galley 
configuration, in-flight entertainment (IFE) 
solution, and regulatory revision results 
in a new product variant—whether major 
or minor. Indeed, the features a customer 
interacts with are only the beginning of the 
challenge (Figure 2).

Initial Problem Statement
The need for a hybrid PBS-VM solu-

tion appeared after receiving direction 
to develop a PBS for a new business class 
aircraft seat product line. Specifically, the 
intent was to create a PBS providing insight 
into the reusability and commonality level 
between customer program product line 
instantiations.

Initially perceived as a straightforward 
task, a conventional PBS quickly showed 
inherent limitations and lack of adapt-
ability to provide the requested insight 
into product line architecture efficiency or 
effectiveness.

The initial PBS request came from a tra-
ditional systems engineering approach con-
text, which is insufficient for a product line 
approach. However, even adding the con-
cept of a “150% PBS,” where “the maximal 
product breakdown structure is generated 
by identifying the components necessary to 
implement all of the functions” (Krob and 

Le Sauce 2015), is still insufficient—a 150% 
PBS is useful as a way to perceive the PLE 
breadth, but it remains based on the basic 
PBS principles and, therefore, has inherent 
limitations when trying to provide insight 
into a complete product line (CESAM 2017, 
and Krob and Le Sauce 2015), as discussed 
in the following sections.

Discovering Traditional PBS Limitations
The first attempt began with a traditional 

PBS expanded to achieve a 150% PBS mod-
el, representing the product line scope, but 
easily recognizable as a PBS from the tradi-
tional systems engineering tools and meth-
ods. If using a small number of levels, this 
is a conceivable solution. Major subsystems 
have variations—such as ambient lighting 
options, IFE providers and peripherals, and 
left- and right-handed suites (Figure 2).

Figure 3 shows a simple, single-solution 
PBS example for an IFE system. Figure 4 
shows an expanded 150% PBS for the same 
IFE system; note the 150% PBS is similar 
to a feature model with variation points 
(Czarnecki et al. 2012).

Within a business class cabin context, 
the IFE system is only a small part. But 
even this small part is highly customizable 
with implications to other parts of the suite 
(mechanical integration and power supply) 
and with dependencies on other systems 
(ability to support a suite-level active 
acoustic control system).

In pursuing reusing technical solutions 
across the product line and in understand-
ing major variations can occur at different 
PBS levels with or without affectations at 
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Monitor
22” non-

touchscreen

Monitor support
non-touchscreen

Handset support

Audio Module
support

Active Acoustic
Control support

Dependency

External
Dependency

Power Data Box
support

USB & AC Power
Outlet Module

support

Handset
touchscreen

IFE Power & Data
Harness

IFE System
Supplier B 

Audio module
2-prong

USB & AC Power
Outlet Unit module

2x USB with
grounded AC

Figure 3: A PBS for a single 
customer IFE system configuration 
(demonstration purposes only).  
AC is alternating current, and  
USB is universal serial bus.

sub-tier levels, the low-fidelity of the 150% 
PBS is therefore insufficient.

For example, one chooses seat handed-
ness at a high PBS level, but elements lower 
in the PBS are independent of handedness 
and can actually be common. Looking 
closely at the IFE system shown in Figure 3 
and Figure 4, we can already see even this 
simple example cannot capture the supplier 

IFE System 

Monitor

Too many
variations to show

Handset

Handset –
touchscreen type

Handset –
keyboard type 1-prong audio jack

USB-A x2
Grounded AC

Outlet

USB-C x1
Grounded AC

Outlet

USB-C x1 Un-
grounded AC

Outlet

USB-C x2
Grounded AC

Outlet

USB-C x2 Un-
grounded AC

Outlet

USB-A x2 Un-
grounded AC

Outlet

USB-A x1
Grounded AC

Outlet

USB-A x1 Un-
grounded AC

Outlet
3-prong audio jack

2-prong audio jack

Monitor – 20-inch
touchscreen

Monitor – 20-inch
non-touchscreen

Monitor – 22-inch
touchscreen

Monitor – 22-inch
non-touchscreen

IFE Power & Data
Harness Audio module Bluetooth module USB & AC Power

Outlet Unit module

Figure 4: A 150% PBS with identified variability for an IFE system (demonstration purposes only).

nor the common elements (such as screen 
and power outlet module). Additionally, 
designs can be reusable—such as for seat 
covers or cushions—but customers can 
select different materials.

In essence, different components or 
subsystems can be reusable depending on 
different inductor sets—aircraft type, airline 
branding, seat position in the cabin, and 
seat handedness. These decisions may not 
be mutually exclusive, resulting in complex 
relationships between allowed variations 
and, therefore, complex relationships to 
understand the product line’s efficiency 
with reusability and commonality.

Table 1 (next page) provides more de-
tailed variability descriptions of each major 
PBS element in the IFE system example.

As is evident, both PBS versions, shown 
in Figure 3 and Figure 4, lose this informa-
tion. As such, understanding our product 
line requires a more advanced model.

Creation of the hybrid PBS-VM
After reviewing further PLE documenta-

tion and recommended practices and tools, 
the feature modeling and decision modeling 
concepts provided a potential solution, 
combined with standard desktop tools 
(Microsoft® Excel® and Visio® with import 
capabilities, as described in the “Tools” 
section) (Czarnecki et al. 2012). However, 
incorporating these ideas into the construc-
tional model required developing a hybrid 
solution merging the 150% PBS with the 
tree notation of feature modeling and lever-
aging the syntax complexity and flexibility 
of decision modeling.

options or dependencies on other PBS 
elements (the power and data harness being 
able to support an active acoustic control 
system). As such, indicating two completely 
new variants at such a high level in the 
assembly (duplicating the IFE system to 
reflect multiple suppliers) does not reflect 
the actual reusable amount of engineering 
(such as common mechanical interfaces) 
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Monitor
enum [20in | 22 innn} {

touchscreen] <1:1, 0:1>

Handset
enum [touchscreen |

keyboard] <1:1>

Monitor support
enum [touchscreen | non

touchscreen} <1:1>

IFE Power & Data
Harness

Audio module
enum [ 1-prong | 2-prong |

3-prong} <1:1>

Audio Module
support

Power Data Box
support

Handset support

USB & AC Power
Outlet Unit module

enum {USB-A | USB-C} {
grounded | un-grounded} <

1:2, 1:1> (QTY n)

Bluetooth module
bool { T | F } <1:1>//

IFE.supplier <> SupplierB | |
ifSelected

Support.Module.Bluetooth
= true

Bluetooth Module
support

bool { T | F } <1:1>//
Module.Bluetooth = true

Supplier.IFE <> SupplierB

Active Acoustic
Control support

bool { T | F } <1:1>//
ActiveAcousticControlSys

tem = true

IFE System
enum { SupplerA |
SupplierB } < 1.1>

USB & AC Power
Outlet Module

support

Figure 5: Because of the simplified structure combined with embedded syntactical descriptions, this hybrid PBS-VM retains the 
visual simplicity and recognizability as a basic PBS (Figure 3) while showing the variability of a 150% PBS (Figure 4) and capturing 
complex relationships and dependencies (Table 1).

The resulting solution provides the 
complexity needed to characterize the total 
product line and representative variability 
with the familiarity of viewing a traditional 

PBS. Refer to Figure 5 for the hybrid PBS-
VM of the previous IFE system example.

After peer-reviewing with the engineer
ing teams, it was apparent this hybrid 

Table 1: Description of the variability for the IFE System

PBS Element Description of Variability Dependencies

Monitor Dependent upon airline selection Affects monitor shroud, 
mounting bracket, power 
consumption

Handset Dependent upon airline selection Affects mounting bracket

IFE Power & Data 
Harness

The harness must provide support (e.g., pigtail and connector) 
to all connected peripherals and systems. Some peripherals 
are always present (e.g., monitor, audio module), but some are 
optional and may be omitted (e.g., Bluetooth module).

Affected by selection of all IFE 
peripherals, selection of suite-
level Active Acoustic Control 
system

Audio module Dependent upon airline selection May affect mounting bracket

Bluetooth 
module

Dependent upon the selected IFE Supplier (only available from 
some suppliers), and dependent upon airline selection

Affects Power & Data Harness, 
mounting bracket

USB & AC Power 
Outlet Unity 
module

Numerous options available, dependent upon airline selection. 
The actual choice is nested—first choose the AC outlet, then 
choose the number USB ports, then choose the type of USB 
ports. Even with this variation, the mechanical form factor and 
integration may be unchanged.

Affects Power & Data Harness; 
may affect mounting bracket

PBS-VM approach met its objectives and 
allowed the multi-disciplinary team to 
review and agree upon the new product 
line architecture and initial variability 
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approach without having to understand the 
complexity of a dedicated variability model. 
This approach bridged the gap between the 
traditional engineering methodologies with 
their inherent restrictions and the new PLE 
paradigm and the associated complexity.

It is important to note, however, this meth-
od still has limitations in the amount of data 
shown and, therefore, in the level of detailed 
engineering represented. As a rule, maintain 
this relative simplicity, while providing just 
enough detail to address the question within 
the current design detail level context. Of 
course, additional engineering artifacts need 
developing to fully define the product line, 
and design and development can recursively 
use these methods throughout.

VM for Full PLE Implementation
When ready for the full PLE tool and 

terminology set, a proper VM should ad-
dress the remaining concerns of the hybrid 
PBS-VM and its ability to support viewing 
the product line architecture effectiveness, 
including reusability and commonality. 
Additionally, a dedicated variability mod-
eling tool can interface with configuration 
management (CM) and product lifecycle 
management (PLM) tools to properly con-
trol the product line evolution throughout 
the lifecycle. As such, the hybrid PBS-VM 
usefulness may reduce as the product line 
systems engineering capabilities mature 
within the organization or as a program 
progresses through the design process.

GUIDE FOR DEVELOPING AND USING A 
HYBRID PBS-VM

The necessity to describe a product 
line’s complexity in the traditional systems 
engineering practice and tool context 
created the hybrid PBS-VM, thereby easing 
the transformation to a product line-
based organization. Furthermore, with the 
ability to describe the product line and its 
variability comes the ability to manage the 
variability and the architecture.

The new model merges four key concepts:
1.	 PBS: constructional system decom-

position, presented in a hierarchical 
form

2.	 150% PBS: a PBS adapted to address 
the product line breadth by adding 
the product line variability to over-
define a product solution

3.	 Decision model: a decision set 
adequately distinguishing among 
application engineering product 
family members and to guide adapta-
tion of application engineering work 
products (Software Productivity Con-
sortium Services Corporation 1993)

4.	 Feature model: captures features 
—“distinguishing characteristic[s] 
that [describe] how the members 

of the product line differ from each 
other” (INCOSE 2019)—and the 
relationships among them (Kang et 
al. 1990)

The following sections discuss the steps 
to create an effective hybrid PBS-VM and 
define the syntax developed to describe 
variability.

Recipe
The following recipe can create an effec-

tive hybrid PBS-VM for a technical system. 
So far, only four aircraft seat product lines 
have deployed this method—two premium 
business class seats, one basic business class 
seat, and one economy class seat. However, 
the recipe can adapt to other industries and 
systems and is usable for smaller systems 
as well as extensible to larger and more 
complex systems.

Step 1: Create a basic PBS (refer to Figure 
3). Use a top-down method to develop a 
traditional PBS, focusing on capturing the 
overall physical system architecture in the 
constructional feature context. It may be 
useful to consider an anticipated “standard” 
product version to capture the generic sys-
tem architecture and to begin defining the 
scope. Also, recall a PBS should not intend 
to match either a work breakdown structure 
or a drawing tree—these are supplemental 
system visions that work in complement to 
fully define a system and facilitate the man-
agement, engineering, procurement, and 
manufacturing activities (INCOSE 2019 and 
United States Department of Defense 2018).

Step 2: Develop into a 150% PBS (refer 
to the top two levels of Figure 4). Add detail 
to the basic PBS to capture the full option 
range offered on the product line. The focus 
is on identifying the scope and overarching 
architecture and decomposition—defining 
relationships, rules, and logic between 
options or features happens later. This PBS 
version is not instantiable into a single 
customer solution, as it over-defines the 
system (Krob and Le Sauce 2015).

Step 3:  Identify variation points (refer 
to Figure 4). Identify each feature of the 
150% PBS possessing variability, focusing 
on identifying the highest level in the PBS 
(assembly level instead of component 
level) where the variation is capturable. 
For example, identify the handset assem-
bly as variable (touchscreen system versus 
mechanical keyboard system) rather than 
separately identifying the front face, rear 
face, wiring, and connector as having their 
own variability. Identifying the “correct” 
place to capture variability depends on 
the product, procurement strategy, and 
design strategy. Leverage the team member 
knowledge—product line manager, archi-
tects, and domain experts—as needed to 

create an accurate picture (Haughey 2020).
Step 4: Define the variability (refer to 

Figure 5). Defining the variability involves 
employing the syntax described in the 
following section. The syntax describes the 
variability level and type of each variation 
point, as well as dependencies between 
features—whether physical dependencies 
or market-based dependency decisions. By 
adding variability definition directly into 
the 150% PBS model, this step represents 
the key hybrid PBS-VM approach 
capability.

Step 5: Collaborate with the teams. 
Throughout the process, and especially to 
obtain final product buy-in, iterate with 
the development teams. This ensures the 
hybrid PBS-VM represents the intended 
as-specified product, ensures consistency 
with the engineering team organization, 
and ensures the hybrid PBS-VM supports 
the other stakeholder needs. For example, 
the PBS may be the basis for defining scope 
for suppliers and work packages; therefore, 
the new hybrid PBS-VM must also support 
this use case.

Syntax
The syntax used for the hybrid PBS-VM 

is a modified version of the decision model 
syntax presented in Czarnecki et al. (2012) 
Figure 1 (original sources are Dhungana, 
Grünbacher, and Rabiser 2011; Software 
Productivity Consortium Services Corpo-
ration 1993; and Schmid and John 2004). 
The syntax, implemented in a tabular 
format, enables formulaic development and 
eases data management.

Each model element uses the attributes 
identified in Table 2 (next page) to define 
the variation definition. If the attribute 
does not apply, then the visual model 
omits it. Together, these attributes define 
the element, if the element varies, how 
the element varies, the variability options 
available, and dependencies with other 
elements.

As examples of the above approach, we 
will use two elements from the IFE system 
installed in a business class suite: the USB 
& AC Outlet Unit module (Figure 6) and 
the Bluetooth Module (Figure 7). We want 
to understand if the inclusion is required or 
optional, the types allowed, how many to 
include, and if there are any dependencies.

From the Figure 6 information block, we 
can determine the following information:

■■ Name:  the element name is “USB & AC 
Power Outlet Unit module”

■■ The following defines variability:
•	 enum { USB-A | USB-C } { grounded 

| un-grounded }  there are two 
‘enumerated’ type decisions to make. 
The first decision is for the USB port 
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type, with the range of options being 
USB-A or USB-C. The second deci-
sion is for the AC outlet type, with 
the range of options being grounded 
or ungrounded.

•	 < 1:2, 1:1 >  Cardinality tells us to 
choose 1 or 2 of the available options 
from the first decision and to choose 
only 1 of the available options for 
the second decision. In this way, a 
customer may choose to include both 
USB-A and USB-C ports.

•	 ( QTY n )  The element quantity 
must be selected. For example, an 
airline may choose to include 2 “USB 
& AC Power Outlet Unit module” 
assemblies in the instantiated prod-
uct, which would prompt the airline 
to choose the features of both block 
instances.

From the Figure 7 information block, we 

can determine the following information:
■■ Name:  the element name is “Bluetooth 
Module”

■■ The following defines variability:
•	 bool { T | F }  There is one ‘Bool-

ean’ type decision to make: whether 
to include the module (T = True) or 
not (F = False).

•	 < 1:1 >  Cardinality tells us to 
choose 1 of the available options from 
the first decision—True or False.

•	 // IFE.supplier <> SupplierB  This 
constraint indicates this block can 
only activate if the IFE Supplier is not 
Supplier B.

•	 || ifSelected Support.Module.
Bluetooth = true  This condition 
indicates an outward dependency. If 
selecting the Bluetooth Module, then 
the Bluetooth Module Support (of 
the IFE Data & Electrical Harness) 
must also be True.

The hybrid PBS-VM visual model can 
directly use these blocks, and formatting 
can adjust to suit the user needs (refer to 
Figure 5 for the formatting used by the 
author).

Tools
The author developed the present ex-

amples using a combination of Microsoft® 
Excel® and Microsoft® Visio®. The author 
used formulas to assemble the syntax in 
Microsoft® Excel® (Table 3). The Microsoft® 
Visio® then imported the Microsoft® Excel® 
using the “Hierarchical Import Wizard” 
and custom blocks for formatting (Figure 
5). Formatting occurs automatically using 
custom blocks and conditional formatting 
based on metadata.

However, Microsoft® Excel® could 
feasibly solely maintain the hybrid PBS-
VM, with or without Macros for assistance 
in visualization. Additionally, using 

Bluetooth Module
bool { T | F } < 1:1 > // IFE.supplier <> SupplierB || ifSelected Support.Module.Bluetooth = true

Figure 7: The hybrid PBS-VM syntax example for the Bluetooth Module.

USB & AC Power Outlet Unit module
enum { USB-A | USB-C } { grounded | un-grounded } < 1:2, 1:1 > ( QTY n )

Figure 6: A hybrid PBS-VM syntax example for the USB & AC Power Outlet Unit module.

Table 2: Explanation of the attributes and syntax used to define variability of each element of the hybrid PBS-VM. These fields 
correspond to the example in Table 3

Name Description Syntax

 To assist in identification of major points of variation or 
joining of sub-product lines; also used for visual aid in 
the visual representation 

Top = top of the tree,
Leaf = lowest defined element,
Abstract = no direct physical 
implementation (e.g., Spare Parts 
System)

Variability 
Type

Identify where an element is invariant across all 
instantiations of the product line; otherwise, variation is 
dependent upon higher level variation points

Variable = element has variants,
Invariant = element is unchanging 
across all instantiations,
None = element variability is defined by 
other elements

Decision Identify the type of variation—item is required, item is 
optional, item is purely custom

Choose = select from enumerated list,
Include = select to include or exclude,
Custom = customized element

Decision Type 
and Range

Identify the type of decision to be made, and identify the 
variants available for each decision

bool {T/F} for type Boolean,
enum {list} for type enumerated

Cardinality Identify the minimum and maximum number of each 
item that may be selected from the identified options

< min : max >

Quantity Identify the number of elements that exist within each 
product instantiation; implies recursive selection of the 
element block

(QTY integer)

Condition Must be met in order for the variation point to be 
activated

// logic statement

Constraint Dependency with other elements || function statement
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basic Microsoft® Visio® tools, Microsoft® 
PowerPoint®, yEd® Graph Editor, or other 
similar types of tools presenting graphical 
hierarchies can create the model. The 
author recommends programs possessing 
capabilities for automatic reorganization 
and spacing for ease of manipulation 
and visualization, especially with larger 
datasets.

Indeed, a hybrid PBS-VM benefit is its 
reactivity—because typical desktop tools 
can develop and manage the model, there is 
a low barrier to its usage in an organization.

Usage
While adjustable to individual orga

nization needs, the hybrid PBS-VM 

is specifically useful in the following 
situations:

■	 For organizations already using a PBS, 
or organizations looking to introduce 
variability management capabilities

■	 Developing initial models supporting 
architecture trade studies

■	 As a complete VM for small systems 
or subsystems reasonably controlling 
configuration and variants without 
dedicated software tools

■	 As an intermediary or tool to aid in 
developing a formal VM

■	As a means of communication to 
internal or external teams, suppliers, 
or customers; to facilitate an under-
standing of the breadth, complexity, 

and interdependencies of a product 
line and architecture

Additionally, the hybrid PBS-VM is 
extensible for hardware-only systems, 
software-only systems, and combined 
hardware-software systems. Additional 
syntax may be necessary to differentiate 
between configuration item types.

CONCLUSIONS
The work presented leads to the 

following conclusions:
■	 A traditional PBS is insufficient to 

describe the product line architecture 
and its effectiveness

ID1 top IFE System

ID2 leaf Monitor ID1 variable choose size 
and type

enum { 20in | 22in } 
{ touchscreen }

< 1:1, 
0:1 >

ID3 leaf Handset ID1 variable choose type enum { touchscreen | 
non-touchscreen }

<1:1 >

ID4 none FE Power & Data 
Harness

ID1 variable configure

ID5 leaf Audio module ID1 variable choose type enum { 1-prong | 2-prong 
| 3-prong }

<1:1 >

ID6 leaf Bluetooth module ID1 include? { T | F } // IFE.supplier <> 
SupplierB

|| ifSelected 
Support.Module.
Bluetooth = true

ID7 leaf USB & AC Power 
Outlet Unit module

ID1 variable choose type enum { USB-A | USB-C } 
{ grounded | un-
grounded }

<1:2, 1:1 > n

ID8 leaf Monitor support ID4 variable choose type enum { touchscreen | 
non-touchscreen }

<1:1 >

ID9 leaf Handset support ID4

ID10 leaf Audio Module 
support

ID4

ID11 leaf Power Data Box 
support

ID4

ID12 leaf Bluetooth Module 
support

ID4 include? bool { T | F } <1:1 > // Bluetooth.module 
= true, IFE.Supplier <> 
SupplierB

ID13 leaf USB & AC Power 
Outlet Module 
support

ID4

ID14 leaf Active Acoustic 
Control support

ID4 include? bool { T | F } <1:1 > // ActiveAcousticControl 
= true

**Unique Identifier

*Elem
ent Type

*Nam
e

**Hierarchy

Variability Type

Decision

*Decision Type

*Range

*Cardinality

*Quantity

*Condition

*Constraint
Table 3: Tabular form of the syntax used to define each hybrid PBS-VM element. (*) denotes information visible in the element 
block. (**) denotes information used expressly during import into Microsoft® Visio® to create the hierarchy. Retain other 
information as meta-data and to assist in item definition. The data fields correspond to the descriptions in Table 2.
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■	 A hybridized syntax, combining 
decision model and feature model 
concepts, can concisely capture product 
line reusability and variability

■	 A hybrid PBS-VM can provide an 
effective bridge between traditional 
project-based engineering and PLE 
approaches
•	 A hybrid model is readily under-

standable, yet captures the product 
line approach effects

•	 A hybrid model can be an inter
mediate step to developing a formal 
VM

■	 Effectiveness maximizes when used 
early in the product line lifecycle, with 
small systems, or with organizations 
with a low maturity level in formal PLE

FUTURE WORK
In developing this new model, future 

work will exercise the model over a broader 
product line range—both hardware and 
software—to discover and resolve deficien-

cies; investigate how to integrate the model 
with enterprise tools; and ensure consistent, 
high-quality, and reproducible approach 
implementation. Specifically, the author has 
identified the following activities:

■	 Use the hybrid PBS-VM in developing 
new product lines and systems includ-
ing hardware, software, and integrated 
systems, both large and small.

■	 Develop the tools to enable automation 
and enforce implementation and syntax 
consistency.

■	 Identify means to integrate the hybrid 
PBS-VM into enterprise tools, such 
as model-based systems engineering 
(MBSE) tools, requirements-based 
systems engineering (RBSE) tools, CM 
tools, PLM tools, and computer-aided 
design (CAD) tools.

■	 Develop detailed usage guidelines, in-
cluding decision logic in decomposing 
systems to maximize the correctness 
and utility of the resulting model.

■	 Expand the model to support additional 
approaches for variability and reuse  —
reusable modules, standardized 
interfaces, and product lines-of-product 
lines.

■	 Expand the model to support 
additional techniques for variety—fixed 
versus variable, combination, multi-
functionality, range, and trend and 
margins (Safran 2020).

■	 Align the methodology and terminol-
ogy with the upcoming standard ISO/
IEC DIS 26580 “Software and Systems 
Engineering—Methods and Tools 
for The Feature-Based Approach to 
Software and Systems Product Line 
Engineering.”  ¡
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INTRODUCTION:
Why it is a linguistic issue?

  ABSTRACT
Inner source is establishing open source-like collaborations within an organization. Product Line Engineering (PLE) is the ap-
proach for engineering a related product portfolio in an efficient manner, taking advantage of products’ similarities while manag-
ing their differences. These two well-documented approaches propose smart techniques for reuse, but they use different terminol-
ogy. A language characteristic is to be polysemic and polymorphic. Indeed, PLE and inner source do not use the same words to 
refer to equivalent concepts. This could badly affect project performance when evolving in a multi-domain context. What if there 
was a way to better integrate PLE, inner source, modeling, data management, hardware and software engineering, and integration, 
verification, validation, and qualification (IVVQ) through the similarity concept?
	 This paper shows it is possible to build a common way to assess the components (also called building blocks) contributing to 
a product line, thanks to a process to determine the component maturity levels using the similarity approach. After detailing the 
commonalities between the inner source and PLE domains, we present the Inner Sourcing Process Maturity Level (ISPML) as a 
key engineering practice. Why is it important for engineering? If engineers reuse components defined by their engineering assets, 
it is important to have a formalized, common way to do this across the company to integrate reusable multi-domain assets with 
a certain confidence level. This paper introduces a simple method for multi-domain organizations to better determine whether 
sharing an engineering asset is favorable or not.

The Convergence of 
Struggles! Reusability 
Assessment of Inner-
Source Components for 
Product Lines
Thomas Froment, thomas.froment@thalesgroup.com, and Guillaume Angier de Lohéac, guillaume.angierdeloheac@
thalesgroup.com

There are multitudes of 
ambiguous words in all 
languages (Cisse 2007), which 
can create misunderstandings. 

Approximately one in two words out of its 
context is ambiguous in Indo-European 
languages. There is no exception in day-
to-day professional context. For instance, 
engineering domains like PLE and inner 
source do not use the same words to refer 
to equivalent concepts. This could badly 
affect project performance when evolving 
in a multi-domain context. Before focusing 
on engineering areas, it is necessary to 

clarify the problem. Philosophy and 
linguistics are the correct domains to define 
the problem properly.

Language is the capacity to express a 
thought and communicate by a system of 
signs endowed with semantics, and most 
often a syntax (Bergounioux 2021).

Ferdinand de Saussure (1857-1913), a 
linguistics founder, declares two things 
constitute the linguistic sign: the signifier 
and the signified (Bergounioux 2021). You 
cannot tell the two apart, but you have to 
understand the two together to make sense. 
The relationship between the signifier and 
the signified is conventional. All people in 

a linguistic community must learn which 
words correspond to which images. For 
instance, to mean “car,” French speakers 
use voiture and Spanish carro. However, 
translation is rarely a “one for one.”

The Sapir-Whorf Hypothesis better 
understands the translation issue. It states 
native languages strongly affect the way 
people think. It is a controversial theory 
championed by linguist Edward Sapir 
(1884-1939) and his student Benjamin 
Whorf (1897-1941). A well-known example 
to support their theory is the numerous 
words the Eskimo language has for snow 
when the English language has only one. In 

mailto:thomas.froment@thalesgroup.com
mailto:guillaume.angierdeloheac@thalesgroup.com
mailto:guillaume.angierdeloheac@thalesgroup.com
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English-speaking literature, we find exam-
ples such as George Orwell who will exploit 
this idea in his novel 1984. In this work, 
a totalitarian power modifies the official 
language so the thoughts questioning it are 
not, in the long term, even expressible (the 
famous “Novlangue”). Beyond this example 
from popular culture, we must consider 
the relationship between the signifier and 
the signified involves variability. Context 
and social interaction influence language 
variability. Ferdinand de Saussure used 
“paradigm” to refer to a class of elements 
with similarities (Bergounioux 2021).

Another domain, philosophy of sciences, 
uses “paradigm” to refer to variability 
and studying social influence. Thomas 
Kuhn (1922-1996) defines paradigm 
as “universally recognized scientific 
achievements that, for a time, provide model 
problems and solutions for a community 
of practitioners.” Kuhn reckons science 
does not progress via a linear knowledge 
accumulation but undergoes periodic 
revolutions, also called “paradigm shifts.” 
Kuhn saw the sciences as going through 
alternating “normal science” periods, 
when an existing reality model dominates 
a protracted puzzle-solving period, and 
“revolution,” when the reality model 
itself undergoes a sudden drastic change. 
Generally, guided by the paradigm, normal 
science is extremely productive: “when the 
paradigm is successful, the profession will 
have solved problems its members could 
scarcely have imagined and would never 
have undertaken without commitment to 
the paradigm” (Kuhn 1962). According 
to Kuhn, adherence to a paradigm is 
a sociological phenomenon, which 
requires creating a community of thought, 
methods, and objectives around common 
tools (journals or conferences). The term 
“paradigm” developed by Thomas Kuhn, 
which he moreover suggested disciplinary 
matrix should replace, tends to designate all 
the beliefs, values, and techniques shared 
by scientific community members during a 
theoretical consensus period.

According to him, “the paradigm is a 
framework which defines problems and 
legitimate methods, and which thus allows 
a greater research efficiency: a common 
language favors disseminating the work 
and channels the investigations.” The 
most typical paradigm examples cited by 
Thomas Kuhn are the Ptolemy paradigm 
(geocentrism), the Copernicus paradigm 
(heliocentrism), the Newton paradigm, and 
the general relativity paradigm (Einstein).

In an engineering context, PLE and inner 
source are two paradigms (or disciplinary 
matrices) with common methods. One 
way to better integrate them is to first 
check commonalities and gaps, then share 

problems to solve and solutions to make 
a common vision possible. Before getting 
to the heart of the matter, we need to 
introduce inner source.

Inner Source Definition and Motivation in 
Corporate Companies

Inner source takes the lessons learned 
from developing open-source software and 
applies them to the way companies develop 
software internally. In other words, inner 
source stands for “group-wide” internal 
open source.

Why is the inner source practice 
developing on a large scale in an ever-
increasing number of large and even 
medium-sized technology companies?

The observation is: the open-source 
world is, without any discussion today, 
where innovation is the most dazzling 
and has been for more than 20 years now. 
Companies sometimes find it hard to 
innovate and, even when they have good 
ideas, putting engineering into practice for 
a multi-domain, multi-entity, or multi-
country project often comes up against 
major difficulties and often leads to failure.

So why implement inner source in the 
industrial world?

■	 Reuse: This is the most obvious reason. 
Reusing components, building blocks 
made by other entities, is a way to save 
time and therefore optimize costs while 
reducing time to market.

■	 Transparency and serendipity: Beyond 
the financial aspect, the founding 
inner source practice element is an 
engineering practice that is very 
disruptive and based not on a method 
strictly speaking, but on a principle: 
transparency. All the actions, all the 
stakeholder decisions are in full view 
of everyone, even those who are very 
indirectly involved in the company. 
Beyond the behavioral change 
this induces, which is part of the 
transforming management mode (REF) 
general logic, this transparency in itself 
generates new opportunities—not 
foreseen at project start—techniques 
and even business, within the company. 
We will address “serendipity” which 
literally means finding a new idea “by 
a happy coincidence.” But applying 
transparency at all times somehow 
“provokes” this chance, and this is 
where we often find major innovations.

■	 Quality: Finally, it is also a marker, 
counter-intuitive for some, of open 
source: excellence in the delivered 
quality. Although not guaranteed, best 
practices in software craftsmanship 
such as delivering well-tested code, 
implementing test-driven development, 
doc as code, code reviews, and a 

complete continuous integration 
chain are not optional. Indeed, project 
stakeholders are often extremely 
diverse; do not share the same practices, 
even within the same company; and, 
are often unable to physically work in 
the same room or at the same time. The 
only “viable” way to deliver a working 
product then becomes not to break 
away from best practices and to be 
extremely rigorous in configuration 
management, continuous integration, 
and governance rules, especially for 
everything related to the product’s 
“common parts.”

COMMONALITIES AND GAPS BETWEEN THE 
INNER SOURCE AND PLE DOMAINS

In this chapter, we compare signifier and 
signified (or word and definition, the two 
linguistic sign parts defined by Ferdinand 
de Saussure), to check commonalities and 
gaps between the inner source and PLE 
domains.

Common sign: Same Signified and Same 
Signifier

The following words share the same 
definition in both domains.

Product: Intended to sell, directly or in-
directly (internal product), to customers for 
satisfying their expectations and meeting 
their operational requirements. A product 
can be hardware or software equipment, a 
service, a system, a replicable combination 
of the previous items (Thales Group 2015).

Product Roadmap: The product 
lifecycle master plan, typically showing 
the major update releases with new 
features over time, the phase-out, and their 
associated estimated budgetary needs. It 
starts with the market rendezvous (market 
events, must-wins, and major targeted bids 
and projects). The product roadmap is part 
of the product plan.

Solution: A consistent set of systems, 
equipment, and services provided to the 
customer to meet his requirements. Rule: 
The solution should maximize product 
use according to its competitiveness and 
attractiveness (Thales Group 2015).

Unique to PLE
Business Plan: A financial modelling 

describing a business activity with a specific 
focus on its profitability over time. Formal-
izes the company’s future development plan 
and profitability in product terms.

Feature: A distinguishing characteristic 
describing how the product line members 
differ from each other (INCOSE 2019). 
This provides a common language and 
defines the product line’s scope of variation 
for the organization. Feature-Based Product 
Line Engineering is a specialized and highly 
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Assets
TISS

Assets
TISS

Assets
TISS

Projects
TISS

A single TISS project may share one or many TISS Asset(s).

efficient PLE form. Feature-Based PLE 
relies on a managed feature set to describe 
the distinguishing characteristics setting 
the products in the product line apart from 
each other (INCOSE 2019).

Even if feature is unique to PLE, it is 
a known concept in inner source, and it 
could then apply in some circumstances. 
We discuss its applicability for inner source 
later.

Product Line: A product group related 
in they have similar technical and func-
tional specifications and address the same 
market segments or the same customer 
groups, same operational requirements 
(Thales Group 2015). Products and/or 
services for specific markets with explicitly 
identified commonalities and variabilities 
and developed on the same architecture.

Product Line Family: Product line 
groups designed to meet the common and 
variable needs of several market segments 
(Thales Group 2015).

Unique to Inner Source
TISS: Thales Inner Source Software is 

the inner-source program in Thales. This 
follows the internal open-source founda-
tion model.

Contributor:  Someone who contributed 
to a TISS project: contributions range from 
simple comments all the way to software 
code. A contributor or anyone else who is 
not a committer has no right to force their 
contribution to integrate into the main 
project. They can create a derivative project 
(a fork) to integrate their contribution.

Committer: A TISS project technical 
authority. A committer is either a Thales 
project team member who initially devel-
oped the asset(s) or a contributor who has 
received commit rights in a TISS project.

Project Management Committee 
(PMC):  A TISS project product authority. 
Any TISS project PMC has one or many 
members. The PMC has authority regard-
ing publishing TISS assets.

Core Team: The group of people includ-
ing committer(s) and PMC member(s)

Gaps:

Same signified but a different signifier
Program (PLE)/Top-Level Project 

(Inner Source): A program is a group of 
interdependent projects coordinated to ob-
tain benefits and control not available from 
managing them individually.

Building Block (PLE)/TISS Asset 
(Inner Source): A reusable modular 
element of a higher level product not sold 
directly to customers. It can be managed 
as a product as a configuration item 
engineered for re-use purposes (long-
lasting interfaces and design).

Derivation (PLE)/Fork (Inner 
Source):  Operations allowing project 
initialization with the relevant product 
assets (product instances) that require 
product reuse.

Through inner source, a project fork 
happens when developers take a source 
code copy from one software package 
and start independent development on it, 
creating a distinct and separate software 
piece. The term often implies not merely a 
development branch.

Generalisation (PLE)/Pull (or merge) 
Request (Inner Source): Operation 
enriching the product by integrating 
re-usable assets developed in a customer 
contract to positively contribute to the 
product value. This operation either adds 
new product capabilities compatible with 
the product roadmap or contributes to 
technical debt reduction.

Through inner source, pull (or merge) 
requests mean pulling changes from another 
branch or fork into your branch and merging 
the changes with your existing code. This 
generally associates with contributing rules 
(typically, a code review and test coverage).

Different signified but the same 
signifier

Project (PLE): A unique time and 
cost-constrained activity set using resourc-
es to achieve stated objectives (usually 
deliverables up to quality standards and 
fulfilling requirements).

A “project” refers to the temporary 
organization and means established by 
the company to execute a contract with 
an external customer and to deliver the 
required goods and services (the solution), 
from which the company expects profits, 
as well as other business benefits such as 
growth, strategic market placement, and 
industrial footprint.

TISS Project:  Software components 
shared in TISS (assets) built by teams 
working on Thales projects. So, a TISS 

asset, at least initially, designs and develops 
in a Thales project context. A TISS project 
is home to one or many shared TISS assets. 
Note TISS project and Thales projects do 
not have the same meaning: one Thales 
team working on a Thales project may 
share one or many TISS assets through one 
or many TISS projects.

Shared assets (PLE): Artifacts support-
ing product creation, design, implementa-
tion, deployment, and operation. They can 
be digitally represented and configured, and 
share across the product line.

TISS Asset (Inner Source): A reusable 
modular element of a higher-level product 
and not sold directly to customers. We 
can manage it as a product as a configura-
tion item engineered for re-use purposes 
(long-lasting interfaces and design).

Chapter outcome
This review shows how any collaboration 

between the PLE domain and inner source 
would be difficult because of the language 
gaps. On the other hand, it illustrates how 
close the domain activities are. A way to 
find a solution is marrying two practices 
from each domain to build a common 
practice with common words. It is a first 
step to our convergence of struggles. The 
two selected practices are Inner Sourcing 
Process Maturity Level (ISPML) and 
Feature-based PLE.

INNER SOURCING PROCESS MATURITY LEVEL 
(ISPML)
Context: Current Thales Implementation
The process described below is the result of 
the Thales Inner Source Software (TISS) 
program deployment in Thales.

This program aims at:
■	 Providing facilities to share source code 

or components between any Thales 
entities, by applying best practices from 
the open-source communities.

■	 Fostering Thales engineer’s group-
wide collaboration by better reuse 
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and adaptation of existing code and 
components.

■	 Supporting inner source governance 
including Intellectual Property Rights 
(IPR) and licensing policies.

■	 Enabling a collaborative infrastructure 
including a full-fledged forge, a new 
engineering community, and any other 
relevant services (search engine and 
maturity assessment) improving collab-
oration between Thales developers.

Workflow overview
This part describes how the TISS pro-

gram measures the project maturity level 
regarding the inner source engineering 
practices.

■	 Pending: This is a preliminary step 
where the project team and organiza-
tion evaluate the opportunity to go/not 
go for sharing a new TISS Asset.

■	 Initializing: This state corresponds to 
the phase where the project team gath-
ers all prerequisite information to be 
ready for the collaboration. It includes:
•	 Checking it complies with the 

product strategy, by getting official 
approval from product management 
and owner.

•	 Legal Item Verification: confiden-
tiality, export regulation, contracts, 
and IPR

•	 Project pitch redaction describing its 
main purpose and positioning

•	 Registration in a public catalog. This 
catalog allows project searchability. It 
is available from any place within the 
company.

■	 Incubating: Reached when the collabo-
ration is in place. Thus, the TISS project 
team is ready to look for new external 
contributors. It implies:
•	 Initial stakeholders clearly define 

roles
•	 Open source inspires inner source 

roles, defined in the “Unique to Inner 
Source” section

•	 Source code is available within the 
company

•	 Legal license is packaged
•	 Documentation is available, includ-

ing: (1) product vision, (2) how to 
use, and (3) contributions rules. The 
project technical and product author-
ities define the contribution rules.

■	 Active: Reached when:
•	 The TISS Project receives contri-

butions from external contributors 

for at least one shared TISS asset. 
Contributions range from simple 
comments to software code. A 
contributor or anyone else who is 
not a committer has no right to force 
their contribution to integrate into 
the main project. They can create a 
derivative project (a fork) to integrate 
their contribution.

•	 The project checks open source com-
pliance and cybersecurity rules.

•	 All regulation and legal questions 
lift, allowing any other user in the 
company to integrate TISS assets in 
a commercial product.

■	 Retired: Project is still in the TISS 
Project catalog and marked as retired, 
but it may still revive. It occurs when:
•	 There are 18 months (or more) 

without any project activity.
•	 There is no active member in the 

core team, and nobody is ready to 
take the role in the company.

Key Criteria and Tradeoffs for a 
Successful Reuse

Over the TISS program time and 
experience, which started 4 years ago, the 
ISPML evaluates the inner source project 
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chances of success. Indeed, the program 
only achieves its objectives when reaching 
the ACTIVE state, even if the preliminary 
states (INITIALIZING or INCUBATING) 
demonstrate the heterogeneous teams’ abil-
ity to work collaboratively. In this context, 
the following decisive criteria appear:

■	Granularity:  The shared TISS asset 
size. The smaller it is (a Feature —
equivalent to a PLE Feature, or a 
Micro Service), the easier sharing it 
will be, and the easier collaboration 
will be. Conversely, sharing an entire 
application, a platform comprising 
multiple services, or a solution will be 
much less likely to reach the ACTIVE 
state.

■	 Architecture: The shared asset architec-
ture also plays a key role in the success 
criteria. The more dependencies on the 
environment, other assets, or third-party 
libraries the higher the reuse cost and 
the fewer contributors it will find.

■	 Cost vs Benefit: On these two axes 
(granularity and architecture), there is 
obviously a trade-off with the expected 
reuse benefit. Indeed, if the assets are 

small, or if they are completely self-
supporting, this will be very favorable 
to collaboration, but the value and 
therefore the benefit will be less. 
Conversely, sharing a complex platform 
(for example, a solution for cloud 
computing) may take several months 
or even years to be ACTIVE, but will 
give the organization a huge benefit and 
therefore a potentially major advantage 
over its competitors.

CONCLUSION
Introducing ISPML in collaboration 

maturity monitoring helps measure the 
success criteria of multi-entity, multi-
country cooperation in an industrial 
company framework.

Trade-offs must emerge to estimate 
the success probabilities in return on 
investment terms of reuse, quality, and 
new induced cooperation—innovation 
and serendipity. We present here the 
recapitulative pyramid of these tradeoffs.

So today, we in Thales work towards 
this convergence between PLE and 
inner source, allowing us to work on an 
assessment system to:

■	 Evaluate the opportunity to start an 
inner source process (or not) within the 
PLE approach framework.

■	 Confirm the appropriateness (or not) of 
adopting a Feature-Based PLE approach 
for inner source projects when sharing 
the following asset tip: function, micro-
service, library, and building block.

The obstacles to overcome before imple-
menting these tools were:

■	 The linguistic issue, which this article 
has highlighted.

■	 The difference in approach: Inner 
source comes from a very bottom-up 
culture built through experimentation, 
and is at the beginning, far from a 
structured approach through theory 
like PLE.

The two worlds come together, allowing 
field experience to confirm theory and 
theoretical contributions to enrich practice. 
This is a new field opening up promising 
perspectives.  ¡
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1.  SERVICE-ORIENTED APPROACH ORIGINS

  ABSTRACT
Digitizing the value chain brings along new business opportunities to organizations wishing to adopt a service-oriented approach. 
This trend, referred to as digital transformation, has taken over the business world in recent years. Digital technologies allow a 
company to move towards outcome-based commitments, pricing, and contracts with its customers. However, these technologies 
can also make product portfolio management more challenging. Whereas transforming a product offering into a product-service 
offering through digitization does not in itself revolutionize product line systems engineering processes and methods, it is of the 
utmost importance to consider this transformation concerns more than a new culture or using new technology and requires, first 
and foremost, an alignment with an organization’s global strategy and structure.
	 In this paper, we present a conceptual framework that helps define a high-level strategy to implement a product-service offer in 
an organization. The distinctive framework aspects include the Product-Service Product Line or PSPL concept (a product line of 
product-services), the elements to define the PSPL business model (pricing model, pricing metrics, and commitment types), a prod-
uct-services typology, and a product line engineering method extension for architecting the PSPL (notably, a specific service building 
block type to support a composable design approach and a feature model including service-related, socio-technical features).

Product Line Engineering 
for Digital Product-
Services
Guillermo Chalé Góngora, hugo-guillermo.chalegongora@thalesgroup.com; Pierre-Olivier Robic,  
pierre-olivier.robic@thalesgroup.com; and Danilo Beuche, danilo.beuche@pure-systems.com
Copyright © 2020 by Thales. Published by INCOSE with permission. All rights reserved.

In recent years, growing numbers 
of manufacturing companies have 
integrated more services into their 
product offerings. Some have even 

changed their business models radical-
ly and started to sell their products as a 
service. The notion behind this approach 
is to better address the customer needs by 
assigning customer value to the operation 
performance, utility, or quality of a product 
and not to the physical product owner-
ship. This new business model changes the 
manufacturing company’s motivations and 
objectives. Their target is to maximise their 
product utility and to make them perform 
well for as long as possible, instead of 
selling the highest possible product volume. 
This usually happens by monitoring, main-
taining, repairing, upgrading, and reusing 
their products more.

Turning to service-oriented business 
models represents a logical move to identify 
growth opportunities by manufacturing 
companies. To move into service-oriented 
business models, most companies will 

try developing new capabilities providing 
customers increased value through new 
technologies or by leveraging the compa-
ny’s expertise while trying to build longer 
and more profitable customer relationships 
(Queinnec and Tan 2018).

Observing a manufacturing company 
enhancing its commercial offer through 
service provisions is nothing new. Sales, de-
livery (including documentation and train-
ing), after-sales warranty, maintenance, 
spare parts, and repair are examples of 
services that have accompanied many com-
mercial products for years, from household 
appliances to automobiles and airplanes. 
Yet, in most organizations, different teams 
working mostly in silos and following 
different processes carry out the service and 
product design and development (Polaine, 
Løvlie, and Reason 2014, and Schnürmacher, 
Haygazun, and Stark 2015). This silo effect 
amplifies when a company adopts digital 
technologies to support the services they 
provide. Besides incorporating personnel 
with different cultures and competencies, 

the most common reason for this amplifi-
cation is many people in the company lose 
sight of the digital transformation pur-
pose; digital technologies are suddenly the 
objective instead of the means by which a 
business can succeed in the new landscape. 
Whilst digital technologies offer a company 
enriched support for decision-making and 
the possibility to propose to its customers a 
higher engagement level in its core services, 
they can also make the product portfolio 
management challenging if they do not use 
a structured approach.

2.  A PRODUCT LINE SYSTEMS ENGINEERING 
FRAMEWORK FOR PRODUCT-SERVICES

To face the challenges presented above, 
we propose a conceptual framework to 
define a structured approach for Product-
Service Product Line Engineering. Observe 
the proposed framework is a complement 
to reference architectures or existing 
architecture frameworks and must be 
considered as such, rather than as a stand-
alone, complete framework for architecting 

mailto:hugo-guillermo.chalegongora@thalesgroup.com
mailto:danilo.beuche@pure-systems.com
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a Product-Service Product Line. The framework components 
can indeed supplement existing reference architectures or easily 
incorporate into commercial frameworks by identifying the 
viewpoints to which our conceptual framework elements better 
relate (for instance the strategic, operational, service-oriented, 
or systems viewpoints in the Ministry of Defence Architectural 
Framework).

Adapted from Baines et al. (2007), the proposed framework 
comprises three main components plus a template set (not pre-
sented in this paper) to facilitate formalizing the different elements 
resulting from applying the framework (Figure 1):

■	 A PSPL typology to characterize the product type composing 
a product line, for example from traditional products (tangible 
and physical products) to services and product-services;

■	 Processes and methods for architecting and engineering 
the PSPL, in particular, for managing the PSPL variability, 
dependent on the product types composing the PSPL;

■	 Guidelines to align the traditional product line business strat-
egies with those of their corresponding, and less traditional, 
service product lines.

Applying the framework results in characterising the elements 
typically defined in the business or mission analysis process: the 
business or mission problem or opportunity, characterising the 
solution space including identifying effectiveness measures, and 
determining potential solution classes to address the problem or 
take advantage of an opportunity (INCOSE 2015). These elements 
effectively frame or orient the remaining systems engineering 
technical processes requiring execution to achieve a successful 
Product-Service Product Line.

The triangle base and left side in Figure 1 have been the object 
of several studies (Ducq, Chen, and Alix 2012), but little has been 
said about the right side or the triangle apex. References are also 
scarce when considering the methodology definitions needed to 
implement a service-oriented approach in an organization that 
has historically developed complex products. Using Product Line 
Engineering to address these gaps appears extremely promising to 
the authors.

Compared to previous research on service typologies and prod-

uct service systems (Cook, Chon-Huat, and Chen 1999, Wild et al. 
2007, and SEBoK 2019), the proposed framework presents some 
distinctive characteristics:

■	 Extending service typologies to encompass the different 
service and product dimensions developed by our company 
(from “pure” products and services to integrated Product-Ser-
vice Product Lines);

■	 Considering services as products and applying a product line 
approach to structure their development;

■	 Applying Feature-Based Product Line Engineering (INCOSE 
2019) to the Product-Service Product Line design and 
development (that is, to a Product-Services family), as opposed 
to applying service engineering to developing individual 
product-service systems as often described in literature (Tan 
and McAloone 2010, Polaine, Løvlie, and Reason 2014, Kumar 
et al. 2017).

The following sections briefly explain the different framework 
elements.

2.1. Product-Services Product Lines Typology
2.1.1. Extended Products. Figure 2 shows the extended product 

concept. The core product is the traditional physical good offered 
on the market by a manufacturing company. In general, this core 
product completes with a product shell describing the “tangible 
packaging” of the product (delivery, installation, and user man-
uals). Supporting services are “intangible” additions to the core 
product facilitating or guaranteeing proper product use (main-
tenance plans or mobility warranties). Differentiating services 
allow individualizing the extended product and usually relate to 
operation services.

Product-
Service PL
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Service PL
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Processes & Methods
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Figure 1. Conceptual framework for product-service PLSE

Tangible
Product

Product and
supporting

Services

Product and
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Product+
Service

Product2
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Figure 2. Extended product and the servitization process  
(Ducq, Chen, and Alix 2012)

2.1.2. Services. To classify product shells, supporting, and 
differentiating services, the service typology proposed in our 
framework somewhat follows principles from those typically used 
in service engineering. Service engineering usually bases classifi-
cations on the responsibility level and risk taken by the manufac-
turer (which follows a linear economic model), and range from 
services supporting a product to services supporting customers. 
Our framework bases service classification on the lifecycle stage 
delivering the service and on the scope of the service. Table 1 
shows a partial view of the proposed service typology.

2.1.3. Product-Service Product Lines. As exposed above, 
products tend to come with a set of associated supporting and 
differentiating services. Service industries, on the other hand, tend 
to offer supporting systems (tangible products, such as infra-
structure and platforms) associated with their services. These two 
tendencies (respectively known as product servitization and service 
productization) converge towards integrated Product Service Sys-
tem (PSS) offers in today’s business world (Baines et al. 2007). We 
have adopted this notion in the proposed framework, but we have 
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expanded the PSS scope with the Product-Service Product Lines 
(PSPL) concept: a family of similar product-service systems.

The objective of a product-service is providing an effective 
operational performance to customers. Properly engineering 
a PSPL requires considering not only the tangible products plus 
the systems supporting their differentiating supporting services 
but also the system of operation as part of the whole ecosystem. 
This means considering the customer’s organization, procedures, 
and stakeholders along with the technological PSPL components. 
Consequently, the PSPL consideration scope migrates from 
technological concerns to socio-technological concerns including 
human factors and organizational aspects.

2.2. Processes and Methods for Product-Service Product Lines
Product Line Systems Engineering (PLSE) broadens the systems 

engineering process activity scope with methods and tools from 
Product Line Engineering devoted to engineering a family of simi-
lar products exhibiting variations in their characteristics (INCOSE 
2019, Chalé and Greugny 2017). This occurs through defining, 
using, and managing a shared configurable engineering asset 
set leveraging the commonality within the family, and through 
systematic and rigorous variation management amongst the family 
products using a feature model (Beuche 2008).

For an effective PLSE application to Product-Service Product 
Lines, certain enhancements of our traditional PLSE processes and 
methods appeared necessary. The next paragraphs present these 
enhancements.

2.2.1. Shared Assets and Feature Models. While the product 
line shared assets typically associate with the engineering product 
lifecycle in published case studies, Product-Service Product Lines 
require us to enhance these assets with aspects related to people, 
organizational governance, and business. These aspects represent 
new variability sources within the Product-Service Product Line, 

implying they introduce features differing from those found in 
feature-based case studies and raise the need to manage variability 
at different but interdependent levels (Figure 3):

■	 Business: commitment types, service level agreement, and 
pricing models

■	 Operational processes and governance: linked enterprise 
architectures and actors

■	 Means: a contact center based on PABX, Front Office, portal, 
or customer relationship management

■	 Technical interfaces and flow types: information, money, 
goods, or human resources

■	 People: skills, competencies, and job roles.

In Product-Service Product Lines, an additional feature 
modeling goal is supporting the efficient variability management 
stemming from contract commitment and from the product-
service itself (including the variability of the enabling systems 
of the Product-Service, as explained in the next section). This 
facilitates the customer value extraction that can translate into 
higher performance and/or into a competitive advantage for the 
company.

2.2.2. Service-System Building Blocks. Service-systems 
(Service BoK AFIS 2018) are basic constructs possessing the 
capabilities and encompassing all the elements needed to ensure 
service delivery. A service-system (Figure 4) is a socio-technical 
system comprising:

■	 A System of Interest—Typically, a product expected to 
provide some service type by satisfying specified performance, 
behavioural, and operational needs;

■	 A System of Support enhancing the operational system of 
interest capabilities (equipment and systems delivered under 
availability or output-based commitments);

■	 A System of Operation enhancing operational capabilities 

Studies – Service Engineering 
phase

Service Engineering & 
In service phases

Service Delivery – 
In service phase

•	 Provide Logistic Support Analysis 
(LSA)

•	 Perform Reliability, Availability, 
Maintainability & Testability 
(RAMT) studies

•	 Perform Life Cycle Cost studies

•	 Produce customer 
documentation

•	 Provide customer 
training

•	 Provisioning

•	 Manage obsolescence
•	 Provide consultancy or technical assistance
•	 Repair equipment or systems
•	 Manage the information security of a system
•	 Provide contact service to customers
•	 Provide online service to customers
•	 Manage spares, consumables & materials
•	 Manage Support & Test Equipment (STE)
•	 Deploy equipment or systems
•	 …

Table 1: Service typology of the Product-Service PLSE Framework

Product-Service

Pricing modelPeople Infrastructure

BusinessService system

Subscription Pay-per-use Availability Mission achievement

CommitmentProcess & organization

Figure 3. Service-Related feature examples for a product-service product line
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to achieve overall operational perfor-
mance for the customers and contribut-
ing to the success of their core missions 
(education, training, supply chain 
management, fleet management, and 
mission preparation).

Whatever their nature, behind any 
service there is always a socio-technical 
service-system.

To perform efficiently, the different 
service-system elements must operate 
under the same governance, using com-
mon infrastructures, assets and tools, and 
share common core competencies. Figure 5 
shows a service-product description from 
this holistic perspective. Each element in 
this figure can configure and transform us-
ing a selected feature set (like those shown 
in Figure 3) which “activates” the required 
element variation points (for instance, 
including specific skills and competencies 
needed to operate the service-system). The 
service-system also provides interfaces to 
allow interactions across its boundary with 
other service-systems.

2.2.3. Composable Product-Services. 
The service-systems described above are the 
elementary, configurable building blocks 
(or cells) to define the product-services 
architecture via composition. Configuring 
and combining various service-system 
building blocks yields different service 
capacities (Figure 6). The composed service-
system resulting from combining service-
systems building blocks supports these 
service capacities.

Efficiently assembling different ser-
vice-systems demands commonality analysis 
of its constituent building blocks. This 
analysis aims to optimize using and allocat-
ing means and people across the different 
composed service-system building blocks, 
as well as the coupling of the building blocks 
(the information, money, goods, and human 
resource flows they exchange), as advo-
cated in socio-technical practices. In our 
approach, the configuration and automation 
mechanisms provided by Feature-Based 
PLSE effectively control and operate the 
optimization of the composed service-sys-
tem. The feature selections to configure the 
overall service-system in fact cascade to all 
its building blocks, which in turn configure 
and transform via internal variation points. 
A user-defined ruleset, evaluated when 
operating the configuration and automation 
mechanisms, guarantees the consistency of 
the different transformations. Examples of 
these rules include: producing named data 
by one unique element or the presence of 
only one invoicing system.

These optimization mechanisms also 
enable us to guarantee service continuity, 
a key challenge in service-products. We 

System
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System
of Support

System
of Interest

System
of Operation To Operational Performances

System of interest
System of support
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Figure 4. A service-system and its three main components (Service BoK AFIS 2018)

Figure 5. Common product-service building block elements
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obtain this by setting-up the service-system as a dynamic product 
line, which simultaneously embeds different actionable prod-
uct-service configurations (different product-service building 
blocks compositions). The resulting product-service can then sup-
port multi-modal operation so the product-service can work in dif-
ferent configurations to provide the same service. Means, person-
nel, and functionality dynamically allocate to the service-system 
components (either by auto-configuration or via human action) 
according to the consistency rules mentioned above.

Service-systems depend largely on an agreed common purpose 
for its building blocks to work together towards the collective 
objective of providing an expected service set to a customer. 
Composed service-systems explicitly address challenges relating 
to authority, funding, and leadership, typically arising in sys-
tems-of-systems, through configuring a governance element for 
the overall service-system, as depicted in Figure 7.

2.3. Product-Service Product Line Strategy
The highest-level component of the proposed framework 

concerns the product and service business alignment to define the 
PSPL business strategy within an organization. Those applying 
the framework should instantiate this component first as it helps 
define the following elements.

2.3.1. PSPL Value, Pricing Models, and Pricing Metrics. One 
key aspect to consider when setting up a PSPL is the variability 
induced by the business dimension. The service value and its 
associated pricing model and pricing metrics are important 
elements since they are one of the more perceptible parts of the 
overall service experience offered to a customer. An inspiring 
example of service value enabled by digital technologies is the 
one proposed by the Brazilian advertising agency Mood, who 
teamed up with their customer Huggies to improve the customer 
experience using 3D printing technology. In this example 
(Figure 8), through using new technology, a blind pregnant 
woman experienced what so many other women cherish and 
enjoy: perceiving the baby to be born for the first time.

A 3D printer used the 3D data from a regular ultrasound scan-
ner to print the results so the future mother could come into con-
tact with her baby. The top of the 3D print even read in Braille “I 
am your son.” This product-service has remarkably fully integrated 
into the patient’s journey; the patient’s experience measures the 
value of the delivered service. In this example, digital technology 
really acts as an enabler to enhance the patient’s experience, even 

if there is a tangible outcome through the 3D print. The woman 
in Figure 8 is not emotionally charged by 3D printing; she is over-
joyed at the experience 3D printing has enabled.

In the current business trend to move towards service-
oriented business models, different possible pricing models and 
pricing metrics exist: subscription-based, pay-as-you-go, one-
time upfront fee, deployment option-based, one-time fee for a 
preconfigured solution, and value sharing. Amongst the pricing 
metrics associated with these pricing models, we can cite the 
following examples: Messages or amount of cellular data, feature 
set, devices connected to a platform, base annual subscription, 
number of users, and property rights (class member).

Pricing models and metrics should entice the customer; they are 
a crucial part of a product-service offering. A formative example 
of a pricing metric supported by digital technologies is the “pay-
per-laugh” pricing practiced at the Teatre Neu in Barcelona, Spain 
(La Réclame 2014). To implement this pricing model, sensors 
placed in the back of auditorium seats facing theatregoers detected 
smiles and laughs on the faces of every patron. They based the 
ticket price paid by a given patron on the number of smiles and 
laughs measured during the show for that individual, directly 
linking their price paid to their user experience.

2.3.2. Commitment Type. The second dimension of the PSPL 
business model is the commitment type between product-service 
providers and their customers. Indeed, various commitment 
levels can propose different services, such as quotation on 
request, warranty, availability, capability, or other outcome-based 
commitments. Here again, digital technologies can play a major 
role in helping an organization extend the commitment level it 
proposes to its customers and enhance its product-services with 
innovative features.

2.3.3. Configuring the Product Service Business Strategy. 
The service type, the commitment level, the pricing models, and 
their associated pricing metrics are all part of the PSPL variability 
domain. These elements, formalized as features in the PSPL 
feature model, configure a product-service matching a given 
customer’s needs.

As in typical feature-based approaches, the PSPL feature model 
also reduces the possible number of service, commitment, pricing 
model, and pricing metric combinations. This occurs by declaring 
the permissible combinations among the features (through 
exclusion or inclusion constraints) and by defining standard 

Figure 7. Service-System composition element including a 
specific governance element
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PSPL configurations (pre-defined PSPL configurations including 
undecided feature choices). Many organizations transcribe 
standard configurations and the constraints among the PSPL 
features into a service catalogue. Table 2 shows an example of the 
metadata to structure a product-service catalogue. For a given 
product-service, a given PSPL configuration would generate the 
data to appear in the cells under the three columns in Table 2 (a 
set of selected PSPL features).

CONCLUSION
Digitizing the value chain brings new business opportunities 

to organizations wishing to adopt a service-oriented approach. 
Indeed, digital technologies allow a company to move towards 
outcome-based commitments, pricing, and contracts with its 
customers. When transforming a product offering into a product-
service offering through digitization, it is nevertheless crucial to 
consider this transformation concerns more than a new culture or 
using new technology. It requires an alignment with the company 
strategy and organization (and not the other way around). 
Conducting appropriate change management is necessary to 
operate this alignment.

This paper proposed a conceptual framework to define a 
high-level strategy to implement a product-service offer in an 
organization. Its distinctive aspects include:

■	 The product line of product-services concept itself (Product-
Service Product Line)

■	 The elements defining the PSPL business model (pricing 
model, pricing metrics, and commitment types)

■	 A product-services typology
■	 An extension of product line engineering methods for 

architecting the PSPL (notably, a specific product-service 
building block type to support composable architectures and 
a feature model including service-related, socio-technical 
features)

The PSPL feature model is a central part of the proposed 
approach since it allows configuring different PSPL business 
model elements, configuring the composable service-
system service building blocks, and defining standard PSPL 

configurations. Configuring the business model elements for 
a given product-service is a crucial step. Whilst the proposed 
framework does not provide an infallible technique to validate 
the business model effectiveness, it does support a “test-fail-and-
learn-fast” approach by providing mechanisms to reconfigure a 
new business model that an organisation can test quickly.  ¡

Table 2: Example of a service catalogue meta data

Reference

Name

Reference

Description

Interest (customer point of view) – 
Value Proposition

Business Domain

Type of Customer (Internal, 
external, both)

Target Customer segment

Link with technological product 
functions (if needed)

Quality Management System 
Reference

…

Commitment

Service Performance Level

Service hours

SLA

KPI & metrics

Quality of Service

Service Level Monitoring (HUMS)

Risk level

…

Business

Type of price

Acceptance criteria

Cost (internal view)

Price (customer view)

Invoicing type (lump sum / on unit)

Delivery status (under design, 
provisioned, closed)

Service provider

Capability Management (potential 
dimensioning)

Escalation process

…
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INTRODUCTION

  ABSTRACT
Feature-Based Product Line Engineering (PLE) is a well-known approach for efficiently engineering product lines, which numer-
ous case studies have shown to yield substantial benefits in cost, quality, and time to market. This article presents an approach for 
a necessary ingredient of successful PLE: Handling the temporal dimension, which is concerned with managing artifacts as they 
change and evolve. The approach relies on a foundation of proven traditional change control techniques but shows how they apply 
in the context of Feature-Based PLE.

Key Issues of 
Organizational Structure 
and Processes with 
Feature-based Product 
Line Engineering

William J. Bolander, william.bolander@methodpark.de; and Paul C. Clements, pclements@biglever.com
Copyright © 2020 by William J. Bolander and Paul C. Clements. Permission granted to INCOSE to publish and use.

Product Line Engineering (PLE) 
has long been known for deliver-
ing significant improvements in 
time to market, quality, and cost 

of systems. Feature-based Product Line 
Engineering is a well-defined, repeatable, 
automation-centric PLE specialization that 
is now delivering even greater improve-
ments throughout the most challenging 
engineering industries (INCOSE 2019). 
Feature-Based PLE centers around the 
factory metaphor. In a PLE factory, a con-
figurator operates on shared asset supersets 
containing variation points to produce 
instances of those assets corresponding to a 
product (a product line member) described 
by a bill-of-features, which is a selection set 
made from a feature catalog.

That now-familiar narrative and its 
illustrating diagram (Figure 1) cover an 
up-and-running Feature-based PLE factory 
workflow. This workflow is important to 
convey how Feature-Based PLE works, 

so we can understand how it differs from 
earlier PLE forms and, for that matter, from 
system and software development forms 
that do not employ PLE principles at all.

But an organization intent on setting up 
one or more PLE factories so they can reap 
the benefits for their product line or prod-
uct lines needs a different viewpoint—one 

Figure 1. The Feature-Based PLE factory

mailto:william.bolander@methodpark.de
mailto:pclements@biglever.com
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focusing on the people involved and what 
they do to keep the factory operational 
on a day-to-day basis. In other words, the 
organization needs to know the roles and 
processes to add to the workflow.

Through many PLE applications in com-
plex systems development, we have learned 
the needed organizational structures and 
the required roles to enable a successful 
transformation. This article describes an 
organizational structure for Feature-Based 
PLE based on the factory concept. It intro-
duces the few roles that have no analog in 
other development disciplines; they are new 
to Feature-Based PLE. It also describes how 
traditional systems engineering roles carry 
out traditional systems engineering tasks, 
but with slight PLE-inspired extensions. 
Finally, we will explain why these changes 
are necessary.

WHY MUST THE ORGANIZATIONAL 
STRUCTURE CHANGE?

Organizations adopting Feature-Based 
PLE often start from an organizational 
structure focusing on products rather than 
the product line. At the extreme, this entails 
one separately staffed project for each 
product in the product line. Each project 
executes the entire system engineering 
process to produce their product. The chief 
engineer for the product controls exactly 
what features and changes the product 
takes on without considering the others. 
When one product team finds an error, it is 
fairly easy for them to find the source and 
fix it; the other teams may not even know 
whether that defect is in their products.

In this setting, suppose a change request 
comes to the organization from a customer 
(or customer base segment). It might be 
a request to fix a defect, or a request for a 
new feature some (if not all) of the products 
need, or a request for an improvement. 
Every project affected by the change request 
will carry out the work on their respective 
products. Even if each team does the work 
as efficiently as humanly possible, as soon 
as we take a product line (not just a single 
product) perspective it becomes apparent 
the organization overall is not very efficient 
at all.

Feature-based PLE relegates this 
duplicative work to automation—the PLE 
factory configurator. All work happens 
inside the PLE factory—to the shared 
assets, the feature catalog, or the bills-of-
features. Thus, no piece of work can occur 
more than once.

WHAT ORGANIZATIONAL STRUCTURE DOES 
FEATURE-BASED PLE NEED?

From the roles and responsibilities 
perspective, moving to Feature-Based PLE 
primarily means staffing the PLE factory 

with the engineering resources formerly 
allocated to individual product teams.

Figure 2 shows the organizational struc-
ture for a Feature-Based PLE factory. Any 
traditionally organized systems engineering 
project contains most of the roles shown:

■	 PLE Factory Management: A key 
insight in understanding Feature-Based 
PLE is the PLE factory is analogous 
to an engineering development 
project in a traditional (non-PLE) 
engineering context. Rather than 
engineering and developing a product, 
however, the goal is engineering and 
developing an automated capability to 
develop products. Where a traditional 
engineering project would result in an 
engineering artifact set supporting and 
reifying a system, the Feature-Based 
PLE Factory project results in shared 
asset superset, a feature catalog, and a 
set of bills-of-features that support and 
reify all the products in the product 
line. To re-state the point succinctly: In 
Feature-Based PLE, the PLE factory is a 
project. This project needs management 
support, oversight, and governance, 
just like any other. PLE Factory 
Management is responsible for ensuring 
the factory works on schedule and 
within budget, employs trained people 
in the right roles, and delivers high-
quality results to its clients.

■	 PLE Factory Strategy Authority and 
PLE Change Control Authority: These 
are the governance bodies for PLE 
factory change management. Change 
requests can originate from any role 
in the organization. Typically, they 
originate from a product manager 
or product lead engineer, satisfying 
a customer need. They could also 
originate from business leadership (not 

shown in Figure 2) responding to a 
technology or product roadmap setting 
the PLE factory’s over-arching direction 
for the future. Change requests causing 
the factory to do something new or 
different than what it currently does 
arrive at the PLE factory strategy 
authority. Change requests causing the 
factory to do what it currently does—a 
request to fix a defect—arrive at the 
PLE factory change control authority, 
which adjudicates the change and 
parcels it out to the affected individual 
roles for enactment.

■	 Lead Engineers: Various disciplines 
ensure the solution is technically sound.

■	 PLE Factory Shared Asset Engineers: 
Responsible for the project’s specific 
engineering artifacts (requirements, 
code, tests, documents, models, parts 
lists, and so forth) just as they would 
be in a traditional project. Except here, 
the artifacts are supersets with feature-
based variation points.

■	 Product Managers and Product 
Lead Engineers: Responsible, on the 
Product Instantiation side of Figure 
2, to individual customers, and serve 
as the go-between (programmatic 
and technical, respectively) between 
a customer and the PLE factory. They 
are responsible for delivering feedback 
to the development organization, and 
for delivering solutions built by the 
organization to the customer.

This means people who learned these 
roles in a traditional engineering environ-
ment can be effective in a Feature-Based 
PLE environment with little or no addition-
al training.

In Figure 2, the new roles Feature-Based 
PLE adds are across the middle of the PLE 
factory side.

Figure 2. Roles in the Feature-Based PLE factory
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■	 Feature-Based PLE may represent sys-
tems of systems products as a product 
line of product lines. The Production 
Line Architect is responsible for de-
signing this structure.

■	 The Feature Catalog Owner is 
responsible for a PLE factory’s overall 
feature catalog content, fidelity, and 
quality. In Feature-Based PLE, a feature 
catalog may decompose into separate 
pieces; the feature catalog owner crafts 
standards and style guides to ensure 
the feature catalog style and content 
overall is consistent, any features are 
appropriately modelled and clearly 
explained, and represent useful 
differentiation abstractions not heavily 
tilted towards one particular shared 
asset type.

■	 Feature Catalog Engineers create and 
evolve the feature models for individual 
product line areas.

■	 A Bill-of-Features Owner is responsi-
ble for the feature-based description of 
a product in the product line

WHAT ARE THE KEY PROCESSES ISSUES FOR 
FEATURE-BASED PLE?

The organizational structure for 
Feature-Based PLE exists to facilitate 
the organization members executing the 
Feature-Based PLE processes. We describe 
some key process issues associated with 
Feature-Based PLE below.

Dealing with Product-Unique Content
If a product has unique functionality 

no other product requires, some organi-
zations trying to practice PLE principles 
might let the product team for the affected 
product provide that unique functionality. 
However, our experience has shown the 
factory should provide all functionality 
and not delegate it to the team for the 
individual product needing it. The product 
can select it by choosing it as a feature in 
its bill-of-features. All other products can 
leave it unselected in their respective bills-
of-features unless they also desire it, since 
it is now available as a feature across the 
product line.

If product teams can create their own 
content, it is extremely likely product teams 
will independently create redundant but 
different solutions to the same problems, 
which is exactly the situation PLE tries to 
avoid. This redundancy is also a signal that, 
whereas product teams may think they have 
special content, a good idea in one product 
is often a good idea for other products as 
well. When recognizing redundancy after 
the fact, agreement to move to a common 
solution is nearly impossible. There are all 
kinds of good reasons. The product may 
already have validated the solution. There 

would be an additional risk to the program 
by making a change to the common 
solution. It may even be too late—the 
product is near or already in production. 
Allowing this to happen is to step on the 
slippery slope back to product silos, and the 
death knell for the product line.

Defects Found by a Product Team
A key Feature-Based PLE tenet is when a 

defect is found, it is fixed inside the factory, 
not in the product discovering it. That way, 
every product benefits from the defect fix, 
even those who may not yet have discov-
ered the defect. Fixing it inside the factory 
means the shared assets change, not the 
product-specific instances.

Unless the defect fix occurs inside the 
factory, the product teams will develop 
redundant but different solutions, and once 
validated or even shown to customers, 
convergence back to a common solution is 
nearly impossible. In any case, when one 
product team finds an issue, it is likely the 
defect also lurks in another product.

We don’t want the inefficiency of 
multiple product teams making the same 
changes to engineering assets. Rather, we 
want the PLE factory to fix the defects once, 
in the shared PLE assets, and to propagate 
the changes everywhere.

Work Performed by the Product Tea
Whereas Product Teams are no longer 

responsible for development under the 
Feature-Based PLE paradigm, they still play 
a vital role, including:

■	 The product team works with the bill-
of-features owner for the product, to 
make and capture the correct selections 
for all the features made available in the 
feature catalog.

■	 The product team will verify and 
validate the product produced by the 
PLE factory for their application.

■	 The product team will calibrate or tune 
the product to meet their customer’s 
requirements, oversee delivery and 
deployment, and gather customer 
feedback.

PLE and Agile
The PLE factory is a project view 

described in the section on PLE factory 
management enabling Feature-Based PLE 
and agile to work seamlessly together. The 
core concept is to treat the PLE factory 
development and operation as a “project” 
managed using Agile (Gregg et al. 2020). 
In the Scaled Agile Framework (SAFe)—
an Agile methodology for large projects 
(Scaled Agile Inc. 2020) — a value stream is 
the activity set undertaken to deliver value 
to a customer. Developing and operating 
the PLE factory is exactly that—it is 

developing the capability to deliver value to 
the customer. So, a program’s value streams 
should align to its PLE factories (a program 
may have more than one). An agile release 
train receiving its work assignments from 
the PLE factory strategy authority can plan 
and coordinate the work in a PLE factory. 
In short, PLE factories can optimize using 
agile practices, thus achieving the best of 
both worlds.

WHAT TRANSITION ISSUES MUST WE 
CONSIDER?

Overall, our advice is: Be careful not to 
underestimate the cultural shift. PLE is a 
big transformation. The organization must 
move from absolute product team control 
to joint product team decisions. This trans-
formation may require changes to product 
team management incentivization.

Incremental Transition is Key
Incremental, not big-bang, transition is 

the recommended approach for moving 
your organization to the preferred 
Feature-Based PLE structure (Gregg et al. 
2020). “Incremental” may mean moving 
some, but not all, product line members 
under the PLE umbrella immediately 
and moving the rest over time. It might 
mean initially converting some, but not 
all, of your engineering artifacts to shared 
asset supersets with variation points and 
converting the rest over time. It might 
mean using a PLE factory to produce 
certain subsystems of your products 
initially and adding the remaining 
subsystems over time. Or it might mean a 
combination of these options. In any case, 
your PLE Factory will require a feature 
catalog (and a feature catalog owner), and 
bills-of-features to define the products 
(or the subsystems) the PLE factory will 
produce. As the PLE factory gains traction 
and capability, move people away from 
their work supporting individual products 
and into the PLE factory, where their work 
shifts to the entire product line. Each 
incremental step in growing the factory can 
bring more people in until the individual 
products’ development resources have 
migrated into the PLE factory.

Importance of Adopting the Organizational 
Structure Right Away

Some organizations might allow people 
to remain attached to project teams, but 
tell them their work should support the 
entire product line. This, in our experience, 
usually does not work and organizations 
should avoid it. Here is what an experience 
report from one of the most successful 
Feature-Based PLE applications on record 
says in that regard (emphasis added):
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“[We] first tried to instill the product 
line approach throughout the… program 
by senior management fiat. Despite 
sincere management intent, including a 
number of intense meetings in which the 
technical leaders were asked one by one 
to say how they were going to support 
the product line approach, the paradigm 
shift was never completely fulfilled. 
People doing the day-to-day work were 
allowed to drift back into configura-
tion-centric activities and mindsets. It 
was only after re-organizations occurred 
that re-structured the customer-specific 
teams (replacing them with smaller, leaner 
product delivery teams) and moved the 
resources into product-line-wide shared 
asset groups did the transition finally find 
traction. [We] did a good job launching 
the product line, but the institutional-
izing was not fully successful until after 
reorganization. This manifested itself 
during a delivery cycle for one of the 
[products] in which work was done 
under the new approach but under the 
old organizational structure. The deliv-
ery was eventually successful, but not 
without an alarming amount of re-work” 
(Gregg et al. 2014).

Lead Engineer and Product Team Buy-in
Buy-in for the PLE transformation by the 

lead engineers and product team leadership 
is key. These stakeholders need to under-
stand the benefits to the company, and their 
customers, for the PLE factory to balance 
work for the company’s different products. 
They must help manage what work the 
factory does for them based, not just on their 
own product’s needs, but all the company’s 
products. Everyone naturally wants what is 
best for them; it can be very difficult to give 
up something you want so a higher priority or 
higher revenue generator gets what they need.

The Power of the Purse
Resource allocation can play a large role 

in staffing product teams so they behave 
as desired. If the product teams have the 
capability to design and create unique solu-
tions, they will! Therefore, the PLE factory 
resources must increase, while the product 
team’s resources need to shrink to be the 
right size to perform only what they are 
responsible for. In one PLE adoption effort, 
a product team undertook some develop-
ment work the PLE factory should have 
handled. The PLE manager “rewarded” the 
product team by moving one of their pro-
grammers from the product team into the 
PLE factory. It sent a powerful message.

Apply a Three-Tiered Adoption Strategy
We find three organization parts must 

engage to ensure successful adoption. An 
adoption strategy neglecting one or more 
of them is likely to fail. These so-called 
organizational tiers employ people who 
have different skillsets, motivations, orga-
nizational responsibilities, and therefore 
different perspectives when it comes to 
adopting a new methodology. Recognizing 
and addressing these three tiers is the first 
successful adoption strategy ingredient 
(Gregg et al. 2020). Figure 3 illustrates the 
three tiers.

The base technology tier places and 
maintains the tool and technology envi-
ronment to operate the PLE factory. This 
tier is about installing tools and making 
them work together: The PLE factory 
configurator (such as BigLever’s Gears), 
engineering tools with which the configu-
rator integrates, CM tools, workflow tools, 
and whatever other tools are part of the 
organization’s tool ecosystem needed to 
take products through their entire lifecycle. 
The tools must work together and perform 
well in the organization’s IT and network 

environments, and users must have access 
to them. Think of this as the fully function-
al factory (in the conventional manufactur-
ing sense) but without any people inside to 
run the machines.

The middle technical organization 
management tier focuses on the people, 
roles, and processes operating the PLE 
factory, and it contains the roles described 
in Figure 2. In combination with the 
technology layer, this layer provides a fully 
operational Feature-Based PLE factory 
producing the product asset instances for 
all products in a product line portfolio. To 
continue the analogy, this tier is about the 
people who walk into the technology tier’s 
factory, trained and ready to operate the 
machines.

The top business organization man-
agement tier focuses on the people, roles, 
and processes using and leveraging the 
Feature-Based PLE factory to achieve the 
enterprise’s business objectives. But it also 
focuses on the required processes for enter-
prise leadership to establish the PLE facto-
ry, oversee the adoption, remove obstacles 
to organizational change, and provide 
the necessary support for the PLE factory 
during its operation. Using the analogy to a 
conventional factory, the business organi-
zation tier provides guidance and support 
for the executive leadership. Think of this 
group as working in the office high-rise 
overlooking the factory.

All tiers aim to develop, operate, and 
maintain a PLE factory to build and deliver 
products.

The obvious tendency with a transition 
to Feature-Based PLE practice is to think 
bottom-up. That is, begin with the tech-
nology tier, and then start on the middle 
technical organization management tier, 
in sequence, after fully establishing the 
technology.

While this transition style is tempting, 
we have found it is more effective to 
address the tiers incrementally and in 
parallel. Imagine the incremental transition 
effort growing from left-to-right rather 
than bottom-up. Initially, the technology 
tier is incrementally addressed. Once 
it establishes sufficient capability, then 
activities can begin in the middle tier. 
The top tier activities can commence 
immediately, motivating and driving 
activities in the other two tiers.

SUMMARY
Feature-Based PLE is producing 

unprecedented improvements in 
engineering productivity, product cost 
and quality, and return on investment. 
Compared to other engineering disciplines, 
it requires more collaboration and 

Technology 
Tier

Technical 
Organization 

Tier

Business 
Organization 

Tier

Figure 3. Three Tiers of a Feature-Based PLE Organization
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organizational support to be effective. 
This article highlighted the organizational 
structure, key processes, and important 
transition issues associated with Feature-
Based PLE. It may seem like these issues, 
taken together, present a barrier to entry. 
However, this article has aimed to show no 
issues present an insurmountable challenge. 
On the contrary, there is a plethora of 
practical experience codified and formulated 
that can allow any organization to deal with 
these issues quickly and effectively.  ¡
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