
Illustration credit:  from the article
Systems Engineering Roles in Software Organizations Delivering Service Products
by Mickael Bouyaud and Brian E. White  (see page 21)

INSIGHT

JULY 2O21
VOLUME 24 / ISSUE 2

A PUBLICATION OF THE INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING ®

This Issue’s Feature:

Systems and Software

Company
governance

Project managers

Pre-production, production environmentsDevelopment environments

Build and
integration

Development
and test Validation &

Deployment Operations

binaries Product
servicebinaries

101
011

101
011

CODE

External
Environment
(regulation,

society,
technologies,…)

Service
Consumers

HSI2021
Human
Systems
Integration
Conference

San Diego, CA, USA

www.incose.org/hsi2021Save the Date November 17–19, 2021

®

Are you ready to advance your career in systems engineering? Then look into
INCOSE certi�cation and set yourself apart. We offer three levels of certi�cation
for professionals who are ready to take charge of their career success.

Apply for INCOSE Certi�cation Today!

INCOSE Certi�cation
See why the top companies are
seeking out INCOSE Certi�ed

Systems Engineering Professionals.

JU
LY

 2O
21

VOLUM
E 24/ ISSUE 2

3

W
H

A
T

’S IN
SID

E
TH

IS ISSU
E

Inside this issue

INSIGHT
JULY 2O21  VOLUME 24 / ISSUE 2

A PUBLICATION OF THE INTERNATIONAL COUNCIL
ON SYSTEMS ENGINEERING

®

FROM THE EDITOR-IN-CHIEF	 6

SPECIAL FEATURE	 7

Introduction to Themed Edition	 7

Systems and Software Interface Survey	 9

“Book Club” Guides A Working Group to Create INCOSE System-Software Interface Products	 17

Systems Engineering Roles in Software Organizations Delivering Service Products	 21

A Complex Adaptive Systems Engineering Methodology	 25

System Test Approach for Complex Software Systems	 32

Systems Engineering and DevSecOps: Reviewing the Principles	 38

Systems Thinking and Business Resilience: Questions That Should Keep Us Up at Night	 44

JU
LY

 2O
21

VOLUM
E 24/ ISSUE 2

4

A
B

O
U

T TH
IS

P
U

B
LIC

A
TIO

N

About This Publication

INCOSE’s membership extends to over 18, 000 individual
members and more than 100 corporations, government
entities, and academic institutions. Its mission is to share,
promote, and advance the best of systems engineering from
across the globe for the benefit of humanity and the planet.
INCOSE charters chapters worldwide, includes a corporate
advisory board, and is led by elected officers and directors.

For more information, click here:
The International Council on Systems Engineering
(www.incose.org)
INSIGHT is the magazine of the International Council on
Systems Engineering. It is published four times per year and

features informative articles dedicated to advancing the state
of practice in systems engineering and to close the gap with
the state of the art. INSIGHT delivers practical information
on current hot topics, implementations, and best practices,
written in applications-driven style. There is an emphasis on
practical applications, tutorials, guides, and case studies that
result in successful outcomes. Explicitly identified opinion
pieces, book reviews, and technology roadmapping comple-
ment articles to stimulate advancing the state of practice.
INSIGHT is dedicated to advancing the INCOSE objectives
of impactful products and accelerating the transformation of
systems engineering to a model-based discipline.
Topics to be covered include resilient systems, model-based

systems engineering, commercial-driven transformational
systems engineering, natural systems, agile security, systems
of systems, and cyber-physical systems across disciplines
and domains of interest to the constituent groups in the
systems engineering community: industry, government,
and academia. Advances in practice often come from lateral
connections of information dissemination across disciplines
and domains. INSIGHT will track advances in the state of the
art with follow-up, practically written articles to more rapidly
disseminate knowledge to stimulate practice throughout the
community.

INFORMATION ABOUT INCOSE OVERVIEW

EDITORIAL BOARD AND STAFF 2021 INCOSE BOARD OF DIRECTORS

* PLEASE NOTE:  If the links highlighted here do not take you to
those web sites, please copy and paste address in your browser.

Permission to reproduce Wiley journal Content:
Requests to reproduce material from John Wiley & Sons publications
are being handled through the RightsLink® automated permissions
service.

Simply follow the steps below to obtain permission via the Right-
slink® system:

•	 Locate the article you wish to reproduce on Wiley Online Library
(http://onlinelibrary.wiley.com)

•	 Click on the ‘Request Permissions’ link, under the ‹ ARTICLE
TOOLS › menu on the abstract page (also available from Table of
Contents or Search Results)

•	 Follow the online instructions and select your requirements from
the drop down options and click on ‘quick price’ to get a quote

•	 Create a RightsLink® account to complete your transaction (and
pay, where applicable)

•	 Read and accept our Terms & Conditions and download your
license

•	 For any technical queries please contact 
customercare@copyright.com

•	 For further information and to view a Rightslink® demo please visit
www.wiley.com and select Rights & Permissions.

AUTHORS – If you wish to reuse your own article (or an amended
version of it) in a new publication of which you are the author, editor
or co-editor, prior permission is not required (with the usual acknowl-
edgements). However, a formal grant of license can be downloaded free
of charge from RightsLink if required.

Photocopying
Teaching institutions with a current paid subscription to the journal
may make multiple copies for teaching purposes without charge, pro-
vided such copies are not resold or copied. In all other cases, permission
should be obtained from a reproduction rights organisation (see below)
or directly from RightsLink®.

Copyright Licensing Agency (CLA)
Institutions based in the UK with a valid photocopying and/or digital
license with the Copyright Licensing Agency may copy excerpts from
Wiley books and journals under the terms of their license. For further
information go to CLA.

Copyright Clearance Center (CCC)
Institutions based in the US with a valid photocopying and/or digital
license with the Copyright Clearance Center may copy excerpts from
Wiley books and journals under the terms of their license, please go
to CCC.

Other Territories:  Please contact your local reproduction rights
organisation. For further information please visit www.wiley.com and
select Rights & Permissions.
If you have any questions about the permitted uses of a specific article,
please contact us.

Permissions Department – UK
John Wiley & Sons Ltd.
The Atrium,
Southern Gate,
Chichester
West Sussex, PO19 8SQ
UK
Email:  Permissions@wiley.com
Fax:  44 (0) 1243 770620
or

Permissions Department – US
John Wiley & Sons Inc.
111 River Street MS 4-02
Hoboken, NJ 07030-5774
USA
Email:  Permissions@wiley.com
Fax:  (201) 748-6008

PERMISSIONS

ARTICLE SUBMISSION
insight@incose.net

Publication Schedule.  INSIGHT is published four times per year.
Issue and article submission deadlines are as follows:

  December 2021 issue  –  1 October 2021
  March 2022 issue  –  2 January 2022
  June 2022 issue  –  1 April 20022
  September 2022 issue  –  1 July 2022

For further information on submissions and issue themes, visit the
INCOSE website:  www.incose.org

© 2021 Copyright Notice.
Unless otherwise noted, the entire contents are
copyrighted by INCOSE and may not be reproduced in
whole or in part without written permission by INCOSE.
Permission is given for use of up to three paragraphs as
long as full credit is provided. The opinions expressed in

INSIGHT are those of the authors and advertisers and do
not necessarily reflect the positions of the editorial staff
or the International Council on Systems Engineering.
ISSN 2156-485X; (print) ISSN 2156-4868 (online)

Editor-In-Chief	 William Miller
insight@incose.net	 +1 908-759-7110

Assistant Editor	 Lisa Hoverman
lisa.hoverman@incose.net

Theme Editors	
Sarah Sheard	 sarah.sheard@gmail.com
John Wood	 woodjn@gwu.edu

Advertising Account Manager	 Susan Blessing
sblessin@wiley.com	 201-723-3129

Layout and Design	 Chuck Eng
chuck.eng@comcast.net

Member Services	 INCOSE Administrative Office
info@incose.net	 +1 858 541-1725

Officers
President:  Kerry Lunney, ESEP, Thales Australia
President-Elect:  Marilee Wheaton, INCOSE Fellow,

The Aerospace Corporation

Secretary:  Kyle Lewis, CSEP, Lockheed Martin Corporation
Treasurer:  Michael Vinarcik, ESEP, SAIC

At-Large Directors
Academic Matters:  Bob Swarz, WPI
Marketing & Communications:  Lisa Hoverman, HSMC
Outreach:  Julia Taylor, Taylor Success Systems
Americas Sector:  Antony Williams, ESEP, Jacobs
EMEA Sector:  Sven-Olaf Schulze, CSEP, UNITY AG
Asia-Oceania Sector:  Serge Landry, ESEP, Consultant
Chief Information Officer (CIO):  Barclay Brown, ESEP,

Raytheon
Technical Director:  Christopher Hoffman, CSEP, Cummins

Deputy Technical Director:  Olivier Dessoude, Naval Group
Technical Services Director: Don Gelosh, CSEP-Acq, WPI
Deputy Technical Services Director: Richard Beasley, ESEP,

Rolls-Royce
Director for Strategic Integration: Tom McDermott,

Stevens Institute of Technology
Corporate Advisory Board Chair: Don York, CSEP, SAIC
CAB Co-chair:  Ron Giachetti, Naval Postgraduate School
Chief of Staff:  Andy Pickard, Rolls Royce Corporation

JU
LY

 2O
21

VOLUM
E 24/ ISSUE 2

5

A
B

O
U

T TH
IS

P
U

B
LIC

A
TIO

N

ADVERTISE

Readership
INSIGHT reaches over 18, 000 individual members and uncounted
employees and students of more than 100 CAB organizations worldwide.
Readership includes engineers, manufacturers/purchasers, scientists,
research & development processionals, presidents and CEOs, students and
other professionals in systems engineering.

Issuance	 Circulation
2021, Vol 24, 4 Issues	 100% Paid

Contact us for Advertising and Corporate Sales Services
We have a complete range of advertising and publishing solutions profes
sionally managed within our global team. From traditional print-based
solutions to cutting-edge online technology the Wiley-Blackwell corporate
sales service is your connection to minds that matter. For an overview of
all our services please browse our site which is located under the Resources
section. Contact our corporate sales team today to discuss the range of
services available:

•	 Print advertising for non-US journals
•	 Email Table of Contents Sponsorship
•	 Reprints
•	 Supplement and sponsorship opportunities
•	 Books
•	 Custom Projects
•	 Online advertising

Click on the option below to email your enquiry to your
nearest office:

•	 Asia & Australia  corporatesalesaustralia@wiley.com
•	 Europe, Middle East & Africa (EMEA)

corporatesaleseurope@wiley.com
•	 Japan  corporatesalesjapan@wiley.com
•	 Korea  corporatesaleskorea@wiley.com

USA (also Canada, and South/Central America):
•	 Healthcare Advertising  corporatesalesusa@wiley.com
•	 Science Advertising  Ads_sciences@wiley.com
•	 Reprints  Commercialreprints@wiley.com
•	 Supplements, Sponsorship, Books and Custom Projects

busdev@wiley.com

Or please contact:
Susan Blessing, Senior Account Manager Sciences
Sciences, Corporate Sales
mobile:  24/7  201-723-3129
e-mail:  sblessin@wiley.com

CONTACT

ADVERTISER INDEX� July  volume 24-2
2021 Western States Regional Conference	 inside front cover
HSI2021 Human Systems Integration Conference	 inside front cover
Systems Engineering Call for Papers	 back inside cover
INCOSE Future Events	 back cover

CORPORATE ADVISORY BOARD — MEMBER COMPANIES

321 Gang, Inc.
Aerospace Corporation, The
Airbus
AM General LLC
Analog Devices, Inc.
Aras Corp
Australian Naitonal University
Aviation Industry Corporation of China, LTD
BAE Systems
Ball Aerospace
Bechtel
Beckton Dickinson
Blue Origin
Boeing Company, The
Bombardier Transportation
Booz Allen Hamilton Inc.
C.S. Draper Laboratory, Inc.
California State University Dominguez Hills
Carnegie Mellon University Software

Engineering Institute
Change Vision, Inc
Colorado State University
Cornell University
Cranfield University
Cubic Corporation
Cummins, Inc.
CYBERNET MBSE
Defense Acquisition University
Deloitte Consulting
DENSO Create, Inc.
Drexel University
Eindhoven University of Technology
Embraer S.A.
ENAC
Federal Aviation Administration (U.S.)
Ford Motor Company
Fundacao Ezute
General Dynamics Mission Systems
General Electric Aviation
General Motors

George Mason University
Georgia Institute of Technology
IBM
Idaho National Laboratory
ISAE SUPAERO
ISDEFE
iTiD Consulting, Ltd
Jacobs Engineering
Jama Software
Jet Propulsion Laboratory
John Deere & Company
Johns Hopkins University
KBR, Inc.
KEIO University
L3 Harris
Leidos
Lockheed Martin Corporation
Los Alamos National Laboratory
ManTech International Corporation
Maplesoft
Massachusetts Institute of Technology
MBDA (UK) Ltd.
Missouri University of Science & Technology
MITRE Corporation, The
Mitsubishi Heavy Industries
National Aeronautics and Space Administration
National Security Agency – Enterprise
Naval Postgraduate School
Nissan Motor Co, Ltd
No Magic/Dassault Systems
Northrop Grumman Corporation
Pacific Northwest National Laboratories
Penn State University
Peraton (formerly Perspecta formerly Vencore)
PETRONAS NASIONAL BERHAD
Prime Solutions Group, Inc.
Project Performance International
QRA Corporation
Raytheon Corporation
Roche Diagnostics

Rolls-Royce
Saab AB
SAIC
Sandia National Laboratories
Siemens
Sierra Nevada Corporation
Singapore Institute of Technology
Skoltech
SPEC Innovations
Stellar Solutions
Stevens Institute of Technology
Strategic Technical Services
Swedish Defence Materiel Administration
Systems Engineering Directorate
Systems Planning and Analysis
Thales
Torch Technologies
Trane Technologies
Tsinghua University
TUS Solution LLC
UK MoD
University of Alabama in Huntsville
University of Arkansas
University of California San Diego
University of Connecticut
University of Maryland
University of Maryland, Baltimore County
University of Michigan, Ann Arbor
University of New South Wales, The, Canberra
University of Southern California
University of Texas at El Paso, The
University of Washington, Industrial & SE Dept
US Department of Defense, Deputy Assistant

Secretary of Defense for Systems Engineering,
Veoneer, Inc
Vitech Corporation
Volvo Construction Equipment
Woodward Inc
Worcester Polytechnic Institute – WPI
Zuken, Inc.

Questions or comments concerning:

Submissions, Editorial Policy, or Publication Management
Please contact:  William Miller, Editor-in-Chief
insight@incose.net

Advertising — please contact: 
Susan Blessing, Senior Account Manager Sciences
Sciences, Corporate Sales
mobile:  24/7  201-723-3129
e-mail:  sblessin@wiley.com

Member Services – please contact:  info@incose.net

JU
LY

 2O
21

VOLUM
E 24/ ISSUE 2

6

William Miller, insight@incose.org

FROM THE
EDITOR-IN-CHIEF

FR
O

M
 TH

E
ED

ITO
R

-IN
-CH

IEF

It is our pleasure to announce the
July 2021 INSIGHT issue published
cooperatively with John Wiley &
Sons as the systems engineering

practitioners’ magazine. The INSIGHT
mission is providing informative articles on
advancing the systems engineering practice
and to close the gap between practice and
the state of the art as advanced by Systems
Engineering, the Journal of INCOSE also
published by Wiley.

The issue theme is systems and soft-
ware that is critical to the future of sys-
tems engineering initiative throughout
the systems community. We thank theme
editors Sarah Sheard and John Wood, the
Systems and Software Interface Working
Group (SaSIWG), and the authors for their
contributions. Sarah’s and John’s lead article
provides the context for this INSIGHT issue
in terms of the interface between systems
and software with the imperative that sys-
tems engineers and software engineers know
enough about each other’s fields to ensure
the interface works smoothly. Their article
goes on to serve the reader with a brief syn-
opsis of each article relevant to the theme.

Your editor appreciates from professional
experiences the challenges of systems and
software interfaces across the complex
socio-technical divide that is subject to
different meanings using the same words,
and divergent “facts,” beliefs, and biases.
As a Bell Labs systems engineer, I lived the
transition of telephone systems based on
electro-mechanical technologies dependent
upon manual methods and procedures,
to computer/software aided methods and
procedures providing operations support
to the telephone system, to centralized
stored program control at the system level,
and thence on to distributed embedded
computing. I vividly remember the “rad-
ical” at the time justification for placing a
32-bit microcomputer at the circuit card
level in a distributed computing telephone

switch to give flexibility over the life cycle
of that switch. I later served as a chief
systems engineer across multiple programs
in a different domain that experienced a
decade long transition from an unwritten
requirement that “there shall be no software
in the systems” to “getting our feet wet”
with software peripheral to the systems,
and thence on to mission critical software
embedded throughout the systems. The
same story applies to the innovation of
computing and software in aerospace sys-
tems as illuminated by the Apollo program
and commercial air transport aircraft. In
parallel I witnessed the growth of com-
puter science and software engineering
as disciplines on a par with “traditional”
engineering disciplines. My observation is
that the time constant for these transitions
is driven by the progression of engineers’
knowledge and competencies to be half
a generation, that is, about 10 years. The
Systems Engineering Research Center is
researching how to lower the time constant
for systems engineers (https://sercuarc.org/
experience-accelerator/ ).

The patterns in systems engineering
processes, methods, and tools we use have
a legacy in the era where software was at
best centralized, or marginally, part of the
periphery of enabling systems. For exam-
ple, the work breakdown structure (WBS)
for aircraft and drones is documented in
Mil-Std-881E dated 6 October 2020. From
the standard:

“The Program WBS and Contract
WBS aid in documenting the work
effort necessary to produce and
maintain architectural products in a
system life cycle. The DoD Architecture
Framework (DoDAF) (current version)
defines a common approach for DoD
architecture description development,
presentation, and integration for
warfighting operations and business
operations and processes.”

Philosophically, how do these legacy
processes, methods, and tools contribute
to the “impedance (mis)match” inertia in
the interface with software engineering?
Holistically, why not envision aircraft or
drones as cyber-physical systems, or more
colloquially, as “flying computers” critically
dependent on software to be fit for purpose
and do no harm? Look at our mobile de-
vices whose multi-purpose functionality is
critically dependent on software to achieve
the small form fit and smart electrical
power management that integrates what
were separate devices before the mid-2000s.
How might that perspective influence the
architecture of these systems to simplify
the systems and software interface? Perhaps
we should look to the systems engineering
and software engineering practiced by the
big five tech giants collectively known as
GAFAM or FAAMG: Alphabet (Google’s
parent), Amazon, Apple, Facebook, and
Microsoft; as well as SpaceX. Google’s site
reliability engineering, described both on-
line and in print, covers both systems and
software engineering.

To quote INCOSE past president John
Thomas: “It’s a great time to be a systems
engineer!”

We hope you find INSIGHT, the prac-
titioners’ magazine for systems engineers,
informative and relevant. Feedback from
readers is critical to INSIGHT’s quality. We
encourage letters to the editor at insight@
incose.net . Please include “letter to the
editor” in the subject line. INSIGHT also
continues to solicit special features, stand-
alone articles, book reviews, and op-eds.
For information about INSIGHT, including
upcoming issues, see https://www.incose.
org/products-and-publications/periodicals#IN-
SIGHT . For information about organizations
sponsoring INSIGHT, please contact the
INCOSE marketing and communications
director at marcom@incose.net .  ¡

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

7

Introduction to
Themed Edition

In the 21st century, software has be-
come central to business as electrical
infrastructure and plumbing, but
software is unique. Software

■	 Controls critical machine functions
ranging from pacemakers to aircraft;

■	 Allows people and businesses to com-
municate across the globe;

■	 Provides capabilities distinguishing one
business from another which can make
or break businesses financially;

■	 Provides an unprecedented entrance for
criminals to many daily life aspects.

For these reasons, systems engineers
must become comfortable dealing with
software in systems.

The Systems and Software Interface
Working Group (SaSIWG), which Sarah
Sheard chaired through the 2021 INCOSE
International Workshop (IW), now chaired
by Nick Guertin, works on numerous
potential products to help the INCOSE
systems engineers do just that.

Two SaSIWG members surveyed senior
systems engineers and senior software en-
gineers to identify pain points between the
two disciplines for almost two years. These
members documented the survey’s results in
the Working Group’s INCOSE International
Symposium (IS) 2020 paper, which Sarah
Sheard helped write. We include it here as
— Article 1, “Systems and Software Inter-
face Survey” by Sally Muscarella, Macaulay
Osaisai, and Sarah Sheard. The bottom line
is systems engineering skills are still essential
and must evolve to include model-based
systems engineering. Both systems engineers
and software engineers must learn enough
about each other’s fields to ensure the
interface works smoothly. We include the IS
paper in its entirety in this INSIGHT issue.

Article 2, ““Book Club Guides A
Working Group to Create INCOSE
System-Software Interface Products,” by
Sarah Sheard, Mickael Bouyaud, Macaulay
Osaisai, Jeannine Siviy, and Ken Nidiffer,
describes the “book club” in which we
studied a popular fable-type book, The
Unicorn Project: A Novel about Developers,
Digital Disruption, and Thriving in the Age
of Data by Gene Kim (originally suggested
by Shirley Tseng). The book club resulted in
several working group products to help us
understand issues and topics arising during
our book club discussions. Some products
were the impetus for articles included in
this issue.

Article 3, “System Engineering Roles in
Software Organizations Delivering Service
Products,” by Mickael Bouyaud and Brian
White, started as a software service deliv-
ery explanation to the book club by the
SaSIWG member most knowledgeable on
software service delivery. This article, which
expands upon some charts from our IS
2021 paper (Sheard et al. 2021), shows how
software development proceeds within a
company using examples from The Unicorn
Project (Kim 2019).

We were also lucky to have within
the book club some significant complex
systems talent. Article 4, “A Complex
Adaptive Systems Engineering
Methodology,” by Brian White and
Mickael Bouyaud, resulted from book
club discussions about better company
organization methods for addressing
the rising complexity of current and
future systems. The authors show how
to move from today’s overly simplistic
management by Program Evaluation and
Review Technique (PERT)-type charts
to a methodology, based on evolving

complexity science, more suited to manage
creating complex systems of systems.

We also felt the organization in Gene
Kim’s book addressed, but did not talk
specifically about, the DevSecOps (Secure
Development and Operation) issues
working together with systems engineering.
Article 5, “Systems Engineering and
DevSecOps,” by Richard Turner, addresses
these issues outright from a software
engineering viewpoint. This article will be
useful to systems engineers by showing
how “the other side” thinks and, thus,
forms the foundation upon which we need
to begin our discussions. Dr. Turner lays
out nine DevSecOps principles and shows
how each relates to systems engineering as
currently practiced in software-intensive
organizations. The article also provides a
helpful comparison between DevSecOps,
Lean, Agile, and systems engineering
principles.

Article 6, “System Test Approach for
Complex Software Systems,” by Chandru
Mirchandani, addresses incorporating
the actual operational environment into
software system tests to measure software
quality. While some software engineers
claim software reliability is one (100%),
others say removing all software defects
is impossible. Others argue we can never
fully test software. Even if these general
statements were true, they do not provide
the fidelity needed by systems engineers.
Systems engineers must understand
and talk about quantity and density of
failures and faults as well as times between
failures. Otherwise, we cannot know if
the software’s contribution to the overall
product attributes will meet system-level
requirements. This article offers systems
engineers a method for calculating

Sarah Sheard, sarah.sheard@gmail.com;and John Wood, woodjn@gwu.edu
Copyright © 2021 by Sarah Sheard and John Wood. Permission granted to INCOSE to publish and use.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

8

requirements-based and functionality-based failure rate
profiles for software-intensive systems. It also provides
a starting point for discussing whether the findings are
acceptable at a system level.

And finally, Article 7, “Systems Thinking and Business
Resilience: Questions that Should Keep Us Up at Night,” by
Jeannine Siviy and Gene Kim, examines “Where do we go
from here?” We need all the immense talent INCOSE has
and represents to tackle the enormous system questions
posed in this article. For example, into what categories
can we sort different contexts? What roles should systems
engineers and other systems thinkers play in the various
contexts? Then, once we find out what we want to have
happen, how do we make it happen?

We hope you enjoy these articles, and we hope they
expand your current understanding of the interface between
software engineering and systems engineering. More
importantly, we hope these articles encourage systems
engineers to practice their profession confidently within
software-intensive organizations. We may be biased, but we
believe people with a systems perspective are invaluable in
helping complex organizations achieve their goals.  ¡

REFERENCES
■	 Kim, G. 2019. The Unicorn Project: A Novel about

Developers, Digital Disruption, and Thriving in the Age of
Data. Portland, US-OR: IT Revolution Press.

■	 Sheard, S., M. Bouyaud, M. Osaisai, J. Siviy, and K.
Nidiffer. “A Guide for Systems Engineers to Finding
Your Role in 21st Century Software-Dominant
Organizations.” Paper presented at the 31st Annual
International Symposium of INCOSE, Virtual Event,
17–22 July.

ABOUT THE AUTHORS
Dr. Sarah Sheard is an INCOSE Fellow, CSEP, and

Founder’s Award winner. An INCOSE member since 1992,
she chaired INCOSE’s SaSIWG from 2017-2021. Her many
systems engineering publications include three INCOSE
“Best Papers.” When she retired in 2019, Dr. Sheard was a
systems and software engineering researcher and consultant
at CMU’s Software Engineering Institute. Prior to that time,
she worked at the Systems and Software Consortium, Loral/
IBM Federal Systems, and Hughes Aircraft Company. In
2012, she earned her systems engineering Ph.D. focusing on
system development complexity from the Stevens Institute
of Technology. Now, she postponed international travel to
learn folk dancing by Zoom with her husband.

Dr. John Wood currently serves as Naval Information
Warfare Center Pacific department lead systems engineer.
He leads world-class engineers to create future warfighting
capabilities for the US Navy and other Department of
Defense customers. Dr. Wood has consistently applied his
systems engineering and project management expertise
to solve mission and safety critical challenges within
healthcare, aviation, and defense throughout his career.
Dr. Wood holds an electrical engineering B.S. from the US
Naval Academy and a systems engineering Ph.D. from the
George Washington University.

Custom programs for the science-
and technology-driven enterprise

Learn more: ctme.caltech.edu

Connect with us:
execed@caltech.edu | 626 395 4045 | LinkedIn: Caltech-CTME

ADVANCED
ENGINEERING

Systems Engineering

MBSE

Agile SE & Hardware

System Architectures

Airworthiness

Systems of Systems

DATA
ANALYTICS

Machine Learning

Deep Learning

Business Analytics

Aerospace Analytics

Cybersecurity

Data Storytelling

STRATEGY &
INNOVATION

Technology Marketing

Innovation Workshops

Design-for-X Lab

Target Costing/VE

Aerospace Supply Chain

Leadership & Change

Engineer a Personal and
Organizational Transformation

The reinvention of everything through complex systems and
missions requires engineering leadership. Innovative technology

organizations team with Caltech CTME for tailored
professional education, hands-on experiences, and leadership

development in our custom and open-enrollment courses.

Great Leaders
Always Evolve

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

9

  ABSTRACT
INCOSE formed the Systems and Software Interface Working Group (SaSIWG) in 2017, responding to the Corporate Advisory
Board interest in software and problems identified in the systems and software interface (physical, logical, data, and human).
This third SaSIWG paper presents a systems engineers, software engineers, and project managers survey discussing best practices
and the priority challenges related to the interface between systems and software. We group and summarize the best practices
mentioned by the 31 interviewees then address priority challenges and problems. Systems engineering done well includes an ev-
er-increasing amount of Model-Based Systems Engineering. It also includes developing and holding to a vision, managing data,
ensuring inter-disciplinary work, planning systematic verification, and ensuring modularity. Systems engineering must evolve to
meet new challenges and, most importantly, systems engineer expertise must include software engineering.

Systems and Software
Interface Survey

Sally Muscarella, scmuscarella@gmail.com; Macaulay Osaisai, Macaulay.Osaisai@L3Harris.com; and
Sarah Sheard, sarah.sheard@gmail.com
Copyright © 2020 by Sally Muscarella, Macaulay Osaisai, and Sarah Sheard. Permission granted to INCOSE to publish and use.

Systems engineering and software en-
gineering grew from the physical sys-
tems world and the computer science
world (Sheard, Pafford, and Phillips

2019). Since complex systems today are or
may become cyber-physical systems, their
development needs cyber and physical skills.
Fortunately, since the 1990s, engineers of
both disciplines are becoming familiar with
the processes and methodologies the other
discipline uses. For example, the Institute of
Electrical and Electronics Engineers (IEEE)
began work in the 1990s to “harmonize” sys-
tems and software standards, primarily ISO/
IEC 15288 and 12207, respectively (ISO/
IEC/IEEE, 2015 and 2017).

However, other sources describing failed
projects frequently mention breakdowns
between systems and software engineering
teams or system interfaces and software in-
tegration. When asked, software engineers
blame systems engineering inadequacies,
and the systems engineers blame software
engineering inadequacies.

In 2016, INCOSE asked Corporate Ad-
visory Board (CAB) members to prioritize
seven to 10 topics INCOSE should improve.
Somewhat surprisingly, “software” was not a
top issue for any company. However, nearly
all companies listed it somewhere, so it be-
came a CAB “top 7 concern.” A January 2017
CAB breakout session asked CAB represen-
tatives to recommend what issues INCOSE

INTRODUCTION
should address in this area (Bramer 2017).

At the 2017 INCOSE International
Symposium (IS), INCOSE Past President
Heinz Stoewer emphasized systems-soft-
ware interface’s important work. He warned
if INCOSE “does not address the digital
thread” quickly, to understand software and
start leading software-intensive systems,
“INCOSE risks becoming irrelevant.”

To initiate action, INCOSE organized the
Systems and Software Interface Working
Group (SaSIWG). The group first met
during IS 2017 and based their charter
(SaSIWG 2017) on the CAB results, aug-
mented by member knowledge.

The SaSIWG presented a paper in 2018
describing the results from the initial
brainstorming meeting in 2017 (Sheard et
al. 2018). This included describing interface
problem areas. Then in 2019, a SaSIWG
paper (Sheard, Pafford, and Phillips 2019)
focused on coordinating the systems engi-
neering and software engineering discipline
tasks and roles enacting a high-perfor-
mance systems and software enterprise.

CURRENT SITUATION: SOFTWARE-INTENSIVE
SYSTEMS CHALLENGE THE SYSTEMS AND
SOFTWARE ENGINEERING INTERFACE AND
DISCIPLINES

Literature Review
In today’s systems, software binds the

systems together and causes the desired
capability to emerge (Fairley and Willshire
2011b). Software performs more functions
than hardware, and those functions can
be much more complex (Sheard 2004).
Because of the resulting complexity, “our
large software systems can no longer be
monoliths… tested within known perfor-
mance limits” (Brownsword et al. 2006).
Both fields are essential to the other.

Systems and Software Engineering
Interface Issues Can Cause Problems. The
US Air Force’s Weapon Systems Software
Management Guidebook (USAF 2018)
describes software problems arising partly
because of “ineffective systems engineering
interfaces to the software development pro-
cess.” Kasser and Shoshany (2000) blame
“massive failures” in complex projects on
communication issues between systems and
software engineers.

Systems and Software Practices
Must Evolve. Vierhauser, Rabiser, and
Grünbacher (2014) argue both the
traditional systems engineering approach
and software engineering approaches need
to evolve to address modern systems.
Of course, how to evolve is a question
receiving much attention.

Attempts To Reconcile. Researchers
still frequently cite Maier’s seminal paper
on reconciling systems and software
architecture (2006). Fairley and Willshire

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

10

(2011a and 2011b) suggest educating each
discipline in the other’s knowledge base.
Sheard (2014), mapping the two disciplines
in a Venn diagram, called for increased col-
laboration. Giese (2005) and Sheard (2004)
looked at how software engineering prac-
tices and systems engineering practices,
respectively, would need to change for more
software-intensive systems in the future.

How Working Together Achieves Inte-
grated Systems and Software Engineering.
In 2007, Boehm and Lane published the in-
cremental commitment model to integrate
systems engineering, software engineering,
and system acquisition. Turner, Pyster, and
Pennotti (2009) proposed a “touchpoint”
framework for integrating systems and
software engineering. This framework notes
process faults such as gaps, clashes, and
waste, particularly for “interdependent sys-
tems” where hardware and software cannot
separate, requiring the design to include
them in an integrated manner. Boehm et al.
(2010) took this further with “architected
agile solutions for software-reliant systems,”
which sounds timely even today. Rosser
et al. (2014) further described how to do
systems engineering using Agile methods
in cross-functional teams.

In 2011, Boehm spoke of “future software
engineering opportunities and challenges”
requiring significant changes in and integra-
tion of both software and systems engineer-
ing processes. He focused on generating
value and dynamically balancing agility,
discipline, and scalability. This same year,
Fairley and Willshire (2011b) described ed-
ucation in software engineering that systems
engineers need, stating, “Smooth develop-
ment process integration used in systems
engineering and software engineering is a
continuing and ongoing challenge.”

The Systems Engineering Body of
Knowledge (stewarded by INCOSE, the
IEEE Computer Society or IEEE-CS, and
the Systems Engineering Research Center,
and maintained as a wiki) has a detailed
section on software. This section includes
software engineering in the systems engi-
neering lifecycle, the nature of software,
Guide to the Software Engineering Body
of Knowledge (SWEBoK) overview, key
points a systems engineer must know about
software, and software engineering features
(Fairley et al. 2019). In contrast, the SWE-
BoK (most recently published by IEEE-CS
as a pdf in 2014) has only two paragraphs
about systems engineering and does not
connect the definition elsewhere in the
book (Bourque and Fairley 2014).

Systems Engineering of Software-Enabled
Systems (Fairley 2019) is a new and compre-
hensive book on the subject. In a discussion
with the authors of this paper, Fairley said,

“The keys to making my approach work are
for hardware, software, and human factor
engineers to collaboratively generate system
capabilities based on stakeholder require-
ments, then collaboratively generate the
system requirements from the capabilities to
develop a Model-Based Engineering (MBE)
system architecture model and perhaps the
subsystem architectures for large systems,
and then incrementally and iteratively
replace simulated system elements with real
elements as they become available—not
as simple as this elevator speech makes it
sound, but it is efficient in the overall system
development.” This paper attempts to make
this and other systems-software experience
more available than it is today.

INCOSE focus on Systems and Software
Engineering

Until 2017, INCOSE had many groups
addressing the important software-relat-
ed issues for systems engineers, but none
specifically addressed the system software
interface. Hence, interested INCOSE mem-
bers created the SaSIWG.

Of INCOSE’s software-related groups, the
Model-Based Systems Engineering (MBSE)
Initiative is the largest and most successful.
It started in the mid-1990s and has been
active for about 25 years. Today, its spin-offs,
the MBSE Patterns Working Group and the
Model-Based Conceptual Design Working
Group, are also active. Other INCOSE work-
ing groups with activities related to software
include Agile Systems and Systems Engi-
neering, Architecture, Complex Systems,
Digital Engineering Information Exchange,
Enterprise Systems, Object-Oriented
Systems Engineering Method, Resilient
Systems, System Safety, Systems of Systems,
Tools Integration and Model Lifecycle
Management, and Training.

METHOD
This paper provides best practices

and problems (or challenges) to inform
program (or project) managers, organiza-
tional managers, and lead engineers how
they should target their work for minimal
interface issues moving forward. The meth-
od to gather best practices and problems
was surveying experts in interviews. The
authors analyzed and summarized the key
interviewee responses.

Goal. The survey determined what to-
day’s software and systems engineers think
the systems-software interface problems or
challenges are and tried to identify any best
practices to help reduce the problems and
lead to successful systems.

Pre-interview Work. The SaSIWG brain-
stormed what questions the survey should
include, given the goal. Some SaSIWG
members and survey participants helped

test the questions and shorten the survey to
fit a one-hour interview. The survey includ-
ed real-world case examples and results.

Interviewees. We conducted individual
interviews with 31 self-identified systems
and software engineers, most of whom were
INCOSE members. SaSIWG participants
recommended interviewees should include
individuals with significant expertise and
representation across industry and geo-
graphic regions. Interviewees included
systems architects, software architects, and
project and program managers with exten-
sive experience in one or both disciplines.
They included commercial (aerospace,
automotive, communications, microelec-
tronics, medical equipment, technology),
defense, and academic domain professionals.
Many interviewees had experience in more
than one industry. The interviewees had, on
average, 25 years of systems engineering ex-
perience and 20 years of software engineer-
ing experience. In some cases, interviewees
held positions involving both systems and
software engineering. In such cases, the
years of experience included both domains.

Interviews. Each interviewee received a
SaSIWG charter copy, the survey pur-
pose, the survey questions, and the 2018
SaSIWG paper. Interviews lasted one to
one and a half hours. The interviewee
received the interview notes for any further
clarifications or corrections. Two authors
jointly performed all interviews to reduce
variation due to different interviewers. The
interviewers asked each interviewee to
identify two top priorities from six possible
areas needing emphasis in the field.

Analysis. The authors screened com-
ments for relevance, sorted them by cate-
gory, and summarized them in two lists, (i)
“best practices” related to the system-soft-
ware interface and (ii) key problems and
challenges requiring solutions.

Availability. This paper summarizes the
best practices, problems, and challenge
areas. Traceability to interviews is available.
The interviews are anonymous, and the
notes from each interview are available
upon request.

SURVEY RESULTS
The survey had questions interview-

ees could answer-and interviewers could
analyze-numerically, such as priority areas
for improvement. Many other questions
elicited stories and guidance, and we detail
the guidance, both on best practices, chal-
lenges, and problems, below. The executive
summary summarizes the survey results for
program and project managers and systems
and software leads.

Executive Summary
The results show improving the sys-

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

11

tem and software interface in today’s and
tomorrow’s complex software-intensive sys-
tems requires the organization to perform
both systems engineering and software
engineering well.

Engineering the system and engineering
the system software must connect tightly.
Most respondents cited the work should
integrate, meaning engineers from both
disciplines should be part of the project
team from day one.

Model-Based Engineering (MBE) en-
ables collaboration, manages complexity,
and improves interfaces. MBE, or digital
engineering in the US DoD, is a modeling
ecosystem covering MBSE, Model-Based
Software Engineering, and other mod-
el-based engineering disciplines. MBE rec-
ommends the two fields must agree upon
the tools, including information sharing,
and make them compatible.

This survey identified expertise and
cross-training in systems and software
engineering as the most crucial areas for
improvement.

Best Practices
We gleaned the best practices to improve

the systems-software interface from the
interviews; this section organizes their
conclusions. The first principle is to do
good systems engineering (and software
engineering, to the extent it includes the
practices below). This means developing
and holding a vision, doing model-based
systems engineering, ensuring interdis-
ciplinary work, focusing the system data
and test aspects, and including modularity.
The second principle is to accommodate
change with rigorous, model-supported
change management. The third principle is
creating, maintaining, and supporting an
effective team.

I. Do “Good” Systems Engineering (and
Do “Good” Software Engineering). Effec-
tive interfaces depend on performing systems
engineering effectively. Some good systems
engineering basic quality attributes include:
having a solid and agreed-upon vision, doing
model-based engineering, establishing a data
architecture, maintaining an interdisciplinary
team focused on system success, having a
well-designed test plan, building modularity
in the design, implementing security, and
considering the system’s human aspects with
support of an effective software engineering
practice.

We can improve the interface between
systems and software through using
streamlined engineering processes based
on standards (15288 and 12207); fewer
documents, more efficiency, agile, and
model-based engineering. The systems
engineering method tailors to the system

type, environment, and context. We define
interfaces at a high-level upfront in the
high-level architecture phase based on the
top-level system specification.

Ia. Develop and hold the vision. Systems
engineering must visualize what the system
will do and ensure subsequent development
of both systems and software to implement
the vision. This usually requires significant
and ongoing collaboration and communi-
cation with software engineering and other
disciplines. As an example, an excellent
top-level specification establishes the overall
project objective. Another example comes
when implementing systems of systems
(SoS), or systems belonging to an SoS: the
SoS must have its vision, separate from the
constituent system visions. Having a clear vi-
sion improves communications and under-
standing across teams and team members.

Ib. Use Model-Based Engineering.
Historically, MBSE increased in scope and
importance for over 20 years. Recently, its
adoption has benefitted from increasing
MBSE-supporting tools. Today, MBSE
increasingly coordinates with Model-Based
Software Engineering. Model-based system
representations improve understanding
across interfaces.

Model-Based engineering done right
allows multiple engineers in disparate
disciplines to co-create the product system,
helping engineer various artifacts con-
currently. Model-Based engineering also
supports methodologies such as Agile and
DevOps, which handle increasingly com-
plex products.

Model-Based engineering requires model
validation despite its challenges, “All mod-
els are wrong, but some are useful”(Wikipe-
dia 2021).

Basing the engineering on correct and
consistent models generates valuable
artifacts from the models. These include the
earliest interfaces, and eventually, Interface
Control Documents (ICDs) and other
documentation such as requirements and
design descriptions. Modeling formalizes
agreements, provides traceability, and allows
successful changes even when the changing
system is complex. Models offer capabilities
to customers they have not had before, such
as dynamically updating requirements,
leveraging machine learning, data analytics,
and artificial intelligence. Models can also
provide automatic code generation.

The model master database provides a
single truth source which forms the inter-
face definition basis.

Various systems modeling languages and
approaches, including Systems Modeling
Language (SysML), Unified Modeling Lan-
guage (UML), and Object Process Method-
ology (OPM), address different needs. Or-

ganizations need to select the best approach
for their environment and programs.

While less widely known to systems
engineers, the industry has successfully
used OPM (ISO/PAS 19450). It builds
on a minimal universal ontology—object
process theorem—to model any system
with minimal building blocks and pro-
cesses with links between the objects and
processes. OPM provides a standard model
for software and hardware.

Some modeling improving the sys-
tem-software interface is as follows:

1.	 Model requirements as Use Cases
and ensure stakeholder, including
customers, agreement.

2.	 Model the system architecture.
Include functional, object, and data
architecture views, with graphical
models for all. Define the “what” be-
fore the “how.” The architecture and
model master database are essential
to successful interface definition.

3.	 Begin the top-level system specifica-
tion, which documents the require-
ments for the system or product, in a
model-based description and obtain
critical stakeholder buy-in and agree-
ment before finalizing it.

4.	 Select the right tools based on the
problem. In the systems world,
no tool is “one size fits all.” Using
state-of-the-art and connected tools
enables better interface development.
Using the same tool for systems and
software is helpful. Tools with struc-
tures and schema that are very strict
on controlling the Interface Require-
ments Specification (IRS) and the
Interface Data Specification (IDS) are
beneficial. Strict controls implement
the interfaces through auto code gen-
eration tools. The tools must support
the users. Do not over tool; provide
tool support for users.

5.	 Model interfaces, upfront and as they
change. A system model database
provides the single truth source
for interface definition. Ensure all
relevant stakeholders’ agreement on
the interfaces. Use models to demon-
strate traceability. Generate important
documents (requirements and ICDs)
from the models. Interfaces will
change; use rigorous change manage-
ment supported by the models track
changes (see below). Treat additional
model inputs from the components as
either conforming with or changing
those rigorously controlled interface
specifications. Some organizations re-
place interface documents with mod-
els. Some companies use the model
database and escalation processes to
manage interface changes.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

12

6.	 ICDs, or the model-based equiva-
lent, describe the system presenting
the interface, the inputs and out-
puts passing through the interface
(typically energy, force, material, or
information) including the optical/
visual, the behavior at the interface
(described by interactions) and the
access system (medium) supporting
the interactions. More general re-
quirements include agreeing on how
subsystems talk to each other, error
conditions, and actions upon detect-
ing an unexpected input or event.

7.	 Plan and model the verification and
validation needed to prove compo-
nents and the interfaces, ensuring the
larger level system’s correctness. These
can be part of the modeling effort.

8.	 Use simulations and executable
models to capture, first desired and
eventually actual, behavior and
algorithms showing the variable
relationships.

9.	 Use prototypes. System and soft-
ware define this word differently
(Fairley 2019; Sheard 2016). Systems
engineering means a model with
functionality in place but immature
technology. Software means a model
with specific functionalities in place
but with other functions simulated
(“stubbed”). Prototyping either type,
along with simulation before archi-
tecture formalization, helps develop
the system and software. Throughout
the lifecycle, prototyping also resolves
open technology questions and
demonstrates functionality to users.

Ic. Ensure interdisciplinary focus on
system success. Systems, software, and
hardware must agree on all major deci-
sions, and other disciplines must agree
with whatever involves them. In general,
systems engineering’s history of integrating
disciplines needs to continue, increasing its
emphasis on involving software engineers
and architects. Strong communications are
essential. For example, software engineers
must communicate with systems engineers
if requirements are ambiguous.

The teams use common or connected
processes, connected tools, views, taxon-
omies, and review metrics throughout the
lifecycle and across systems, hardware, and
software teams. In some software-intensive
systems, no interface exists between the
system and the software because the two
are not separate. There is a systems per-
spective, and the software is integral to the
system. There is extensive prototyping and
simulation to develop the system.

Regardless of the organizational structure
or job titles, the person or team performing

the systems engineering is responsible for
system success.

It is vital to use root cause analysis and an-
alytics to understand the problem area’s root
cause, including interface defects, to identify
actions for continuous improvement.

Id. Address data as a whole. Address data
with a system-wide focus (Digital Thread—
data interface and traceability from dispa-
rate engineering models). Data has always
been there; more so, product and process
data in current complex systems are more
numerous and complex than ever. Hence,
data should at least have a taxonomy, archi-
tecture, plan, and single truth source.

Ie. Address test as a whole. Software
testing terminology and differs in some
ways from testing and verifying systems.
Testing should focus on models. In general,
software teams frequently test every Agile
cycle (if they use Agile processes, which
most do). Systems engineers need to under-
stand this to extend it to systems engineer-
ing, where appropriate, and guide it to help
meet the system vision. Developing the test
harness while building the system is neces-
sary to support continuous testing.

If. Implement modularity. Managing
the development of increasingly complex
products requires modularity. It supports
developing some basic functionality first
and adding complexity later, such as with
Agile and DevOps.

Ig. Implement security from the begin-
ning. Security challenges today focus on
cybersecurity. Cybersecurity challenges
change with every zero-day exploit, which
software engineers will most likely know
about before systems engineers. The initial
design team should involve security engi-
neers, and they should approve all changes.

Ih. Do good software engineering. It
is helpful to define systems and software
engineer roles. IEC 62304, Software Devel-
opment Process (IEC 2006) helps with this.
Requirements flow to software engineer-
ing for implementation. Good software
engineering practice provides a focus on
the system, rather than just on code and
objects. The system can evolve as we incre-
mentally add software when using a subsys-
tem approach. If software development uses
agile practices, communication is a critical
process component. Systems and software
groups agree on interfaces before software
development for the essential system parts.
There is a top-down approach (plan-driv-
en approach, requirements, architecture,
protocols, interfaces, and interactions) for
systems and interfaces and a bottom-up
approach for development teams, who
perform continuous development with flex-
ibility. Successful agile practices adequately
map system elements to requirements. The
Scaled Agile Framework (Leffingwell 2018)

often applies to large systems. Complex
projects with more software use a DevOps
approach to capture user requirements and
improve software quality. This impacts the
system and software interface definition.
The DevOps approach (Bass, Weber, and
Zhu 2015) builds modular pieces and adds
complexity later in layers. DevOps embrac-
es developing what you create as you build
it. The trade space between hardware and
software can evolve. Other key aspects in-
clude continuous integration, prototyping,
and commercial off-the-shelf subsystems.

Ij. Build systems with consideration to
humans in systems. Include users in deter-
mining requirements through scenarios, in
major reviews, and, at a minimum, opera-
tional testing.

II. Evolve Systems Engineering
Practices. Manage change robustly and
effectively.

IIa. Be adaptable to process change and
improvement. Processes bringing real-time
feedback and product or system evolution
(Agile and DevOps) necessitate systems
engineering processes built to adapt to
change. Systems engineers use spiral or Ag-
ile lifecycle management processes, when
appropriate, instead of the single-pass wa-
terfall. Customer engagement is essential,
regardless of the lifecycle model.

Evolve processes to facilitate concurrent
engineering enabled by digital engineer-
ing and the digital thread. Concurrency
strengthens the worldview of the team,
the organizational structure of people, and
improves interfaces.

IIb. Manage changes—update interfac-
es. Perform rigorous change management
across the program (any change might
affect interfaces) to ensure the changing
system-software interfaces become visible
during the change approval process and be
ready to update interface specifications.

IIc. Enable systems engineering evolu-
tion. Plan for several systems engineering
aspects to evolve. These include MBE, arti-
ficial intelligence (AI) and machine learn-
ing use, and approaches for understanding
complexity and emergent behaviors.

Processes and approaches evolve to
support better system evolution, such as
re-evaluating previous decisions when
technology or needs change while consid-
ering matching the solutions to criteria and
the criteria importance. For example, the
trade space between system hardware and
software may change. To ensure flexibility,
the system engineer leaves options open as
to where to perform functions as long as
possible as the system evolves.

System and software engineering process-
es evolve to use the same system and soft-
ware lifecycle process and unified thinking.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

13

III. Ensure Teams Have Expertise for
Increasingly Software-Intensive Systems.
Effective teams include people who have
the right expertise and behaviors, who
trained in what they do not know and in
what new capabilities and technologies are
available, and who can communicate ap-
propriately with terminology interpretation
awareness. Effective teams have organiza-
tional leadership support.

IIIa. Assure team expertise and effective
communications. The system-level team
includes people with system and software
architecting and engineering expertise. Ide-
ally, architects and requirements elicitors
have both systems and software expertise.
The team includes both software and hard-
ware engineers.

The team comprises people who under-
stand technical limits, including physical.

The team understands the problem to
understand what software to build. The team
also includes people with expertise in mod-
eling, modeling languages, and modeling
and simulation tools. Both systems engineers
and software engineers must know how to
create and implement Use Cases, which help
bridge disciplines and customers (see Fairley
2019, on skill importance in Model and Sim-
ulation-Based Systems Engineering to build
systems architecture models).

Communication is key. Both system and
software team members should understand
terminology from both disciplines (and
move toward a shared vocabulary). Team
members treat each other respectfully,
and the team addresses cultural barriers
and office separation problems to improve
effectiveness.

Some teams on software-intensive sys-

tems fully integrate systems and software
people to improve effectiveness.

IIIb. Assure leadership supports best
practices and understands the software’s
importance. Leadership supports the
proper discipline integration from day one,
without silos or organizational interfaces.
Leadership builds a supportive culture and
understands the importance of collecting
needed skills. Systems engineering and soft-
ware engineering are not the same. Both
systems engineers and software engineers
bring essential insights throughout the
project. Leadership recognizes system-team
expertise in software is a crucial differentia-
tor for their products.

Leadership also recognizes processes will
change to improve the interface, and in the
future, there will probably be more Agile
and less “big design up front” or “waterfall”
process. In an effective Agile team, there is
no “us” and “them.” An Agile environment
demands the best people and a good envi-
ronment. An Agile team works together on
solutions, and leadership participates rather
than commands and controls.

Priority Areas for Improvement
Each interviewee identified his/her top

two priority areas for improvement. We
used the categories identified in the first
SaSIWG INCOSE paper for the survey.
Table 1 shows how frequently interviewees
identified each Risk or Opportunity area.
Figure 1 shows these same numbers in
relation to each other.

Key Challenges and Problems
This section summarizes the key chal-

lenges and problems answers.
We mapped the challenges and problems

16
16
14
12
10

8
6
4
2

1
1. Expertise.

0

18

14
12

11

5 4

3. Leadership.

5. Environment & System Type & Other.

2. Interface definition or spec.

4. Process.

6. Technology and Tools.

Figure 1. Top problem areas

Table 1. Top problem areas identified by interviewees

Risk Area or Opportunity to Improve # times top*

1.  Expertise. Systems team lacking software expertise or software team lacking systems expertise
or other expertise issues 16

2.  Interface definition or spec. Lacking interface definition including data, specifications 14

3. Leadership. Organizational or management issues 12

4.  Process. Lacking agreement on critical processes, including process problems in specific lifecycle
phases from concept through maintenance or problems in language impacting interface and system
performance

11

5. Environment & System Type & Other. Problems related to certain system types—complex,
emergent behavior, or distributed control
(Note: Four respondents indicated problems with complex systems such as autonomous systems,
emergent behaviors, and lack of tools and processes. One respondent cited problems with test
architecture.)

5

6.  Technology and Tools. Lacking modeling tools or other tools or incompatibility among tools;
technology gaps 4

*# times ranked in top two problem areas by an interviewee

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

14

into the “best practices” categories above
and tagged them with the applicable roman
numerals and letters.

Expertise. (IIIa) Lacking expertise in
both software and systems is a significant
issue. System engineers need some software
engineering knowledge, and vice versa. If
we resolve this issue, many other issues will
resolve as a result.

With digital engineering and soft-
ware-intensive systems, system engineers
must have good software insight. Software
engineers must also understand the system.
The systems engineering team may have
dated experience. System engineers and
software engineers must stay up to date
through education and knowledge-shar-
ing. They do not need to be experts. The
software team needs systems thinking
knowledge and tools. Software engineers
need to obtain, acquire, and assimilate the
need for higher-level system engineering,
such as why and how systems engineering
is a discipline they need to interface with
and why software engineering needs system
knowledge.

Shared Objectives; Interdisciplinary
Teamwork. (Ia, Ic, IIa, IIc, IIIa, IIIc) Align-
ment issues on objectives between organi-
zations cause systems problems. The project
must involve systems engineers from the
start in a collaborative process. Sometimes,
the project brings in systems engineers
too late. Conversely, in the semiconductor
and automotive industry, sometimes the
systems architect specifies the system (and
its architecture) without consulting the
software architect. In the past, the software
was the system in domains/companies with
software-intensive projects. Today, software
resides in a more complex environment
and needs to be an integral subsystem. The
system process also needs to integrate the
software DevOps approach. Functional
organizations create barriers to developing
a systems focus.

Cultural Alignment; Communica-
tions; Relationships. (Ic, IIa, IIc, IIIa, IIIb)
Systems and software engineers need to un-
derstand one another—from understanding
each other’s worldview at a high level to
communicating with each other’s tools at
the detailed level. We must develop prac-
tices to support the dual need for “build to
last” and “adaptability.”

We need to understand and resolve
interpersonal communication barriers, in-
cluding language and behavioral differences
(Kasser and Shoshany 2000). All stakehold-
ers need common (or agreed to) ontologies,
terminology, and semantics across systems,
software, and hardware. Often friction
appears between software engineers who
force system engineers “out of the clouds”
and system engineers who push software

engineers to understand the world is bigger
than the computer screen. We call engi-
neering leaders in the defense industry sys-
tem engineers, though the individuals may
lack the necessary tools and skills. These
positions require software architecture
skills as well. Today, systems engineering
and software engineering practices do not
support joint discovery and requirement
evolution as necessary and natural.

The trade space between software and
hardware frustrates engineers in both
fields. It is important to allow for require-
ments and the trade space for software and
hardware to adjust as a program evolves,
and more is known about the environment
as it changes and the system develops. It
is important to understand systems and
software competencies and differences, par-
ticularly given the blurring and blending
trends between systems and software (see
Fairley 2019, page 39 regarding methods
and common attributes).

Lacking Good Systems and Software
Engineering. (I, Ic, Ih, IIa) Systems and
software engineers expressed a need for
more agile processes to avoid commitment
to a big upfront design. Software often
makes up what was forgotten in the system,
too late in the lifecycle, in band-aid mode.
The systems engineering team did not un-
derstand the problem, missed something,
or could not discern the customer’s wants.
Software engineers who do not realize the
big picture cause problems. For example,
we cannot add safety at the product devel-
opment process’ end. Creating a big picture
view helps even when software engineers
do not recognize the importance. Invite
customers to talk to software engineers
(who are often so focused on deliverables
they do not take time to talk to users). We
need customer involvement and focus in
the process, including design for usability/
human factors. In some industries (con-
sumer appliances or medical products),
systems engineering practices are new and
not well established.

Education; Engineering Disciplines.
(IIa, Ic, I) Some interviewees indicated
systems engineers rarely have formal
education in system engineering. The best
systems engineers have broad engineering
experience. The systems engineering and
the software engineering disciplines are not
identical. More than one interviewee said
systems and software engineering should be
two specializations within one educational
department. Software engineers need to
understand the greater lifecycle. Systems
engineers need to understand the funda-
mental system building blocks. Education
programs must keep pace with soft-
ware-based Agile technologies, techniques,
and tools.

Process Challenges. (I, Ib, Ib1, Ie, Ih,
IIc) Complexity is increasing the need to
improve systems engineering processes
with systems thinking and impact analysis.
System thinkers need to test what they do
before they do it and understand the emer-
gent behaviors. Modeling and simulation
are necessary, but it may not be possible
to predict emergent behaviors in complex
systems. Modern systems engineering
practices do not fully address modern
system challenges and opportunities, such
as complexity, AI, deep learning, and emer-
gent behaviors.

Examples:
Implantable medical devices have new

input sources—a user can modify the
system’s behavior rather than requiring a
doctor, or else other emergent behaviors
bring more complexity and the need for
a SoS approach.

Autonomous vehicles need new
approaches: maybe requiring a software
patch before finding the problem’s root
cause (fuel gauge sensor).

Software validation must validate all
lines of code. Models require validation,
and models may need refactoring to real-
ize a digital thread. Can we use advanced
technology (AI and machine learning) to
validate models?

Risk management is important. Risk
management is often weak or dependent
on another technology not at an accept-
able readiness level.

It is critical to use a system develop-
ment lifecycle process integrating sys-
tems engineering, software engineering,
and program/project management. One
common issue is teams from the different
domains diverge after the cross-domain
Use Case step, developing artifacts no
longer familiar to stakeholders who pro-
vided the original needs. Cross-domain,
in this instance, means developing specif-
ic Use Cases to elicit an understanding
of disparate project domains (engineer-
ing or business)

Interface Definition. (Ib, Ib2, IIb) After
analyzing 50 companies’ systems engineer-
ing competencies, we identified interface
management as the weakest systems engi-
neering capability (Source: Mark Sampson,
Siemens). Model-based representation
improves understanding across interfaces.
Understanding across interfaces is essential
with software-system interfaces. The IN-
COSE MBSE Patterns Working Group (in
collaboration with NASA, JPL, and OMG)
worked on sharable patterns improving the
interface representation.

Sometimes we do no define interfaces
well because of an incomplete understand-
ing of the enterprise architecture and data

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

15

model. Problems can also arise with a lack
of planning/design at the front end, lack of
information available from customers or
suppliers, or too many items still undeter-
mined in the Technical Requirements Doc-
ument or the Interface Control Document.

Simulation. (Ib8) Systems and software
engineers have expressed concerns about
gaps in the capabilities and tools to do
system performance simulations. We need
to progress beyond static documentation
and structural models to executable models
to ensure interfaces and system perfor-
mance. Improving the interface requires
MBSE evolution (integrating requirements
into modeling, using models to simulate
systems, or models to determine perfor-
mance). SysML models are currently static.
The SysML language and tools must mature
to provide a native dynamic simulation.
MATLAB can do some simulations, but
this happens through an external interface
integrated into the SysML model utilizing
parametric diagrams. Systems engineers
would like to push a button in the model to
validate the system’s performance.

Interface Security. (Ib, Ig, Ih) From
the cybersecurity viewpoint, there are
significant, growing trust problems in the
interfaces. Systems have to be flexible and
change over time. It is continually necessary
to define what input data is and ensure trust
with input and output data. As interconnect-
ed systems change, we must ascertain if we
can still trust the input and output. Poorly
done software (hacking code or sometimes
using the “Agile” excuse) is a huge problem.
As technology changes, this presents addi-
tional challenges for cybersecurity. Software
languages and libraries change so quickly
the project has insufficient time to check for
fit-for-purpose and security.

Data Volume. (Ib2, IIc) Best practices
lack handling data volume and complexity,
millions of data points. Engineers and op-
erators can become overwhelmed with data
of unknown importance. Some interview-
ees saw a need for better data management
infrastructure. We currently do not have
well-established interface management
for complex systems (for aircraft with 1.2
million interfaces, captured as individual
things and managed as individual things).
Some interviewees felt we could use data-
bases better to manage this data complexity.
When an interface changes, teams should
notify the right people to determine the
impacts and control integration. Interfaces
can then build on architectural decisions.

Other Modeling Challenges. (Ib, IIc)
Using model-based engineering to estab-
lish requirements makes it imperative to
improve practices to keep the models fresh.
This area is ripe for research in including
accountability and ensuring more rigor

during product development. Systems
interface requirements need to update
dynamically based on data collection,
leveraging advanced analytic practices, and
machine learning and AI. Ambiguity exists
between SysML and UML (both are draw-
ing languages; while SysML evolved from
UML originally, both have evolved some-
what independently). The workaround uses
data architecture (data schema/ontology)
and simulation tools to bridge the ambi-
guity. A common ontology, semantics, and
terminology would be helpful. For example,
in the automotive domain, hardware/
mechanical and software have somewhat
different terminologies.

Agile and Concurrent Engineering
Expertise. (Ih, IIa, IIc, IIIa, IIIb) Interview-
ees noted gaps in understanding practices
for engineering Agile systems and software
and in performing concurrent engineering.
For example, in Agile, there are always
unknowns throughout the process, but
design efforts always proceed, assuming the
unknowns will successfully resolve later.
The team may discover something they
planned cannot be done (though using the
rolling wave planning process helps).

Systems of Systems. (Ia, IIc) Interview-
ees noted a need for unambiguous systems
or systems of systems (SoS) objectives and
metrics for success. Is there a way to indi-
cate when the parts should sub-optimize
to optimize the whole? How can we create
systems to work for themselves yet also
make the SoS work together? System owner
motivations and incentives in a SoS often
do not align. (This is an area for additional
research and development.)

Discussion and Future Work
We consider this survey of 31 interviewees

complete, although the SaSIWG is always
interested in hearing from others and will
incorporate additional answers into ongoing
work. Future work will entail more discus-
sions within the SaSIWG and other INCOSE
working groups to clarify and communicate
best practices. Fairley (2019) has added
considerably to the best practice knowledge
base derived from the interviews.

The SaSIWG also plans to address prob-
lem areas. As a first step toward approach-
ing the expertise key challenge, the SaSIWG
conducted a “Book Club” (professional
development) webinar series discussing
Fairley (2019) and has recorded it for future
systems and software engineer education.

CONCLUSION
The INCOSE member and other systems

and software engineer survey captured
numerous helpful suggestions for organi-
zations to adopt as best practices. These
include leveraging existing best practices in
systems and software engineering, evolving
systems engineering practices (agile, MBE/
MBSE, concurrent engineering, and AI/
Machine Learning), and assuring teams
have the expertise for increasingly soft-
ware-intensive systems.

The survey also identified the most crit-
ical challenges for engineering leaders and
systems and software engineering leader-
ship. The top challenge area was expertise—
lacking software engineering skills among
systems engineers and vice versa. Ranked
second was the lacking interface definition,
including data and specifications. We must
address these challenge areas to improve
software-intensive system delivery.

While important, recommendations and
helpful suggestions alone may not suffi-
ciently address the pain points. Additional
discussions related to implementing best
practices, strengthening expertise, and
evolving systems engineering practices
are vital. Implementing additional educa-
tion and cross-training between systems
and software engineering, MBE/MBSE
methodologies, and concepts such as ma-
chine learning, data science, and artificial
intelligence have provided some tools to
address the pain points. Together, these
can augment engineering product lifecycle
processes while enforcing discipline within
rigorous and judiciously chosen processes.

SaSIWG will continue to share the
survey findings to address critical problems
and challenges, including education and
systems and software engineer training in
novel ways.  ¡

REFERENCES
■	 Bass, L., I. Weber, and L. Zhu. 2015. Devops: A Software Architect’s Perspective.

Boston, US-MA: Addison-Wesley Professional.
■	 Boehm, B. 2011. “Some Future Software Engineering Opportunities and Challenges.”

In The Future of Software Engineering, edited by S. Nanz, 1-32. Berlin, DE: Springer-
Verlag Berlin Heidelberg.

■	 Boehm, B., and J. A. Lane. 2007. “Using the Incremental Commitment Model to Inte-
grate System Acquisition, Systems Engineering, and Software Engineering.” CrossTalk
20 (10): 4-9.

■	 Boehm, B., J. A. Lane, S. Koolmanojwong, and R. Turner. 2010. “Architected Agile
Solutions for Software-Reliant Systems.” In Agile Software Development, edited by T.
Dingsøyr, T. Dybå, and N. B. Moe, 165-184. Berlin, DE: Springer, Berlin, Heidelberg.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

16

■	 Bourque, P., and R. E. Fairley, eds. 2014. Guide to the Software
Engineering Body of Knowledge (SWEBOK), Version 3.0.
Washington, US-DC: IEEE Computer Society Press.

■	 Bramer, J. 2017. “Integration of Software and Systems Engi-
neering.” Paper presented at the Annual International Work-
shop of INCOSE, Torrance, US-CA, 28-31 January.

■	 Brownsword, L., D. Fisher, E. Morris, J. Smith, and P. Kirwan.
2006. “System-of-Systems Navigator: An Approach for Man-
aging System-of-Systems Interoperability.” Technical Note,
Software Engineering Institute. DOI: 10.1184/R1/6584582.v1.

■	 Fairley, R. E. 2019. Systems Engineering of Software-Enabled
Systems. Hoboken, US-NJ: Wiley.

■	 Fairley, R. E., T. Hilburn, R. Madachy, and A. Squires. 2019.
“Systems Engineering and Software Engineering.” Guide to
the Systems Engineering Body of Knowledge (SEBoK). https://
sebokwiki.org/wiki/ System_Engineering_and_Software_
Engineering.

■	 Fairley, R. E., and M. J. Willshire. 2011a. “Teaching Systems
Engineering to Software Engineering Students.” Paper present
at the 24th IEEE-CS Conference on Software Engineering
Education and Training, Honolulu, US-HI, 22-24 May.

■	 Fairley, R. E., and M. J. Willshire. 2011b. “Teaching software
engineering to undergraduate systems engineering students.”
Paper presented at the 2011 American Society for Engineering
Education (ASEE) Annual Conference and Exposition, Van-
couver, CA-BC, 26-29 June.

■	 Giese, H. 2005-2006. “Software Engineering for Software-In-
tensive Systems: I. Introduction.” Software Engineering Group
Winter semester, University of Paderborn (Paderborn, DE).

■	 IEC (International Electrotechnical Commission). 2006. IEC
62304:2006. Medical Device Software-Software Lifecycle Pro-
cesses. London, GB: IEC.

■	 ISO (International Organization for Standardization)/IEC
(International Electrotechnical Commission)/IEEE (Institute
of Electrical and Electronics Engineers). 2015. ISO/IEC/IEEE
15288:2015. Systems and Software Engineering—System Life-
cycle Processes. Geneva, CH: ISO/IEC/IEE.

■	 ———. 2017. ISO/IEC/IEE 12207:2017. Systems and Software
Engineering—Software Lifecycle Processes. Geneva, CH: ISO/
IEC/IEE.

■	 Kasser, J., and S. Shoshany. 2000. “Systems Engineers are from
Mars, Software Engineers are from Venus.” Paper presented
at the 13th International Conference on Software and Systems
Engineering and Their Applications. Paris, FR, 5-8 December.

■	 Leffingwell, D. 2018. SAFe 4.5 Reference Guide: Scaled Agile
Framework for Lean Enterprises. Boston, US-MA: Addi-
son-Wesley Professional.

■	 Maier, M. W. 2006. “System and Software Architecture Recon-
ciliation.” Systems Engineering 9 (2): 146-159.

■	 Rosser, L., P. Marbach, D. Lempia, and G. Osvalds. 2014. “Sys-
tems Engineering for Software Intensive Projects Using Agile
Methods.” Paper presented at the 24th Annual International
Symposium of INCOSE, Las Vegas, US-NV, 30 June-3 July.

■	 Sheard, S. A. 2004. “Adapting Systems Engineering for Soft-
ware-Intensive Systems.” Paper presented at the 14th Annual
International Symposium of INCOSE, Toulouse, FR, 20-24 June.

■	 ———. 2014. “Needed: Improved Collaboration between Soft-
ware and Systems Engineering.” Software Engineering Insti-
tute Blog, 19 May. https://insights.sei.cmu.edu/sei_blog /2014/05/
needed-improved-collaboration-between-software-and-sys-
tems-engineering.html.

■	 ———. 2016. “What Do Systems Engineers Need to Know
about Software?” Paper presented at the National Defense
Industrial Association Systems Engineering Conference,
Springfield, US-VA, 24-27 October.

■	 Sheard, S. A., R. Creel, J. Cadigan, J. Marvin, L. Chim, and M.
Pafford. 2018. “INCOSE Working Group Addresses System
and Software Interfaces.” Paper presented at the 28th Annual
International Symposium of INCOSE, Washington, US-DC,
7-12 July.

■	 Sheard, S. A., M. Pafford, and M. Phillips. 2019. “Systems
Engineering-Software Engineering Interface for Cyber-Physi-
cal Systems.” Paper presented at the 29th Annual International
Symposium of INCOSE, Orlando, US-FL, 20-25 July.

■	 Systems and Software Interface Working Group (SaSIWG).
2017. “Approved Charter.” Charter, San Diego, US-CA: IN-
COSE.

■	 Turner, R., A. Pyster, and M. Pennotti. 2009. “Developing and
Validating a Framework for Integrating Systems and Software
Engineering.” Paper presented at the 3rd Annual Systems Con-
ference of IEEE, Vancouver, CA-BC, 23-26 March.

■	 United States Air Force (USAF). 2018. Weapon Systems Soft-
ware Management Guidebook. Washington, US-DC: USAF.

■	 Vierhauser, M., R. Rabiser, and P. Grünbacher. 2014. “A Case
Study on Testing, Commissioning, and Operation Of Very-
Large-Scale Software Systems.” Paper presented at the 36th
International Conference on Software Engineering, Hyder-
abad, ID, 31 May-7 June.

■	 Wikipedia. 2021. “All Models are Wrong.” https://en.wikipedia.
org/wiki/All_models_are_wrong .

ABOUT THE AUTHORS
Sally Muscarella spent 21 years at AT&T and Bell Labs. She has

held leadership positions in product management and systems
engineering for software-intensive operations support systems,
network management, and customer service operations. Sally
joined Stevens Institute of Technology in 2013 to lead corporate
and government education programs for the School of Systems
and Enterprises, holding the position until 2020. She earned a B.A.
from Simmons College and an M.B.A. from The Wharton School,
University of Pennsylvania. She joined INCOSE and has been
active since 2015. Sally enjoys traveling, reading, volunteering,
skiing, and playing tennis.

Macaulay Osaisai, a system engineer developing sensor-related
systems at L3Harris Technologies, has many years of commercial
sector systems engineering experience. Previously, he developed
autonomous sensor systems for seismic and geophysical applica-
tions. His expertise areas are systems architecture, systems mod-
eling, embedded hardware and software systems, and low SWaP
(Size-Weight-and-Power) systems. As an INCOSE member and a
senior IEEE member, he is an MBSE evangelist, developing MBSE
processes, procedures, and training materials. Macaulay conducts
systems and MBSE training classes, consulting, coaching, and
mentoring, and he enjoys music, tennis, and scuba diving.

Sarah Sheard is an INCOSE Fellow, CSEP, and Founder’s Award
winner. An INCOSE member since 1992, she chaired INCOSE’s
SaSIWG from 2017-2021. Her many systems engineering publi-
cations include three INCOSE “Best Papers.” When she retired in
2019, Dr. Sheard was a systems and software engineering researcher
and consultant at CMU’s Software Engineering Institute. Previous-
ly, she worked at the Systems and Software Consortium, at Loral/
IBM Federal Systems, and Hughes Aircraft Company. In 2012, she
earned her Ph.D. from Stevens Institute of Technology in systems
engineering, focusing on system development complexity. Now, she
postponed international travel to learn folk dancing by Zoom with
her husband.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

17

  ABSTRACT
Many software-dominant organizations ignore systems engineering completely. A recent popular book described one such
organization in a fable format. The INCOSE Systems and Software Interface Working Group chose to read this book as a weekly
professional development seminar to investigate where systems engineering should fit in software-dominant organizations of the
type that do not currently involve INCOSE’s systems engineers. This seminar culminated in an “author day,” where the book’s
author responded to our questions and discussed our potential role. The book club activities produced several drafts we can
turn into products to help INCOSE systems engineers better understand software, and systems engineers’ potential role in such
organizations, to help improve software-intensive system success.

“Book Club” Guides A
Working Group to Create
INCOSE System-Software
Interface Products

Sarah Sheard, sarah.sheard@gmail.com; Mickael Bouyaud, mickael.bouyaud@ingenico.com; Macaulay Osaisai, Macaulay.
Osaisai@L3Harris.com; Jeannine Siviy, jeannine.siviy@yahoo.com; and Ken Nidiffer, knidiffe@gmu.edu
Copyright © 2021 by Sarah Sheard, Mickael Bouyaud, Macaulay Osaisai, Jeannine Siviy, and Ken Nidiffer. Permission granted to
INCOSE to publish and use.

THE SELECTED BOOK

INCOSE’s Systems and Software Inter-
face Working Group (SaSIWG) wanted
to explore the role systems engineering
would have in future software-dom-

inant organizations. While some organi-
zations today, notably defense and safe-
ty-critical systems industries, have a history
of systems and software working together,
others, notably technologically explosive
and disruptive commercial businesses, do
not. Because The Unicorn Project, by Gene
Kim, describes the problems this type of
business faces, the SaSIWG selected this
as our second professional development
or “book club” project. We also selected it
because the industry described in the book
does not include systems engineers and is
unfamiliar to many INCOSE members.

DISASTER TO HOPE THROUGH REBELLION
At the beginning of The Unicorn Project,

silos dominated the fictional organization,

as in many real organizations. There was no
consistent software development environ-
ment. The integration test environment had
no architecture.

Management interfered initially, and en-
gineers could not talk to each other without
obtaining management’s approval, though
several enlightened managers discovered
and admitted this throughout the story.
Managers repeatedly outsourced Informa-
tion Technology (IT) to reduce cost, then
re-integrated because outsourcing made
IT too unresponsive. Every change caused
significant disruptions. Project managers
functioned as paper pushers who primarily
created more dependencies, adding wait
time and complexity.

No one considered the whole system,
only their specific portion, because no one
understood more than their portion. There
were no systems engineers, and no one un-
derstood the need for a system viewpoint.

Teams even considered architects harmful,
people who just sit on committees and
make people complete forms.

Managers without software development
backgrounds (such as the character Sarah
Moulton) had a poor software development
understanding, had the wrong attitude
(blame and punish), and made the wrong
decisions (to sell off the company for parts).

The book’s hero, Maxine, gradually
worked to understand the situation, and
in doing so, found like-minded people
who helped her implement a new working
method. They had begun operating in hero
mode, with the motto, “Breaking rules is
the only way to get things done.” Through
several pilot projects and reorganizations,
Maxine increased their higher management
support, gave customer delivery speed
more attention, and broke down archaic
anti-patterns preventing successful work.
Management at higher levels began to

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

18

support their effort despite many threats to
their jobs along the way.

A SYSTEMS ENGINEERING CONCLUSION
Ultimately, the excellent material success

of her team’s approach following their
“sensei’s” advice (the “sensei” transparently
representing the book author) led to victory
over all obstacles. Maxine received a promo-
tion to “distinguished engineer.” The SaSI-
WG’s 2021 paper (Sheard et al., 2021) argues
this position is very close to a senior systems
engineer. The working group thinks if the
company had started with a position, group,
or perspective like this, it never would have
fallen into trouble in the first place.

WORKING GROUP PRODUCTS BEGUN DURING
BOOK CLUB
• Working Pattern for a Systems Engineer
in Software World

■	 Assess whatever topic/issue is at hand,
whether the big picture as a whole or an
immediate problem.
This might be a quick conversation or a

large meeting with “techniques” (post-its or
multi-voting) in play. It all depends on how
much context the systems engineer already
has, how much bias needs weeding out,
and how much consensus the team needs
to build.

■	 Draw pictures to understand it—box
the scope, note the interfaces (where
everything breaks), map the interrela-
tionships, and clarify the purpose.
To explain how things work, systems

dynamics diagrams and causal loops work
well, but systems engineers should draw
anything needed to describe functions and
data flow depending on what will convey
the point. Some pictures may be formal

and persist through the project, but often
they are messy, temporary, and “fit for use,”
supporting or prompting a conversation to
achieve “aha” moments.

■	 Find the pattern, relate it to patterns seen
elsewhere, determine the solution, plan
it, and move on.
Patterns can come from principles as well

as heuristics and repeated scenarios in oth-
er domains. Systems engineers cross-pol-
linate constantly. This involves “playing it
forward”—not only looking at today’s static
condition but thinking through future
circumstances to ensure robustness, resil-
ience, and anti-fragility. A solid statistics,
experiment design, or design engineering
background really helps.

■	 Spend time trying to explain the above
to others who are not systems oriented.

Table 1. Terminology table

Term Definition Example or Opposite Notes

Dev
environment

Tools and procedures for developing,
testing, and debugging an application or
program.

IDE: Integrated
development
environment
provides developers
with standard UI
(user interface).

Techopedia says a dev environ-
ment normally has three server
tiers, called development (devel-
oper), staging (testing production
for reliability), and production
(actual run environment).

Docker

Products deliver software in packages
called containers. Containers
bundle their software, libraries, and
configuration files; isolate from other
containers; and communicate through
well-defined channels. A single
operating system kernel runs containers
and therefore uses minimal resources.

Docker is a company, released as
open-source in 2013.
There is software, namely a
Daemon (a persistent process
managing Docker containers,
handling container objects, and
listening for requests), Objects,
and Registries.

ERP System

Enterprise Resource Planning (ERP)
systems integrate the software needed
to run a system, including planning,
inventory purchasing, sales, marketing,
finance, and HR.

Oracle, SAP, and
Microsoft.

ERP systems evolve often and can
be vast and problematic.

GitHub
Web hosting for software development
management service. Rely on GIT as
versioning tool.

GitHub is also a company
developing software and
providing services.

HIPPO Highest paid person’s opinion. Leadership snark.

JIRA Ticket-based online tool to track bugs,
manage incidents and projects.

Tool often used in software
projects since it implements agile,
scrum, and Kanban.

ODB-II Onboard Diagnostic Port-2.

Port to an electronic
system to tell how
the computers on a
car are working.

Automotive part component.

POS
Registers Point of sale registers.

Cash registers for the
stores selling auto
parts in the company.

Registers like cash registers, not
like computer registries.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

19

Managers sometimes tell systems en-
gineers why the “new” design (or other)
methods are somehow superior tools in the
toolkit, as if we did not understand, even
when we know their common roots and
tool evolution. We may have to convince
them we do know.

■	 Be happy when everyone starts rowing
the boat together; persist when that does
not happen.
Know when to let go but be persistent

when it is important. If it is not safety or
money, sometimes letting something go
“splat” is the way other people “get it”—it
just takes forever.

• Terminology collection
A confusing part for a systems engineer

in a software-dominant organization is the
unfamiliar jargon (words, abbreviations,
and acronyms) used without explanation.
While reading the book, we started
writing down many software-specific
terms. Because many systems engineers
experience this in software-dominant
organizations, the group realized INCOSE
members might appreciate a top-level
or systems-view explanation that does
not require searching through multiple
bottoms-up software-type explanations
to learn what they mean in a systems
engineering context.

We have created a terminology table
to turn into a database. Table 1 shows
a few terms and a few columns from
this table. We need to consider how to
provide this information to members. A
briefer explanation would be desirable
immediately upon first hearing the term,
rather than a longer definition later. We
also need to consider how we would
recommend systems engineers learn the
term the “second time,” when there is time
to digest what the term means in a broader
software engineering context.

We are considering turning the table into
an online accessible database for INCOSE
members. The question is how it would be
most beneficial. We are also considering
how to turn this effort into INCOSE-spon-
sored software engineering education
for systems engineers, whether online
asynchronous, lunch-and-learn, or another
learning method.

• Drawings of Software Development and
Product Delivery Process

Software development processes also
puzzle systems engineers. Our 2021 sym-
posium paper discusses this in more detail
than this INSIGHT article can, but we
show one figure discussing how software
developers modify code. A developer starts
a new version by cloning the repository

stored code, issued from a baseline, to his
or her computer. After making changes,
he or she “pushes” the modified code
(using the checkout/check-in process, also
called the commit process). Peers can then
review this new code and do unit tests.
Once approved, they “merge” this new
code into the main branch, creating a new
baseline. This process is part of a merge
and branch strategy, illustrated in Figure 1.
Today, these processes, labeled continuous
integration, usually use automated tools,
such as Maven, Nexus, or others, created
specifically for this purpose.

• Operational Process Flow Model
We also made an operational process

flow model as the first step toward an
executable model to simulate the original
organization’s process chaos and show how
the improved organization works better.
Again, we refer the reader to the 2021
symposium paper. The objective is to em-
phasize the need for a systems engineering
role, develop a holistic view enabling early
activity gap and redundancy identifica-
tion, and understand activity and interface
dependencies. The systems engineering role
is like a symphony orchestra conductor: a
thorough understanding of how different
instrument sounds combine enables the

conductor to produce excellent music and
guide the orchestra musicians.

• Complex Systems Model
The Working Group developed models

describing organizational approaches to
accomplishing work and their limitations,
including the monolithic approach, the
choreography approach, and an autonomy
approach more consistent with complex
systems principles. We introduced these
to show INCOSE why systems of systems
work better with focused autonomy and
what conditions they require. Brian White,
a former Complex Systems Working Group
chair, has written a body of work on this
topic (White 2016).

• Change Agent Model
Previous work by Working Group mem-

bers, including Sheard and Siviy, suggest
systems engineers can be effective change
agents (McKinney et al. 2015).

NEXT STEPS
The working group will consider which

steps to take next to bring these draft and
potential products forward to be most
beneficial to INCOSE and the Systems
Engineering community. To help, please
contact the WG Chair, Nick Guertin.  ¡

mainline

release
branch

F1M1–3
M1 M2 M3 M4 M5 M6F1 F2

F2

production branch
tag: v2.2

M1–3+
F1–2

Figure 1. Merge and branch strategy

REFERENCES

■	 Sheard, S., M. Bouyaud, M. Osaisai, J. Siviy, and K. Nidiffer. 2021. “A Guide for
Systems Engineers to Finding Your Role in 21st Century Software-Dominant
Organizations.” Paper presented at the 31st Annual International Symposium of
INCOSE, Virtual Event, 17–22 July.

■	 McKinney, D., E. Arnold, and S. Sheard. 2015. “Change Agency for Systems
Engineers.” Paper presented at the 25th Annual International Symposium of INCOSE,
Seattle, US-WA, 13–16 July.

■	 White, B. E. 2016. “A Complex Adaptive Systems Engineering (CASE) Methodology—
The Ten-Year Update.” Paper presented at the Annual IEEE Systems Conference,
Orland, US-FL, 18–21 April.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

20

ABOUT THE AUTHORS
Dr. Sarah Sheard is an INCOSE Fellow, CSEP, and Founder’s

Award winner. An INCOSE member since 1992, she chaired IN-
COSE’s SaSIWG from 2017-2021. Her many systems engineering
publications now include four INCOSE “Best Papers.” When she
retired in 2019, Dr. Sheard was a systems and software engineer-
ing researcher and consultant at CMU’s Software Engineering
Institute. Previously she worked at the Systems and Software
Consortium, at Loral/IBM Federal Systems, and Hughes Aircraft
Company. In 2012, she earned her systems engineering Ph.D.
focusing on system development complexity from the Stevens In-
stitute of Technology. Now, she has postponed international travel
and is folk dancing by Zoom with her husband.

Mickael Bouyaud is a Worldline business architect, a global
leader in seamless payments, and technical director of AFIS,
the French chapter of INCOSE. He has expertise in payment
systems, specializing in deploying acceptance solutions in retail
organizations, mobile security, a PIN on mobile solutions, and
Android-based Point of Sale. He previously worked in the mobile
industry as a 3GPP standard and algorithm engineer for Mitsubi-
shi, then as a system architect for NXP and Ericsson.

Macaulay Osaisai, a system engineer developing sensors-relat-
ed systems at L3Harris Technologies, has many years of systems
engineering experience in the commercial sector. Previously, he
developed autonomous sensor systems for seismic and geophysi-
cal applications. His expertise is in systems architecture, systems
modeling, embedded hardware and software systems, and low
SWaP (Size-Weight-and-Power) systems. As an INCOSE member
and a senior IEEE member, he is an MBSE evangelist, developing
processes, procedures, and training materials for MBSE. Macaulay
conducts systems and MBSE training classes, consulting, coach-
ing, and mentoring. Besides systems engineering, Macaulay enjoys
music, tennis, and scuba diving.

Jeannine Siviy is a business and technology strategist who
recognizes undiscovered possibilities and spearheads practical
innovation paths—cutting through complexity and ambiguity
and delivering value at speed and scale. She leads SDLC Partners’
Healthcare Solutions, where she and her team address persistent
systems interoperation, automation, and ecosystem challenges,
with one solution earning a Gartner Hype Cycle mention. She
previously held leadership and technical roles at UPMC, Carnegie
Mellon’s Software Engineering Institute, and Eastman Kodak
Company. She received engineering degrees from Purdue and
RIT and a Caltech certificate in Technology and Innovation
Management. A Pittsburgh native, she enjoys its cultural diversity
and has a long-standing passion for nature and animals.

Dr. Kenneth E. Nidiffer has over 56 years of government,
industry, and academic experience in software and systems
engineering. Ken successfully held positions as a Fidelity
Investments senior vice-president, Software and Systems
Consortium vice president, Northrop Grumman Corporation
technical operations/engineering director, Carnegie Mellon’s
Software Engineering Institute principal engineer, and a United
States Air Force colonel. He is currently an adjunct professor at
George Mason University. Ken received a chemical engineering
B.S. degree from Purdue University, Indiana; an astronautical
engineering M.S. degree from the Air Force Institute of
Technology, Ohio; his MBA degree from Auburn University,
Alabama; and a systems engineering D.Sc. from George
Washington University, Washington, DC.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

21

INTRODUCTION

Systems Engineering
Roles in Software
Organizations Delivering
Service Products

Mickael Bouyaud, mickael.bouyand@ingenico.com; and Brian E. White, bewhite71@gmail.com
Copyright © 2021 by Mickael Bouyaud and Brian E. White. Permission granted to INCOSE to publish and use.

  ABSTRACT
The software industry has been experiencing several transformations. Development teams now often autonomously deliver
business capabilities to software service systems. The Unicorn Project, a best-seller, tells how a retail company transformed into an
Agile and DevOps organization. This paper uses a model from the systems engineering toolset to understand those organizational
changes and proposes an evolution of the systems engineering discipline to increase the value provided by this type of organization.

  KEYWORDS:  adaptation, agile, DevOps, engineering, management, organization, product, service, software

Software companies comprise units
aggregating sub-services into a final
product. These units’ teams are sys-
tems, and the company organization

are system of systems (SoS).
Some advocates promote applying

systems thinking in management science
(Jackson 2019, Senge 2015). We can ob-
serve organizations through perspectives
built by systems engineering and model a
team with people and resources as a system
with functions, roles, components, oper-
ational contexts, interfaces, behavior, and
environmental interactions.

This system model might apply several
different ways. For example, it facilitates
analyzing interaction change impacts,
streamlining communication paths, and
improving global performance. One can
also explore final system configuration
alternatives. A systems approach provides
a deeper understanding of the different
leadership and management type advantag-
es and drawbacks.

The International Council on Systems
Engineering (INCOSE) Systems and Soft-

ware Interface Working Group (SaSIWG)
studied systems engineering roles in a soft-
ware organization. As a discussion source,
the group studied The Unicorn Project (Kim
2019), a best-seller promoting DevOps in
software companies. The French Associa-
tion of System Engineering (AFIS) devel-
oped a body of knowledge about service
systems engineering (SSEBoK) (AFIS 2020).
This SSEBoK uses a building block concept
to model a team responsible for providing
and operating the product-service system.
This model enables team interaction and
capability analysis and allows one to under-
stand organizational qualities and evaluate
them against another organization.

This paper applies this model to com-
pany organizations during different book
phases (Kim 2019).

A SYSTEM MODEL FOR A SERVICE SYSTEM
“Service-System is a socio-technical

system that comprises: a System of Interest
(typically, a product expected to provide
some type of service by satisfying specified
performance, behavioral and operational

needs).” (AFIS 2020)
A unitary service entity, called a Service

Building Block (SBB) (AFIS 2020) and
depicted in Figure 1 on the next page,
describes a product-service system. This
SBB interacts and exchanges information or
services with other service building blocks,
products, or consumers. Each SBB brings its
capacities to the wider system, the organi-
zation. A search for operation optimization
can improve global performance (operating
cost, selling price, and service continuity).

This model includes people, means,
and implicit or explicit governance in the
service producer system. It has reaction,
autonomy, and self-adaptation capacities.
This adaptability permits configuration,
function, performance, and need modifica-
tions in long- or short-term objectives.

A team in an organization is a service
system building block. We can classify
teams and companies as complex systems
(White 2015). They have characteristics
of ambiguity, unpredictability, evolution,
emergence, instability, collaboration, diver-
sity, adaptability, and more.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

22

Consumers/
Customers

People
Core

Competencies

Specific skills

Infrastructure

Tools

Assets

Roles/functions

Means

In
te

rfa
ce

Go
ve

rn
an

ce

People
Core

Competencies

Specific skills

Infrastructure

Tools

Assets

Roles/functions

Means

In
te

rfa
ce

Go
ve

rn
an

ce

Figure 1. Common product-service building block elements

Various heterogenous software tech-
nologies carry services produced by
software-intensive organizations. Multiple
product-service system components require
respective skills, tools, and infrastructures.

The software service industry usually
requires fast actions to react to business
demands and continual improvement
activities extending product services. When
usage makes up the demand signal, it can
quickly evolve, shortening software devel-
opment cycles and improving the delivery
process. Our attention should be on the
integration and delivery process quality and
fluidity to make them continuous. Standard
tools deploy to merge, test, and deliver
freshly developed updates into the other
software artefacts.

The Unicorn Project (Kim 2015) describes
a retail company’s digital transformation
through the super-software developer’s
eyes. This hero leads the organizational ad-
aptation from a pyramidal organization to a
horizontal one. The book demonstrates, in
a digital world, new organization types bet-
ter provide service systems. The following
paragraphs use the service building block
model to give another perspective, showing
how a systems engineering perspective can
ensure team and organization construct re-
silience for a software engineering scenario.

THE PHOENIX PROJECT BEGINS: THE
MONOLITH ORCHESTRA IS PLAYING

Kim’s story begins in a basic retail com-
pany organized with a many-tiered pyrami-
dal hierarchy. This company survives on its
store permeation throughout the US. There
is no need for evolution, no need for a new,
challenging project; they only must keep
their dominant position.

In this context, basic software pro-
grams manage employee services, salaries,
documentation, and stock management.
Projects are simple and follow classical
V-cycle processes. Software teams organize
by activities, development, integration, test,
delivery, and production with each aspect
linked in the chain.

This organization type rations resources
and tries to optimize each process by gath-
ering and harmonizing competencies and
tools in the same place, akin to Figure 2.

Management attempts firm control and

unidirectional interactions and typically
operates beyond the other teams. Central
management decides tactical orders and
relays them through layers much like an
orchestra.

Only management and the product itself
contact the environment. Each team plays a
partition and follows the conductor’s lead.
Project execution follows a linear and rigid
process and imposes a strong coupling
between activities for bringing a new capa-
bility into the system. This chain will break
if any link fails. The lacking autonomy
requires the team leader to apply corrective
actions directly.

FULL DEVOPS ORGANIZATION OR THE
AUTONOMY MYTH

To follow the retail business changes,
the company must transform its organi-
zation from physical store to virtual store
using the Internet to sell goods. Despite its

Company
governance

Project managers

Pre-production, production environmentsDevelopment environments

Build and
integration

Development
and test Validation &

Deployment Operations

binaries Product
servicebinaries

101
011

101
011

CODE

External
Environment
(regulation,

society,
technologies,…)

Service
Consumers

Figure 2. The orchestrated organization

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

23

apparent simplicity, eCommerce systems,
such as commercial transactions conduct-
ed electronically on the internet, require
multiple software technologies, frame-
works, and infrastructure typologies to
deliver state-of-the-art business capabilities
(Akbari 2016). The drawbacks induced by
the hierarchical organization for developing
and delivering such a system caused the
company’s implosion.

In summary, a natural-born software
hero named Maxine saved the sinking ship
by bringing DevOps to the organization.
Then from hero to guru, she demonstrated
how the subsystems composing the service
systems are fundamentally different. The
company had to reorganize itself into inde-
pendent teams providing uncoupled uni-
tary service and creating the final product
service system, as several service building
blocks create a product service (AFIS
2020). Each service building block can
adapt to the environment and, therefore, to
the business needs.

At the end of its transformation, The
Unicorn Project organization applies agility
and encourages teams to deliver capability
autonomously. In short, development teams
become more dedicated to the business.
They engage as stakeholders in the company.

With a product owner and DevOps,
teams have new environmental interfaces
to interact with customers and directly use
the appropriate service operation infra-
structure. The producing team performs
the qualification process during an actual
case demo—an agile term for the ceremo-
nial process of testing a delivered capabil-
ity as an end-user could do. This process
efficiently discovers lacking capabilities and

bugs and encourages the higher perfor-
mance of the developers, who behave more
as engineers than as technicians like in the
previous story period. Outside managers
drive teams less, and inside leaders, who
help develop quality reference code, push
more.

Software infrastructure automates all the
processes from building, code transforma-
tion, and libraries into program artifacts to
run—a term for executing applications in a
production context. The Figure 3 infra-
structure domain illustrates tools listed in
The Unicorn Project by their iconic logos.
These tools compose the infrastructure and
technology stack. The framework and tool
landscape is vast and evolves fast. Since
Kim wrote the book, some tools are already
obsolete. Software engineers use their
various communities to follow the trends.
Maxine, The Unicorn Project hero, spends
time on social networks to exchange with
experts.

The DevOps individual masters both the
delivery flow and the company’s infrastruc-
ture stack, making the business applications
run without any supplementary actions.
Systems engineers must know what capabil-
ity to offer the producing team; how it can
improve development, integration, testing,
and running processes; and the needed
supplemental operations, resources, and
operation monitoring.

This organization has many similarities
to jazz music, played by autonomous mu-
sicians, each having an appropriate feeling
and bringing their part to the music. A
leader gives the band directions but allows
space to empower colleagues for a better
performance. This is a similar ideal for an

agile, effective organization.
Although we deem this model beauti-

ful, not every company stakeholder may
fully appreciate it. It promotes short-term
consumer satisfaction, taking shortcuts,
possibly interfering with other domain
concerns. For example, in The Unicorn
Project, the author mentions the security
teams’ regular opposition. Opening an
internet protocol (IP) port can assist in a
brand-new application, but it provides an
open door for any hacker. Where is the
forum for this discussion? As in business,
the team could manage the security needs
internally. A commonly deployed trend not
explored in the book is extending DevOps
to DevSecOps. What about the General
Data Protection Regulation (GDPR) and
other regulations? Should DevSecOps be a
DevSecRegOps? And what is next? DevOps
might explode due to the responsibilities.
To avoid a new bottleneck, security and risk
leadership and management must remain
a transversal activity. Using the SBB model
identifies the DevOps roles as a team inter-
face. It enables an organization to more eas-
ily and effectively navigate evolutions and
identify service block needs in governance
and people.

SBB compositions analyze relations be-
tween organization components. Applying
the SBB helps manage growth, identify
potential mean factorization, and find the
correct balance between service blocks
to deliver a better product service. This
system model is a decision tool when some
consistency problems arise concerning the
company strategy. Increased size might re-
quire some additional disciplines to control
the whole system and its architecture.

Figure 3. DevOps type teams are autonomous as musicians in a jazz band play music

Product
service

Shared Infrastructure

Business
applications

External
Environment
(regulation,

society,
technologies,…)

Service
Consumers

Product owner

DevOps gov

Development
Validation

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

24

Systems engineers put value in service
system design by considering the building
system and teams as a system of interest
part, analyzing interfaces with the enter-
prise environment, and studying coupling
between teams and components, creating
the final product.  ¡

APPROACHING THE IDEAL, THE AGE OF
COLLABORATION

The SaSIWG selected The Unicorn Project
because the subject company’s promoted
organization seemed quite distant from
systems engineering standards. The

REFERENCES
■	 AFIS. 2020. “Service Body of Knowledge.” http://www.ssebok.

afis.community/ .
■	 Akbari, S. 2016. “The Analysis of the Complexities of

E-Commerce Industry.” Paper presented at the 10th
International Conference on e-Commerce in Developing
Countries, Isfahan, IR, 15–16 April.

■	 Jackson, M. C. 2019. Critical Systems Thinking and Complexity
Management. Hoboken, US-NJ: Wiley-Blackwell.

■	 Kim, G. 2019. The Unicorn Project: A Novel about Developers,
Digital Disruption, and Thriving in the Age of Data. Portland,
US-OR: IT Revolution.

■	 Kumar, A., K. V. Nori, S. Natarajan, and D. S. Lokku. 2014.
“Chapter Ten – Value Matrix: From Value to Quality and
Architecture.” In Economics-Driven Software Architecture,
edited by I. Mistrik, R. Bahsoon, R. Kazman, and Y. Zhang,
205-240. Burlington, US-MA: Morgan Kaufmann.

■	 Senge, P. 2015. The Fith Discipline: The Art and Practice of the
Learning Organization. New York, US-NY: Penguin Random
House.

■	 White, B. E. 2015. “On Leadership in the Complex Adaptive
Systems Engineering of Enterprise Transformation.” Journal
of Enterprise Transformation 5 (3): 192-217. Supplementary
Material (Appendices): http://www.tandfonline.com/doi/sup-
pl/10.1080/19488289.2015.1056450.

■	 ———. 2020. Toward Solving Complex Human Problems. Boca
Raton, US-FL: CRC Press.

SaSIWG intended to understand software
engineering culture, the motivation,
the reason for the agility hype, and the
systems engineers’ potential place in a
software-driven industry. The conclusion is
optimistic. There is room and the need for a
systems engineer who will give consistency
and resilience to the whole system. The
exercise concluded with a live discussion
with the author, who agreed DevOps
are experts, but today’s complex systems
require a discipline able to be transversal to
the different software engineering domains.

All this reminds us the produced system

tightly binds to its producing organization.
Finally, service building blocks are product-
service systems.

INCOSE increasingly discusses engi-
neering service and social systems. Systems
engineering has all the tools to demonstrate
its added value in the software industry. We
need time and opportunities to make great-
er impacts. This consideration becomes
even more evident when both produced
systems and teams embed more artificial
intelligent components able to evolve based
on their environmental perception.  ¡

ABOUT THE AUTHORS
Mickael Bouyaud is a Worldline business architect, a global

leader in seamless payments, and technical director of AFIS, the
French chapter of INCOSE. He has payment systems expertise,
specializing in deploying acceptance solutions in retail orga-
nizations, mobile security, a PIN on the Mobile solution, and
Android-based Point of Sale. He previously worked in the mobile
industry as a 3GPP standard and algorithm engineer for Mitsubi-
shi, then as a system architect for NXP and Ericsson.

Dr. Brian E. White received his Ph.D. and M.S. degrees in
Computer Sciences from the University of Wisconsin and his S.M.
and S.B. degrees in Electrical Engineering from M.I.T. He served
in the US Air Force, and for eight years, was at M.I.T. Lincoln
Laboratory. For five years, Dr. White was a principal engineering
manager at Signatron, Inc. In his 28 years at The MITRE Corpora-
tion, he held various senior professional staff and project/resource
management positions. He was MITRE’s systems engineering pro-
cess office director, 2003-2009. Dr. White retired from MITRE in
July 2010, and has since offered a consulting service, CAU SES
(“Complexity Are Us”  Systems Engineering Strategies). He
taught as an adjunct professor at several US universities and
currently tutors students in basic mathematics, calculus, electrical
engineering, and complex systems. He edited and authored several
published books and book chapters, mostly in his book series
on complex and enterprise systems engineering with Taylor and
Francis and the CRC Press. He presented a dozen tutorials in com-
plex systems and published over one hundred conference papers
and journal articles in complex systems, systems engineering, and
digital communications over his 55+ year career.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

25

INTRODUCTION

A Complex Adaptive
Systems Engineering
Methodology

  ABSTRACT
In recognizing a system’s complexity reflects human complexity, this treatise suggests ways to achieve effective progress in complex
systems engineering by intentionally including people as an integral system part to develop or improve. We apply essential and
relevant multi-disciplinary techniques in addition to the necessary enabling technologies. However, we focus on human aspects
making or breaking the system. Although this methodology can apply to almost any endeavor, software engineering is our specific
example domain area.

  KEYWORDS:  adaptation, complexity, engineering, methodology, modeling, rewarding, simulation, software, stakeholder, system

Brian E. White, bewhite71@gmail.com; and Mickael Bouyaud, mickael.bouyand@ingenico.com
Copyright © 2021 by Brian E. White and Mickael Bouyaud. Permission granted to INCOSE to publish and use.

“Cherish those who seek the truth but beware of those who find it.”	 —Voltaire (Creamer 2021)

“Believe those who are seeking the truth. Doubt those who find it.”	 — André Gide (2021)

Task A

Task B

Task C

Task D

Task E

FinishStart

Possible Critical Paths:
Start A C D E Finish

Start B C D E Finish

Figure 1. Historical bubble chart

We begin with a background
discussion of a simple
graphic device (depicted by
Figure 1) commonly and

historically used to layout system develop-
ment tasks to determine project schedule
“critical paths.” We then compare and
contrast this device with a modern graphic
describing complex systems tasks, activities,
and processes.

In Figure 1, we note the following char-
acteristics:

(1)	 The oval-shaped “bubbles” represent
the Start and Finish points and
project Tasks (denoted alphabetically,
A, B, and on, in order, left to right).

(2)	 Arrows show links between tasks, at
least one connection from Start to a
task, and from each task to the next
task or Finish.

(3)	 Every task has at least one input link
and at least one output link, while
the Start point has no input links and
at least one output link. The Finish
point has at least one input link and
no output link.

(4)	 The links have no labels.

(5)	 The graphic is directional (from left-
to-right only), feedforward only with
no feedback links (return or right-to-
left).

(6)	 We must complete each primary task
before considering any other “down-
stream” task, to its right, complete.

(7)	 A critical path includes the
maximum possible sequence of
links and tasks moving left-to-right
and Start to Finish. Figure 1 shows
two such paths. Therefore, the paths

Start-A-E-Finish, Start-A-C-E-
Finish, and Start-B-D-E-Finish are
not critical paths.

What follows is a detailed and updated
Complex Adaptive Systems Engineering
(CASE) activity methodology elaboration
(White 2021) depicted in the systemi-
gram-like depiction (Figure 2) below
(Boardman and Sauser 2008). It reflects
many possible or potential interactions
among the elements shown. Remember,

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

26

in most complex systems, the work never
truly finishes because the system continues
to evolve independently, despite the engi-
neers’ best efforts to “contain” the overall
engineering process.

Comparing and contrasting Figure 2
with Figure 1, the Figure 2 graphic has the
following characteristics facilitating con-
tinual creativity in modifying the method-
ology’s content and flow as we learn more
about the complex system:

(1)	 Bubbles with various coded names
depict tasks, activities, or processes,
but there is no single starting or
finishing point, necessarily.

(2)	 Arrows link tasks but Start and
Finish bubbles are not necessary.

(3)	 Every task has at least one input link
and at least one output link.

(4)	 Link labels (and labels next to tasks)
attempt to indicate how each source
task affects the next destination
task(s) and what might happen
between tasks.

(5)	 Feedback is essential to
accommodate and emphasize
evolutionary changes, including
recycling or repeating many paths or
sub-paths.

(6)	 Tasks remain open to allow for
further exploration or evolution.

(7)	 There are no special critical paths as
defined for the Figure 1 bubble charts.

In explaining the Figure 2 format further,
the graphic presents each task with a coded
index like 1, 2a, 2b, 2c, 2d, 3a, 3b, to suggest
a rough, logical order in purposefully exe-
cuting the tasks. Each task also has different
colors to highlight similar function cate-
gories. The category definitions are some-
what arbitrary and are as follows. Green is
preliminaries while dark teal refers to people
involved, purple to creative aspects, red to
routine actions, gray to neutral elements,
and light blue to positive aspects. These
categories are recommendations and are not
critical for understanding the methodology.

Again, as noted above, each arrow linking
two tasks has a word or phrase partially de-
scribing the interactions between the pair of
source-to-sink functions or activities. Also,
each label next to a task or link between two
tasks briefly describes how each source task
acts and affects the destination task with an
information flow direction as indicated by
the link arrow. A black label indicates how a
source activity affects the sink activity(ties).

A colored link label matching the associ-
ated source task suggests actions included
by particular source activities, especially
when relating to the sink task’s purpose.

Note this particular diagram is an ex-
ample, and we do not recommend readers
take it too literally. As readers become more
familiar with this CASE methodology, it
is quite possible to construct a different
diagram to depict the intended nuances or
emphases better. When creating a new dia-
gram and making the graph easier to read,
we recommend keeping the graph planar
(with no crossing links).

The methodology, modeled by
the Figure 2 diagram, highlights the need
for astute leadership and concerns for
“managing” a complex system. All system
stakeholders have their role in this inclusive
methodology. Each stakeholder type will
have their unique perspective and system
view. This model is available for suggested
modification to reflect any perspective not
yet represented.

CASE is primarily an engineering meth-
odology, and the work leading up to the
current CASE version builds on complex-
ity science as represented by the Santa Fe
Institute (https://www.santafe.edu/ ).

Is Renewed Iteratively
Is Better

Understood
Includes Leadership Establishing

Vision and Mission

Includes
Considering

Includes
Identifying

Build

Encourage

Are
Changed

Are
Balanced

Are
Postulated

Is Publicized

Are Rewarded for
Useful Results

Are Instilled

Are Assessed
Collaboratively

Is
Measured

7
What Happens

8
Results

9b
Lessons
Learned

9a
Incremental
Capabilities

10b
Progress

2d
Desirable
Outcome

Spaces

3b
System Boundary

4b
Architecture

6a
Behaviors of

Primary
Alternatives

6c
Appropriate

Actions5a
Decision

Takers

5b
Specific

Interventions

4a
Self-Organized
Collaborations

4d
Mindsights

2a
Opportunities

and Risks

3c
Anti-Fragility

2c
Stakeholders

3a
Team and
Resources

2b
Organizational

Efforts

1
(Persistent)

Problem

3d
Incentive
Structures

6b
Users

4c
Potential

Approaches

11
Continued

Effort?
10a

Contributors

Are Added to
Complex System

Included
Anticipating Black

Swans and
Encouraging Small

Pertubations

Includes
Agent-Based

Modeling
Concepts

Includes
Recognition of

Includes Creation
of Effectivve

Measures and
Efficient Metrics

Includes Involving
Team Representation

to Consider

Includes Leaders
Taking Informed
Risks to Pursue

Promising
Opportunities

Includes
Mounting

Conveys
Flexible

Attitudes
Embracing

Multiple
Perspectives

Are
Adjusted

Are
Stimulated

Are
Proposed

Are Taken

Are Experimented
with Safely

Are Analyzed,
Modeled, and

Simulated

Is Created Is Established

Is Decided

Are Brainstormed,
Evaluated, and

Selected

Are Helped with
Heuristics

Are Evaluated
and Dealt with
Appropriately

Includes
Leadership

Creating
Self-Organized,

Bottom-Up

Includes Sharing
Information,

Building Trust,
Competition, and

Cooperation

Includes
Embracing
Practioners

Includes Respecting
Time Delays Includes Observing

Includes
More M&S?

Includes
Impact of
Emerging
Events On

May
Include

New

Preliminaries People Involved Creative Aspects Routine Actions Neutral Aspects Positive Aspects

Figure 2. CASE methodology systemigram (suggest revisiting this as you read for a better causality understanding)

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

27

Next, we describe this CASE method-
ology’s aspects, organized by category and
addressed by the Figure 2 coded task labels.
Although we primarily focus on systems
engineering and, more specifically, system
of systems (SoS) engineering (SoSE),
software engineering is the specific example
domain area supporting the International
Council on Systems Engineering (INCOSE)
Systems and Software Interface Working
Group (SaSIWG).

■  Preliminaries
1—Understanding (Persistent) Problem

As emphasized in the Soft Systems
Methodology (SSM) (Checkland 1999),
our goal is to understand the (presum-
ably persistent) problem better. However,
each understanding level can and should
trigger intervening actions to improve the
situation. Thus, problem understanding is a
continual process requiring re-exercising. It
receives information from observation and
the (eventual) intervention result. At each
such stage, we can delve into the prob-
lem further or move on. In SoS or SoSE,
reaching mutual understanding across the
SoS, especially among component sys-
tem organizations, is not easy. Thus, this
collaboration also warrants extra effort in
establishing sustainable SoS mechanisms
and pathways for this purpose.

Often, those representing one infra-
structure domain, such as hardware in the
military or software, lead this problem
understanding activity, as in the book the
SaSIWG recently reviewed (Kim 2019).
However, each relevant domain should
have equal opportunities to influence the
system’s mission.

There are instances where a group within
an SoS focuses more on software than on the
SoS or systems engineering. This happens
within a single organization and across
different organizations; it is natural and con-
centrates effort on needed areas. However,
it can lead to “stovepipe” mentalities which
are detrimental to overall progress. As a
possible remedy, establish open and effective
communication between and within the
separate groups about the principal problem,
especially vital mutual interest topics.

2b—Mounting Organizational Efforts
Individual efforts can address simple

problems on a more or less ad hoc basis.
Complex issues require additional effort,
usually an organizational variety, typically
involving multiple organizations. Good
leaders, faced with serious problems,
can envision, formulate, negotiate, and
eventually obtain buy-in participation from
relevant organizations, including their own,
that can potentially contribute to problem
solutions. Initial goals include creating a

flexible and resilient inter-organizational
structure to ensure, to the possible extent,
continual effort from each organization
involved. Note the traditional hierarchical
authority and accountability tree structure,
particularly those of significant depth,
may tend to be counterproductive to self-
organization (see 4a below).

Compared to hardware teams, we ob-
serve software teams are more autonomous
and less dependent on discipline-related
resources with lengthy availability process-
es. The “tooling” necessary for executing
software tasks is usually quicker to gather
than hardware enabling tools. Although
systems engineering teams may not be
as autonomous, since they are typically
responsible for overseeing and influencing
several engineering domains, there is also
less need for them to wait for systems engi-
neering artifacts to perform their tasks.

Software and systems engineering
factions within relevant entities, no matter
how autonomous, should strive to achieve
effective and efficient organizational coor-
dination. A good way of stimulating this
interchange is establishing regular meetings
involving a few competent and respected
individuals representing each faction. These
are people with the authority to commit to
decisions reached consensually on the spot
rather than causing further delays by sepa-
rately checking with the bosses offline and
negotiating disagreements one by one.

2d—Postulating Desirable Outcome Space
The SoS leadership’s initial task is to estab-

lish an overall SoSE team vision or mission.
This vision should be compelling and easily
internalized, motivating and enabling daily
personal assessments of the team members’
common cause contributions. The team
must establish desirable outcome spaces
and measures early on to be clear whether
postulated solutions, developed later, fit into
at least one of these spaces. At this stage, it is
premature to focus on specific solutions and
their possible outcomes. As the SoSE effort
proceeds, these outcome spaces need contin-
ual adjustment. One does not want the scope
so narrow they miss hazards or opportu-
nities (see 2a below) for good solutions to
pursue with informed risk. Nor do they want
the scope so broad the problem or solution
challenge is far too great.

Admittedly, it is tempting for software
designers and systems engineers to rush
into exploring new feature developments
before thoughtfully and thoroughly
contemplating the overall project goals. It
is also true software and systems engi-
neering teams are sometimes complacent
in not exploring new methods and tools.
One painful lesson, learned quite well by
experienced systems engineers, is getting

too far “over your skis” can lead to much
higher costs and greater delays from “back-
tracking” compared to the more patient
approach in considering and deciding upon
the various options in moving forward.

3a—Building Team(s) and Resources
The inter-organizational structure initial-

ly locates, considers, selects, and assem-
bles talented or qualified individuals who
compose the team(s). The job is identifying,
qualifying, and obtaining other material
and financial resources to support the ef-
fort. They plan and place critical processes
to ensure a methodology for dealing with
unanticipated events. Acknowledging or ig-
noring this nod to the full situational com-
plexity is likely to positively or negatively
impact the whole, respectively. In addition,
we must recognize the smooth and inevita-
ble alternative staff member transition into
or out of the program for various reasons.
Sensitivity to external developments and
outreach to others is also important.

Software teams often embody a disrup-
tive culture, an “open source” orientation
conflicting with a system solution self-con-
tainment goal. Thus, we should discuss
what to extract or share with external
communities early on.

Leaders should ensure each team in-
cludes software and systems engineering
experts, at least one of each, who are also
good communicators. This will facilitate in-
ter and intra team cooperation in address-
ing inevitable issues as they arise.

3b—Deciding System Boundary
Contrary to most traditional systems

engineering approaches, and perhaps many
SoS approaches, the boundary of a complex
system is usually both “fuzzy” and evolving.
Teams must decide boundaries through
thorough discussions while understanding
the problem and exercising other CASE
activities, including those already discussed
and 2a and 2c below. Rationale: As with the
2d analogy above, if the team restricts the
boundary too much, it is unlikely they will
solve the real problem; if too ambitious,
then the difficulties in achieving improve-
ment escalate exponentially. One technique
for establishing a working SoS boundary
would be assembling and discussing among
a small number of representatives from
each SoS system component level, hopeful-
ly a key stakeholder subset (see 2c below),
with authority to commit to actions on
behalf of their organizations, as advocated
in 2b above. Once this group determines an
appropriate boundary, they should alert the
SoSE team and their affiliates to help guide
their collaborative work. Further, the whole
team should agree to adjust the boundary
from time to time based on future events.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

28

The main goal is to postulate a reason-
able system boundary. When the project
involves software, as in most instances, a
proper boundary must include all critical
software engineering concerns. On the oth-
er hand, the project must control or at least
address any software engineer’s tendency to
extend these boundaries too far.

4b—Establishing Architecture
The most critical guide to SoSE is a good

system architecture, including the overall
software architecture. The team should
establish this architecture early in the pro-
gram with significant effort to essentially
guarantee a reasonably stable architecture
that does not change much compared to the
engineered SoS. Of course, the architecture
should change, as appropriate, in response
to emergent properties or other unexpect-
ed events indicating the need to change
direction. In some architectural frame-
works, there is a great temptation to create
architectural “views” describing specific
perspectives to “check a box” required by
management. This is fraught with danger if
the views promulgate before the underlying
architecture fully develops.

There is much to say for today’s trend to-
ward service-oriented architectures (SOAs)
emphasizing the bottom-line and what
usefully delivers to customers. With an SOA,
each product becomes a largely autono-
mous component process aggregate without
a strong need to couple them with other
behavioral type processes. This generates
several advantages, such as deploying these
products heterogeneously within other pro-
grams involving their own hardware or soft-
ware resources. Each product has its implicit
lifecycle, execution resources, and operation.
This is the exact opposite (or at least, phil-
osophical complement) to the detrimental
entanglement generated by “spaghetti code”
based on a pure imperative coding paradigm
application. Even if modularized, imperative
coding makes system evolution a nightmare
while creating a monolith nearly impossible
to operate correctly.

Investment in a good architecture should
more than repay its project budget debt by
devoting and maintaining a commitment
to software quality with decisions ensuring
reusability, evolvability, and replaceability
through better techniques or technologies.

To the extent possible, the project should
“layer” the architecture. Layering dramat-
ically increases flexibility in introduc-
ing system and software improvements
following changes in the environment or
implementation technology. What software
might better realize in one era, hardware
may do better in the next, and vice-versa.
Each layer conforms to closely-knit basic
functions, grouped by types, such as appli-

cations, networking, communication links,
or physical implementations. The interfaces
between layers are simple and stable. How-
ever, the realization within a given layer can
(more easily and often) adapt to different
conditions. If the interface(s) to that layer
remains(remain) unchanged, the system
still operates effectively.

■  People Involved
2c—Evaluating Stakeholders

There are many stakeholders in a typical
SoS due to the SoS level, environmental
participants, and those involved with
the component systems. As with simpler
systems, it is advisable to identify, assess,
and evaluate all the key stakeholders to
determine who will assist, resist, oppose, or
just need the effort and progress updates.
The supportive stakeholders require con-
tinual nurturing, while those against the
project require neutralization or at least
marginalization. Psychology, sociology, or-
ganizational change management, politics,
economics, ethics, and morality are relevant
trans-disciplines to apply.

To ensure software and systems cooper-
ation, each entity should identify and seek
one or two supporting authoritative indi-
viduals to oversee the whole operation and
help guide processes conducive to success. If
found, established, and maintained, such key
stakeholders often ensure a balanced focus
concentrated on what concerns everyone.

5a—Helping Decision Takers
“Decision takers,” a term more frequently

used in the UK than in the US, is a better
term than “decision-makers.” Taker indi-
cates a more proactive attitude in making
difficult decisions. In an SoS, decision tak-
ing is more complex due to the numerous
stakeholders involved across the SoS level,
its environment, and among the compo-
nent systems and subsystems. Typically,
decision-makers take decisions too early in
complex systems rather than waiting longer
to evaluate the situation better. There are
significant time delays due to multiple
interactions within the complex system and
its environment before the last intervention
result becomes apparent. Thus, improve-
ment comes from decision takers waiting
until a decision time is more evident.
Generally, advisors must provide decision
takers with good heuristics (practical rules)
to improve decision taking. An example
heuristic indicating the need for a decision
for any key decision taker within the SoS
would be when any component system or
subsystem seems to deemphasize the SoS in
favor of its system more than expected.

In software, such short-focused engi-
neers are often technicians who make deci-
sions with a closed mindset. This results in

inappropriately transferring their responsi-
bilities to toolmakers, managers, or super-
visors. Instead, software engineers should
take decisions with an open mindsight,
and their leaders should more vigorously
promote and instill their engineering role.

One key software decision taking aspect
is when to release developed code. This
should not occur until after thoroughly
testing the “beta” versions within the parent
system, hopefully with some user partic-
ipation if testing can occur safely; see 6b
and 6a below. In consultation with available
systems engineers, software engineers
should periodically keep their leaders and
managers apprised of the situation and
offer valuable advice regarding code release.

6b—Experimenting with Users
Because of uncertainties associated

with most SoSs, the SoSE team(s) should
experiment with promising ideas in mul-
tiple venues. Rather than confining these
experiments to laboratory environments
typical of traditional systems engineering
efforts, teams should embrace practitioners
and experiment with users in the field.
Users know the operational needs. Thus,
leveraging their expertise and experience
can make significant progress. This is
much better than developing something
in a “vacuum” or “throwing it over the
wall” and having users reject or misuse the
supposedly additional capability. However,
teams must perform these operational-type
experiments safely so no one is in jeopardy.

Good software engineers make it an
ongoing practice to create clear explanatory
comments to accompany the executable
code. These comments help system users
and stakeholders, especially systems engi-
neers, understand the code’s intended op-
erational aspects regardless of the software
language. This has several advantages, such
as illuminating why a software program
behaves as it does and helping identify and
correct inevitable “bugs.” Since only about
30% of the software engineering effort is
toward developing code today, systems
engineering understanding of their reuse
framework, components, tools, and integra-
tion techniques is also important.

In addition to the overall software archi-
tecture (see 4b above), software engineers
should also ensure their relevant software
models (see 5b and 6a below, for instance)
accompany their executable code. This
would further mutual understanding and
help everyone keep the big picture of what
they develop in mind.

10a—Rewarding Contributors for Useful
Results

Rewarding contributors for useful
results is the most important CASE

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

29

activity to improve system acquisition
processes. Too often, giving rewards
upfront or via award fees causes programs
or projects to fail and accomplishes
very little. There must be much stronger
incentives to ultimately achieve desired
outcomes without having to restart or
terminate programs. Reserving rewards
for achievement is especially challenging
in SoSs, where most component system
stakeholders would refuse to join the SoS
effort without reaping immediate tangible
benefits. Existing incentive structures and
reward systems cannot change significantly
overnight either. However, with enough
resolve, governing bodies could improve
the system gradually, perhaps over decades,
by making sure more funding and other
compensations are later in the programs
to help achieve desired results. As we will
state again in 3c and 10b below, innovative
contracts can help accommodate this
systemic change of rewarding for results.

If software engineering lacks systems en-
gineering, there is the danger that software
programs will not fully satisfy the overall
system needs. On the other hand, partic-
ipating systems engineers, especially soft-
ware engineers, should receive appropriate
awards for their worthy accomplishments
(not just specific software developments).

■  Creative Aspects
2a—Balancing Opportunities and Risks

Traditional systems engineering focuses
too much on risk mitigation. It is more
about opportunities with complex systems
since the system continuously evolves
whether one intervenes or not. Of course,
when pursuing more productive pathways
to good solutions, it is advisable to do this
only with an informed risk plan. Leaders
should reward those seeking improvements
in this way (see 10a above), even if they are
unsuccessful at first. One needs to protect
against Black Swans (Taleb 2007) but also
stimulate anti-fragile development (Taleb
2012) (see 3c below). Some risk mitigation
efforts concerned with avoiding adverse
outcomes can lead to promising positive
results and vice versa. The most important
principle to observe is balancing oppor-
tunities and risks. Maintaining reasonable
balances among various competing factors,
instead of separate suboptimizations, is
fundamental in SoSE. One way of ensur-
ing SoS adaptability is to put into place, in
advance, a shared management process to
use when unexpected events occur.

Software development often naturally
inclines toward opportunities, especially in
new feature development. While pursuing
such further capability, however, those
involved must remember how to safely and
efficiently integrate new code into the over-

all system, know potential risks and how
to mitigate them through applying sound
systems engineering techniques.

3c—Creating Anti-Fragility
First, the SoSE team should protect the

SoS from rare catastrophic events (Taleb
2007). For example, suppose the primary
approach is no longer viable. Then one of
the backup approaches the team carried
along may become primary. Also, on a
smaller scale, it is a good engineering prac-
tice to focus on what might not work or
what might go wrong, and have a fallback
position involving subsystem redundancy.
Traditionally, systems engineering generally
assumes everything will work as intend-
ed, but this is a flawed assumption with
complex systems (Perrow 1999). Once such
protections are in place, the SoSE team
should subject the SoS to small random
perturbations to increase its resilience,
robustness, and strength (Taleb 2012) and
enhance the SoS’s ability to achieve im-
proved “balance” against future adversities.
For example, ensure acquisition contracts
are broad enough to admit a wider vendor
selection, increase competition, and offer
opportunities to pay for results rather than
perceived promises. This “stirring the pot”
helps ensure the best results.

There are countless ways for software to
fail or not live up to its intended promises.
After drafting each code section, the mind-
ful developer should be willing, if not eager,
to take an adversarial approach and spend
time thinking about and protecting against
misuse and possible, though perhaps
unpredictable, anomalies. Some software
validation strategies, such as chaos testing,
include this process.

3d—Adjusting Incentive Structures
People tend to behave in ways strong-

ly correlating with how we measure and
reward them (see 10a above). In some SoS
environments, particularly those involving
military system acquisition, many stake-
holders leading SoS programs focus on the
short-term. They change jobs every two to
three years and are not responsible for their
previous assignments after their reassign-
ment. This CASE activity advocates for, and
hopefully helps achieve, positive changes
in incentive structures to better facilitate
(1) leadership styles creating conditions for
self-organization (see 4a below), bottom-up
efforts, and discouraging autocratic,
hierarchical, top-down approaches; (2) in-
formed risk-taking in pursuing promising
opportunities (see 2a above); and (3) more
integrated career accountability.

It may be a non-sequitur to envision
good software or systems engineers as not
incentivized. They most likely take signifi-

cant pleasure from what they do, especially
when seeing the positive effects of their
work efforts. However, they should also ex-
pect to receive material rewards for making
their systems successful (see 10a above).

4d—Changing Mindsights
A principal concern associated with

the systems engineering practice is having
a “mindsight” conducive to significant
progress in complex domains. Traditional
systems engineering mindsets focus on
requirements, reductionism, and optimi-
zation. These mindsets will not work well
in the more difficult situations usually as-
sociated with complex systems. Mindsight
conveys a more flexible attitude established
and modified by embracing multiple per-
spectives of the underlying truth forming
the complex systems engineering (CSE)
base. Through self-organized collabora-
tions, including individual view exchanges,
a better understanding of the problem and
what to do is likely. Nevertheless, recognize
fully capturing the underlying truth will
likely remain elusive.

Considering an outstanding software sys-
tem, and its many ideas including feature
creation, development, change, mainte-
nance, evolution, and retirement, as one of
the most important systems engineering
domains, is an excellent mindsight to em-
brace. Systems and software engineers have
much to learn from each other.

5b—Proposing Specific Interventions
There are many occasions when the

SoSE team is almost ready to try something
else to help the SoS advance in the desired
direction. We should view these actions
as interventions with uncertain outcomes
because one cannot predict what will hap-
pen in a genuinely complex system. Before
implementation, the team should propose
each intervention to key stakeholders and
obtain their reactions, leading to some
plan alterations. The stakeholder may also
indicate some additional modeling and
simulation (M&S); see 6a below. Finally,
before fully committing to a path, some
experimentation would also be advisable
(see 6b above).

Software developers should resist
jumping into feature creation too seriously
before telling other stakeholders their ideas
to solicit further inputs and ideas influ-
encing the eventual application outcome.
A systems engineer might be a worthwhile
colleague to approach in this regard.

■  Routine Actions
4a—Stimulating Self-Organized
Collaborations

Early in any process for confronting
a problem and seeking improvement,

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

30

self-organizational efforts are appropriate.
A leader or manager takes charge and
assembles an initial action team (see 2b
above). The team collects or requisitions
resources (see 3a above) and establishes
an overall vision or goal for problem
resolution (see 2d above). During this
time, the team must establish a healthy
collaboration spirit among the participants
to help facilitate (1) information sharing;
(2) building trust; (3) developing
individual perceptions, viewpoints, and
opinions; (4) cooperation within and
across teams; and (5) competition among
teams. Collaboration is what enables
the self-organization progress to deal
effectively with the situation and achieve
a solution. This is especially difficult in
SoSs, as the component systems have
their organizations, each naturally
resisting routine collaboration with other
organizations because self-interest naturally
dominates the affinities with SoS objectives.

At this relatively early stage, software and
systems engineers should seek each other
out, get to know one another, and prepare
to establish stronger relationships as the
work proceeds. This activity also stimulates
leadership opportunities for anyone
involved, even temporarily given the
various team members’ particular talents
and inclinations.

4c—Brainstorming Potential Approaches
Brainstorming is too casual for this

critical activity, but it conveys the proper
meaning. Here the SoSE team, hopefully
in a high-performing, collaborative state,
shares ideas about potentially solving the
problem, mainly from a technical view-
point. However, they must still consider
the non-technical aspects and all the
applicable trans-disciplinary areas. As in
typical brainstorming, the ideas should flow
freely before anyone on the team attacks
ideas. This is where creativity should reign,
potentially modifying the Figure 2 CASE
methodology systemigram. Then the more
evaluative phase begins. The team criticiz-
es, rejects, or refines the offered ideas. The
remaining potential approaches should fit
within the agreed vision/mission, desired
outcome space (see 2d above), and system
boundary (see 3b above). Finally, there
should be decisions on which approaches to
pursue vigorously or bring along with lesser
degrees as backup options.

This process provides a great opportunity
and solid foundation for collaboration
where software and systems engineers can
better understand each other’s language
and term usage. Unless they come from
a software background, most systems
engineers are unlikely to appreciate
software terminology or the pros and

cons of software development languages.
Similarly, software developers may want
to move ahead with their preconceived
implementation processes without paying
much attention to alternative approaches
to reach better solutions. One systems
engineering role helps make the evolving
software process more adaptable. There
seems to be a fundamental cultural
difference between software “agility” and
the so-called classical (and no longer so
influential) “waterfall V” development
cycle previously associated with systems
engineering, which we moved beyond with
SoSE and other CSE forms.

6c—Taking Appropriate Actions
Complex systems operating where they

should, at the edge of chaos, continue
evolving whether one intervenes or not.
Therefore, before taking further action,
decision takers should objectively observe
what occurs over time (see 5a above).
Interventions are necessary; they are what
decision takers expect to do. The action
takers should take these actions in pursuing
an opportunity while remaining informed
of potential risks (see 2a above). Whatever
actions the action takers within an SoS take,
it is appropriate to describe these actions
to other key stakeholders at the SoS level,
within the SoS environment, and across the
component systems or subsystems. Then
they have increased abilities to consider
their actions, hopefully improving the SoS
situation. This information sharing is not as
typical in traditional systems engineering
environments, where it seems organizations
punish, rather than reward, information
sharing across organizations (see 4a above).

Good leaders will ensure all team mem-
bers learn, via communication with their
team representatives, the more important
interventions and their status while waiting
for results. Software engineers may respond
to these inputs by providing helpful feed-
back on their assessments on the interven-
tion’s potential success. Everyone involved
should try to be flexible in considering their
future actions.

11—Renewing Continued Effort?
Our work is never entirely finished in

a “healthy” complex system because the
system continually evolves. Checkland’s
SSM (Checkland 1999) already established
this. One should view CASE as an iterative
process revisiting several or all activities at
various times, such as during each activity
cycle or after cycling through all activities.
The SoS level stakeholders should consider
renewing the overall SoS at appropriate
milestones. It may be necessary to apply
renewed effort on some SoS portions in-
volving one or more component systems or

subsystems. Such instances can apply CASE
again on a smaller scale.

Contemplating continued efforts is
another activity greatly benefiting from the
software and system leaders’ attention, wis-
dom, and advice on the achievement-effort
tradeoffs especially when there is significant
pressure for further change in improving
the code or system capabilities.

■  Neutral Aspects
6a—Modeling and Simulating (M&S)
Behaviors

After the SoSE team selects a few
viable approaches, a primary alternatives
analysis phase begins. M&S includes
standard theoretical, analytical capability
augmenting methods. To the extent a
complex system can decompose into
adaptable parts, M&S can help characterize
the interactions among these system
components and their environment and
better determine the factors causing such
adaptation. In complex systems where
people are part of the system, intentionally,
one can benefit from a complementary
form called agent-based modeling. This
involves postulating a small rule set that
autonomous, independent agents follow
while interacting with other agents within
their hypothetical system environment.
An SoS provides a fantastic opportunity
for this, considering the numerous and
various stakeholders at play. Thousands
of iterations, including tens or hundreds
of agents, can occur with only modest
memories and computational power.
Chances are, we can learn much from the
behavioral results emerging from these
exercises. We can modify the agent rules
after adding or subtracting rules while
seeing which rule sets seem most effective
in illuminating what happens, for example,
to agent behaviors, at least to the extent
possible. As in more traditional M&S
activities, the outcomes inform the SoS
development or improvement.

Modeling and simulating people through
software programs should be an intriguing
idea the more creative software develop-
ers might pursue. So far, the popular and
prevalent model-based systems engineering
(MBSE) techniques have concentrated
mostly on technology and the internet of
things (IoT) without making much prog-
ress on handling SoS stakeholders.

7—Measuring What Happens
Fundamentally, the SoSE team must want

results that fit into the desired SoS outcome
space. There should already be measures
determining whether outcomes fall within
that desired space. Better yet, each measure
should include readily available metrics
for gathering relevant data. For example,

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

31

component system or subsystem managers
might report their contributions to the
SoS level along with why they think each
contribution will fit into the SoS’s outcome
space, and the SoS level would record and
share those instances. Teams should ensure
whatever data they gathered help avoid
wasting resources.

Software and systems engineering leaders
can weigh in, look at the data, and learn
what valuable information, and hopefully
knowledge, they can obtain. They can then
apply these insights to improve the existing
management processes.

8—Assessing Results
Here the main challenge is in reaching

consensus across the SoS as to whether
they have made improvements. The key
stakeholders within any component
system or subsystem may disagree on
the relative tradeoffs between their local
objectives and the SoS level stakeholder
objectives. The team should also consult
stakeholders within the SoS environment
but not directly engaged in the SoS to see
whether they noticed improvements. If the
SoS provides a public service, the team can
assess progress by (1) conducting limited
polls or surveys; and (2) contacting selected
government officials and lawmakers. A
sense of accomplishment would do well
toward continuing the improvement efforts.

At this stage, software engineers should
view their work objectively in deciding to
what extent their programs contributed
to realizing a service. In parallel, systems
engineers should build on the software
subsystem consistency (and hardware) and
understand the software engineer’s impact,
making their systems engineering opin-
ions clear, hopefully with compliments or
perhaps constructive suggestions.

9b—Instituting Lessons Learned
Everyone agrees learning lessons is a

good thing. Sometimes, with pressing
needs to get on with other work, lessons
learned are often marginalized or even
omitted, and people do not change their
behaviors accordingly. Be wary of only
a casual or short lessons-learned effort
at the program or project’s end, for
example, giving them “lip service” without
calling attention to them verbally or with
documentation. We must learn lessons,
not just observe them! The essential trick
is to retain and institute these lessons on
follow-on programs and new projects
where those lessons apply. Instilling this
activity’s importance throughout the SoS is
highly advisable, as is searching for lessons
from previous projects at the start of each
project. More to the point, a systemic
process for collecting SoS-related lessons

from all component systems would be a
good idea. SoSs can share these with other
SoSs as well for the benefit of all.

Systems engineers can publicize what
they learned from the software engineers
and vice-versa. This should strengthen
their relationships and greatly benefit their
future interactions.

■  Positive Aspects
9a—Adding Incremental Capabilities

Traditional systems engineering focuses
on requirements near the beginning of
every program or project and continues
after that. This focus often continues
because complex system requirements
are incomplete, unclear, unstable, or
even unknown. In SoSs, it is more
realistic to rely on the (presumably
already) established mission and desired
outcome space (see 2d above) than firm
requirements. With each intervention and
its aftermath, decision takers assess the
extent to which the SoS enjoys additional
capabilities—or not (see 5a, 7, and 8 above).
If the SoS moves in the positive direction,
the subsequent intervention will target
an additional capability, as suggested by
Figure 3. If not, the decision takers should
try something else, perhaps in conjunction
with undoing the previous intervention.
This process works best incrementally
where one builds a little, tests a little, and
fields a little. Gradually, with luck, the SoS
situation improves.

With these gains, software and systems
engineers can take pride in their work if
they work faithfully together to benefit all.

10b—Publicizing Progress
Coinciding with result rewarding is

publishing not only the recipients but also
the results themselves. These publications
do not need details; they could mimic stock
market quotes, crude oil and gas prices, or
public media reports. This serves another
purpose—increasing others’ motivation to
invest in accomplishing similar outcomes
(see 3d above). Investments by the compo-
nent system or subsystem stakeholders in
an SoS are necessary in a systemic process

rewarding results only. We recommend (1)
contractors not receive up-front funding
with contract awards; (2) contractors’
promises to deliver the “goods” are record-
ed and held by SoS managers until those
contractors actually deliver results to the
field; and (3) only successful contractors
receive reimbursement and bonuses (see
3c above). Those successful contractors
would develop “deep pockets” and be able
to continue investing in new projects. The
contractors unable to deliver would “dry
up and go away.” Individual contributors
within organizations tend to receive raises,
bonuses, and promotions only after the
fact, so this natural philosophy is merely
extending upwards (see 10a above).

Software and systems engineers should
celebrate their collaborative successes by
publicly recognizing their joint achieve-
ments and highlighting significant increases
in system capabilities while thanking those
primarily responsible for those gains in
performance.

CLOSING REMARKS
As any Complex Adaptive Systems En-

gineering (CASE) methodology reader has
undoubtedly realized, the various individu-
al functional activities highlight somewhat
distinct aspects but are interrelated. They
overlap and correlate among themselves.
There are many ways to proceed, but to
apply CASE effectively, one needs to inten-
tionally view all key system stakeholders as
being inside (not external to) the system.
We must understand human behaviors and
characteristics and try to move toward real-
izing idealistic principles in our efforts.

This write-up tries to help software and
systems engineers work well together. As a
final comment, we stress complex systems
engineering requires exemplar leadership
much more than good management, al-
though these practices are complementary
(White 2015).  ¡

Existing Capability
A

Added Capability
B

Target Capability
X

Past Efforts Progress

Next
Target Capability

Y > X

New Capability
A & B Integrated

Figure 3. Conceptual process of adding targeted capabilities

REFERENCES
ABOUT THE AUTHORS

>  continued on page 46

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

32

INTRODUCTION

  ABSTRACT
There is a need to develop a system approach to develop an adaptive model (Mirchandani 2010) by which the changes in the testing
and upgrade or ‘problem-fix’ processes for complex software are monitored in real-time and incorporated in the development of
reliability models for software systems. As system engineers it is our goal to develop, elegant designs that will implement the re-
quired capability, i.e., produce the intended result (IW2021 – BT), be both robust and efficient, and limit unintended consequenc-
es. Towards this goal, system engineers strive to minimize technical debt and maximize the relevance of the needed capabilities
for successful implementation of the system. If one was to follow the classical system engineering process, the system must meet
certain needs. If there was a need for the system, be it perceived or an actual problem, the system engineering process, which is
constantly evolving, must be enhanced to meet the needs of the 21st century.
	 It is obvious that testing is necessary to validate that all the critical processes are functional and satisfy the system requirements
allocated to software. However, there is a risk if the software is tested to a perceived operational environment based on theoretical
workloads.

System Test Approach
for Complex Software
Systems

  KEYWORDS:  Software Quality; Defect Find Rate; Failure Intensity; Test Profile

Chandru Mirchandani, chandru.mirchandani@gmail.com
Copyright © 2021 by Chandru Mirchandani. Permission granted to INCOSE to publish and use.

Long, long time ago in a technology
landscape not too far away there ex-
isted silos of engineering expertise.
Unlike good object-oriented design,

there was little or no cohesion between
these silos even though their individual
success was imperative to develop a cohe-
sive interrelated whole for the success of
the mission. Why was this? Very succinctly
a lack of trust and communication. It is
necessary to improve the communication
between these silos to accept and share the
overall system level objective and how it
meshes with the different engineering disci-
plines, i.e., share and compare the views for
the common objective.

This article proposes incorporating the
‘actual operational’ environment when
developing metrics. Since the closer the
test environment is to actual scenarios, the
more effective the test is in demonstrating
the dependability of a system. (Hecht et al
1997) states that software failures are due
code deficiencies, i.e. faults, which when
triggered by data or a computer state that

causes execution of these faults result in
failures. The test environment must gener-
ate a large number of triggers if it is to be
effective for demonstrating the dependabil-
ity of a high assurance system). This can be
actual values or predictions based on actual
operational scenarios and data.

The operational scenario must be
modelled more accurately by taking into
account non-technical data points such as
available resources, budget and schedule
to weight the data to predict a test strate-
gy. This would act much like the familiar
Bayesian statistics approaches (Okamura
et al 2006) capable of estimating software
reliability in cases where detected software
faults are removed. The proposed model
will also provide a capability of updating
the reliability predictions based on new in-
formation being made available such that at
the end of the test process, (Hu et al 2008),
not only will we have results with a higher
level of confidence in meeting the require-
ments but also a more mature reliability
model for future programs.

BACKGROUND
The Quality of Software, (Bach 2003),

states:
“Software quality is a simple concept,

at least in the textbooks. Just determine
your requirements, and systematically
assure that your requirements are achieved.
Assure that the project is fully staffed and
has adequate time to do its work. Assure
that the quality assurance process is
present in every phase of the development
process, from requirements definition to
final testing”. However, as Bach puts it, this
is not so easy in the field. Requirements
change, staffing profiles change and most
importantly, we have to remember that
there’s lots of money to be made if you
can sell the right product at the right
time, or even something close enough to
being right. Behind the veneer of metrics
and Ishikawa diagrams, quality is just a
convenient rendezvous for a set of ideas
regarding goodness. As (Weinberg 1991)
says, “quality is value to some person”.

The system engineering paradigm for

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

33

testing implies that a system requirement should be testable, the
test should be repeatable and the test method should be validated
and the requirement should be verified. This entails that metrics
are carefully selected to ensure that these criteria are met. It is the
intention of this paper to develop criteria for evaluating software
quality, which defines the reliability and dependability of the
software. Many factors influence software reliability including the
software development processes, the complexity of the system and
software requirements, experience of the software developers, the
development environment, and the amount and thoroughness of
testing. These factors are incorporated into a software reliability
modelling approach based on the analyses of corrective action
field data collection and failure recording of our software develop-
ment and testing experience.

(Cai et al 2003) suggested the use of controlled Markov chains
be used to synthesize the required optimal testing strategy and
adaptive testing strategy. Experience shows that the fault intensity
rate (faults discovered per month) follows a Weibull distribu-
tion over calendar-time. Each build follows a separate Weibull
distribution with its own time scale. For the added code, its time
scale is adjusted such that it is considered as the starting or zeroth
month. All of the builds’ fault intensity profiles are added together
to create the composite curve.

PROPOSED MODEL
The first step in defining the model parameters is to describe

the parameter and identify the metrics used to measure them.
For example, the metric used to measure the software quality is
the inherent reliability of the untested code. This means that after
some level of testing the failure density of the code reaches a value
that more or less remains constant over the operational life of the
system. (Musa et al 1987) defines the following mean fault densi-
ties at the beginning of various testing phases as follows:

■	 Coding Phase:	 99.5 Faults per 1000 lines of Source Code
■	 Unit Test Phase:	 19.7 Faults per 1000 lines of Source Code
■	 System Test Phase:	 6.01 Faults per 1000 lines of Source Code
■	 Operational Phase:	 1.48 Faults per 1000 lines of Source Code

Thus having laid the ground rules, it is the intent of this model
to flag the deviations in defining and measuring metrics to evalu-
ate and track software quality.

Inherent Fault Density:
Even though the literature (Musa et al 1987) states that inher-

ent fault density is the number of faults per instruction, which
translates to the fact that greater the program size, the greater the
number of faults. From an Operational standpoint, the number
of faults exposed due to usage is proportional to how much of
this code is used in the normal operation of the software. Thus,
for example, a very large software program, which is assigned a
very large fault density, may never have these faults exposed or
uncovered if it is not used very extensively. Thus is it imperative to
ensure that the usage of the code is leveraged to modify or qualify
the inherent value. The second aspect of assigning the inherent
fault density is the fact that the deliverable source code is used to
quantify the fault density. Studies referred to in (Musa et al 1987)
show that there is good correlation between source code and fault
density. However, the data does not completely support the num-
bers for subsystem and system test. This model can be extended
to today’s design paradigm of reusing existing libraries to realize
functions.

However, if one was to evaluate the size of the executable code
in bytes or words and used this to define an inherent fault density,
the variability of the programmer skill and experience has a lesser
effect on predicting the fault density. For example, the executable

size of the software module will be directly proportional to the
CPU usage in performing a function and hence the workload
of the function over a period of time will determine the fault
exposure rate of that module. An executable size of 10K units
using 30% of the CPU in performing the same function a 1000
times a month can readily be compared with an executable size of
30K units using 2% of the CPU in performing the same function
f2, 100 times a month. The functions f1 and f2 are both needed to
provide the overall system functionality.

Thus, the initial fault density, defined as:

d 0 = Predicted Faults per Unit Executable Size	 (1)

Initial Failure Intensity:
(Musa et al 1987) define this parameter in terms of the linear

execution frequency f of the program (or module), the fault expo-
sure rate K and the inherent faults ω0. Thus, initial failure intensity
λ 0 , predicted as λ 0 = f K ω0. However, the model described in this
paper defines the initial failure intensity as follows:

λ 0 = f K (d 0 Exec)	 (2a)

The linear frequency of the f defined by (Musa et al 1987) is the
ratio of the average instruction execution rate r and the number of
object instructions is in the program (or module). However, this
paper uses the executable size Exec to track the actual instruction
set so the linear execution frequency for the model, defined as
follows:

f = Average Instruction Rate/Executable Size = r/Executable Size.

Initial failure intensity, defined as follows:

λ 0 = f K (d 0 Exec)	 (2b)

The fault exposure ratio, parameter K, estimated from the size
of the program, the average instruction execution rate and the
fault reduction factor. (Musa et al 1987) determines a value of K
from the following relationship:

K = failure intensity/fault velocity = λ 0 / (f (d 0 Exec))	 (3)

B is the Fault Reduction Factor or ratio of net fault reduction
to total failures experienced as time of operations approaches
infinity or in other words at a steady state when the ratio remains
a constant. Generally, the number of faults corrected is larger than
the number of failures because in the correction process more
faults may have been generated. The skill of the person fixing the
fault and the skill of the person identifying the actual cause of the
failure, i.e., identifying the fault is paramount in keeping this ratio
close to unity. Based on a predicted number of failures υ 0,

B = d 0 Exec/ υ 0	 (4)

Typically, the values of B range from 0.925 to 0.993 with an
average of 0.955. However, this number can be improved with
perceptive fault identification and good fault reporting. If the
personnel identifying the cause of a failure can discern common
cause faults and report the information correctly and complete-
ly, the value of B can be more accurately predicted. From this
relationship, the number of failures can be predicted before the
start of test. The prediction of the expected number of failures is as
good as the estimates for B and d 0.

υ 0 = d 0 Exec/B	 (5)

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

34

In organizations where the complexity of software programs
and the failure data associated with the developed software system
is available and accurate, the value of B can be calculated from
actual historical records. This method of obtaining data is more
accurate than estimating it. However, it is only as good as the
record and the similarity of the new program to the historic data.
Nevertheless, it is the best place to estimate an apriori number for
B. It should be noted that B is a metric that measures the quality
of the software and the accuracy of the initial fault prediction.
From equation (3) and (4), the fault exposure rate K is defined as
follows:

K = (λ 0 / B f υ 0 )	 (6)

FAILURES PER UNIT TIME:
Having defined the ground-rules, the next step is to devise a

process by which the failures per unit time can be measured and
tracked. From the equations modified from Musa’s execution time
model, the fault exposure rate for a newly developed software
system is determined as follows. After the software system has
been specified, designed and code developed, the elements of
the system are tested first at the unit level and then at an execu-
tion chain or string level. The number of inherent faults in the
software exposed before integration and testing starts depends on
the expertise and experience of the software developer. The more
experienced the developer, the greater the number of exposed
faults. Initially the inherent fault density is predicted based on the
expertise of the software developers and the historical information
based on similar software systems and similar software functions.
Using historical information, the initial inherent faults for the soft-
ware of size E, and fault density do is given by:

F = d 0 E	 (7)

As testing progresses, it is imperative to estimate how good the
assertion that fault exposure is a good measure of failure rate of
the software. In other words, does the exposure of a fault cause a
single failure or does the correction of this fault create or inject
more faults and hence increase the number of failures. In most
software integration and test scenarios, there is an increased pro-
pensity of fault injection through initial fault exposure and fault
fixes. Research has shown that the ratio of the net fault reduction
to total failures, B approaches 0.955 as time of operations ap-
proaches infinity. However, it must be stressed that in most cases
that initially this ratio is very much greater than one. The aim is to
keep this as close to unity at steady state. To ensure that this ratio
is reached quickly, the test profile should imitate the steady state
profile as closely as possible. This implies that the design of the test
profile is of paramount interest in achieving the steady state failure
rate.

TESTING PROFILE
The test profile for optimizing a test strategy can be modelled.

The test strategy can either be directed towards verifying that
requirements are met or it can be directed towards verifying if
the critical functionality of the system has been met. Most often,
test profiles are developed based not only on technical underpin-
nings but also to adhere to the budgetary constraints, contract
challenges and implementation schedules. It is imperative early in
the test planning stage to lay down the constraints for achieving
the required software quality. (Yuan and Gu 2006) elaborates that
to ensure testing and development phases work in concert, it is
necessary not only to allocate adequate time for each of the test
phases, but also formulate and follow reasonable criteria.

For example, if the customer desires to have the best quality

in the shortest amount of time, which area has to be optimized
from a functional standpoint. Does the customer want to have
the best quality for the critical functional elements and have a
reduced quality factor for the less critical functionality? (Poore
and Trammell 1999) puts it very succinctly that the question is not
whether to test, but when, what and how much to test. The more
cost effective response to this question would be ‘yes’. However, if
the customer has to satisfy several stakeholders who will use the
system and not always to utilize the critical functions, the response
is variable. For example, consider a system where the critical
function to user A is to ingest time critical data, for example per-
taining to the path of a comet, and calculating the trajectory and
position of the same for the next time period. Certain user B may
require that this information be displayed in a digital 3-dimen-
sional image rather than in ASCII text. The display function is not
as critical as the actual trajectory and position data. However, the
customer may have to appease the users A and B; even though
user B’s display function may be a complex software subsystem
which could take time and resources to test and be implemented
at an acceptable quality level. (Meyer 2008) states as one of his
principles, that a test strategy’s most important property is the
number of faults uncovered as a function of test time.

Having said this, it is imperative once a schedule date for system
delivery is fixed, to evaluate the quality of the software that will be
delivered. In industry, the objective is to develop a product within
budget and schedule. In a research environment the objective is to
develop and prototype systems for evaluating with an intent to use
new technologies. The experience and expertise accumulated by
over twenty years of working in industry and a research environ-
ment, the author has defined the quality of software as follows.
The quality of the software can be graded on the following four
factors: (1) Is the fault exposure rate at the end of system accep-
tance test acceptable? (2) Are the identified inherent faults in areas
of the software code that can cause critical system to fail at a rate
that is not acceptable? (3) Are there any optimization strategies
that could minimize loss of critical functionality at an acceptable
cost? In fact, (Dhavachelvan and Uma 2005) suggest a framework
for testing based on complexity. (4) What are the main cost drivers
from a software quality standpoint?

USE CASE
To illustrate the process by which these four quality factors are

identified and then quantified, a software system was analysed and
modelled using the basic premise underlined for phase-based test
profiles. In this model, the fault exposure rates are also tied to how
the resources are used. The first step in the process is to evaluate
the functionality of the software system from a functionality point
of view and derive a test profile to optimize the quality factors.
These quality factors are then compared against the actual test
profile and the quality factors of the actual system to demonstrate
the relative difference and validate the advantage of using the
prescribed approach.

REQUIREMENTS-BASED TEST PROFILE
A software system used to ingest time critical data and provide

positional data very akin to a path of a comet, was developed
using redundant hardware and software resources. The switchover
and recovery time in the event of hardware or software failures
were implemented using innovative sensing mechanisms to
detect and fail-over to available redundant hardware and software
elements. The customer and the developers agreed to a staged
system sell-off based on requirements, i.e., a 75% requirements
pass-rate meant that the system was 75% complete and testing
to a perceived operational workload. The schedule was fixed and
the system budget was optimized to sell-off as many require-

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

35

ments as possible to meet the system milestones. Table 1 shows a
conceptual application of how a test profile based on this premise
can be used to test and deliver the software system. The different
projections tabulated in Tables 4 through 6 are calculated using
the assumed parameters shown in Tables 1 and 2.

ANALYSIS OF DEFECT PROFILES
COMPARISON TO RELATIVE DEFECTS FINDS

Finally, the predictions based on requirements and functional-
ity are compared against the defect find ratio to demonstrate the
advantages of using the functionality model. Table 6 shows the rel-
ative number of defects/month that was found on a system, which
had the same characteristics as the analysed conceptual software
system. Figure 3 shows curves for the time phased test activities.
The actual defects rate for the different software subsystems show
a marked difference in the defect rate profiles.

Resources Phase 1 Phase II Phase III Phase IV

Time in
weeks 28 44 24 28

Computer
Resources 4 4 2 2

Personnel 12 12 6 6

Exposure
Rate/week 6 3.25 4.25 1.25

Table 1. Requirements based defect finds

Subsystem A B C D E

Hand-off 1 1 25 7 4

Phase 1 (7 mth.) 2 4 18 6 1

Phase 2 (11 mth.) 1 3 16 6 1

Phase3 (6 mth.) 0 0 2 1 0

Phase 4 (7 mth.) 0 0 1 0 0

Table 5. Projected defect rates – functionality

Subsystem A B C D E
Func. 2 3 7 5 2

Ratefunc 0.11 0.16 0.37 0.26 0.11

Crit. 3 2 1 2 5

(Ratefunc) crit 0.04 0.08 0.37 0.13 0.02

Ratenorm 0.06 0.12 0.58 0.21 0.03

Table 4. Relative functionality test exposure rate

Subsystem A B C D E

Hand-off 1 2 15 15 7

Phase 1 (7 mth.) 1 3 10 15 5

Phase 2 (11 mth.) 0 2 6 8 3

Phase3 (6 mth.) 0 1 2 3 1

Phase 4 (7 mth.) 0 0 1 1 0

Table 3. Projected defect rates – requirements

Subsystem A B C D E

SLOC 5000 25000 85000 120000 40000

Defect Rate 0.02 0.09 0.30 0.44 0.15

Table 2. Relative requirements test exposure rate

Consider the software system made up of five separate software
subsystems, which are of varying size in terms of Sources Lines
of Code (SLOC). The testing profile is based on the size of the soft-
ware systems and testing profile is based on the relative size and
the number of requirements that are being tested and passed. The
total SLOC of the system was about 275,000 and the relative defect
exposures of the subsystems were calculated as shown in Table 3,
which are plotted in Figure 1.

Table 4 shows the defects find projection in the four test phases
lasting 28, 44, 24 and 28 weeks. These defects are translated to de-
fects per month. These defect rates per month for all the software
subsystems at every test phase are calculated, normalized and
tabulated in Table 3.

0
2
4
6
8

10
12
14
16
18

0 5 10 15 20 25 30 35
months

Requirements Predictions

De
fe

cts

A B C D E

Figure 1. Predicted find – requirements

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35
months

Functionality Predictions

De
fe

cts

A B C D E

Figure 2. Predicted find – functionality

FUNCTIONALITY-BASED TEST PROFILE
In a similar manner, the curves showing the functionality-based

defect find rate over the test phases are calculated and plotted. In
this case, the predicted defect find rate is based on the function-
ality allotted to the software subsystems. It is presumed that the
stakeholders and the system implementers have agreed to buy-off
the system based on the defects exposed based on a functionality
and criticality test profile. The relative test exposure rate of the
subsystems is shown in Table 4 and the defect rates per month
for all the software subsystems for every test phase are calculated
and are tabulated in Table 5. Figures 1 and 2 plot the values from
Tables 3 and 4.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

36

The requirement-based test profile shows a wide variation in
the defect rate through the different test phases as seen in Figure
4. Whereas the projected functional defect rate shows a decreas-
ing defect rate as the testing proceeds, the requirement-based test
profile shows a rising defect rate which rises to a maxima and then
falls as the test proceeds. Furthermore, in time the test phases the
defect rate rises again and then decreases sharply, but not to as low
a level as the functional-based test profile.

completeness and appropriateness of the software is paramount in
satisfying the stake-holders and achieving system acceptance.

It is an accepted fact that there is a hard schedule requirement
for system acceptance; hence, it is important to optimize the
testing profile such that the software quality at system acceptance
is as good as we can achieve within the budget and schedule
constraints. It can be argued that the since the most important
objective is to ensure a satisfied customer, a contractor could in-
crease the resources such that the required quality level is reached.
However, there is a point of diminishing returns, because there is
a limit to the number test platforms and, as in this case, it is some-
times the limiting resource.

Translating the defect rate to a system failure rate, the following
curves, shown in Figures 5 and 6, using generic time units and
limitless resources, show that defining a test profile that exercises
the functionally critical subsystems, ensures a lower failure rate,
i.e., higher value on the y-axis, at the time of system acceptance.

Subsystem A B C D E

Hand-off 1 1 10 10 5

Phase 1 (7) 1 2 13 13 6

Phase 2 (11) 0 0 0 1 0

Phase 3 (6) 1 1 11 12 2

Phase 4 (7) 0 0 4 5 1

Table 6. Defect find rates – requirement profile

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35
months

A B IF

De
fe

cts

Defect Rates − Requirements-based Test Profile

E

Figure 3. Requirements-based finds rate

0

5

10

15

25

30

20

0 5 10 15 20 25 30 35
months

De
fe

cts

C–RQMT C–FUNC

Comparison−RQMT. & FUNC DEFECT RATE of ‘C’

Figure 4. Comparison – rate for ‘C’

From the shape of the curve (based on a requirements-based
test profile), the defect find rate for subsystem C contrary to the
functional-based projections increases sharply after decreasing.

Finally, even though the cumulative defects exposed on a
monthly basis is about the same for the functionality-based test
profile, the requirements-based test profile rate does not follow the
decreasing trend that was projected.

SOFTWARE QUALITY AT SYSTEM ACCEPTANCE
The ISO/IEC 25010 characterizes software quality in terms

of functional suitability, performance efficiency, compatibility,
usability, reliability, security, maintainability and portability. This
paper supports that characterization by identifying functionality
as the most important characteristic. The functional correctness,

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 2 4 6 8 10 12 14 1816 20 22 24 26 28 30 32

time units

1/
fai

lu
re

 ra
te

Requirements–Based

OverallPhase 1 Phase 2 Phase 3

Figure 5. Requirements-failure rate profile

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 2 4 6 8 10 12 14 1816 20 22 24 26 28 30 32 34

time units

1/
fai

lu
re

 ra
te

Functional–Based

OverallPhase 1 Phase 2 Phase 3

Figure 6. Functionality–failure rate profile

From a system-engineering point of view, we have to ask the
question:

(1) Is the fault exposure rate at the end of system acceptance test
acceptable? This is dependent on what the stakeholder thinks is ac-
ceptable. It is the contention of the system design team that if the
system meets the objectives for successful operations the system is
acceptable. In many cases this means that the stakeholder requires
the system to provide the primary services expected of the system
when and how needed. The ‘when’ drives the availability of the
system and the ‘how’ drives the fidelity and performance of the
service. The availability of the system is directly proportional to
the quality of the designed system, i.e., the hardware architecture
and the software subsystems. Given that the hardware quality is

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

37

well defined in terms of hardware failure rates and repair times, it
is imperative that ‘good’ data on the failure rate and recovery from
failure times of the software is available. Good data is obtained
from recorded and reported metrics and in the case of software;
it is the defect exposure rate or ‘defect find rate’ when the system
goes operational. Thus, if the projected failure rate of the system
has been estimated in terms of hardware and software failure rates,
the goodness of the estimation and the allocation to hardware and
software thereof is as good as the projections.

It is seen from the analysis, that though the estimation of the
inherent defect estimates on the software system, as the whole do
not vary appreciably between the different methods of evaluating
the same, the defect exposure rate through the test phases does
vary. The planned test profile did not correctly project the actual
defect find rate, and hence and elevated risk of not meeting the
software failure rate requirement.

 (2) Are the identified inherent faults in areas of the software code
that can cause critical system to fail at a rate that is not acceptable?
This is best answered by calculating the failure rates and verifying
that the failure rate projected at system acceptance meets the criti-
cal requirement for the system. The functionality-based defect find
rate curves are based on the criticality and functional executable
code. From the defect find rate curves it is seen that the actual de-
fect find rate for the identified critical software subsystem does not
follow the projected defect find rate, and hence in most probability
will not meet the critical requirements of the system.

(3) Are there any optimization strategies that could minimize
loss of critical functionality at an acceptable cost? The statement of
work and the program schedule sets the constraints. Given a hard
schedule date, test implementers can only meet a quality level that

REFERENCES
■	 Bach, J. 2003. “The Challenge of ‘Good Enough’ Software.”

American Programmer Magazine. Updated version of the orig-
inal downloaded from https://www.satisfice.com/ .

■	 Cai, K. Y., Y. C. Li, and K. Liu. 2003. “How to Test Software for
Optimal Software Reliability Assessment.” Proceedings of the
Third International Conference on Quality Software (QSIC).

■	 Dhavachelvan, P., and G. V. Uma. 2005. “Complexity Measures
for Software Systems: Towards Multi-agent based Software
Testing.” Proceedings of the International Conference on Intelli-
gent Sensing and Information Processing (ICISIP).

■	 Hecht, H., M. Hecht, and D. Wallace. 1997. “Toward More Ef-
fective Testing for High Assurance Systems.” IEEE Proceedings
of the High-Assurance Systems Engineering Workshop.

■	 Hu, H., C. H. Jiang, and K. Y. Cai. 2008. “Adaptive Software
Testing in the Context of an Improved Controlled Markov
Chain Model.” Annual IEEE International Computer Software
and Applications Conference.

■	 Meyer, B. 2008. “Seven Principles of Software Testing.” Soft-
ware Technologies, Computer.

■	 Mirchandani, C. 2010. “System Engineering Approach for
Complex Software Testing.” 8th Annual Conference on Systems
Engineering Research.

■	 Musa, J. D., A. Iannini, and K. Okumoto. 1987. Software
Reliability, Measurement, Prediction, Application. US: Mc-
Graw-Hill.

■	 Okamura, H., H. Furumura, and T. Dohi. 2006. “On the Effect
of Fault Removal in Software Testing - Bayesian Reliability
Estimation Approach.” IEEE 17th International Symposium on
Software Reliability Engineering (ISSRE).

■	 Poore, J. H., and C. J. Trammell. 1999. “Application of Statisti-
cal Science to Testing and Evaluating Software Intensive Sys-
tems.” Proceedings of the Science and Engineering for Software
Development: A Recognition of Harlan D. Mills’ Legacy.

is defined by the test profile and allowable budget. However, the re-
lationship between the selected test profile and within the allowable
budget is not unbounded. For a fixed schedule the resources limit
the amount of testing that can be accomplished. This would suggest
that there is a limit to the increase in budget for a fixed schedule, and
hence a limit to the quality, in terms of defect find rate, attainable.

Budget ≤ Maximum Resources utilized within Schedule
Quality ≤ Maximum Testing performed within Schedule

Any further increase in quality is attainable only with an
increase in schedule that would allow more resources to be used.
Thus given a schedule there is a limit to the attainable quality; and
vice versa, given the required quality level, the minimum schedule
needed can be estimated.

(4) What are the main cost drivers from a software quality stand-
point? From the analysis the main cost drivers to software quality
are available test resources and test schedule. The main driver is
the test schedule. Given the test schedule, it is important to realize
that greater the critical defect finds in the allowable test stages,
the more optimal the software system quality. Which leads to the
conclusion: If the stakeholder considers system quality in terms of
‘how well the system meets the critical functionality of the system’,
better (or more accurate) the projection for defect ‘finds’ and high-
er the attainable software quality within the allowable schedule.

ON-GOING RESEARCH
The author is working on an adaptive model that would better

project and dynamically update defect ‘find’ rate for software
based on behavioural patterns.  ¡

■	 Weinberg, G. M., 1991. Quality Software Management,
Volume 1: Systems Thinking, US: Dorset House.

■	 Yuan, Y., and S. Gu. 2006. “Research And Establishment
Of Quality Cost Oriented Software Testing Model.” IEEE
Canadian Conference on Electrical and Computer Engineering
(CCECE)/CCGEI.

ABOUT THE AUTHOR
Chandru Mirchandani is an INCOSE Fellow, AIAA Associate Fellow,

ESEP and IEEE Senior Member. Currently, with Leidos, as a Qualified Sys-
tem Architect, Principal System Engineering Lead in Reliability, Maintain-
ability and Availability Engineer, and SME in the Digital Engineering Cen-
ter of Excellence. He developed, authored and delivered in depth analysis
for system reliability and resilience; and developed an innovative process
to distribute & allocate software faults to SW based on CPU usage, content
& environment. Concurrently, an Adjunct Professor at George Washington
University teaching System Engineering for the past 10 years. Technical
chair for national and international symposia and conferences; authored
over 40 papers in complex systems and optimization of system concepts;
and reviewed technical papers. He has an MEEE (Rensselaer), MS Systems
Engineering (University of Maryland), and a PhD Systems Engineering
from George Washington University. Interests include research, design and
model development of complex systems based on reliability, performance
and cost; fault-tolerant systems; Bayesian processes and decision theory.
He has over 30 years as a Senior Staff Engineer (Lockheed Martin and
heritage companies) in the research, development, design and integration
of VLSI-based telemetry systems at NASA Goddard Space Flight Center.
Co-Principal Investigator on Intelligent Sensor and Satellite Networks
for Earth Science and Exploration. Lead System Engineer and Architect
on conceptual designs and concepts for Advanced Traffic Management
Systems and Intelligent Vehicle Highway Systems. Awarded a Fulbright
Specialist Grant 2012, taught Risk Management in Large Scale Systems at
the University of Sri Lanka.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

38

  ABSTRACT
As software engineering adopts a more continuous delivery mode for embedded and complex systems, systems engineering must
adapt and influence DevSecOps and related practices. In this article, I revisit agile, lean, and DevSecOps principles and comment
on their interactions, focusing on those that may increase product and system development, deployment, and evolution risk, and
those that increase improvement opportunities through productive engagement across the two disciplines. This material is also
available as a Software Engineering Institute Blog Post from 15 March 2021 [https://insights.sei.cmu.edu/blog/comparing-devsec-
ops-and-systems-engineering-principles/.]

Systems Engineering and
DevSecOps: Reviewing
the Principles

Dr. Richard Turner, rturner@sei.cmu.edu
Copyright © 2021 by Carnegie Mellon University. Permission granted to INCOSE to publish and use.

ARE THERE FUNDAMENTAL ISSUES BETWEEN
THE SYSTEMS AND SOFTWARE DISCIPLINES?

I believe we do not fully understand the
interaction of these two disciplines,
and experience from early application
suggests counterproductive model

clashes (Boehm, Port, and Al-Said 2020).
The following table identifies fundamental
differences between historically practiced
systems engineering and systems engi-
neering for evolving software engineering
environments. Mitigating the clashes could
enhance the DevSecOps adoption suc-
cess rate and support adjustments to both
disciplines. However, mitigation requires
identifying the specifics and understanding
model clash contexts and sources.

Due to the breadth of domains both
disciplines cover, I have revisited theirbasic
principles to better understand the model
clashes. Systems engineering principles
generally focus less on activities than the
lean, agile, and DevSecOps principles.
Therefore, I present them first and then
discuss how the Agile, Lean and DevSec-
Ops principles interact with the systems
engineering principles and activities.

SYSTEMS ENGINEERING PRINCIPLES AND
ACTIVITIES

The Systems Engineering Body of Knowl-

[Distribution Statement A] Approved for public release and unlimited distribution.

edge (SEBoK) website [https://sebokwiki.
org/wiki/SEBoK_Introduction] defines systems
engineering as

“…a transdisciplinary approach and a
means to characterize and manage the
development of successful systems, where
a successful system satisfies the needs of its
customers, users, and other stakeholders.
Systems engineering focuses on holistically
and concurrently understanding stake-
holder needs; exploring opportunities;
documenting requirements; and synthe-
sizing, verifying, validating, and evolving
solutions while considering the complete
problem, from system concept exploration
through system disposal.”

Systems engineering principles tend
to be less specific than Agile, Lean, and
DevSecOps software engineering princi-
ples because they apply across so many
domains. Systems engineering princi-
ples also evolve, and INCOSE and other
organizations are addressing some of the
differences identified in the previous table.
However, just as with DevSecOps, the rate
of practitioner use of these refined princi-
ples is difficult to determine. Here are 14
principles developed by the NASA Systems
Engineering Research Consortium [https://

www.nasa.gov/consortium/SystemsEngineer-
ingPrinciples ](I have highlighted critical
concepts for this article).

COMPARING LEAN-AGILE PRINCIPLES TO
SYSTEMS ENGINEERING

DevSecOps is an extension of Lean-Agile
principles, and depends on their presence
for success. The following sections describe
each Lean-Agile and DevSecOps principle
and provide a brief commentary on its re-
lationship to key, related systems engineer-
ing activities. Given the numerous Agile
and Lean principle versions, I used the
collective principles articulated in the SAFe
Scaled Agile Framework for this compari-
son (Scaled Agile Framework 2020).

Principle 1: Take an Economic View.
We make decisions by comparing

clearly stated or unconsciously considered
values. In systems development, specifi-
cally addressing values allows teams to
make decisions in an economic framework
(Reinertsen 2020). Value should be a work
prioritization and sequencing factor.

Commentary: Understanding and inten-
tionally capturing requirement and design
component value as multiple stakeholders
see them enables better impact analyses

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

39

[Distribution Statement A] Approved for public release and unlimited distribution.

Systems Engineering as
Historically Practiced

Systems Engineering for Evolving Software and
DevSecOps Environments

Large-batch processing (products,
documents, events)

Small batch processing (products, documents, events)

Single-pass lifecycle (all requirements done
before initiating the design; all design done
before implementation)

Incremental, iterative multi-pass lifecycle (small product batches
and their artifacts built/tested iteratively, delivered incrementally)

Single-point design Set-based design

Solution intent fixed early (all requirements
defined in detail early)

Solution intent is variable early (only near-term requirements in
detail; others are higher level with details based on learning)

Fixed point, large-batch integration
(components all “done” before integration
occurs)

Cadence-based, small-batch integration used as frequently as
feasible; integrate as available to prevent rework (for software, this
may be daily or continually)

Centralized, command-and-control
leadership

Mix of centralized and decentralized leadership; “servant
leadership”

Detailed, allocated baseline early; high
overhead change management practices
remain for the rest of development

Allocated baseline abstraction level allows learning-based change
throughout development; no high-overhead change processes

Hardware and software treated separately,
integrated late

Hardware and software treated together, integrated early and
frequently

Large-batch model-based engineering applied
to improve requirement and design detail
before implementation; often abandoned
after design

Model-based engineering moves between large- and small-
batch modeling activities; models and simulations flow with
implementation and support the entire lifecycle, development
through sustainment

Projective (to be) requirements and design
documentation dominates early discussion
and activities

Projective documentation takes second place to working
prototypes and demos; guides and does not specify; documentation
is as-built, not to be.

Systems engineering function separate
from hardware and software development
functions

Systems engineering function integrated into capability-focused
teams including all required disciplines (hardware, software, user
experience, and reliability)

Component-based work breakdown structure Capability-based work breakdown structure

Systems engineering primarily as artifact
transformation (Requirements->Architecture-
>Design)

Systems engineering as a service (facilitating artifact
transformation; focus on communication, coordination, conflict
resolution, and collaboration)

System architecture decisions neutral to
development approach

System architecture decisions strongly support loosely coupled
components/subsystems, especially for software capabilities

Assumes early work is correct and late failure
is a surprise

Assumes early work is inherently flawed and learning from early
failure feeds the evolution of knowledge about the system

Freezes system and software architecture
early

Refines an intentionally extendable and iteratively evolving
architecture throughout development and sustainment

User participation is only early and late User participation is continuous throughout the lifecycle

and prioritization in development and sus-
tainment. Using a common value-determi-
nation process, including all success-critical
stakeholders , can provide decision visi-
bility; support decisions at deeper imple-
mentation layers; and support identifying
temporal, internal, and external influences
impacting value. Appendix C of Boehm
and Turner’s work (2015) provides a model
of value-based systems engineering.

Principle 2: Apply Systems Thinking.
Systems thinking broadens the

development focus, encompassing the
entire value stream in acquisitional,
developmental, and operational
organizations (Centers for Disease Control
and Prevention 2017). It considers more
factors than requirements or how the
product system operates, and it enables us
to understand the socio-technical system

encompassing the product and its context.
Commentary: Systems engineering, by

definition, incorporates systems thinking.
Understanding the full effort (including the
DevSecOps activities and requirements),
the associated value streams, and overall
value network is critical to system
thinking’s holistic nature. Systems thinking
is an obvious common principle.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

40

[Distribution Statement A] Approved for public release and unlimited distribution.

Principle 3: Assume Variability; Preserve
Options.

Locking in a single, detailed description
of a system that will take years to develop
can become a barrier as soon as a change
in one or more naturally evolving factors—
threats, political landscapes, economics,
technology, or markets—invalidates an
assumption or specification. Acquirers and
developers must acknowledge variability
and uncertainty as facts of life, and invest-
ing in and maintaining options and making
decisions at the last responsible moment is
a good way to manage change (Matts 2017).

Commentary: While specific systems
engineering tasks look at risk management,
safety, and security-failure modes, few-
er activities address understanding how
environmental changes impact the actual
development, once approved. Identifying
and managing useful options to reduce
the impact of changes requires ongoing
resources and intentional activities.

Principle 4: Build Incrementally with Fast,
Integrated Learning Cycles.

This principle provides feedback on
estimates, assumptions, and feasibility
quickly enough to eliminate high rework
costs. Coupled with small batch size, it
offers high stability in work planning and

enhanced agility to capture opportunities
resulting from uncertainty and variability.
It eliminates the overhead of maintaining
large, monolithic, and generally inaccurate
master schedules and focuses on delivering
value quickly.

Commentary: This principle is a key con-
cern. Systems engineering generally drives
software development and sustainment
to the bottom of the traditional V model
(Miller 2019). Adaptation to DevSecOps’
continuous, incremental, and iterative
nature forces an earlier and sustained focus
on software-related systems engineering
activities reducing the V model risks. The
cultural challenge for systems engineering
is moving from relatively rare interactions
to continuous involvement in software
development and evolution.

Principle 5: Base Milestone Completion
on the Objective Evaluation of Working
Systems.

Traditionally, systems engineering treats
milestones as gates, with passage based
on static technical artifacts with little
completeness or accuracy evidence. Status
demonstrations are more useful and pro-
vide more learning opportunities.

Commentary: Technical reviews
(particularly those supporting milestone

gates and progress measurement) often
build on boilerplate documentation,
overly formalized plans, incomplete or
inadequately vetted requirements, or
design specifications, including guesses
made to remove “to be determined” items
rather than acknowledging these items
require further analysis at the milestone.
The scope is also extensive, driven by
complex critical resource scheduling. The
minimal viable product (MVP) concept
can apply in systems engineering to include
demonstrable, measurable outcomes for
smaller work efforts. Systems engineers
often base their decisions on the analysis,
prototyping, and experimentation results;
such results could reasonably act as systems
engineering MVPs.

Principle 6: Visualize and Limit Work in
Progress (WIP), Reduce Batch Sizes, and
Manage Queue Lengths.

Visualizing and limiting work in progress
regulates the number of tasks worked on
simultaneously (Atlassian 2019). It also
keeps from overwhelming the human
resources by the context switching between
tasks. Managing batch size and queue
lengths supports the WIP focus with the
“stop starting and start finishing” principle
since the user receives value only with

NASA Systems Engineering Research Consortium Systems Engineering Principles

Principle 1: Systems engineering integrates the system and the disciplines considering the budget and schedule
constraints.

Principle 2: Complex systems build complex systems.

Principle 3: A focus of systems engineering during the development phase is a progressively deeper
understanding of the interactions, sensitivities, and behaviors of the system, stakeholder needs, and its
operational environment.

Principle 4: Systems engineering has a critical role through the entire system lifecycle.

Principle 5: Systems engineering is based on a middle-range set of theories.

Principle 6: Systems engineering maps and manages the discipline interactions within the organization.

Principle 7: Decision quality depends on the system knowledge present in the decision-making process.

Principle 8: Both policy and law must be properly understood to not overly constrain or under constrain the system
implementation.

Principle 9: Systems engineering decisions are made under uncertainty, accounting for risk.

Principle 10: Verification is a demonstrated understanding of all the system functions and interactions in the
operational environment.

Principle 11: Validation is a demonstrated understanding of the system’s value to the system stakeholders.

Principle 12: Systems engineering solutions are constrained based on the decision timeframe for the system need.

Principle 13: Stakeholder expectations change with advancement in technology and understanding of system
application.

Principle 14: The real physical system is the only perfect representation of the system.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

41

[Distribution Statement A] Approved for public release and unlimited distribution.

completed work, and work waiting in a
queue is a waste (Reinertsen 2017).

Commentary: Systems engineering is of-
ten understaffed, and the continuous nature
of a DevSecOps environment puts a strain
on available systems engineering resources.
Understanding how much work to expect
and its production rate supports maximizing
the flow and increasing the value of many
systems engineering activities. Staffing
practices are a significant factor for systems
engineering in applying this principle.

Principle 7: Apply Cadence and
Synchronize with Cross-Domain Planning.

Agile-Lean organizations work on a con-
tinuous understanding, implementation,
and feedback cycle to provide the most val-
ue over a cycle with the available resources.
Hayes (2017) explains setting cadences and
synchronizing across the various teams and
activities is the Lean answer to bounding
uncertainty and are essential to:

■	 providing predictable results and feed-
back opportunity cycle

■	 aligning metrics
■	 converting unpredictable events into

predictable ones
■	 providing opportunities to understand,

resolve, and integrate multiple teams’
work and manage various stakeholder
perspectives simultaneously.

Commentary: Predictive or “push”
scheduling usually downplays uncertainty
and provides reasonable estimates based
on engineering analysis of static needs
and operational environments. Aligning
different cadences between systems
engineering and software engineering
activities may be challenging, but
adjustments can maintain or improve either
(or both) discipline’s value. One significant
clash is the impact of complex integrated
master schedule planning in such detail
and over such long time periods that the
opportunity value of uncertainty collapses
into engineering constraints and becomes a
significant risk to success.

Principle 8: Unlock the Intrinsic Motivation
of Knowledge Workers.

To ensure motivation and engagement
among team members, create an environ-
ment marked by autonomy, mutual respect,
and mission understanding.

Commentary: This principle likely does
not affect most systems engineering techni-
cal activities. However, effectively managing
the systems engineering workforce entails
considering whether the software engineer-
ing and other disciplines sufficiently engage
the systems engineering personnel to main-

tain interest and situational awareness. This
principle is fundamental in large complex
programs, such as weapons systems, highly
regulated systems, and systems of systems,
where the work spreads across numerous
organizations or companies.

Principle 9: Decentralize Decision Making.
Decentralized decision-making is a key

component for achieving the shortest sus-
tainable value-delivery time.

Commentary: Decisions requiring
sequential acceptance by multiple authority
levels can destroy cadence, delay prog-
ress, and often lead to decisions based on
outdated information. Strategic decisions
are more effective if centralized, but teams
should strive to delegate all other decisions
to the level closest to the information in-
volved and balance the need for continuous
collaboration with the delays of sequential
acceptance. Most systems engineering ac-
tivities support rather than make decisions.
Regardless of the decision-maker, those
closest to the problem should develop the
recommendations made by the systems
engineering workforce. Those making
a recommendation must have sufficient
access to information and the visibility to
understand the recommendation conse-
quences. Analysis paralysis is contagious
and should never become a factor (See vari-
ability and options above).

COMPARING DEVSECOPS PRINCIPLES TO
SYSTEMS ENGINEERING

DevSecOps broadens these principles,
and they help integrate development,
security, and operation activities into a con-
tinuous integration/continuous deployment
(CI/CD) pipeline (Wrubel and Yasar 2018).
The SEI (Morales et al. 2020) defines these
principles as follows:

Principle 1: Collaboration.
Full stakeholder engagement in every

software development lifecycle aspect
facilitates full awareness and input on all
decisions and outcomes. Developers, oper-
ators, engineers, end-users, customers, and
other stakeholders are active participants in
decision-making and work progress (Davis
2017).

Commentary: Having ongoing access
to systems engineering expertise is key in
maintaining DevSecOps activities. Simi-
larly, having software engineers involved
in technical systems engineering activities
reduces significant conflict and associated
rework opportunities. Collaboration among
systems and software engineers can also
improve collaboration with project and
program management.

Principle 2: Infrastructure as Code (IaC).
Klein (2018) explains IaC are software

artifacts specifying the hardware/software
components needed to run correctly and
accessing, configuring, and installing each
artifact. Infrastructure components can be
actual, virtual, or both.

Commentary: While IaC is not specif-
ically a systems engineering activity, IaC
provides complete documentation of the
execution environment maintained in the
same repository as the code and supports
the configuration management issues often
plaguing software and system components.
It also eases transitioning the code to an
altered or completely new environment by
providing a clear expectation description
and identifying what software components
need changing.

Principle 3: Continuous Integration.
Continuous integration automatically

unifies individual system components into
a single entity (Cois 2015). Unification
occurs regularly, and the components, once
unified, function together as a whole. The
components may have dependencies on
one another to function correctly.

Commentary: When coupled with IaC,
continuous integration implements short
learning cycles/increments giving systems
engineering constant visibility into the
code and ensures teams or teams of teams
develop code while avoiding unexpected
integration problems late in the develop-
ment cycle. Rather than developing multi-
ple components or capabilities in separate
insular silos, continuous integration enables
rapid access to integration issues before
they cause significant rework (See the Envi-
ronment Parity principle).

Principle 4 and 5: Continuous Delivery and
Continuous Deployment.

Continuous delivery refers to automated
software transfer to a staging environment
similar to the production environment.
Once delivered, the operations organiza-
tion may conduct further testing but must
decide when to deploy the software man-
ually—for example, unclassified software
running on classified data produced by
another system, independently changing.
Operations may want independent testing
using live data before deployment. It also
allows the operations team to decide if
updates are valuable enough to deploy.

Continuous deployments need no opera-
tions team activity and transfer operational
software directly into a production environ-
ment. It relies solely on rigorous static source
code testing and dynamic deployable artifact
testing within the CI/CD pipeline.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

42

[Distribution Statement A] Approved for public release and unlimited distribution.

Commentary: Both continuous modes
pass the fully integrated and tested soft-
ware, including complete documentation
and deployment information, to the op-
erational organization. A continuous user
transition mode provides a more rapid res-
olution for evolving cybersecurity vulner-
abilities. While both methods reduce delay
in capability delivery, each provides for
different circumstances. When completing
the testing in a duplicated operational en-
vironment, continuous deployment makes
sense. If there is not absolute congruity
between the testing environment and the
operating environment—perhaps because
of security or infrastructure needs—con-
tinuous delivery allows the organization
to adjust the deployment cadence to their
need without impacting the software
development velocity. Continuous delivery/
deployment provides systems engineering
with a complete, fully documented software
sequence. The drawbacks include the trust
required and the rapid baseline evolution.

Principle 6: Environment Parity.
When two or more system environments

are as identical as possible, they are in
parity. DevSecOps pursues parity between
development, staging, and production
environments. IaC and deployable artifacts
are critical to achieving parity.

Commentary: Like IaC, maintaining
environment parity supports continuous
testing integration and acceleration. An
environment parity maintenance exam-
ple is including security testing from the
initial development through deployment.
A constantly changing environment risks
significantly delaying defect identification
due to an environmental anomaly.

Principle 7: Automation.
A pipeline is technically implementing

DevSecOps principles to assist all stake-
holders in every software development
aspect, including building, testing, delivery,
and monitoring (Ficorilli 2017). Automated
pipelines can also include configuration
management and test environment gener-
ation.

Commentary: Automation significantly
impacts systems engineering by providing

substantial software status visibility,
verification, and validation throughout the
lifecycle (Nielsen 2019). It ensures teams
perform testing at every level and do not
sign off on any package until they integrate
and test it. Automation also enables earlier
and consistent verification and validation
inclusion across systems and components.

Principle 8: Monitoring.
Continuous performance metric mon-

itoring simultaneously drives pipeline
improvement and software quality. Teams
also need to monitor security for both
the developing software and the pipeline
automation.

Commentary: Historically, systems engi-
neering monitoring focuses on key perfor-
mance parameters and engineering targets.
These are still critical tracking values. In
a continuous integration and deployment
environment, the information available for
determining or demonstrating actual values
will be more inclusive and more frequent.
Systems engineers should have consistently
better data to track

SO NOW WHAT?
It appears the principles generally align,

but the foci of the practices are very differ-
ent. Agile, lean, and DevSecOps are narrow,
specific, and highly automated. Systems en-
gineering practices incorporate the broader
systems view. These should be mutually
supportive. Unfortunately, many practice
contexts, values, and incentives run counter
to other practices within and between both
disciplines. This is not insurmountable, but
we need collaboration on mitigations and
solutions. Hopefully, both disciplines strive
to grow their understanding of the other’s
needs and goals, and the general principle
alignment will provide room for innovation
and improving outcomes.  ¡

ACKNOWLEDGMENTS
Copyright 2021 Carnegie Mellon Uni-

versity.
This material is based upon work

funded and supported by the Department
of Defense under Contract No. FA8702-
15-D-0002 with Carnegie Mellon Uni-
versity for the operation of the Software

Engineering Institute, a federally funded
research and development center.

The view, opinions, and/or findings
contained in this material are those of the
author(s) and should not be construed as
an official Government position, policy,
or decision, unless designated by other
documentation.

NO WARRANTY. THIS CARNEGIE
MELLON UNIVERSITY AND SOFT-
WARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PUR-
POSE OR MERCHANTABILITY, EXCLU-
SIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND
WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPY-
RIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This
material has been approved for public re-
lease and unlimited distribution. Please see
Copyright notice for non-US Government
use and distribution.

Internal use:* Permission to reproduce
this material and to prepare derivative
works from this material for internal use is
granted, provided the copyright and “No
Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be
reproduced in its entirety, without modifi-
cation, and freely distributed in written or
electronic form without requesting formal
permission. Permission is required for any
other external and/or commercial use.
Requests for permission should be directed
to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S.
government entities.

Carnegie Mellon® is registered in the U.S.
Patent and Trademark Office by Carnegie
Mellon University.

DM21-0296

REFERENCES
■	 Atlassian. 2019. “Kanban WIP Limits-Agile Coach 2019.” You-

Tube, 3 April. https://www.youtube.com/watch?v=zEJn6eQO6FE .
■	 Boehm, B., D. Port, and M. Al-Said. 2020. “Avoiding the

Software Model-Clash Spiderweb.” Computer 33: 120-122.
DOI:10.1109/2.881698

■	 Boehm, B., and R. Turner. 2015. “The Incremental
Commitment Spiral Model (ICSM): Principles and Practices

for Successful Systems and Software.” Paper presented at
the 2015 International Conference on Software and Systems
Process, Tallinn, EE, 24-26 August.

■	 Centers for Disease Control and Prevention. 2017. “The Value
of Systems Thinking.” YouTube, 26 October. https://www.
youtube.com/watch?v=Fo3ndxVOZEo .

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

43

[Distribution Statement A] Approved for public release and unlimited distribution.

■	 Cois, C. A. 2015. “Continuous Integration in DevOps.” Soft-
ware Engineering Institute Blog, 26 January. https://insights.sei.
cmu.edu/blog/continuous-integration-in-devops/ .

■	 Davis, C. 2017. “DevOps Who Does What-Cornelia Davis.”
YouTube, 12 June. https://www.youtube.com/watch?v=kpuJSp-
p3hhA .

■	 Ficorilli, S. 2017. “Microcosm: A secure DevOps Pipeline as
code.” Software Engineering Institute Blog, 22 June. https://
insights.sei.cmu.edu/blog/microcosm-a-secure-devops-pipeline-
as-code/ .

■	 Hayes, W. 2017. “Cadence in Agile Development.” YouTube, 12
October. https://www.youtube.com/watch?v=UgXcOsmfVM8 .

■	 Klein, J. 2018. “Infrastructure as Code: Moving Beyond
DevOps and Agile.” Software Engineering Institue Blog, 11
June. https://insights.sei.cmu.edu/blog/infrastructure-as-code-
moving-beyond-devops-and-agile/ .

■	 Matts, C. 2017. “DevOpsChat: Real Options Interview with
Chris Matts.” YouTube, 20 April. https://www.youtube.com/
watch?v=YrEhH9R3NYg .

■	 Miller, S. 2019. “Agile Pitfall in Acquisition: The Bottom of the
V.” Software Engineering Institute Blog, 10 October. https://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetid=635239 .

■	 Morales, J. A., R. Turner, S. Miller, P. Capell, P. R. Place, and
D. J. Shepard. 2020. “Guide to Implementing DevSecOps for a
System of Systems in Highly Regulated Environments.” Tech-
nical Report, Carnegie Mellon University (Pittsburgh, US-PA).

■	 Nielsen, P. 2019. “The Modern Software Factory and Indepen-
dent V&V for Machine Learning: Two Key Recommendations
for Improving Software in Defense Systems.” Software Engi-
neering Institute Blog, 25 February. https://insights.sei.cmu.edu/
blog/the-modern-software-factory-and-independent-vv-for-ma-
chine-learning-two-key-recommendations-for-improving-soft-
ware-in-defense-systems/ .

■	 Reinertsen, D. 2017. “4. Don Reinertsen: The Economics of
Batch Size and the ‘Father-Egg’ Story.” YouTube, 12 April.
https://www.youtube.com/watch?v=zVASqSj_kvc .

■	 ———. 2020. “Let It Flow.” YouTube, 24 March. https://www.
youtube.com/watch?app=desktop&t=276&v=hTMwhjVVYu4&fea-
ture=youtu.be.

■	 Scaled Agile Framework (SAFe). 2020. “SAFe: Framework for
Scaling Agile.” https://www.scaledagile.com/enterprise-solu-
tions/what-is-safe/ .

■	 Wrubel, E., and H. Yasar. 2018. “Continuous Iterative
Development and Deployment Practices.” Software Engineering
Institute blog, 22 October. https://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=528893

ADDITIONAL RESOURCES
■	 Boehm, B., J. A. Lane, S. Koolmanojwong, and R. Turner. 2013.

The Incremental Commitment Spiral Model: Principles and
Practices for Successful Systems and Software. Boston, US-MA:
Addison-Wesley Professional.

■	 Boehm, B., and A. Jain. 2007. “The Value-Based Theory of Sys-
tems Engineering: Identifying and Explaining Dependencies.”
University of Southern California (Los Angeles, US-CA).

■	 Morales, J. 2019. “Challenges to Implementing DevOps in
Highly Regulated Environments: First in a Series.” Software
Engineering Institute Blog, 29 January. https://insights.sei.cmu.
edu/blog/challenges-to-implementing-devops-in-highly-regulat-
ed-environments-first-in-a-series/ .

■	 Wrubel, E., S. Miller, M. A. Lapham, and T. A. Chick. 2014.
“Agile Software Teams: How They Engage with Systems
Engineering on DoD Acquisition Programs.” Technical Note,
Carnegie Mellon University (Pittsburgh, US-PA).

ABOUT THE AUTHOR
Richard Turner has over 40 years of systems, software,

and acquisition engineering experience. He developed and
acquired software in the private and public sectors and consulted
for government and commercial organizations. Currently a
Continuous Deployment of Capability Directorate member at
Carnegie Mellon University’s Software Engineering Institute,
he recently spent 18 months working in the F-35 joint program
office’s modeling and simulation organization. His career includes
nine years at the FAA and 10 years as faculty in the School of
Systems and Enterprises and the Systems Engineering Research
Center at Stevens Institute of Technology.

Dr. Turner’s research interests include:
■	 harmonizing software, systems engineering, and acquisition

lifecycle models
■	 applying agile and lean techniques to improve a wide variety of

engineering tasks
■	 transitioning research to practice
■	 educating engineers in lean-agile principles and practice
■	 employing spiral, risk-driven methods in large system-of-

systems acquisitions.

Dr. Turner is co-author of four books: The Incremental
Commitment Spiral Model: Principals and Practices for Successful
Systems and Software (Addison Wesley, 2014) and Balancing
Agility and Discipline: A Guide for the Perplexed (Addison Wesley,
2004), both co-authored with Barry Boehm, CMMISM Distilled
(Addison Wesley, 3rd edition 2008), and CMMISM Survival
Guide: Just enough Process Improvement (Addison Wesley 2007),
co-authored with Suzanne Garcia [Miller]. He was a core author
for the IEEE-CS/PMI Software Extension to the Guide to the
PMBOK and has received the Golden Core award from IEEE-CS.

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

44

INTRODUCTION AND BACKGROUND

  ABSTRACT
As interdisciplinary systems thinkers, we in the systems engineering field – especially the members of the Systems and Software
Interface Working Group (SaSIWG) – are wired to believe that a “systems mindset should be everywhere.” To catalyze the con-
versation about increasing the relevance of systems engineering and systems thinking in software- and data-intensive settings,
this paper offers eight thought questions, which span governance, people, process, technology, and business concerns. The goal:
resilience in the face of ever-increasing volatility and complexity. Join our conversation!

Systems Thinking and
Business Resilience:
Questions That Should
Keep Us Up at Night

  KEYWORDS:  anti-fragility, complexity, resilience, systems engineering, systems thinking

Jeannine Siviy, jeannine.siviy@yahoo.com; and Gene Kim, genek@itrevolution.com
Copyright © 2021 by Jeannine Siviy and Gene Kim. Permission granted to INCOSE to publish and use.

1	 Anti-fragility is a property where systems capability increases in response to stressors,
volatility, variability, or uncertainty. It differs from robustness (recovery from failure) and
resilience (resistance to failure). (Taleb)

“…Most of the problems faced by
humankind concerns our inability to grasp
and manage the increasingly complex
systems of our world.”	 —Peter Senge

We have become accustomed
to the phrases “everything is
software” and “everything is
data” as well as “everything

is being digitally transformed.”
“Everything is a system” is not spoken

with the same prevalence. Yet most things
we encounter day to day are systems, as
evidenced by these basic definitions:

■	 a set of things working together as parts
of a mechanism or an interconnecting
network. [Oxford languages]

■	 a group of interacting or interrelated
entities [parts] that form a unified
whole. [Wikipedia]

■	 a set of principles or procedures
according to which something is done,
an organized framework or method.
[Oxford languages]

■	 an ordered and comprehensive assem-
blage of facts, principles, doctrines, or
the like in a particular field of knowl-
edge or thought: a system of philoso-
phy. [Dictionary.com]

■	 a coordinated body of methods or a
scheme or plan of procedure. [Dictio-
nary.com]

■	 An engineered system is a system
designed or adapted to interact with
an operational environment to achieve
one or more intended purposes while
complying with applicable constraints.
(INCOSE)

As an interdisciplinary field, systems
engineering’s bodies of knowledge are wide
and deep, going well beyond a “product and
technology” focus that many might expect.
They span strategy, governance, people,
process, and methods (including architec-
ture, modeling, and analysis), and data.

With systems thinking principles at our
core, we hold a variety of roles in organiza-
tions, we work to mission and we are wired
to believe that a “systems mindset should
be everywhere.”

We observe that there are gaps in this
mindset in many organizations. We seek to
close these gaps, positioning organizations

for not only flexibility and adaptability
but also robustness, resilience, and anti-
fragility 1 at speed and scale, in the face
of ever-increasing volatility, uncertainty,
complexity and ambiguity (aka VUCA).

If we are to realize this vision and
increase the relevance (and usability) of
systems engineering and systems thinking
in software- and data-intensive organi-
zations and programs, we need to apply
our own expertise to the challenge: take a
systems view, starting with key questions
and leading to useful models (which we
love to create!).

Eight questions, with elaborations, are
shared here to catalyze the conversation.

QUESTIONS OF PEOPLE, PROCESS,
TECHNOLOGY

“Systems Thinking is a discipline for
seeing … complex situations, and for
discerning high from low leverage change… 
By seeing wholes, we learn how to foster
health.”	 —Peter Senge

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

45

If as a matter of principle, we accept the
value of an increased systems mindset, then
we need to address fundamental questions
of context (for situational awareness);
roles; processes, tools, and methods; and
people and their capabilities. By fostering
this broad understanding, we can model
effective ways to operationally integrate and
interface systems, software, and data.

1.	 Context: How do we characterize and
categorize software-, systems- and data-
intensive settings? Consider:

■	 types of systems, products and
services produced: e.g., embedded
real-time, Information Technology
(IT) infrastructure, shrink-wrapped
product with unpredictable behavior
in sometimes unpredictable ecosystem
behavior.

■	 sectors and their classes: safety critical,
like flight and health, finance, retail.

■	 complexity: of the product, service, or
system being produced.

■	 more complexity: of the ecosystem or
market in which it functions, such as
regulated markets, and 2-sided plat-
forms and markets.

■	 size: number of people, revenue gener-
ated, and other ways to measure.

2.	 Roles: What roles should be held by sys-
tems thinkers throughout an organiza-
tion and particularly relative to leader-
ship, governance, decision-making and
coaching accountabilities? Consider:

■	 What should be the systems presence
in executive roles as well as in program
and engineering arenas?

■	 Which roles are “all about systems”
(e.g., “Chief Engineer” or “Chief
Architect”) and which roles need to
be infused with systems thinking (e.g.,
C-Suite)?

■	 How do we reconcile overlapping or
duplicative role titles across disciplines?
e.g., “architect” (preceded with any
number of adjectives and qualifiers).

■	 Is broad cross-industry consensus on
this topic possible or practical?

3.	 Processes and Methods: How does sys-
tems engineering dovetail with software
engineering, data science, and (new!)
digital engineering in the execution of
work? This is not a trivial question. A
few notes on each are offered here to
highlight connections (and hopefully
will not draw ire because of incomplete-
ness). Consider:

■	 Systems engineering is an
interdisciplinary field that focuses on
how to design, integrate, and manage
complex systems over their life. Its

spans products, services as well as
enterprises. With systems thinking
at its core, it unifies all disciplines
participating in an endeavor, often
leveraging mathematical, graphical, and
engineering models.

■	 Software engineering is the application
of computer science, software develop-
ment, and related fields to build appli-
cations, operating systems and systems
software that solve a broad range of
business problems.

■	 Data science is an interdisciplinary
field at the intersection of software
development, computer science, math-
ematics, data structures and business.
Data scientists solve complex problems
via models (preferably causal).

■	 Digital Engineering is an integrated
approach that uses authoritative sources
of system data and models as a contin-
uum across disciplines to support life-
cycle activities from concept through
disposal. (www.wpafb.af.mil)

■	 Prevalent frameworks and life cycles,
through which we all conduct work,
include Agile, Scaled Agile, DevSecOps
and Lean Portfolio Management.

4.	 People: How much “systems mindset”
should software engineers and de-
velopers have? How much “software
mindset” should systems engineers
have? Consider:

■	 In the context of Questions 2 and 3,
and honoring each discipline’s bodies of
knowledge, how do we pinpoint specific
necessary shared principles and skills?

■	 Then how do we incorporate them into
the state of the practice?

5.	 Synthesis: How do we, as systems en-
gineers and systems thinkers, apply our
own tools to create consumable, elegant
and useful models for the preceding
questions? Consider:

■	 What we do is valuable, but often
overwhelming to people, hence this
dialogue.

■	 What are our most basic tools, for clar-
ifying interfaces, data flow, and cause
and effect? When do we use those vs.
more sophisticated methods?

■	 What reusable models can we build?
What must be handled within each
organization?

■	 How do we engage participants, one
step at a time? How do we become mas-
terful facilitators? e.g., group modeling
using cause and effect loop diagrams.

■	 And at the end of the day, remember
the words of George Box: “All Models
Are Wrong; Some Models Are Useful.”
We must strive for useful.

MAKING IT REAL: QUESTIONS OF BUSINESS
“94% of problems in business are systems

driven…”	 —W. Edwards Deming

“Leaders: If you’re too busy to build good
systems, then you’ll always be too busy.”	
			 —Brian Logue

We will get the most traction on our
vision and above tactical questions when
there is good business fit, which brings us
to a short list of complementary questions:

1.	 Fundamentally, what is the business
case – the concrete business value – for
implementing broad models of systems
engineering and systems thinking
throughout the organization? Consider:

■	 How do we monetize matters of resil-
ience and anti-fragility? Adaptability
and flexibility? Speed of innovation?

■	 How do we convince the constituencies
that it matters to be proactive, and that
systems thinking and engineering are
key to success?

2.	 Culturally, how do we persuade organi-
zational leaders to proactively “engineer
the systems”? Consider

■	 What is the scope and scale of “engi-
neering the systems”? e.g., products,
services, organizational systems (busi-
ness and technical strategies, process-
es, culture, structure), interfaces and
interactions with market and regulatory
ecosystems

■	 What do we mean by proactive vs.
responsive vs. reactive?

■	 Who should be accountable to under-
stand, model, build and direct these
systems?

■	 What is the leadership and follower-
ship  model? (Followership: having the
courage of one’s convictions to execute
the vision of the leader within the
framework of personal accountabilities
(Geldart); to demonstrate teamwork, to
build cohesion among the organization
(Suda))

3.	 How do we stay abreast of industry
trends (such as “digital engineering”
which has been included in this paper)
as well as within-organization trends,
ensuring that the business, operating
and technical models we set forth
remain fresh and relevant? Consider:

■	 How do we build effective and active
coalitions with business and cross-
discipline thought leaders? With our
internal colleagues?

■	 How does systems engineering have a
“seat at the table” and be “in the conver-
sation” relative to business, operational
and technical strategy?

SP
ECIA

L
FEA

TU
R

E
JU

LY
 2O

21
VOLUM

E 24/ ISSUE 2

46

PLEASE JOIN US IN THE CONVERSATION
The time has come to mainstream systems engineering and sys-

tems thinking, as we strive to ensure that our software- and data-
intensive systems and organizations are resilient and anti-fragile.

Systems engineering is both the object of this endeavor and the
enabler of the solution. We systems engineering practitioners are
masters of our fate, if you will. We thrive on navigating complexity
to meet our mission. We have the wherewithal to create broad
reusable models as well as specific fit-for-use models needed for
each organization’s journey.

With these questions and perspectives offered in this special
issue, we begin to create agency for us to do so. We invite you to
join the dialogue.  ¡

REFERENCES
■	 “Question 3, Processes and Methods” reflects author experi-

ence and several sources:
■	 (www.wpafb.af.mil) https://www.wpafb.af.mil/News/Article-

Display/Article/2044411/digital-engineering-transformation-
coming-to-the-af-weapons-enterprise/

■	 https://medium.com/@udemeudofia01/disciplines-in-data-sci-
ence-a1da93306528

■	 https://thedatascientist.com/data-science-considered-own-disci-
pline/

■	 https://en.wikipedia.org/wiki/Outline_of_software_engineering
■	 https://en.wikipedia.org/wiki/Systems_engineering
■	 (INCOSE) https://www.incose.org/about-systems-engineering/

system-and-se-definition
■	 Each field has its own bodies of knowledge and references, well

beyond these sources.
■	 (Geldart) Geldart, P. “Followership in Leadership,” Eagles-

Flight.com Blog, 10/28/20.

■	 (Suda) Suda, L., “In Praise of Followers,” Project Management
Institute Global Congress 2013.

■	 (Taleb) The definition of anti-fragility is drawn from
Wikipedia summary of N. N. Taleb’s work.

ABOUT THE AUTHORS
Jeannine Siviy is a business and technology strategist who

recognizes undiscovered possibilities and spearheads paths of
practical innovation – cutting through complexity and ambiguity,
and delivering value at speed, at scale. She leads SDLC Partners’
Healthcare Solutions, where she and her team passionately address
persistent systems interoperation, automation, and ecosystem
challenges, with one solution earning a Gartner Hype Cycle men-
tion. She previously held leadership and technical roles at UPMC,
Carnegie Mellon’s Software Engineering Institute, and Eastman
Kodak Company. She holds engineering degrees from Purdue and
RIT, and Caltech’s certificate in Technology & Innovation Manage-
ment. A Pittsburgh native, she enjoys its cultural diversity and has
a long-standing passion for nature and animals.

Gene Kim has been studying high performing technology or-
ganizations since 1999. He was founder and CTO of Tripwire, Inc
for 13 years, an enterprise security software company. His books
have sold over 1 million copies. He is author of the WSJ bestsell-
ing book The Unicorn Project, and was co-author of The Phoenix
Project, The DevOps Handbook, and the Shingo Publication Award
winning Accelerate. Since 2014, he has been the organizer of the
DevOps Enterprise Summit, studying the technology transforma-
tions of large, complex organizations. He lives in Portland, Oregon
with his wife and family.

REFERENCES
■	 Boardman, J., and B. Sauser. 2008. Systems Thinking: Coping

With 21st Century Problems. Boca Raton, US-FL: CRC Press.
■	 Checkland, P. 1999. Systems Thinking, Systems Practice—Soft

Systems Methodology: A 30 Year Perspective. New York, US-
NY: Wiley.

■	 Creamer, N. 2021. “Voltaire.” Goodreads, 17 February.
Personal communication. https://www.goodreads.com/author/
show/5754446.Voltaire .

■	 Kim, G. 2019. The Unicorn Project: A Novel about Developers,
Digital Disruption, and Thriving in the Age of Data. Portland,
US-OR: IT Revolution.

■	 Gide, A. 2021. “The Week.” INews.co.uk.
■	 Perrow, C. 1999. Normal Accidents: Living with High-Risk Tech-

nologies. Princeton, US-NJ: Princeton University Press.
■	 Taleb, N. N. 2007. The Black Swan. New York, US-NY: Random

House.
■	 ———. 2012. Antifragile: Things that Gain from Disorder. New

York, US-NY: Random House.
■	 White, B. E. 2015. “On Leadership in the Complex Adaptive

Systems Engineering of Enterprise Transformation.” Journal
of Enterprise Transformation 5 (3): 192-217. Supplementary
Material (Appendices): http://www.tandfonline.com/doi/sup-
pl/10.1080/19488289.2015.1056450 .

■	 ———. 2021. Toward Solving Complex Human Problems:
Techniques for Increasing Our Understanding of What Matters
in Doing So. Boca Raton, US-FL: CRC Press.

ABOUT THE AUTHORS
Dr. Brian E. White received his Ph.D. and M.S. degrees in

Computer Sciences from the University of Wisconsin and his
S.M. and S.B. degrees in Electrical Engineering from M.I.T. He
served in the US Air Force, and for eight years, was at M.I.T.
Lincoln Laboratory. For five years, Dr. White was a principal
engineering manager at Signatron, Inc. In his 28 years at The
MITRE Corporation, he held various senior professional staff and
project/resource management positions. He was MITRE’s systems
engineering process office director, 2003-2009. Dr. White retired
from MITRE in July 2010, and has since offered a consulting
service, CAU SES (“Complexity Are Us”  Systems Engineering
Strategies). He taught as an adjunct professor at several US
universities and currently tutors students in basic mathematics,
calculus, electrical engineering, and complex systems. He edited
and authored several published books and book chapters, mostly
in his book series on complex and enterprise systems engineering
with Taylor and Francis and the CRC Press. He presented a dozen
tutorials in complex systems and published over one hundred
conference papers and journal articles in complex systems,
systems engineering, and digital communications over his 55+
year career.

Mickael Bouyaud is a business architect for Worldline, a global
leader in seamless payments, and the technical director of AFIS,
the French chapter of INCOSE. He has expertise in payment
systems, specializing in deploying acceptance solutions in retail
organizations, mobile security, a PIN on the Mobile solution, and
an Android-based point of sale. He worked in the mobile industry
as a 3GPP standard and algorithm engineer for Mitsubishi, then as
a system architect for NXP and Ericsson.

White and Bouyard  continued from page 31

Systems Engineering: The Journal of The International Council on Systems Engineering

Call for Papers
he Systems Engineering journal is intend ed to be a primary
source of multidisciplinary information for the systems engineer-
ing and management of products and services, and processes of
all types. Systems engi neering activities involve the technologies

and system management approaches needed for
• definition of systems, including identi fication of user

requirements and technological specifications;
• development of systems, including concep tual architectures,

tradeoff of design concepts, configuration management during
system development, integration of new systems with legacy
systems, inte grated product and process development; and

• deployment of systems, including opera tional test and
evaluation, maintenance over an extended life cycle, and
re-engineering.

Systems Engineering is the archival journal of, and exists to serve the
following objectives of, the International Council on Systems Engineer-
ing (INCOSE):

• To provide a focal point for dissemination of systems
engineering knowledge

• To promote collaboration in systems engineering education
and research

• To encourage and assure establishment of professional
standards for integrity in the practice of systems engineering

• To improve the professional status of all those engaged in the
practice of systems engineering

• To encourage governmental and industrial support for research
and educational programs that will improve the systems
engineering process and its practice

The journal supports these goals by provi ding a continuing, respected
publication of peer-reviewed results from research and development in
the area of systems engineering. Systems engineering is defined broadly
in this context as an interdisciplinary approach and means to enable the
realization of succes s ful systems that are of high quality, cost-effective,
and trust worthy in meeting customer requirements.

The Systems Engineering journal is dedi cated to all aspects of the
engineering of systems: technical, management, economic, and social.
It focuses on the life cycle processes needed to create trustworthy and
high-quality systems. It will also emphasize the systems management
efforts needed to define, develop, and deploy trustworthy and high
quality processes for the production of systems. Within this, Systems
Engineer ing is especially con cerned with evaluation of the efficiency and
effectiveness of systems management, technical direction, and integra-
tion of systems. Systems Engi neering is also very concerned with the
engineering of systems that support sustainable development. Modern
systems, including both products and services, are often very knowl-
edge-intensive, and are found in both the public and private sectors.
The journal emphasizes strate gic and program management of these,
and the infor mation and knowledge base for knowledge princi ples,
knowledge practices, and knowledge perspectives for the engineering of

systems. Definitive case studies involving systems engineering practice
are especially welcome.

The journal is a primary source of infor mation for the systems engineer-
ing of products and services that are generally large in scale, scope,
and complexity. Systems Engineering will be especially concerned with
process- or product-line–related efforts needed to produce products that
are trustworthy and of high quality, and that are cost effective in meeting
user needs. A major component of this is system cost and operational
effectiveness determination, and the development of processes that
ensure that products are cost effective. This requires the integration of a
number of engi neering disciplines necessary for the definition, devel-
opment, and deployment of complex systems. It also requires attention
to the life cycle process used to produce systems, and the integration
of systems, including legacy systems, at various architectural levels.
In addition, appropriate systems management of information and
knowledge across technologies, organi zations, and environments is also
needed to insure a sustainable world.

The journal will accept and review sub missions in English from any
author, in any global locality, whether or not the author is an INCOSE
member. A body of international peers will review all submissions, and
the reviewers will suggest potential revisions to the author, with the intent
to achieve published papers that

• relate to the field of systems engineering;
• represent new, previously unpublished work;
• advance the state of knowledge of the field; and
• conform to a high standard of scholarly presentation.

Editorial selection of works for publication will be made based on con-
tent, without regard to the stature of the authors. Selections will include
a wide variety of international works, recognizing and supporting the
essential breadth and universality of the field. Final selection of papers
for publication, and the form of publication, shall rest with the editor.

Submission of quality papers for review is strongly encouraged. The
review process is estimated to take three months, occasionally longer for
hard-copy manuscript.

Systems Engineering operates an online submission and peer review
system that allows authors to submit articles online and track their
progress, throughout the peer-review process, via a web interface.
All papers submitted to Systems Engineering, including revisions or
resubmissions of prior manuscripts, must be made through the online
system. Contributions sent through regular mail on paper or emails with
attachments will not be reviewed or acknowledged.

All manuscripts must be submitted online to Systems Engineering at
ScholarOne Manuscripts, located at:
 http://mc.manuscriptcentral.com/SYS
Full instructions and support are available on the site, and a user ID and
password can be obtained on the first visit.

T

INCOSE

Save the date
www.incose.org/hsi2021

November 17-19, 2021

Future events

JUL
17-22

SEP
20-24

OCT
28-29

Early
OCT

NOV
17-19

JAN
29-Feb 1

JUNE
25-30

SEP
17-19

31st Annual INCOSE International Symposium 2021
Virtual Event
www.incose.org/symp2021

2021 Western States Regional Conference (WSRC)
San Diego, CA, USA
www.incose.org/wsrc/wsrc2021

9th Nordic Systems Engineering Tour 2021
20th (Helsinki), 21st (Stockholm), 22nd (Oslo), 23rd (Copenhagen), 24th (Hamburg)
www.nordic-systems-engineering-tour.com

New England Workshop 2021
Virtual event

EMEA Workshop 2021
Sevilla, Spain
www.incose.org/EMEAWS2021

INCOSE Human Systems Integration Conference 2021
San Diego, CA, USA
www.incose.org/HSI2021

Annual INCOSE International Workshop 2022
Torrance, CA, USA
www.incose.org/iw2022

32nd Annual INCOSE International Symposium 2022
Detroit, MI, USA
www.incose.org/symp2022

Future
events

	Front Cover–Volume 24 Issue 2
	Inside this issue
	About This Publication
	From the Editor-In-Chief
	Special Feature
	Introduction to Themed Edition
	Systems and Software Interface Survey
	“Book Club” Guides A Working Group to Create INCOSE System-Software Interface Products
	Systems Engineering Roles in Software Organizations Delivering Service Products
	A Complex Adaptive Systems Engineering Methodology
	System Test Approach for Complex Software Systems
	Systems Engineering and DevSecOps: Reviewing the Principles
	Systems Thinking and Business Resilience: Questions That Should Keep Us Up at Night

	Call for Papers – Systems Engineering Journal
	INCOSE Future Events

