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About This Publication

INCOSE’s membership extends to over 18, 000 individual 
members and more than 100 corporations, government 
entities, and academic institutions. Its mission is to share, 
promote, and advance the best of systems engineering from 
across the globe for the benefit of humanity and the planet. 
INCOSE charters chapters worldwide, includes a corporate 
advisory board, and is led by elected officers and directors.

For more information, click here: 
The International Council on Systems Engineering
(www.incose.org)
INSIGHT is the magazine of the International Council on 
Systems Engineering. It is published four times per year and 

features informative articles dedicated to advancing the state 
of practice in systems engineering and to close the gap with 
the state of the art. INSIGHT delivers practical information 
on current hot topics, implementations, and best practices, 
written in applications-driven style. There is an emphasis on 
practical applications, tutorials, guides, and case studies that 
result in successful outcomes. Explicitly identified opinion 
pieces, book reviews, and technology roadmapping comple-
ment articles to stimulate advancing the state of practice. 
INSIGHT is dedicated to advancing the INCOSE objectives 
of impactful products and accelerating the transformation of 
systems engineering to a model-based discipline.
Topics to be covered include resilient systems, model-based 

systems engineering, commercial-driven transformational 
systems engineering, natural systems, agile security, systems 
of systems, and cyber-physical systems across disciplines 
and domains of interest to the constituent groups in the 
systems engineering community: industry, government, 
and academia. Advances in practice often come from lateral 
connections of information dissemination across disciplines 
and domains. INSIGHT will track advances in the state of the 
art with follow-up, practically written articles to more rapidly 
disseminate knowledge to stimulate practice throughout the 
community.

INFORMATION ABOUT INCOSE OVERVIEW

EDITORIAL BOARD AND STAFF 2021 INCOSE BOARD OF DIRECTORS

* PLEASE NOTE:  If the links highlighted here do not take you to 
those web sites, please copy and paste address in your browser.

Permission to reproduce Wiley journal Content:
Requests to reproduce material from John Wiley & Sons publications 
are being handled through the RightsLink® automated permissions 
service.

Simply follow the steps below to obtain permission via the Right-
slink® system:

•	 Locate the article you wish to reproduce on Wiley Online Library 
(http://onlinelibrary.wiley.com)

•	 Click on the ‘Request Permissions’ link, under the ‹ ARTICLE 
TOOLS › menu on the abstract page (also available from Table of 
Contents or Search Results)

•	 Follow the online instructions and select your requirements from 
the drop down options and click on ‘quick price’ to get a quote

•	 Create a RightsLink® account to complete your transaction (and 
pay, where applicable)

•	 Read and accept our Terms & Conditions and download your 
license

•	 For any technical queries please contact   
customercare@copyright.com

•	 For further information and to view a Rightslink® demo please visit 
www.wiley.com and select Rights & Permissions.

AUTHORS – If you wish to reuse your own article (or an amended 
version of it) in a new publication of which you are the author, editor 
or co-editor, prior permission is not required (with the usual acknowl-
edgements). However, a formal grant of license can be downloaded free 
of charge from RightsLink if required.

Photocopying 
Teaching institutions with a current paid subscription to the journal 
may make multiple copies for teaching purposes without charge, pro-
vided such copies are not resold or copied. In all other cases, permission 
should be obtained from a reproduction rights organisation (see below) 
or directly from RightsLink®.

Copyright Licensing Agency (CLA) 
Institutions based in the UK with a valid photocopying and/or digital 
license with the Copyright Licensing Agency may copy excerpts from 
Wiley books and journals under the terms of their license. For further 
information go to CLA.

Copyright Clearance Center (CCC) 
Institutions based in the US with a valid photocopying and/or digital 
license with the Copyright Clearance Center may copy excerpts from 
Wiley books and journals under the terms of their license, please go 
to CCC.

Other Territories:  Please contact your local reproduction rights 
organisation. For further information please visit www.wiley.com and 
select Rights & Permissions. 
If you have any questions about the permitted uses of a specific article, 
please contact us.

Permissions Department – UK 
John Wiley & Sons Ltd. 
The Atrium, 
Southern Gate, 
Chichester 
West Sussex, PO19 8SQ 
UK
Email:  Permissions@wiley.com 
Fax:  44 (0) 1243 770620
or

Permissions Department – US 
John Wiley & Sons Inc. 
111 River Street MS 4-02 
Hoboken, NJ 07030-5774 
USA
Email:  Permissions@wiley.com 
Fax:  (201) 748-6008

PERMISSIONS

ARTICLE SUBMISSION
insight@incose.net

Publication Schedule.  INSIGHT is published four times per year.
Issue and article submission deadlines are as follows:

  December 2021 issue  –  1 October 2021
  March 2022 issue  –  2 January 2022
  June 2022 issue  –  1 April 20022
  September 2022 issue  –  1 July 2022

For further information on submissions and issue themes, visit the 
INCOSE website:  www.incose.org

© 2021 Copyright Notice. 
Unless otherwise noted, the entire contents are 
copyrighted by INCOSE and may not be reproduced in 
whole or in part without written permission by INCOSE. 
Permission is given for use of up to three paragraphs as 
long as full credit is provided. The opinions expressed in  

 
INSIGHT are those of the authors and advertisers and do 
not necessarily reflect the positions of the editorial staff 
or the International Council on Systems Engineering. 
ISSN 2156-485X; (print) ISSN 2156-4868 (online)

Editor-In-Chief	 William Miller 
insight@incose.net	 +1 908-759-7110

Assistant Editor	 Lisa Hoverman 
lisa.hoverman@incose.net

Theme Editors	  
Sarah Sheard	 sarah.sheard@gmail.com 
John Wood	 woodjn@gwu.edu

Advertising Account Manager	 Susan Blessing 
sblessin@wiley.com	 201-723-3129

Layout and Design	 Chuck Eng 
chuck.eng@comcast.net

Member Services	 INCOSE Administrative Office 
info@incose.net	 +1 858 541-1725

Officers
President:  Kerry Lunney, ESEP, Thales Australia
President-Elect:  Marilee Wheaton, INCOSE Fellow, 

The Aerospace Corporation

Secretary:  Kyle Lewis, CSEP, Lockheed Martin Corporation
Treasurer:  Michael Vinarcik, ESEP, SAIC

At-Large Directors
Academic Matters:  Bob Swarz, WPI
Marketing & Communications:  Lisa Hoverman, HSMC
Outreach:  Julia Taylor, Taylor Success Systems
Americas Sector:  Antony Williams, ESEP, Jacobs
EMEA Sector:  Sven-Olaf Schulze, CSEP, UNITY AG
Asia-Oceania Sector:  Serge Landry, ESEP, Consultant
Chief Information Officer (CIO):  Barclay Brown, ESEP, 

Raytheon
Technical Director:  Christopher Hoffman, CSEP, Cummins

Deputy Technical Director:  Olivier Dessoude, Naval Group
Technical Services Director: Don Gelosh, CSEP-Acq, WPI
Deputy Technical Services Director: Richard Beasley, ESEP, 

Rolls-Royce
Director for Strategic Integration: Tom McDermott, 

Stevens Institute of Technology
Corporate Advisory Board Chair: Don York, CSEP, SAIC
CAB Co-chair:  Ron Giachetti, Naval Postgraduate School
Chief of Staff:  Andy Pickard, Rolls Royce Corporation



JU
LY

  2O
21

VOLUM
E 24/ ISSUE 2

5

A
B

O
U

T TH
IS 

P
U

B
LIC

A
TIO

N

ADVERTISE

Readership 
INSIGHT reaches over 18, 000 individual members and uncounted 
employees and students of more than 100 CAB organizations worldwide. 
Readership includes engineers, manufacturers/purchasers, scientists, 
research & development processionals, presidents and CEOs, students and 
other professionals in systems engineering.

Issuance	 Circulation
2021, Vol 24, 4 Issues	 100% Paid

Contact us for Advertising and Corporate Sales Services
We have a complete range of advertising and publishing solutions profes
sionally managed within our global team. From traditional print-based 
solutions to cutting-edge online technology the Wiley-Blackwell corporate 
sales service is your connection to minds that matter. For an overview of 
all our services please browse our site which is located under the Resources 
section. Contact our corporate sales team today to discuss the range of 
services available:

•	 Print advertising for non-US journals
•	 Email Table of Contents Sponsorship
•	 Reprints
•	 Supplement and sponsorship opportunities
•	 Books
•	 Custom Projects
•	 Online advertising

Click on the option below to email your enquiry to your 
nearest office:

•	 Asia & Australia  corporatesalesaustralia@wiley.com
•	 Europe, Middle East & Africa (EMEA)  

corporatesaleseurope@wiley.com
•	 Japan  corporatesalesjapan@wiley.com
•	 Korea  corporatesaleskorea@wiley.com

USA (also Canada, and South/Central America):
•	 Healthcare Advertising  corporatesalesusa@wiley.com
•	 Science Advertising  Ads_sciences@wiley.com
•	 Reprints  Commercialreprints@wiley.com
•	 Supplements, Sponsorship, Books and Custom Projects 

busdev@wiley.com

Or please contact:
Susan Blessing, Senior Account Manager Sciences 
Sciences, Corporate Sales 
mobile:  24/7  201-723-3129
e-mail:  sblessin@wiley.com

CONTACT

ADVERTISER INDEX� July  volume 24-2
2021 Western States Regional Conference	 inside front cover
HSI2021 Human Systems Integration Conference	 inside front cover
Systems Engineering Call for Papers	 back inside cover
INCOSE Future Events	 back cover

CORPORATE ADVISORY BOARD — MEMBER COMPANIES

321 Gang, Inc.
Aerospace Corporation, The 
Airbus 
AM General LLC 
Analog Devices, Inc.
Aras Corp
Australian Naitonal University
Aviation Industry Corporation of China, LTD
BAE Systems 
Ball Aerospace
Bechtel 
Beckton Dickinson
Blue Origin
Boeing Company, The
Bombardier Transportation
Booz Allen Hamilton Inc. 
C.S. Draper Laboratory, Inc. 
California State University Dominguez Hills
Carnegie Mellon University Software 

Engineering Institute 
Change Vision, Inc
Colorado State University
Cornell University
Cranfield University 
Cubic Corporation
Cummins, Inc.
CYBERNET MBSE
Defense Acquisition University 
Deloitte Consulting
DENSO Create, Inc.
Drexel University
Eindhoven University of Technology
Embraer S.A.
ENAC
Federal Aviation Administration (U.S.) 
Ford Motor Company 
Fundacao Ezute
General Dynamics Mission Systems
General Electric Aviation 
General Motors

George Mason University 
Georgia Institute of Technology 
IBM
Idaho National Laboratory
ISAE SUPAERO
ISDEFE
iTiD Consulting, Ltd
Jacobs Engineering
Jama Software
Jet Propulsion Laboratory 
John Deere & Company
Johns Hopkins University 
KBR, Inc.
KEIO University 
L3 Harris
Leidos 
Lockheed Martin Corporation 
Los Alamos National Laboratory 
ManTech International Corporation 
Maplesoft
Massachusetts Institute of Technology 
MBDA (UK) Ltd.
Missouri University of Science & Technology 
MITRE Corporation, The 
Mitsubishi Heavy Industries
National Aeronautics and Space Administration 
National Security Agency – Enterprise
Naval Postgraduate School 
Nissan Motor Co, Ltd 
No Magic/Dassault Systems
Northrop Grumman Corporation 
Pacific Northwest National Laboratories
Penn State University
Peraton (formerly Perspecta formerly Vencore)
PETRONAS NASIONAL BERHAD
Prime Solutions Group, Inc.
Project Performance International 
QRA Corporation
Raytheon Corporation 
Roche Diagnostics 

Rolls-Royce 
Saab AB 
SAIC
Sandia National Laboratories 
Siemens 
Sierra Nevada Corporation
Singapore Institute of Technology
Skoltech
SPEC Innovations
Stellar Solutions
Stevens Institute of Technology 
Strategic Technical Services
Swedish Defence Materiel Administration 
Systems Engineering Directorate
Systems Planning and Analysis 
Thales 
Torch Technologies
Trane Technologies
Tsinghua University
TUS Solution LLC
UK MoD 
University of Alabama in Huntsville
University of Arkansas 
University of California San Diego
University of Connecticut
University of Maryland 
University of Maryland, Baltimore County 
University of Michigan, Ann Arbor
University of New South Wales, The, Canberra 
University of Southern California 
University of Texas at El Paso, The
University of Washington, Industrial & SE Dept
US Department of Defense, Deputy Assistant 

Secretary of Defense for Systems Engineering,  
Veoneer, Inc
Vitech Corporation 
Volvo Construction Equipment 
Woodward Inc 
Worcester Polytechnic Institute – WPI 
Zuken, Inc.

Questions or comments concerning:

Submissions, Editorial Policy, or Publication Management 
Please contact:  William Miller, Editor-in-Chief 
insight@incose.net

Advertising — please contact:   
Susan Blessing, Senior Account Manager Sciences 
Sciences, Corporate Sales 
mobile:  24/7  201-723-3129
e-mail:  sblessin@wiley.com

Member Services – please contact:  info@incose.net



JU
LY

  2O
21

VOLUM
E 24/ ISSUE 2

6

William Miller, insight@incose.org

FROM THE 
EDITOR-IN-CHIEF

FR
O

M
 TH

E 
ED

ITO
R

-IN
-CH

IEF

It is our pleasure to announce the 
July 2021 INSIGHT issue published 
cooperatively with John Wiley & 
Sons as the systems engineering 

practitioners’ magazine. The INSIGHT 
mission is providing informative articles on 
advancing the systems engineering practice 
and to close the gap between practice and 
the state of the art as advanced by Systems 
Engineering, the Journal of INCOSE also 
published by Wiley.

The issue theme is systems and soft-
ware that is critical to the future of sys-
tems engineering initiative throughout 
the systems community. We thank theme 
editors Sarah Sheard and John Wood, the 
Systems and Software Interface Working 
Group (SaSIWG), and the authors for their 
contributions. Sarah’s and John’s lead article 
provides the context for this INSIGHT issue 
in terms of the interface between systems 
and software with the imperative that sys-
tems engineers and software engineers know 
enough about each other’s fields to ensure 
the interface works smoothly. Their article 
goes on to serve the reader with a brief syn-
opsis of each article relevant to the theme.

Your editor appreciates from professional 
experiences the challenges of systems and 
software interfaces across the complex 
socio-technical divide that is subject to 
different meanings using the same words, 
and divergent “facts,” beliefs, and biases. 
As a Bell Labs systems engineer, I lived the 
transition of telephone systems based on 
electro-mechanical technologies dependent 
upon manual methods and procedures, 
to computer/software aided methods and 
procedures providing operations support 
to the telephone system, to centralized 
stored program control at the system level, 
and thence on to distributed embedded 
computing. I vividly remember the “rad-
ical” at the time justification for placing a 
32-bit microcomputer at the circuit card 
level in a distributed computing telephone 

switch to give flexibility over the life cycle 
of that switch. I later served as a chief 
systems engineer across multiple programs 
in a different domain that experienced a 
decade long transition from an unwritten 
requirement that “there shall be no software 
in the systems” to “getting our feet wet” 
with software peripheral to the systems, 
and thence on to mission critical software 
embedded throughout the systems. The 
same story applies to the innovation of 
computing and software in aerospace sys-
tems as illuminated by the Apollo program 
and commercial air transport aircraft. In 
parallel I witnessed the growth of com-
puter science and software engineering 
as disciplines on a par with “traditional” 
engineering disciplines. My observation is 
that the time constant for these transitions 
is driven by the progression of engineers’ 
knowledge and competencies to be half 
a generation, that is, about 10 years. The 
Systems Engineering Research Center is 
researching how to lower the time constant 
for systems engineers (https://sercuarc.org/
experience-accelerator/ ).

The patterns in systems engineering 
processes, methods, and tools we use have 
a legacy in the era where software was at 
best centralized, or marginally, part of the 
periphery of enabling systems. For exam-
ple, the work breakdown structure (WBS) 
for aircraft and drones is documented in 
Mil-Std-881E dated 6 October 2020. From 
the standard:

“The Program WBS and Contract 
WBS aid in documenting the work 
effort necessary to produce and 
maintain architectural products in a 
system life cycle. The DoD Architecture 
Framework (DoDAF) (current version) 
defines a common approach for DoD 
architecture description development, 
presentation, and integration for 
warfighting operations and business 
operations and processes.”

Philosophically, how do these legacy 
processes, methods, and tools contribute 
to the “impedance (mis)match” inertia in 
the interface with software engineering? 
Holistically, why not envision aircraft or 
drones as cyber-physical systems, or more 
colloquially, as “flying computers” critically 
dependent on software to be fit for purpose 
and do no harm? Look at our mobile de-
vices whose multi-purpose functionality is 
critically dependent on software to achieve 
the small form fit and smart electrical 
power management that integrates what 
were separate devices before the mid-2000s. 
How might that perspective influence the 
architecture of these systems to simplify 
the systems and software interface? Perhaps 
we should look to the systems engineering 
and software engineering practiced by the 
big five tech giants collectively known as 
GAFAM or FAAMG: Alphabet (Google’s 
parent), Amazon, Apple, Facebook, and 
Microsoft; as well as SpaceX. Google’s site 
reliability engineering, described both on-
line and in print, covers both systems and 
software engineering.

To quote INCOSE past president John 
Thomas: “It’s a great time to be a systems 
engineer!”

We hope you find INSIGHT, the prac-
titioners’ magazine for systems engineers, 
informative and relevant. Feedback from 
readers is critical to INSIGHT’s quality. We 
encourage letters to the editor at insight@
incose.net . Please include “letter to the 
editor” in the subject line. INSIGHT also 
continues to solicit special features, stand-
alone articles, book reviews, and op-eds. 
For information about INSIGHT, including 
upcoming issues, see https://www.incose.
org/products-and-publications/periodicals#IN-
SIGHT . For information about organizations 
sponsoring INSIGHT, please contact the 
INCOSE marketing and communications 
director at marcom@incose.net .  ¡
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Introduction to 
Themed Edition

In the 21st century, software has be-
come central to business as electrical 
infrastructure and plumbing, but 
software is unique. Software

■	 Controls critical machine functions 
ranging from pacemakers to aircraft; 

■	 Allows people and businesses to com-
municate across the globe;

■	 Provides capabilities distinguishing one 
business from another which can make 
or break businesses financially;

■	 Provides an unprecedented entrance for 
criminals to many daily life aspects.

For these reasons, systems engineers 
must become comfortable dealing with 
software in systems.

The Systems and Software Interface 
Working Group (SaSIWG), which Sarah 
Sheard chaired through the 2021 INCOSE 
International Workshop (IW), now chaired 
by Nick Guertin, works on numerous 
potential products to help the INCOSE 
systems engineers do just that.

Two SaSIWG members surveyed senior 
systems engineers and senior software en-
gineers to identify pain points between the 
two disciplines for almost two years. These 
members documented the survey’s results in 
the Working Group’s INCOSE International 
Symposium (IS) 2020 paper, which Sarah 
Sheard helped write. We include it here as 
— Article 1, “Systems and Software Inter-
face Survey” by Sally Muscarella, Macaulay 
Osaisai, and Sarah Sheard. The bottom line 
is systems engineering skills are still essential 
and must evolve to include model-based 
systems engineering. Both systems engineers 
and software engineers must learn enough 
about each other’s fields to ensure the 
interface works smoothly. We include the IS 
paper in its entirety in this INSIGHT issue.

Article 2, ““Book Club Guides A 
Working Group to Create INCOSE 
System-Software Interface Products,” by 
Sarah Sheard, Mickael Bouyaud, Macaulay 
Osaisai, Jeannine Siviy, and Ken Nidiffer, 
describes the “book club” in which we 
studied a popular fable-type book, The 
Unicorn Project: A Novel about Developers, 
Digital Disruption, and Thriving in the Age 
of Data by Gene Kim (originally suggested 
by Shirley Tseng). The book club resulted in 
several working group products to help us 
understand issues and topics arising during 
our book club discussions. Some products 
were the impetus for articles included in 
this issue.

Article 3, “System Engineering Roles in 
Software Organizations Delivering Service 
Products,” by Mickael Bouyaud and Brian 
White, started as a software service deliv-
ery explanation to the book club by the 
SaSIWG member most knowledgeable on 
software service delivery. This article, which 
expands upon some charts from our IS 
2021 paper (Sheard et al. 2021), shows how 
software development proceeds within a 
company using examples from The Unicorn 
Project (Kim 2019).

We were also lucky to have within 
the book club some significant complex 
systems talent. Article 4, “A Complex 
Adaptive Systems Engineering 
Methodology,” by Brian White and 
Mickael Bouyaud, resulted from book 
club discussions about better company 
organization methods for addressing 
the rising complexity of current and 
future systems. The authors show how 
to move from today’s overly simplistic 
management by Program Evaluation and 
Review Technique (PERT)-type charts 
to a methodology, based on evolving 

complexity science, more suited to manage 
creating complex systems of systems.

We also felt the organization in Gene 
Kim’s book addressed, but did not talk 
specifically about, the DevSecOps (Secure 
Development and Operation) issues 
working together with systems engineering. 
Article 5, “Systems Engineering and 
DevSecOps,” by Richard Turner, addresses 
these issues outright from a software 
engineering viewpoint. This article will be 
useful to systems engineers by showing 
how “the other side” thinks and, thus, 
forms the foundation upon which we need 
to begin our discussions. Dr. Turner lays 
out nine DevSecOps principles and shows 
how each relates to systems engineering as 
currently practiced in software-intensive 
organizations. The article also provides a 
helpful comparison between DevSecOps, 
Lean, Agile, and systems engineering 
principles.

Article 6, “System Test Approach for 
Complex Software Systems,” by Chandru 
Mirchandani, addresses incorporating 
the actual operational environment into 
software system tests to measure software 
quality. While some software engineers 
claim software reliability is one (100%), 
others say removing all software defects 
is impossible. Others argue we can never 
fully test software. Even if these general 
statements were true, they do not provide 
the fidelity needed by systems engineers. 
Systems engineers must understand 
and talk about quantity and density of 
failures and faults as well as times between 
failures. Otherwise, we cannot know if 
the software’s contribution to the overall 
product attributes will meet system-level 
requirements. This article offers systems 
engineers a method for calculating 

Sarah Sheard, sarah.sheard@gmail.com;and John Wood, woodjn@gwu.edu
Copyright © 2021 by Sarah Sheard and John Wood. Permission granted to INCOSE to publish and use.
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requirements-based and functionality-based failure rate 
profiles for software-intensive systems. It also provides 
a starting point for discussing whether the findings are 
acceptable at a system level.

And finally, Article 7, “Systems Thinking and Business 
Resilience: Questions that Should Keep Us Up at Night,” by 
Jeannine Siviy and Gene Kim, examines “Where do we go 
from here?” We need all the immense talent INCOSE has 
and represents to tackle the enormous system questions 
posed in this article. For example, into what categories 
can we sort different contexts? What roles should systems 
engineers and other systems thinkers play in the various 
contexts? Then, once we find out what we want to have 
happen, how do we make it happen?

We hope you enjoy these articles, and we hope they 
expand your current understanding of the interface between 
software engineering and systems engineering. More 
importantly, we hope these articles encourage systems 
engineers to practice their profession confidently within 
software-intensive organizations. We may be biased, but we 
believe people with a systems perspective are invaluable in 
helping complex organizations achieve their goals.  ¡
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  ABSTRACT
INCOSE formed the Systems and Software Interface Working Group (SaSIWG) in 2017, responding to the Corporate Advisory 
Board interest in software and problems identified in the systems and software interface (physical, logical, data, and human). 
This third SaSIWG paper presents a systems engineers, software engineers, and project managers survey discussing best practices 
and the priority challenges related to the interface between systems and software. We group and summarize the best practices 
mentioned by the 31 interviewees then address priority challenges and problems. Systems engineering done well includes an ev-
er-increasing amount of Model-Based Systems Engineering. It also includes developing and holding to a vision, managing data, 
ensuring inter-disciplinary work, planning systematic verification, and ensuring modularity. Systems engineering must evolve to 
meet new challenges and, most importantly, systems engineer expertise must include software engineering.

Systems and Software 
Interface Survey

Sally Muscarella, scmuscarella@gmail.com; Macaulay Osaisai, Macaulay.Osaisai@L3Harris.com; and 
Sarah Sheard, sarah.sheard@gmail.com
Copyright © 2020 by Sally Muscarella, Macaulay Osaisai, and Sarah Sheard. Permission granted to INCOSE to publish and use.

Systems engineering and software en-
gineering grew from the physical sys-
tems world and the computer science 
world (Sheard, Pafford, and Phillips 

2019). Since complex systems today are or 
may become cyber-physical systems, their 
development needs cyber and physical skills. 
Fortunately, since the 1990s, engineers of 
both disciplines are becoming familiar with 
the processes and methodologies the other 
discipline uses. For example, the Institute of 
Electrical and Electronics Engineers (IEEE) 
began work in the 1990s to “harmonize” sys-
tems and software standards, primarily ISO/
IEC 15288 and 12207, respectively (ISO/
IEC/IEEE, 2015 and 2017).

However, other sources describing failed 
projects frequently mention breakdowns 
between systems and software engineering 
teams or system interfaces and software in-
tegration. When asked, software engineers 
blame systems engineering inadequacies, 
and the systems engineers blame software 
engineering inadequacies.

In 2016, INCOSE asked Corporate Ad-
visory Board (CAB) members to prioritize 
seven to 10 topics INCOSE should improve. 
Somewhat surprisingly, “software” was not a 
top issue for any company. However, nearly 
all companies listed it somewhere, so it be-
came a CAB “top 7 concern.” A January 2017 
CAB breakout session asked CAB represen-
tatives to recommend what issues INCOSE 

INTRODUCTION
should address in this area (Bramer 2017).

At the 2017 INCOSE International 
Symposium (IS), INCOSE Past President 
Heinz Stoewer emphasized systems-soft-
ware interface’s important work. He warned 
if INCOSE “does not address the digital 
thread” quickly, to understand software and 
start leading software-intensive systems, 
“INCOSE risks becoming irrelevant.”

To initiate action, INCOSE organized the 
Systems and Software Interface Working 
Group (SaSIWG). The group first met 
during IS 2017 and based their charter 
(SaSIWG 2017) on the CAB results, aug-
mented by member knowledge. 

The SaSIWG presented a paper in 2018 
describing the results from the initial 
brainstorming meeting in 2017 (Sheard et 
al. 2018). This included describing interface 
problem areas. Then in 2019, a SaSIWG 
paper (Sheard, Pafford, and Phillips 2019) 
focused on coordinating the systems engi-
neering and software engineering discipline 
tasks and roles enacting a high-perfor-
mance systems and software enterprise.

CURRENT SITUATION: SOFTWARE-INTENSIVE 
SYSTEMS CHALLENGE THE SYSTEMS AND 
SOFTWARE ENGINEERING INTERFACE AND 
DISCIPLINES 

Literature Review
In today’s systems, software binds the 

systems together and causes the desired 
capability to emerge (Fairley and Willshire 
2011b). Software performs more functions 
than hardware, and those functions can 
be much more complex (Sheard 2004). 
Because of the resulting complexity, “our 
large software systems can no longer be 
monoliths… tested within known perfor-
mance limits” (Brownsword et al. 2006). 
Both fields are essential to the other. 

Systems and Software Engineering 
Interface Issues Can Cause Problems. The 
US Air Force’s Weapon Systems Software 
Management Guidebook (USAF 2018) 
describes software problems arising partly 
because of “ineffective systems engineering 
interfaces to the software development pro-
cess.” Kasser and Shoshany (2000) blame 
“massive failures” in complex projects on 
communication issues between systems and 
software engineers. 

Systems and Software Practices 
Must Evolve. Vierhauser, Rabiser, and 
Grünbacher (2014) argue both the 
traditional systems engineering approach 
and software engineering approaches need 
to evolve to address modern systems. 
Of course, how to evolve is a question 
receiving much attention. 

Attempts To Reconcile. Researchers 
still frequently cite Maier’s seminal paper 
on reconciling systems and software 
architecture (2006). Fairley and Willshire 
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(2011a and 2011b) suggest educating each 
discipline in the other’s knowledge base. 
Sheard (2014), mapping the two disciplines 
in a Venn diagram, called for increased col-
laboration. Giese (2005) and Sheard (2004) 
looked at how software engineering prac-
tices and systems engineering practices, 
respectively, would need to change for more 
software-intensive systems in the future. 

How Working Together Achieves Inte-
grated Systems and Software Engineering. 
In 2007, Boehm and Lane published the in-
cremental commitment model to integrate 
systems engineering, software engineering, 
and system acquisition. Turner, Pyster, and 
Pennotti (2009) proposed a “touchpoint” 
framework for integrating systems and 
software engineering. This framework notes 
process faults such as gaps, clashes, and 
waste, particularly for “interdependent sys-
tems” where hardware and software cannot 
separate, requiring the design to include 
them in an integrated manner. Boehm et al. 
(2010) took this further with “architected 
agile solutions for software-reliant systems,” 
which sounds timely even today. Rosser 
et al. (2014) further described how to do 
systems engineering using Agile methods 
in cross-functional teams. 

In 2011, Boehm spoke of “future software 
engineering opportunities and challenges” 
requiring significant changes in and integra-
tion of both software and systems engineer-
ing processes. He focused on generating 
value and dynamically balancing agility, 
discipline, and scalability. This same year, 
Fairley and Willshire (2011b) described ed-
ucation in software engineering that systems 
engineers need, stating, “Smooth develop-
ment process integration used in systems 
engineering and software engineering is a 
continuing and ongoing challenge.” 

The Systems Engineering Body of 
Knowledge (stewarded by INCOSE, the 
IEEE Computer Society or IEEE-CS, and 
the Systems Engineering Research Center, 
and maintained as a wiki) has a detailed 
section on software. This section includes 
software engineering in the systems engi-
neering lifecycle, the nature of software, 
Guide to the Software Engineering Body 
of Knowledge (SWEBoK) overview, key 
points a systems engineer must know about 
software, and software engineering features 
(Fairley et al. 2019). In contrast, the SWE-
BoK (most recently published by IEEE-CS 
as a pdf in 2014) has only two paragraphs 
about systems engineering and does not 
connect the definition elsewhere in the 
book (Bourque and Fairley 2014).

Systems Engineering of Software-Enabled 
Systems (Fairley 2019) is a new and compre-
hensive book on the subject. In a discussion 
with the authors of this paper, Fairley said, 

“The keys to making my approach work are 
for hardware, software, and human factor 
engineers to collaboratively generate system 
capabilities based on stakeholder require-
ments, then collaboratively generate the 
system requirements from the capabilities to 
develop a Model-Based Engineering (MBE) 
system architecture model and perhaps the 
subsystem architectures for large systems, 
and then incrementally and iteratively 
replace simulated system elements with real 
elements as they become available—not 
as simple as this elevator speech makes it 
sound, but it is efficient in the overall system 
development.” This paper attempts to make 
this and other systems-software experience 
more available than it is today. 

INCOSE focus on Systems and Software 
Engineering

Until 2017, INCOSE had many groups 
addressing the important software-relat-
ed issues for systems engineers, but none 
specifically addressed the system software 
interface. Hence, interested INCOSE mem-
bers created the SaSIWG.

Of INCOSE’s software-related groups, the 
Model-Based Systems Engineering (MBSE) 
Initiative is the largest and most successful. 
It started in the mid-1990s and has been 
active for about 25 years. Today, its spin-offs, 
the MBSE Patterns Working Group and the 
Model-Based Conceptual Design Working 
Group, are also active. Other INCOSE work-
ing groups with activities related to software 
include Agile Systems and Systems Engi-
neering, Architecture, Complex Systems, 
Digital Engineering Information Exchange, 
Enterprise Systems, Object-Oriented 
Systems Engineering Method, Resilient 
Systems, System Safety, Systems of Systems, 
Tools Integration and Model Lifecycle 
Management, and Training.

METHOD
This paper provides best practices 

and problems (or challenges) to inform 
program (or project) managers, organiza-
tional managers, and lead engineers how 
they should target their work for minimal 
interface issues moving forward. The meth-
od to gather best practices and problems 
was surveying experts in interviews. The 
authors analyzed and summarized the key 
interviewee responses. 

Goal. The survey determined what to-
day’s software and systems engineers think 
the systems-software interface problems or 
challenges are and tried to identify any best 
practices to help reduce the problems and 
lead to successful systems. 

Pre-interview Work. The SaSIWG brain-
stormed what questions the survey should 
include, given the goal. Some SaSIWG 
members and survey participants helped 

test the questions and shorten the survey to 
fit a one-hour interview. The survey includ-
ed real-world case examples and results.

Interviewees. We conducted individual 
interviews with 31 self-identified systems 
and software engineers, most of whom were 
INCOSE members. SaSIWG participants 
recommended interviewees should include 
individuals with significant expertise and 
representation across industry and geo-
graphic regions. Interviewees included 
systems architects, software architects, and 
project and program managers with exten-
sive experience in one or both disciplines. 
They included commercial (aerospace, 
automotive, communications, microelec-
tronics, medical equipment, technology), 
defense, and academic domain professionals. 
Many interviewees had experience in more 
than one industry. The interviewees had, on 
average, 25 years of systems engineering ex-
perience and 20 years of software engineer-
ing experience. In some cases, interviewees 
held positions involving both systems and 
software engineering. In such cases, the 
years of experience included both domains.

Interviews. Each interviewee received a 
SaSIWG charter copy, the survey pur-
pose, the survey questions, and the 2018 
SaSIWG paper. Interviews lasted one to 
one and a half hours. The interviewee 
received the interview notes for any further 
clarifications or corrections. Two authors 
jointly performed all interviews to reduce 
variation due to different interviewers. The 
interviewers asked each interviewee to 
identify two top priorities from six possible 
areas needing emphasis in the field.

Analysis. The authors screened com-
ments for relevance, sorted them by cate-
gory, and summarized them in two lists, (i) 
“best practices” related to the system-soft-
ware interface and (ii) key problems and 
challenges requiring solutions. 

Availability. This paper summarizes the 
best practices, problems, and challenge 
areas. Traceability to interviews is available. 
The interviews are anonymous, and the 
notes from each interview are available 
upon request. 

SURVEY RESULTS
The survey had questions interview-

ees could answer-and interviewers could 
analyze-numerically, such as priority areas 
for improvement. Many other questions 
elicited stories and guidance, and we detail 
the guidance, both on best practices, chal-
lenges, and problems, below. The executive 
summary summarizes the survey results for 
program and project managers and systems 
and software leads.

Executive Summary
The results show improving the sys-
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tem and software interface in today’s and 
tomorrow’s complex software-intensive sys-
tems requires the organization to perform 
both systems engineering and software 
engineering well. 

Engineering the system and engineering 
the system software must connect tightly. 
Most respondents cited the work should 
integrate, meaning engineers from both 
disciplines should be part of the project 
team from day one. 

Model-Based Engineering (MBE) en-
ables collaboration, manages complexity, 
and improves interfaces. MBE, or digital 
engineering in the US DoD, is a modeling 
ecosystem covering MBSE, Model-Based 
Software Engineering, and other mod-
el-based engineering disciplines. MBE rec-
ommends the two fields must agree upon 
the tools, including information sharing, 
and make them compatible. 

This survey identified expertise and 
cross-training in systems and software 
engineering as the most crucial areas for 
improvement. 

Best Practices
We gleaned the best practices to improve 

the systems-software interface from the 
interviews; this section organizes their 
conclusions. The first principle is to do 
good systems engineering (and software 
engineering, to the extent it includes the 
practices below). This means developing 
and holding a vision, doing model-based 
systems engineering, ensuring interdis-
ciplinary work, focusing the system data 
and test aspects, and including modularity. 
The second principle is to accommodate 
change with rigorous, model-supported 
change management. The third principle is 
creating, maintaining, and supporting an 
effective team.

I. Do “Good” Systems Engineering (and 
Do “Good” Software Engineering). Effec-
tive interfaces depend on performing systems 
engineering effectively. Some good systems 
engineering basic quality attributes include: 
having a solid and agreed-upon vision, doing 
model-based engineering, establishing a data 
architecture, maintaining an interdisciplinary 
team focused on system success, having a 
well-designed test plan, building modularity 
in the design, implementing security, and 
considering the system’s human aspects with 
support of an effective software engineering 
practice.

We can improve the interface between 
systems and software through using 
streamlined engineering processes based 
on standards (15288 and 12207); fewer 
documents, more efficiency, agile, and 
model-based engineering. The systems 
engineering method tailors to the system 

type, environment, and context. We define 
interfaces at a high-level upfront in the 
high-level architecture phase based on the 
top-level system specification.

Ia. Develop and hold the vision. Systems 
engineering must visualize what the system 
will do and ensure subsequent development 
of both systems and software to implement 
the vision. This usually requires significant 
and ongoing collaboration and communi-
cation with software engineering and other 
disciplines. As an example, an excellent 
top-level specification establishes the overall 
project objective. Another example comes 
when implementing systems of systems 
(SoS), or systems belonging to an SoS: the 
SoS must have its vision, separate from the 
constituent system visions. Having a clear vi-
sion improves communications and under-
standing across teams and team members.

Ib. Use Model-Based Engineering. 
Historically, MBSE increased in scope and 
importance for over 20 years. Recently, its 
adoption has benefitted from increasing 
MBSE-supporting tools. Today, MBSE 
increasingly coordinates with Model-Based 
Software Engineering. Model-based system 
representations improve understanding 
across interfaces.

Model-Based engineering done right 
allows multiple engineers in disparate 
disciplines to co-create the product system, 
helping engineer various artifacts con-
currently. Model-Based engineering also 
supports methodologies such as Agile and 
DevOps, which handle increasingly com-
plex products. 

Model-Based engineering requires model 
validation despite its challenges, “All mod-
els are wrong, but some are useful”(Wikipe-
dia 2021). 

Basing the engineering on correct and 
consistent models generates valuable 
artifacts from the models. These include the 
earliest interfaces, and eventually, Interface 
Control Documents (ICDs) and other 
documentation such as requirements and 
design descriptions. Modeling formalizes 
agreements, provides traceability, and allows 
successful changes even when the changing 
system is complex. Models offer capabilities 
to customers they have not had before, such 
as dynamically updating requirements, 
leveraging machine learning, data analytics, 
and artificial intelligence. Models can also 
provide automatic code generation. 

The model master database provides a 
single truth source which forms the inter-
face definition basis.

Various systems modeling languages and 
approaches, including Systems Modeling 
Language (SysML), Unified Modeling Lan-
guage (UML), and Object Process Method-
ology (OPM), address different needs. Or-

ganizations need to select the best approach 
for their environment and programs.

While less widely known to systems 
engineers, the industry has successfully 
used OPM (ISO/PAS 19450). It builds 
on a minimal universal ontology—object 
process theorem—to model any system 
with minimal building blocks and pro-
cesses with links between the objects and 
processes. OPM provides a standard model 
for software and hardware.

Some modeling improving the sys-
tem-software interface is as follows: 

1.	 Model requirements as Use Cases 
and ensure stakeholder, including 
customers, agreement.

2.	 Model the system architecture. 
Include functional, object, and data 
architecture views, with graphical 
models for all. Define the “what” be-
fore the “how.” The architecture and 
model master database are essential 
to successful interface definition.

3.	 Begin the top-level system specifica-
tion, which documents the require-
ments for the system or product, in a 
model-based description and obtain 
critical stakeholder buy-in and agree-
ment before finalizing it. 

4.	 Select the right tools based on the 
problem. In the systems world, 
no tool is “one size fits all.” Using 
state-of-the-art and connected tools 
enables better interface development. 
Using the same tool for systems and 
software is helpful. Tools with struc-
tures and schema that are very strict 
on controlling the Interface Require-
ments Specification (IRS) and the 
Interface Data Specification (IDS) are 
beneficial. Strict controls implement 
the interfaces through auto code gen-
eration tools. The tools must support 
the users. Do not over tool; provide 
tool support for users.

5.	 Model interfaces, upfront and as they 
change. A system model database 
provides the single truth source 
for interface definition. Ensure all 
relevant stakeholders’ agreement on 
the interfaces. Use models to demon-
strate traceability. Generate important 
documents (requirements and ICDs) 
from the models. Interfaces will 
change; use rigorous change manage-
ment supported by the models track 
changes (see below). Treat additional 
model inputs from the components as 
either conforming with or changing 
those rigorously controlled interface 
specifications. Some organizations re-
place interface documents with mod-
els. Some companies use the model 
database and escalation processes to 
manage interface changes. 
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6.	 ICDs, or the model-based equiva-
lent, describe the system presenting 
the interface, the inputs and out-
puts passing through the interface 
(typically energy, force, material, or 
information) including the optical/
visual, the behavior at the interface 
(described by interactions) and the 
access system (medium) supporting 
the interactions. More general re-
quirements include agreeing on how 
subsystems talk to each other, error 
conditions, and actions upon detect-
ing an unexpected input or event. 

7.	 Plan and model the verification and 
validation needed to prove compo-
nents and the interfaces, ensuring the 
larger level system’s correctness. These 
can be part of the modeling effort.

8.	 Use simulations and executable 
models to capture, first desired and 
eventually actual, behavior and 
algorithms showing the variable 
relationships. 

9.	 Use prototypes. System and soft-
ware define this word differently 
(Fairley 2019; Sheard 2016). Systems 
engineering means a model with 
functionality in place but immature 
technology. Software means a model 
with specific functionalities in place 
but with other functions simulated 
(“stubbed”). Prototyping either type, 
along with simulation before archi-
tecture formalization, helps develop 
the system and software. Throughout 
the lifecycle, prototyping also resolves 
open technology questions and 
demonstrates functionality to users.

Ic. Ensure interdisciplinary focus on 
system success. Systems, software, and 
hardware must agree on all major deci-
sions, and other disciplines must agree 
with whatever involves them. In general, 
systems engineering’s history of integrating 
disciplines needs to continue, increasing its 
emphasis on involving software engineers 
and architects. Strong communications are 
essential. For example, software engineers 
must communicate with systems engineers 
if requirements are ambiguous.

The teams use common or connected 
processes, connected tools, views, taxon-
omies, and review metrics throughout the 
lifecycle and across systems, hardware, and 
software teams. In some software-intensive 
systems, no interface exists between the 
system and the software because the two 
are not separate. There is a systems per-
spective, and the software is integral to the 
system. There is extensive prototyping and 
simulation to develop the system. 

Regardless of the organizational structure 
or job titles, the person or team performing 

the systems engineering is responsible for 
system success. 

It is vital to use root cause analysis and an-
alytics to understand the problem area’s root 
cause, including interface defects, to identify 
actions for continuous improvement.

Id. Address data as a whole. Address data 
with a system-wide focus (Digital Thread—
data interface and traceability from dispa-
rate engineering models). Data has always 
been there; more so, product and process 
data in current complex systems are more 
numerous and complex than ever. Hence, 
data should at least have a taxonomy, archi-
tecture, plan, and single truth source.

Ie. Address test as a whole. Software 
testing terminology and differs in some 
ways from testing and verifying systems. 
Testing should focus on models. In general, 
software teams frequently test every Agile 
cycle (if they use Agile processes, which 
most do). Systems engineers need to under-
stand this to extend it to systems engineer-
ing, where appropriate, and guide it to help 
meet the system vision. Developing the test 
harness while building the system is neces-
sary to support continuous testing.

If. Implement modularity. Managing 
the development of increasingly complex 
products requires modularity. It supports 
developing some basic functionality first 
and adding complexity later, such as with 
Agile and DevOps. 

Ig. Implement security from the begin-
ning. Security challenges today focus on 
cybersecurity. Cybersecurity challenges 
change with every zero-day exploit, which 
software engineers will most likely know 
about before systems engineers. The initial 
design team should involve security engi-
neers, and they should approve all changes. 

Ih. Do good software engineering. It 
is helpful to define systems and software 
engineer roles. IEC 62304, Software Devel-
opment Process (IEC 2006) helps with this. 
Requirements flow to software engineer-
ing for implementation. Good software 
engineering practice provides a focus on 
the system, rather than just on code and 
objects. The system can evolve as we incre-
mentally add software when using a subsys-
tem approach. If software development uses 
agile practices, communication is a critical 
process component. Systems and software 
groups agree on interfaces before software 
development for the essential system parts. 
There is a top-down approach (plan-driv-
en approach, requirements, architecture, 
protocols, interfaces, and interactions) for 
systems and interfaces and a bottom-up 
approach for development teams, who 
perform continuous development with flex-
ibility. Successful agile practices adequately 
map system elements to requirements. The 
Scaled Agile Framework (Leffingwell 2018) 

often applies to large systems. Complex 
projects with more software use a DevOps 
approach to capture user requirements and 
improve software quality. This impacts the 
system and software interface definition. 
The DevOps approach (Bass, Weber, and 
Zhu 2015) builds modular pieces and adds 
complexity later in layers. DevOps embrac-
es developing what you create as you build 
it. The trade space between hardware and 
software can evolve. Other key aspects in-
clude continuous integration, prototyping, 
and commercial off-the-shelf subsystems.

Ij. Build systems with consideration to 
humans in systems. Include users in deter-
mining requirements through scenarios, in 
major reviews, and, at a minimum, opera-
tional testing.

II. Evolve Systems Engineering 
Practices. Manage change robustly and 
effectively.

IIa. Be adaptable to process change and 
improvement. Processes bringing real-time 
feedback and product or system evolution 
(Agile and DevOps) necessitate systems 
engineering processes built to adapt to 
change. Systems engineers use spiral or Ag-
ile lifecycle management processes, when 
appropriate, instead of the single-pass wa-
terfall. Customer engagement is essential, 
regardless of the lifecycle model.

Evolve processes to facilitate concurrent 
engineering enabled by digital engineer-
ing and the digital thread. Concurrency 
strengthens the worldview of the team, 
the organizational structure of people, and 
improves interfaces.

IIb. Manage changes—update interfac-
es. Perform rigorous change management 
across the program (any change might 
affect interfaces) to ensure the changing 
system-software interfaces become visible 
during the change approval process and be 
ready to update interface specifications.

IIc. Enable systems engineering evolu-
tion. Plan for several systems engineering 
aspects to evolve. These include MBE, arti-
ficial intelligence (AI) and machine learn-
ing use, and approaches for understanding 
complexity and emergent behaviors. 

Processes and approaches evolve to 
support better system evolution, such as 
re-evaluating previous decisions when 
technology or needs change while consid-
ering matching the solutions to criteria and 
the criteria importance. For example, the 
trade space between system hardware and 
software may change. To ensure flexibility, 
the system engineer leaves options open as 
to where to perform functions as long as 
possible as the system evolves. 

System and software engineering process-
es evolve to use the same system and soft-
ware lifecycle process and unified thinking.



SP
ECIA

L 
FEA

TU
R

E
JU

LY
  2O

21
VOLUM

E 24/ ISSUE 2

13

III. Ensure Teams Have Expertise for 
Increasingly Software-Intensive Systems. 
Effective teams include people who have 
the right expertise and behaviors, who 
trained in what they do not know and in 
what new capabilities and technologies are 
available, and who can communicate ap-
propriately with terminology interpretation 
awareness. Effective teams have organiza-
tional leadership support.

IIIa. Assure team expertise and effective 
communications. The system-level team 
includes people with system and software 
architecting and engineering expertise. Ide-
ally, architects and requirements elicitors 
have both systems and software expertise. 
The team includes both software and hard-
ware engineers. 

The team comprises people who under-
stand technical limits, including physical. 

The team understands the problem to 
understand what software to build. The team 
also includes people with expertise in mod-
eling, modeling languages, and modeling 
and simulation tools. Both systems engineers 
and software engineers must know how to 
create and implement Use Cases, which help 
bridge disciplines and customers (see Fairley 
2019, on skill importance in Model and Sim-
ulation-Based Systems Engineering to build 
systems architecture models).

Communication is key. Both system and 
software team members should understand 
terminology from both disciplines (and 
move toward a shared vocabulary). Team 
members treat each other respectfully, 
and the team addresses cultural barriers 
and office separation problems to improve 
effectiveness.

Some teams on software-intensive sys-

tems fully integrate systems and software 
people to improve effectiveness.

IIIb. Assure leadership supports best 
practices and understands the software’s 
importance. Leadership supports the 
proper discipline integration from day one, 
without silos or organizational interfaces. 
Leadership builds a supportive culture and 
understands the importance of collecting 
needed skills. Systems engineering and soft-
ware engineering are not the same. Both 
systems engineers and software engineers 
bring essential insights throughout the 
project. Leadership recognizes system-team 
expertise in software is a crucial differentia-
tor for their products. 

Leadership also recognizes processes will 
change to improve the interface, and in the 
future, there will probably be more Agile 
and less “big design up front” or “waterfall” 
process. In an effective Agile team, there is 
no “us” and “them.” An Agile environment 
demands the best people and a good envi-
ronment. An Agile team works together on 
solutions, and leadership participates rather 
than commands and controls.

Priority Areas for Improvement
Each interviewee identified his/her top 

two priority areas for improvement. We 
used the categories identified in the first 
SaSIWG INCOSE paper for the survey. 
Table 1 shows how frequently interviewees 
identified each Risk or Opportunity area. 
Figure 1 shows these same numbers in 
relation to each other.

Key Challenges and Problems 
This section summarizes the key chal-

lenges and problems answers. 
We mapped the challenges and problems 
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Figure 1. Top problem areas

Table 1. Top problem areas identified by interviewees

Risk Area or Opportunity to Improve # times top*

1.  Expertise. Systems team lacking software expertise or software team lacking systems expertise 
or other expertise issues 16

2.  Interface definition or spec. Lacking interface definition including data, specifications 14

3. Leadership. Organizational or management issues 12

4.  Process. Lacking agreement on critical processes, including process problems in specific lifecycle 
phases from concept through maintenance or problems in language impacting interface and system 
performance

11

5. Environment & System Type & Other. Problems related to certain system types—complex, 
emergent behavior, or distributed control 
(Note: Four respondents indicated problems with complex systems such as autonomous systems, 
emergent behaviors, and lack of tools and processes. One respondent cited problems with test 
architecture.)

5

6.  Technology and Tools. Lacking modeling tools or other tools or incompatibility among tools; 
technology gaps 4

*# times ranked in top two problem areas by an interviewee
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into the “best practices” categories above 
and tagged them with the applicable roman 
numerals and letters.

Expertise. (IIIa) Lacking expertise in 
both software and systems is a significant 
issue. System engineers need some software 
engineering knowledge, and vice versa. If 
we resolve this issue, many other issues will 
resolve as a result.

With digital engineering and soft-
ware-intensive systems, system engineers 
must have good software insight. Software 
engineers must also understand the system. 
The systems engineering team may have 
dated experience. System engineers and 
software engineers must stay up to date 
through education and knowledge-shar-
ing. They do not need to be experts. The 
software team needs systems thinking 
knowledge and tools. Software engineers 
need to obtain, acquire, and assimilate the 
need for higher-level system engineering, 
such as why and how systems engineering 
is a discipline they need to interface with 
and why software engineering needs system 
knowledge.

Shared Objectives; Interdisciplinary 
Teamwork. (Ia, Ic, IIa, IIc, IIIa, IIIc) Align-
ment issues on objectives between organi-
zations cause systems problems. The project 
must involve systems engineers from the 
start in a collaborative process. Sometimes, 
the project brings in systems engineers 
too late. Conversely, in the semiconductor 
and automotive industry, sometimes the 
systems architect specifies the system (and 
its architecture) without consulting the 
software architect. In the past, the software 
was the system in domains/companies with 
software-intensive projects. Today, software 
resides in a more complex environment 
and needs to be an integral subsystem. The 
system process also needs to integrate the 
software DevOps approach. Functional 
organizations create barriers to developing 
a systems focus.

Cultural Alignment; Communica-
tions; Relationships. (Ic, IIa, IIc, IIIa, IIIb) 
Systems and software engineers need to un-
derstand one another—from understanding 
each other’s worldview at a high level to 
communicating with each other’s tools at 
the detailed level. We must develop prac-
tices to support the dual need for “build to 
last” and “adaptability.”

We need to understand and resolve 
interpersonal communication barriers, in-
cluding language and behavioral differences 
(Kasser and Shoshany 2000). All stakehold-
ers need common (or agreed to) ontologies, 
terminology, and semantics across systems, 
software, and hardware. Often friction 
appears between software engineers who 
force system engineers “out of the clouds” 
and system engineers who push software 

engineers to understand the world is bigger 
than the computer screen. We call engi-
neering leaders in the defense industry sys-
tem engineers, though the individuals may 
lack the necessary tools and skills. These 
positions require software architecture 
skills as well. Today, systems engineering 
and software engineering practices do not 
support joint discovery and requirement 
evolution as necessary and natural. 

The trade space between software and 
hardware frustrates engineers in both 
fields. It is important to allow for require-
ments and the trade space for software and 
hardware to adjust as a program evolves, 
and more is known about the environment 
as it changes and the system develops. It 
is important to understand systems and 
software competencies and differences, par-
ticularly given the blurring and blending 
trends between systems and software (see 
Fairley 2019, page 39 regarding methods 
and common attributes).

Lacking Good Systems and Software 
Engineering. (I, Ic, Ih, IIa) Systems and 
software engineers expressed a need for 
more agile processes to avoid commitment 
to a big upfront design. Software often 
makes up what was forgotten in the system, 
too late in the lifecycle, in band-aid mode. 
The systems engineering team did not un-
derstand the problem, missed something, 
or could not discern the customer’s wants. 
Software engineers who do not realize the 
big picture cause problems. For example, 
we cannot add safety at the product devel-
opment process’ end. Creating a big picture 
view helps even when software engineers 
do not recognize the importance. Invite 
customers to talk to software engineers 
(who are often so focused on deliverables 
they do not take time to talk to users). We 
need customer involvement and focus in 
the process, including design for usability/
human factors. In some industries (con-
sumer appliances or medical products), 
systems engineering practices are new and 
not well established.

Education; Engineering Disciplines. 
(IIa, Ic, I) Some interviewees indicated 
systems engineers rarely have formal 
education in system engineering. The best 
systems engineers have broad engineering 
experience. The systems engineering and 
the software engineering disciplines are not 
identical. More than one interviewee said 
systems and software engineering should be 
two specializations within one educational 
department. Software engineers need to 
understand the greater lifecycle. Systems 
engineers need to understand the funda-
mental system building blocks. Education 
programs must keep pace with soft-
ware-based Agile technologies, techniques, 
and tools.

Process Challenges. (I, Ib, Ib1, Ie, Ih, 
IIc) Complexity is increasing the need to 
improve systems engineering processes 
with systems thinking and impact analysis. 
System thinkers need to test what they do 
before they do it and understand the emer-
gent behaviors. Modeling and simulation 
are necessary, but it may not be possible 
to predict emergent behaviors in complex 
systems. Modern systems engineering 
practices do not fully address modern 
system challenges and opportunities, such 
as complexity, AI, deep learning, and emer-
gent behaviors.

Examples:
Implantable medical devices have new 

input sources—a user can modify the 
system’s behavior rather than requiring a 
doctor, or else other emergent behaviors 
bring more complexity and the need for 
a SoS approach.

Autonomous vehicles need new 
approaches: maybe requiring a software 
patch before finding the problem’s root 
cause (fuel gauge sensor).

Software validation must validate all 
lines of code. Models require validation, 
and models may need refactoring to real-
ize a digital thread. Can we use advanced 
technology (AI and machine learning) to 
validate models? 

Risk management is important. Risk 
management is often weak or dependent 
on another technology not at an accept-
able readiness level.

It is critical to use a system develop-
ment lifecycle process integrating sys-
tems engineering, software engineering, 
and program/project management. One 
common issue is teams from the different 
domains diverge after the cross-domain 
Use Case step, developing artifacts no 
longer familiar to stakeholders who pro-
vided the original needs. Cross-domain, 
in this instance, means developing specif-
ic Use Cases to elicit an understanding 
of disparate project domains (engineer-
ing or business)

Interface Definition. (Ib, Ib2, IIb) After 
analyzing 50 companies’ systems engineer-
ing competencies, we identified interface 
management as the weakest systems engi-
neering capability (Source: Mark Sampson, 
Siemens). Model-based representation 
improves understanding across interfaces. 
Understanding across interfaces is essential 
with software-system interfaces. The IN-
COSE MBSE Patterns Working Group (in 
collaboration with NASA, JPL, and OMG) 
worked on sharable patterns improving the 
interface representation. 

Sometimes we do no define interfaces 
well because of an incomplete understand-
ing of the enterprise architecture and data 
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model. Problems can also arise with a lack 
of planning/design at the front end, lack of 
information available from customers or 
suppliers, or too many items still undeter-
mined in the Technical Requirements Doc-
ument or the Interface Control Document. 

Simulation. (Ib8) Systems and software 
engineers have expressed concerns about 
gaps in the capabilities and tools to do 
system performance simulations. We need 
to progress beyond static documentation 
and structural models to executable models 
to ensure interfaces and system perfor-
mance. Improving the interface requires 
MBSE evolution (integrating requirements 
into modeling, using models to simulate 
systems, or models to determine perfor-
mance). SysML models are currently static. 
The SysML language and tools must mature 
to provide a native dynamic simulation. 
MATLAB can do some simulations, but 
this happens through an external interface 
integrated into the SysML model utilizing 
parametric diagrams. Systems engineers 
would like to push a button in the model to 
validate the system’s performance.

Interface Security. (Ib, Ig, Ih) From 
the cybersecurity viewpoint, there are 
significant, growing trust problems in the 
interfaces. Systems have to be flexible and 
change over time. It is continually necessary 
to define what input data is and ensure trust 
with input and output data. As interconnect-
ed systems change, we must ascertain if we 
can still trust the input and output. Poorly 
done software (hacking code or sometimes 
using the “Agile” excuse) is a huge problem. 
As technology changes, this presents addi-
tional challenges for cybersecurity. Software 
languages and libraries change so quickly 
the project has insufficient time to check for 
fit-for-purpose and security.

Data Volume. (Ib2, IIc) Best practices 
lack handling data volume and complexity, 
millions of data points. Engineers and op-
erators can become overwhelmed with data 
of unknown importance. Some interview-
ees saw a need for better data management 
infrastructure. We currently do not have 
well-established interface management 
for complex systems (for aircraft with 1.2 
million interfaces, captured as individual 
things and managed as individual things). 
Some interviewees felt we could use data-
bases better to manage this data complexity. 
When an interface changes, teams should 
notify the right people to determine the 
impacts and control integration. Interfaces 
can then build on architectural decisions.

Other Modeling Challenges. (Ib, IIc) 
Using model-based engineering to estab-
lish requirements makes it imperative to 
improve practices to keep the models fresh. 
This area is ripe for research in including 
accountability and ensuring more rigor 

during product development. Systems 
interface requirements need to update 
dynamically based on data collection, 
leveraging advanced analytic practices, and 
machine learning and AI. Ambiguity exists 
between SysML and UML (both are draw-
ing languages; while SysML evolved from 
UML originally, both have evolved some-
what independently). The workaround uses 
data architecture (data schema/ontology) 
and simulation tools to bridge the ambi-
guity. A common ontology, semantics, and 
terminology would be helpful. For example, 
in the automotive domain, hardware/
mechanical and software have somewhat 
different terminologies.

Agile and Concurrent Engineering 
Expertise. (Ih, IIa, IIc, IIIa, IIIb) Interview-
ees noted gaps in understanding practices 
for engineering Agile systems and software 
and in performing concurrent engineering. 
For example, in Agile, there are always 
unknowns throughout the process, but 
design efforts always proceed, assuming the 
unknowns will successfully resolve later. 
The team may discover something they 
planned cannot be done (though using the 
rolling wave planning process helps).

Systems of Systems. (Ia, IIc) Interview-
ees noted a need for unambiguous systems 
or systems of systems (SoS) objectives and 
metrics for success. Is there a way to indi-
cate when the parts should sub-optimize 
to optimize the whole? How can we create 
systems to work for themselves yet also 
make the SoS work together? System owner 
motivations and incentives in a SoS often 
do not align. (This is an area for additional 
research and development.)

Discussion and Future Work
We consider this survey of 31 interviewees 

complete, although the SaSIWG is always 
interested in hearing from others and will 
incorporate additional answers into ongoing 
work. Future work will entail more discus-
sions within the SaSIWG and other INCOSE 
working groups to clarify and communicate 
best practices. Fairley (2019) has added 
considerably to the best practice knowledge 
base derived from the interviews. 

The SaSIWG also plans to address prob-
lem areas. As a first step toward approach-
ing the expertise key challenge, the SaSIWG 
conducted a “Book Club” (professional 
development) webinar series discussing 
Fairley (2019) and has recorded it for future 
systems and software engineer education. 

CONCLUSION
The INCOSE member and other systems 

and software engineer survey captured 
numerous helpful suggestions for organi-
zations to adopt as best practices. These 
include leveraging existing best practices in 
systems and software engineering, evolving 
systems engineering practices (agile, MBE/
MBSE, concurrent engineering, and AI/
Machine Learning), and assuring teams 
have the expertise for increasingly soft-
ware-intensive systems. 

The survey also identified the most crit-
ical challenges for engineering leaders and 
systems and software engineering leader-
ship. The top challenge area was expertise—
lacking software engineering skills among 
systems engineers and vice versa. Ranked 
second was the lacking interface definition, 
including data and specifications. We must 
address these challenge areas to improve 
software-intensive system delivery.

While important, recommendations and 
helpful suggestions alone may not suffi-
ciently address the pain points. Additional 
discussions related to implementing best 
practices, strengthening expertise, and 
evolving systems engineering practices 
are vital. Implementing additional educa-
tion and cross-training between systems 
and software engineering, MBE/MBSE 
methodologies, and concepts such as ma-
chine learning, data science, and artificial 
intelligence have provided some tools to 
address the pain points. Together, these 
can augment engineering product lifecycle 
processes while enforcing discipline within 
rigorous and judiciously chosen processes. 

SaSIWG will continue to share the 
survey findings to address critical problems 
and challenges, including education and 
systems and software engineer training in 
novel ways.  ¡
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  ABSTRACT
Many software-dominant organizations ignore systems engineering completely. A recent popular book described one such 
organization in a fable format. The INCOSE Systems and Software Interface Working Group chose to read this book as a weekly 
professional development seminar to investigate where systems engineering should fit in software-dominant organizations of the 
type that do not currently involve INCOSE’s systems engineers. This seminar culminated in an “author day,” where the book’s 
author responded to our questions and discussed our potential role. The book club activities produced several drafts we can 
turn into products to help INCOSE systems engineers better understand software, and systems engineers’ potential role in such 
organizations, to help improve software-intensive system success.
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Working Group to Create 
INCOSE System-Software 
Interface Products
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THE SELECTED BOOK

INCOSE’s Systems and Software Inter-
face Working Group (SaSIWG) wanted 
to explore the role systems engineering 
would have in future software-dom-

inant organizations. While some organi-
zations today, notably defense and safe-
ty-critical systems industries, have a history 
of systems and software working together, 
others, notably technologically explosive 
and disruptive commercial businesses, do 
not. Because The Unicorn Project, by Gene 
Kim, describes the problems this type of 
business faces, the SaSIWG selected this 
as our second professional development 
or “book club” project. We also selected it 
because the industry described in the book 
does not include systems engineers and is 
unfamiliar to many INCOSE members. 

DISASTER TO HOPE THROUGH REBELLION
At the beginning of The Unicorn Project, 

silos dominated the fictional organization, 

as in many real organizations. There was no 
consistent software development environ-
ment. The integration test environment had 
no architecture. 

Management interfered initially, and en-
gineers could not talk to each other without 
obtaining management’s approval, though 
several enlightened managers discovered 
and admitted this throughout the story. 
Managers repeatedly outsourced Informa-
tion Technology (IT) to reduce cost, then 
re-integrated because outsourcing made 
IT too unresponsive. Every change caused 
significant disruptions. Project managers 
functioned as paper pushers who primarily 
created more dependencies, adding wait 
time and complexity. 

No one considered the whole system, 
only their specific portion, because no one 
understood more than their portion. There 
were no systems engineers, and no one un-
derstood the need for a system viewpoint. 

Teams even considered architects harmful, 
people who just sit on committees and 
make people complete forms.

Managers without software development 
backgrounds (such as the character Sarah 
Moulton) had a poor software development 
understanding, had the wrong attitude 
(blame and punish), and made the wrong 
decisions (to sell off the company for parts).

The book’s hero, Maxine, gradually 
worked to understand the situation, and 
in doing so, found like-minded people 
who helped her implement a new working 
method. They had begun operating in hero 
mode, with the motto, “Breaking rules is 
the only way to get things done.” Through 
several pilot projects and reorganizations, 
Maxine increased their higher management 
support, gave customer delivery speed 
more attention, and broke down archaic 
anti-patterns preventing successful work. 
Management at higher levels began to 
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support their effort despite many threats to 
their jobs along the way.

A SYSTEMS ENGINEERING CONCLUSION 
Ultimately, the excellent material success 

of her team’s approach following their 
“sensei’s” advice (the “sensei” transparently 
representing the book author) led to victory 
over all obstacles. Maxine received a promo-
tion to “distinguished engineer.” The SaSI-
WG’s 2021 paper (Sheard et al., 2021) argues 
this position is very close to a senior systems 
engineer. The working group thinks if the 
company had started with a position, group, 
or perspective like this, it never would have 
fallen into trouble in the first place.

WORKING GROUP PRODUCTS BEGUN DURING 
BOOK CLUB
• Working Pattern for a Systems Engineer 
in Software World

■	 Assess whatever topic/issue is at hand, 
whether the big picture as a whole or an 
immediate problem.
This might be a quick conversation or a 

large meeting with “techniques” (post-its or 
multi-voting) in play. It all depends on how 
much context the systems engineer already 
has, how much bias needs weeding out, 
and how much consensus the team needs 
to build.

■	 Draw pictures to understand it—box 
the scope, note the interfaces (where 
everything breaks), map the interrela-
tionships, and clarify the purpose.
To explain how things work, systems 

dynamics diagrams and causal loops work 
well, but systems engineers should draw 
anything needed to describe functions and 
data flow depending on what will convey 
the point. Some pictures may be formal 

and persist through the project, but often 
they are messy, temporary, and “fit for use,” 
supporting or prompting a conversation to 
achieve “aha” moments.

■	 Find the pattern, relate it to patterns seen 
elsewhere, determine the solution, plan 
it, and move on.
Patterns can come from principles as well 

as heuristics and repeated scenarios in oth-
er domains. Systems engineers cross-pol-
linate constantly. This involves “playing it 
forward”—not only looking at today’s static 
condition but thinking through future 
circumstances to ensure robustness, resil-
ience, and anti-fragility. A solid statistics, 
experiment design, or design engineering 
background really helps.

■	 Spend time trying to explain the above 
to others who are not systems oriented.

Table 1. Terminology table

Term Definition Example or Opposite Notes

Dev  
environment

Tools and procedures for developing, 
testing, and debugging an application or 
program.  

IDE: Integrated 
development 
environment   
provides developers 
with standard UI 
(user interface).

Techopedia says a dev environ-
ment normally has three server 
tiers, called development (devel-
oper), staging (testing production 
for reliability), and production 
(actual run environment). 

Docker

Products deliver software in packages 
called containers. Containers 
bundle their software, libraries, and 
configuration files; isolate from other 
containers; and communicate through 
well-defined channels. A single 
operating system kernel runs containers 
and therefore uses minimal resources.

Docker is a company, released as 
open-source in 2013. 
There is software, namely a 
Daemon (a persistent process 
managing Docker containers, 
handling container objects, and 
listening for requests), Objects, 
and Registries.

ERP System

Enterprise Resource Planning (ERP) 
systems integrate the software needed 
to run a system, including planning, 
inventory purchasing, sales, marketing, 
finance, and HR.

Oracle, SAP, and 
Microsoft.

ERP systems evolve often and can 
be vast and problematic.

GitHub
Web hosting for software development 
management service. Rely on GIT as 
versioning tool.

GitHub is also a company 
developing software and 
providing services.

HIPPO Highest paid person’s opinion. Leadership snark.

JIRA Ticket-based online tool to track bugs, 
manage incidents and projects.

Tool often used in software 
projects since it implements agile, 
scrum, and Kanban.

ODB-II Onboard Diagnostic Port-2.

Port to an electronic 
system to tell how 
the computers on a 
car are working.

Automotive part component.

POS 
Registers Point of sale registers.

Cash registers for the 
stores selling auto 
parts in the company.

Registers like cash registers, not 
like computer registries.
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Managers sometimes tell systems en-
gineers why the “new” design (or other) 
methods are somehow superior tools in the 
toolkit, as if we did not understand, even 
when we know their common roots and 
tool evolution. We may have to convince 
them we do know.

■	 Be happy when everyone starts rowing 
the boat together; persist when that does 
not happen.
Know when to let go but be persistent 

when it is important. If it is not safety or 
money, sometimes letting something go 
“splat” is the way other people “get it”—it 
just takes forever.

• Terminology collection
A confusing part for a systems engineer 

in a software-dominant organization is the 
unfamiliar jargon (words, abbreviations, 
and acronyms) used without explanation. 
While reading the book, we started 
writing down many software-specific 
terms. Because many systems engineers 
experience this in software-dominant 
organizations, the group realized INCOSE 
members might appreciate a top-level 
or systems-view explanation that does 
not require searching through multiple 
bottoms-up software-type explanations 
to learn what they mean in a systems 
engineering context. 

We have created a terminology table 
to turn into a database. Table 1 shows 
a few terms and a few columns from 
this table. We need to consider how to 
provide this information to members. A 
briefer explanation would be desirable 
immediately upon first hearing the term, 
rather than a longer definition later. We 
also need to consider how we would 
recommend systems engineers learn the 
term the “second time,” when there is time 
to digest what the term means in a broader 
software engineering context.

We are considering turning the table into 
an online accessible database for INCOSE 
members. The question is how it would be 
most beneficial. We are also considering 
how to turn this effort into INCOSE-spon-
sored software engineering education 
for systems engineers, whether online 
asynchronous, lunch-and-learn, or another 
learning method.

• Drawings of Software Development and 
Product Delivery Process

Software development processes also 
puzzle systems engineers. Our 2021 sym-
posium paper discusses this in more detail 
than this INSIGHT article can, but we 
show one figure discussing how software 
developers modify code. A developer starts 
a new version by cloning the repository 

stored code, issued from a baseline, to his 
or her computer. After making changes, 
he or she “pushes” the modified code 
(using the checkout/check-in process, also 
called the commit process). Peers can then 
review this new code and do unit tests. 
Once approved, they “merge” this new 
code into the main branch, creating a new 
baseline. This process is part of a merge 
and branch strategy, illustrated in Figure 1. 
Today, these processes, labeled continuous 
integration, usually use automated tools, 
such as Maven, Nexus, or others, created 
specifically for this purpose.

• Operational Process Flow Model
We also made an operational process 

flow model as the first step toward an 
executable model to simulate the original 
organization’s process chaos and show how 
the improved organization works better. 
Again, we refer the reader to the 2021 
symposium paper. The objective is to em-
phasize the need for a systems engineering 
role, develop a holistic view enabling early 
activity gap and redundancy identifica-
tion, and understand activity and interface 
dependencies. The systems engineering role 
is like a symphony orchestra conductor: a 
thorough understanding of how different 
instrument sounds combine enables the 

conductor to produce excellent music and 
guide the orchestra musicians.

• Complex Systems Model
The Working Group developed models 

describing organizational approaches to 
accomplishing work and their limitations, 
including the monolithic approach, the 
choreography approach, and an autonomy 
approach more consistent with complex 
systems principles. We introduced these 
to show INCOSE why systems of systems 
work better with focused autonomy and 
what conditions they require. Brian White, 
a former Complex Systems Working Group 
chair, has written a body of work on this 
topic (White 2016).

• Change Agent Model
Previous work by Working Group mem-

bers, including Sheard and Siviy, suggest 
systems engineers can be effective change 
agents (McKinney et al. 2015). 

NEXT STEPS
The working group will consider which 

steps to take next to bring these draft and 
potential products forward to be most 
beneficial to INCOSE and the Systems 
Engineering community. To help, please 
contact the WG Chair, Nick Guertin.  ¡

mainline

release
branch

F1M1–3
M1 M2 M3 M4 M5 M6F1 F2

F2

production branch
tag: v2.2

M1–3+
F1–2

Figure 1. Merge and branch strategy
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  ABSTRACT
The software industry has been experiencing several transformations. Development teams now often autonomously deliver 
business capabilities to software service systems. The Unicorn Project, a best-seller, tells how a retail company transformed into an 
Agile and DevOps organization. This paper uses a model from the systems engineering toolset to understand those organizational 
changes and proposes an evolution of the systems engineering discipline to increase the value provided by this type of organization.

  KEYWORDS:  adaptation, agile, DevOps, engineering, management, organization, product, service, software

Software companies comprise units 
aggregating sub-services into a final 
product. These units’ teams are sys-
tems, and the company organization 

are system of systems (SoS).
Some advocates promote applying 

systems thinking in management science 
(Jackson 2019, Senge 2015). We can ob-
serve organizations through perspectives 
built by systems engineering and model a 
team with people and resources as a system 
with functions, roles, components, oper-
ational contexts, interfaces, behavior, and 
environmental interactions.

This system model might apply several 
different ways. For example, it facilitates 
analyzing interaction change impacts, 
streamlining communication paths, and 
improving global performance. One can 
also explore final system configuration 
alternatives. A systems approach provides 
a deeper understanding of the different 
leadership and management type advantag-
es and drawbacks.

The International Council on Systems 
Engineering (INCOSE) Systems and Soft-

ware Interface Working Group (SaSIWG) 
studied systems engineering roles in a soft-
ware organization. As a discussion source, 
the group studied The Unicorn Project (Kim 
2019), a best-seller promoting DevOps in 
software companies. The French Associa-
tion of System Engineering (AFIS) devel-
oped a body of knowledge about service 
systems engineering (SSEBoK) (AFIS 2020). 
This SSEBoK uses a building block concept 
to model a team responsible for providing 
and operating the product-service system. 
This model enables team interaction and 
capability analysis and allows one to under-
stand organizational qualities and evaluate 
them against another organization.

This paper applies this model to com-
pany organizations during different book 
phases (Kim 2019).

A SYSTEM MODEL FOR A SERVICE SYSTEM
“Service-System is a socio-technical 

system that comprises: a System of Interest 
(typically, a product expected to provide 
some type of service by satisfying specified 
performance, behavioral and operational 

needs).” (AFIS 2020)
A unitary service entity, called a Service 

Building Block (SBB) (AFIS 2020) and 
depicted in Figure 1 on the next page, 
describes a product-service system. This 
SBB interacts and exchanges information or 
services with other service building blocks, 
products, or consumers. Each SBB brings its 
capacities to the wider system, the organi-
zation. A search for operation optimization 
can improve global performance (operating 
cost, selling price, and service continuity).

This model includes people, means, 
and implicit or explicit governance in the 
service producer system. It has reaction, 
autonomy, and self-adaptation capacities. 
This adaptability permits configuration, 
function, performance, and need modifica-
tions in long- or short-term objectives.

A team in an organization is a service 
system building block. We can classify 
teams and companies as complex systems 
(White 2015). They have characteristics 
of ambiguity, unpredictability, evolution, 
emergence, instability, collaboration, diver-
sity, adaptability, and more.
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Figure 1. Common product-service building block elements

Various heterogenous software tech-
nologies carry services produced by 
software-intensive organizations. Multiple 
product-service system components require 
respective skills, tools, and infrastructures.

The software service industry usually 
requires fast actions to react to business 
demands and continual improvement 
activities extending product services. When 
usage makes up the demand signal, it can 
quickly evolve, shortening software devel-
opment cycles and improving the delivery 
process. Our attention should be on the 
integration and delivery process quality and 
fluidity to make them continuous. Standard 
tools deploy to merge, test, and deliver 
freshly developed updates into the other 
software artefacts.

The Unicorn Project (Kim 2015) describes 
a retail company’s digital transformation 
through the super-software developer’s 
eyes. This hero leads the organizational ad-
aptation from a pyramidal organization to a 
horizontal one. The book demonstrates, in 
a digital world, new organization types bet-
ter provide service systems. The following 
paragraphs use the service building block 
model to give another perspective, showing 
how a systems engineering perspective can 
ensure team and organization construct re-
silience for a software engineering scenario.

THE PHOENIX PROJECT BEGINS: THE 
MONOLITH ORCHESTRA IS PLAYING

Kim’s story begins in a basic retail com-
pany organized with a many-tiered pyrami-
dal hierarchy. This company survives on its 
store permeation throughout the US. There 
is no need for evolution, no need for a new, 
challenging project; they only must keep 
their dominant position.

In this context, basic software pro-
grams manage employee services, salaries, 
documentation, and stock management. 
Projects are simple and follow classical 
V-cycle processes. Software teams organize 
by activities, development, integration, test, 
delivery, and production with each aspect 
linked in the chain.

This organization type rations resources 
and tries to optimize each process by gath-
ering and harmonizing competencies and 
tools in the same place, akin to Figure 2.

Management attempts firm control and 

unidirectional interactions and typically 
operates beyond the other teams. Central 
management decides tactical orders and 
relays them through layers much like an 
orchestra.

Only management and the product itself 
contact the environment. Each team plays a 
partition and follows the conductor’s lead. 
Project execution follows a linear and rigid 
process and imposes a strong coupling 
between activities for bringing a new capa-
bility into the system. This chain will break 
if any link fails. The lacking autonomy 
requires the team leader to apply corrective 
actions directly.

FULL DEVOPS ORGANIZATION OR THE 
AUTONOMY MYTH

To follow the retail business changes, 
the company must transform its organi-
zation from physical store to virtual store 
using the Internet to sell goods. Despite its 

Company
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integration

Development
and test Validation &
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Figure 2. The orchestrated organization
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apparent simplicity, eCommerce systems, 
such as commercial transactions conduct-
ed electronically on the internet, require 
multiple software technologies, frame-
works, and infrastructure typologies to 
deliver state-of-the-art business capabilities 
(Akbari 2016). The drawbacks induced by 
the hierarchical organization for developing 
and delivering such a system caused the 
company’s implosion.

In summary, a natural-born software 
hero named Maxine saved the sinking ship 
by bringing DevOps to the organization. 
Then from hero to guru, she demonstrated 
how the subsystems composing the service 
systems are fundamentally different. The 
company had to reorganize itself into inde-
pendent teams providing uncoupled uni-
tary service and creating the final product 
service system, as several service building 
blocks create a product service (AFIS 
2020). Each service building block can 
adapt to the environment and, therefore, to 
the business needs.

At the end of its transformation, The 
Unicorn Project organization applies agility 
and encourages teams to deliver capability 
autonomously. In short, development teams 
become more dedicated to the business. 
They engage as stakeholders in the company.

With a product owner and DevOps, 
teams have new environmental interfaces 
to interact with customers and directly use 
the appropriate service operation infra-
structure. The producing team performs 
the qualification process during an actual 
case demo—an agile term for the ceremo-
nial process of testing a delivered capabil-
ity as an end-user could do. This process 
efficiently discovers lacking capabilities and 

bugs and encourages the higher perfor-
mance of the developers, who behave more 
as engineers than as technicians like in the 
previous story period. Outside managers 
drive teams less, and inside leaders, who 
help develop quality reference code, push 
more.

Software infrastructure automates all the 
processes from building, code transforma-
tion, and libraries into program artifacts to 
run—a term for executing applications in a 
production context. The Figure 3 infra-
structure domain illustrates tools listed in 
The Unicorn Project by their iconic logos. 
These tools compose the infrastructure and 
technology stack. The framework and tool 
landscape is vast and evolves fast. Since 
Kim wrote the book, some tools are already 
obsolete. Software engineers use their 
various communities to follow the trends. 
Maxine, The Unicorn Project hero, spends 
time on social networks to exchange with 
experts.

The DevOps individual masters both the 
delivery flow and the company’s infrastruc-
ture stack, making the business applications 
run without any supplementary actions. 
Systems engineers must know what capabil-
ity to offer the producing team; how it can 
improve development, integration, testing, 
and running processes; and the needed 
supplemental operations, resources, and 
operation monitoring.

This organization has many similarities 
to jazz music, played by autonomous mu-
sicians, each having an appropriate feeling 
and bringing their part to the music. A 
leader gives the band directions but allows 
space to empower colleagues for a better 
performance. This is a similar ideal for an 

agile, effective organization.
Although we deem this model beauti-

ful, not every company stakeholder may 
fully appreciate it. It promotes short-term 
consumer satisfaction, taking shortcuts, 
possibly interfering with other domain 
concerns. For example, in The Unicorn 
Project, the author mentions the security 
teams’ regular opposition. Opening an 
internet protocol (IP) port can assist in a 
brand-new application, but it provides an 
open door for any hacker. Where is the 
forum for this discussion? As in business, 
the team could manage the security needs 
internally. A commonly deployed trend not 
explored in the book is extending DevOps 
to DevSecOps. What about the General 
Data Protection Regulation (GDPR) and 
other regulations? Should DevSecOps be a 
DevSecRegOps? And what is next? DevOps 
might explode due to the responsibilities. 
To avoid a new bottleneck, security and risk 
leadership and management must remain 
a transversal activity. Using the SBB model 
identifies the DevOps roles as a team inter-
face. It enables an organization to more eas-
ily and effectively navigate evolutions and 
identify service block needs in governance 
and people.

SBB compositions analyze relations be-
tween organization components. Applying 
the SBB helps manage growth, identify 
potential mean factorization, and find the 
correct balance between service blocks 
to deliver a better product service. This 
system model is a decision tool when some 
consistency problems arise concerning the 
company strategy. Increased size might re-
quire some additional disciplines to control 
the whole system and its architecture.

Figure 3. DevOps type teams are autonomous as musicians in a jazz band play music
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Systems engineers put value in service 
system design by considering the building 
system and teams as a system of interest 
part, analyzing interfaces with the enter-
prise environment, and studying coupling 
between teams and components, creating 
the final product.  ¡

APPROACHING THE IDEAL, THE AGE OF 
COLLABORATION

The SaSIWG selected The Unicorn Project 
because the subject company’s promoted 
organization seemed quite distant from 
systems engineering standards. The 
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SaSIWG intended to understand software 
engineering culture, the motivation, 
the reason for the agility hype, and the 
systems engineers’ potential place in a 
software-driven industry. The conclusion is 
optimistic. There is room and the need for a 
systems engineer who will give consistency 
and resilience to the whole system. The 
exercise concluded with a live discussion 
with the author, who agreed DevOps 
are experts, but today’s complex systems 
require a discipline able to be transversal to 
the different software engineering domains.

All this reminds us the produced system 

tightly binds to its producing organization. 
Finally, service building blocks are product-
service systems.

INCOSE increasingly discusses engi-
neering service and social systems. Systems 
engineering has all the tools to demonstrate 
its added value in the software industry. We 
need time and opportunities to make great-
er impacts. This consideration becomes 
even more evident when both produced 
systems and teams embed more artificial 
intelligent components able to evolve based 
on their environmental perception.  ¡
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INTRODUCTION

A Complex Adaptive 
Systems Engineering 
Methodology

  ABSTRACT
In recognizing a system’s complexity reflects human complexity, this treatise suggests ways to achieve effective progress in complex 
systems engineering by intentionally including people as an integral system part to develop or improve. We apply essential and 
relevant multi-disciplinary techniques in addition to the necessary enabling technologies. However, we focus on human aspects 
making or breaking the system. Although this methodology can apply to almost any endeavor, software engineering is our specific 
example domain area.

  KEYWORDS:  adaptation, complexity, engineering, methodology, modeling, rewarding, simulation, software, stakeholder, system
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“Cherish those who seek the truth but beware of those who find it.”	 —Voltaire (Creamer 2021)

“Believe those who are seeking the truth. Doubt those who find it.”	 — André Gide (2021)

Task A

Task B

Task C

Task D

Task E

FinishStart

Possible Critical Paths:
Start A C D E Finish

Start B C D E Finish

Figure 1. Historical bubble chart

We begin with a background 
discussion of a simple 
graphic device (depicted by 
Figure 1) commonly and 

historically used to layout system develop-
ment tasks to determine project schedule 
“critical paths.” We then compare and 
contrast this device with a modern graphic 
describing complex systems tasks, activities, 
and processes.

In Figure 1, we note the following char-
acteristics:

(1)	 The oval-shaped “bubbles” represent 
the Start and Finish points and 
project Tasks (denoted alphabetically, 
A, B, and on, in order, left to right).

(2)	 Arrows show links between tasks, at 
least one connection from Start to a 
task, and from each task to the next 
task or Finish.

(3)	 Every task has at least one input link 
and at least one output link, while 
the Start point has no input links and 
at least one output link. The Finish 
point has at least one input link and 
no output link. 

(4)	 The links have no labels.

(5)	 The graphic is directional (from left-
to-right only), feedforward only with 
no feedback links (return or right-to-
left).

(6)	 We must complete each primary task 
before considering any other “down-
stream” task, to its right, complete.

(7)	 A critical path includes the 
maximum possible sequence of 
links and tasks moving left-to-right 
and Start to Finish. Figure 1 shows 
two such paths. Therefore, the paths 

Start-A-E-Finish, Start-A-C-E-
Finish, and Start-B-D-E-Finish are 
not critical paths.

What follows is a detailed and updated 
Complex Adaptive Systems Engineering 
(CASE) activity methodology elaboration 
(White 2021) depicted in the systemi-
gram-like depiction (Figure 2) below 
(Boardman and Sauser 2008). It reflects 
many possible or potential interactions 
among the elements shown. Remember, 
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in most complex systems, the work never 
truly finishes because the system continues 
to evolve independently, despite the engi-
neers’ best efforts to “contain” the overall 
engineering process.

Comparing and contrasting Figure 2 
with Figure 1, the Figure 2 graphic has the 
following characteristics facilitating con-
tinual creativity in modifying the method-
ology’s content and flow as we learn more 
about the complex system:

(1)	 Bubbles with various coded names 
depict tasks, activities, or processes, 
but there is no single starting or 
finishing point, necessarily.

(2)	 Arrows link tasks but Start and 
Finish bubbles are not necessary.

(3)	 Every task has at least one input link 
and at least one output link.

(4)	 Link labels (and labels next to tasks) 
attempt to indicate how each source 
task affects the next destination 
task(s) and what might happen 
between tasks.

(5)	 Feedback is essential to 
accommodate and emphasize 
evolutionary changes, including 
recycling or repeating many paths or 
sub-paths.

(6)	 Tasks remain open to allow for 
further exploration or evolution.

(7)	 There are no special critical paths as 
defined for the Figure 1 bubble charts.

In explaining the Figure 2 format further, 
the graphic presents each task with a coded 
index like 1, 2a, 2b, 2c, 2d, 3a, 3b, to suggest 
a rough, logical order in purposefully exe-
cuting the tasks. Each task also has different 
colors to highlight similar function cate-
gories. The category definitions are some-
what arbitrary and are as follows. Green is 
preliminaries while dark teal refers to people 
involved, purple to creative aspects, red to 
routine actions, gray to neutral elements, 
and light blue to positive aspects. These 
categories are recommendations and are not 
critical for understanding the methodology.

Again, as noted above, each arrow linking 
two tasks has a word or phrase partially de-
scribing the interactions between the pair of 
source-to-sink functions or activities. Also, 
each label next to a task or link between two 
tasks briefly describes how each source task 
acts and affects the destination task with an 
information flow direction as indicated by 
the link arrow. A black label indicates how a 
source activity affects the sink activity(ties).

A colored link label matching the associ-
ated source task suggests actions included 
by particular source activities, especially 
when relating to the sink task’s purpose.

Note this particular diagram is an ex-
ample, and we do not recommend readers 
take it too literally. As readers become more 
familiar with this CASE methodology, it 
is quite possible to construct a different 
diagram to depict the intended nuances or 
emphases better. When creating a new dia-
gram and making the graph easier to read, 
we recommend keeping the graph planar 
(with no crossing links).

The methodology, modeled by 
the Figure 2 diagram, highlights the need 
for astute leadership and concerns for 
“managing” a complex system. All system 
stakeholders have their role in this inclusive 
methodology. Each stakeholder type will 
have their unique perspective and system 
view. This model is available for suggested 
modification to reflect any perspective not 
yet represented.

CASE is primarily an engineering meth-
odology, and the work leading up to the 
current CASE version builds on complex-
ity science as represented by the Santa Fe 
Institute (https://www.santafe.edu/ ).
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Next, we describe this CASE method-
ology’s aspects, organized by category and 
addressed by the Figure 2 coded task labels. 
Although we primarily focus on systems 
engineering and, more specifically, system 
of systems (SoS) engineering (SoSE), 
software engineering is the specific example 
domain area supporting the International 
Council on Systems Engineering (INCOSE) 
Systems and Software Interface Working 
Group (SaSIWG).

■  Preliminaries
1—Understanding (Persistent) Problem 

As emphasized in the Soft Systems 
Methodology (SSM) (Checkland 1999), 
our goal is to understand the (presum-
ably persistent) problem better. However, 
each understanding level can and should 
trigger intervening actions to improve the 
situation. Thus, problem understanding is a 
continual process requiring re-exercising. It 
receives information from observation and 
the (eventual) intervention result. At each 
such stage, we can delve into the prob-
lem further or move on. In SoS or SoSE, 
reaching mutual understanding across the 
SoS, especially among component sys-
tem organizations, is not easy. Thus, this 
collaboration also warrants extra effort in 
establishing sustainable SoS mechanisms 
and pathways for this purpose.

Often, those representing one infra-
structure domain, such as hardware in the 
military or software, lead this problem 
understanding activity, as in the book the 
SaSIWG recently reviewed (Kim 2019). 
However, each relevant domain should 
have equal opportunities to influence the 
system’s mission. 

There are instances where a group within 
an SoS focuses more on software than on the 
SoS or systems engineering. This happens 
within a single organization and across 
different organizations; it is natural and con-
centrates effort on needed areas. However, 
it can lead to “stovepipe” mentalities which 
are detrimental to overall progress. As a 
possible remedy, establish open and effective 
communication between and within the 
separate groups about the principal problem, 
especially vital mutual interest topics. 

2b—Mounting Organizational Efforts 
Individual efforts can address simple 

problems on a more or less ad hoc basis. 
Complex issues require additional effort, 
usually an organizational variety, typically 
involving multiple organizations. Good 
leaders, faced with serious problems, 
can envision, formulate, negotiate, and 
eventually obtain buy-in participation from 
relevant organizations, including their own, 
that can potentially contribute to problem 
solutions. Initial goals include creating a 

flexible and resilient inter-organizational 
structure to ensure, to the possible extent, 
continual effort from each organization 
involved. Note the traditional hierarchical 
authority and accountability tree structure, 
particularly those of significant depth, 
may tend to be counterproductive to self-
organization (see 4a below).

Compared to hardware teams, we ob-
serve software teams are more autonomous 
and less dependent on discipline-related 
resources with lengthy availability process-
es. The “tooling” necessary for executing 
software tasks is usually quicker to gather 
than hardware enabling tools. Although 
systems engineering teams may not be 
as autonomous, since they are typically 
responsible for overseeing and influencing 
several engineering domains, there is also 
less need for them to wait for systems engi-
neering artifacts to perform their tasks. 

Software and systems engineering 
factions within relevant entities, no matter 
how autonomous, should strive to achieve 
effective and efficient organizational coor-
dination. A good way of stimulating this 
interchange is establishing regular meetings 
involving a few competent and respected 
individuals representing each faction. These 
are people with the authority to commit to 
decisions reached consensually on the spot 
rather than causing further delays by sepa-
rately checking with the bosses offline and 
negotiating disagreements one by one. 

2d—Postulating Desirable Outcome Space
The SoS leadership’s initial task is to estab-

lish an overall SoSE team vision or mission. 
This vision should be compelling and easily 
internalized, motivating and enabling daily 
personal assessments of the team members’ 
common cause contributions. The team 
must establish desirable outcome spaces 
and measures early on to be clear whether 
postulated solutions, developed later, fit into 
at least one of these spaces. At this stage, it is 
premature to focus on specific solutions and 
their possible outcomes. As the SoSE effort 
proceeds, these outcome spaces need contin-
ual adjustment. One does not want the scope 
so narrow they miss hazards or opportu-
nities (see 2a below) for good solutions to 
pursue with informed risk. Nor do they want 
the scope so broad the problem or solution 
challenge is far too great.

Admittedly, it is tempting for software 
designers and systems engineers to rush 
into exploring new feature developments 
before thoughtfully and thoroughly 
contemplating the overall project goals. It 
is also true software and systems engi-
neering teams are sometimes complacent 
in not exploring new methods and tools. 
One painful lesson, learned quite well by 
experienced systems engineers, is getting 

too far “over your skis” can lead to much 
higher costs and greater delays from “back-
tracking” compared to the more patient 
approach in considering and deciding upon 
the various options in moving forward.

3a—Building Team(s) and Resources 
The inter-organizational structure initial-

ly locates, considers, selects, and assem-
bles talented or qualified individuals who 
compose the team(s). The job is identifying, 
qualifying, and obtaining other material 
and financial resources to support the ef-
fort. They plan and place critical processes 
to ensure a methodology for dealing with 
unanticipated events. Acknowledging or ig-
noring this nod to the full situational com-
plexity is likely to positively or negatively 
impact the whole, respectively. In addition, 
we must recognize the smooth and inevita-
ble alternative staff member transition into 
or out of the program for various reasons. 
Sensitivity to external developments and 
outreach to others is also important.

Software teams often embody a disrup-
tive culture, an “open source” orientation 
conflicting with a system solution self-con-
tainment goal. Thus, we should discuss 
what to extract or share with external 
communities early on.

Leaders should ensure each team in-
cludes software and systems engineering 
experts, at least one of each, who are also 
good communicators. This will facilitate in-
ter and intra team cooperation in address-
ing inevitable issues as they arise.

3b—Deciding System Boundary 
Contrary to most traditional systems 

engineering approaches, and perhaps many 
SoS approaches, the boundary of a complex 
system is usually both “fuzzy” and evolving. 
Teams must decide boundaries through 
thorough discussions while understanding 
the problem and exercising other CASE 
activities, including those already discussed 
and 2a and 2c below. Rationale: As with the 
2d analogy above, if the team restricts the 
boundary too much, it is unlikely they will 
solve the real problem; if too ambitious, 
then the difficulties in achieving improve-
ment escalate exponentially. One technique 
for establishing a working SoS boundary 
would be assembling and discussing among 
a small number of representatives from 
each SoS system component level, hopeful-
ly a key stakeholder subset (see 2c below), 
with authority to commit to actions on 
behalf of their organizations, as advocated 
in 2b above. Once this group determines an 
appropriate boundary, they should alert the 
SoSE team and their affiliates to help guide 
their collaborative work. Further, the whole 
team should agree to adjust the boundary 
from time to time based on future events. 
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The main goal is to postulate a reason-
able system boundary. When the project 
involves software, as in most instances, a 
proper boundary must include all critical 
software engineering concerns. On the oth-
er hand, the project must control or at least 
address any software engineer’s tendency to 
extend these boundaries too far.

4b—Establishing Architecture 
The most critical guide to SoSE is a good 

system architecture, including the overall 
software architecture. The team should 
establish this architecture early in the pro-
gram with significant effort to essentially 
guarantee a reasonably stable architecture 
that does not change much compared to the 
engineered SoS. Of course, the architecture 
should change, as appropriate, in response 
to emergent properties or other unexpect-
ed events indicating the need to change 
direction. In some architectural frame-
works, there is a great temptation to create 
architectural “views” describing specific 
perspectives to “check a box” required by 
management. This is fraught with danger if 
the views promulgate before the underlying 
architecture fully develops.

There is much to say for today’s trend to-
ward service-oriented architectures (SOAs) 
emphasizing the bottom-line and what 
usefully delivers to customers. With an SOA, 
each product becomes a largely autono-
mous component process aggregate without 
a strong need to couple them with other 
behavioral type processes. This generates 
several advantages, such as deploying these 
products heterogeneously within other pro-
grams involving their own hardware or soft-
ware resources. Each product has its implicit 
lifecycle, execution resources, and operation. 
This is the exact opposite (or at least, phil-
osophical complement) to the detrimental 
entanglement generated by “spaghetti code” 
based on a pure imperative coding paradigm 
application. Even if modularized, imperative 
coding makes system evolution a nightmare 
while creating a monolith nearly impossible 
to operate correctly.

Investment in a good architecture should 
more than repay its project budget debt by 
devoting and maintaining a commitment 
to software quality with decisions ensuring 
reusability, evolvability, and replaceability 
through better techniques or technologies.

To the extent possible, the project should 
“layer” the architecture. Layering dramat-
ically increases flexibility in introduc-
ing system and software improvements 
following changes in the environment or 
implementation technology. What software 
might better realize in one era, hardware 
may do better in the next, and vice-versa. 
Each layer conforms to closely-knit basic 
functions, grouped by types, such as appli-

cations, networking, communication links, 
or physical implementations. The interfaces 
between layers are simple and stable. How-
ever, the realization within a given layer can 
(more easily and often) adapt to different 
conditions. If the interface(s) to that layer 
remains(remain) unchanged, the system 
still operates effectively.

■  People Involved
2c—Evaluating Stakeholders

There are many stakeholders in a typical 
SoS due to the SoS level, environmental 
participants, and those involved with 
the component systems. As with simpler 
systems, it is advisable to identify, assess, 
and evaluate all the key stakeholders to 
determine who will assist, resist, oppose, or 
just need the effort and progress updates. 
The supportive stakeholders require con-
tinual nurturing, while those against the 
project require neutralization or at least 
marginalization. Psychology, sociology, or-
ganizational change management, politics, 
economics, ethics, and morality are relevant 
trans-disciplines to apply. 

To ensure software and systems cooper-
ation, each entity should identify and seek 
one or two supporting authoritative indi-
viduals to oversee the whole operation and 
help guide processes conducive to success. If 
found, established, and maintained, such key 
stakeholders often ensure a balanced focus 
concentrated on what concerns everyone.

5a—Helping Decision Takers 
“Decision takers,” a term more frequently 

used in the UK than in the US, is a better 
term than “decision-makers.” Taker indi-
cates a more proactive attitude in making 
difficult decisions. In an SoS, decision tak-
ing is more complex due to the numerous 
stakeholders involved across the SoS level, 
its environment, and among the compo-
nent systems and subsystems. Typically, 
decision-makers take decisions too early in 
complex systems rather than waiting longer 
to evaluate the situation better. There are 
significant time delays due to multiple 
interactions within the complex system and 
its environment before the last intervention 
result becomes apparent. Thus, improve-
ment comes from decision takers waiting 
until a decision time is more evident. 
Generally, advisors must provide decision 
takers with good heuristics (practical rules) 
to improve decision taking. An example 
heuristic indicating the need for a decision 
for any key decision taker within the SoS 
would be when any component system or 
subsystem seems to deemphasize the SoS in 
favor of its system more than expected.

In software, such short-focused engi-
neers are often technicians who make deci-
sions with a closed mindset. This results in 

inappropriately transferring their responsi-
bilities to toolmakers, managers, or super-
visors. Instead, software engineers should 
take decisions with an open mindsight, 
and their leaders should more vigorously 
promote and instill their engineering role.

One key software decision taking aspect 
is when to release developed code. This 
should not occur until after thoroughly 
testing the “beta” versions within the parent 
system, hopefully with some user partic-
ipation if testing can occur safely; see 6b 
and 6a below. In consultation with available 
systems engineers, software engineers 
should periodically keep their leaders and 
managers apprised of the situation and 
offer valuable advice regarding code release.

6b—Experimenting with Users 
Because of uncertainties associated 

with most SoSs, the SoSE team(s) should 
experiment with promising ideas in mul-
tiple venues. Rather than confining these 
experiments to laboratory environments 
typical of traditional systems engineering 
efforts, teams should embrace practitioners 
and experiment with users in the field. 
Users know the operational needs. Thus, 
leveraging their expertise and experience 
can make significant progress. This is 
much better than developing something 
in a “vacuum” or “throwing it over the 
wall” and having users reject or misuse the 
supposedly additional capability. However, 
teams must perform these operational-type 
experiments safely so no one is in jeopardy.

Good software engineers make it an 
ongoing practice to create clear explanatory 
comments to accompany the executable 
code. These comments help system users 
and stakeholders, especially systems engi-
neers, understand the code’s intended op-
erational aspects regardless of the software 
language. This has several advantages, such 
as illuminating why a software program 
behaves as it does and helping identify and 
correct inevitable “bugs.” Since only about 
30% of the software engineering effort is 
toward developing code today, systems 
engineering understanding of their reuse 
framework, components, tools, and integra-
tion techniques is also important.

In addition to the overall software archi-
tecture (see 4b above), software engineers 
should also ensure their relevant software 
models (see 5b and 6a below, for instance) 
accompany their executable code. This 
would further mutual understanding and 
help everyone keep the big picture of what 
they develop in mind.

10a—Rewarding Contributors for Useful 
Results

Rewarding contributors for useful 
results is the most important CASE 
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activity to improve system acquisition 
processes. Too often, giving rewards 
upfront or via award fees causes programs 
or projects to fail and accomplishes 
very little. There must be much stronger 
incentives to ultimately achieve desired 
outcomes without having to restart or 
terminate programs. Reserving rewards 
for achievement is especially challenging 
in SoSs, where most component system 
stakeholders would refuse to join the SoS 
effort without reaping immediate tangible 
benefits. Existing incentive structures and 
reward systems cannot change significantly 
overnight either. However, with enough 
resolve, governing bodies could improve 
the system gradually, perhaps over decades, 
by making sure more funding and other 
compensations are later in the programs 
to help achieve desired results. As we will 
state again in 3c and 10b below, innovative 
contracts can help accommodate this 
systemic change of rewarding for results. 

If software engineering lacks systems en-
gineering, there is the danger that software 
programs will not fully satisfy the overall 
system needs. On the other hand, partic-
ipating systems engineers, especially soft-
ware engineers, should receive appropriate 
awards for their worthy accomplishments 
(not just specific software developments).

■  Creative Aspects
2a—Balancing Opportunities and Risks 

Traditional systems engineering focuses 
too much on risk mitigation. It is more 
about opportunities with complex systems 
since the system continuously evolves 
whether one intervenes or not. Of course, 
when pursuing more productive pathways 
to good solutions, it is advisable to do this 
only with an informed risk plan. Leaders 
should reward those seeking improvements 
in this way (see 10a above), even if they are 
unsuccessful at first. One needs to protect 
against Black Swans (Taleb 2007) but also 
stimulate anti-fragile development (Taleb 
2012) (see 3c below). Some risk mitigation 
efforts concerned with avoiding adverse 
outcomes can lead to promising positive 
results and vice versa. The most important 
principle to observe is balancing oppor-
tunities and risks. Maintaining reasonable 
balances among various competing factors, 
instead of separate suboptimizations, is 
fundamental in SoSE. One way of ensur-
ing SoS adaptability is to put into place, in 
advance, a shared management process to 
use when unexpected events occur.

Software development often naturally 
inclines toward opportunities, especially in 
new feature development. While pursuing 
such further capability, however, those 
involved must remember how to safely and 
efficiently integrate new code into the over-

all system, know potential risks and how 
to mitigate them through applying sound 
systems engineering techniques.

3c—Creating Anti-Fragility
First, the SoSE team should protect the 

SoS from rare catastrophic events (Taleb 
2007). For example, suppose the primary 
approach is no longer viable. Then one of 
the backup approaches the team carried 
along may become primary. Also, on a 
smaller scale, it is a good engineering prac-
tice to focus on what might not work or 
what might go wrong, and have a fallback 
position involving subsystem redundancy. 
Traditionally, systems engineering generally 
assumes everything will work as intend-
ed, but this is a flawed assumption with 
complex systems (Perrow 1999). Once such 
protections are in place, the SoSE team 
should subject the SoS to small random 
perturbations to increase its resilience, 
robustness, and strength (Taleb 2012) and 
enhance the SoS’s ability to achieve im-
proved “balance” against future adversities. 
For example, ensure acquisition contracts 
are broad enough to admit a wider vendor 
selection, increase competition, and offer 
opportunities to pay for results rather than 
perceived promises. This “stirring the pot” 
helps ensure the best results.

There are countless ways for software to 
fail or not live up to its intended promises. 
After drafting each code section, the mind-
ful developer should be willing, if not eager, 
to take an adversarial approach and spend 
time thinking about and protecting against 
misuse and possible, though perhaps 
unpredictable, anomalies. Some software 
validation strategies, such as chaos testing, 
include this process.

3d—Adjusting Incentive Structures
People tend to behave in ways strong-

ly correlating with how we measure and 
reward them (see 10a above). In some SoS 
environments, particularly those involving 
military system acquisition, many stake-
holders leading SoS programs focus on the 
short-term. They change jobs every two to 
three years and are not responsible for their 
previous assignments after their reassign-
ment. This CASE activity advocates for, and 
hopefully helps achieve, positive changes 
in incentive structures to better facilitate 
(1) leadership styles creating conditions for 
self-organization (see 4a below), bottom-up 
efforts, and discouraging autocratic, 
hierarchical, top-down approaches; (2) in-
formed risk-taking in pursuing promising 
opportunities (see 2a above); and (3) more 
integrated career accountability.

It may be a non-sequitur to envision 
good software or systems engineers as not 
incentivized. They most likely take signifi-

cant pleasure from what they do, especially 
when seeing the positive effects of their 
work efforts. However, they should also ex-
pect to receive material rewards for making 
their systems successful (see 10a above).

4d—Changing Mindsights
A principal concern associated with 

the systems engineering practice is having 
a “mindsight” conducive to significant 
progress in complex domains. Traditional 
systems engineering mindsets focus on 
requirements, reductionism, and optimi-
zation. These mindsets will not work well 
in the more difficult situations usually as-
sociated with complex systems. Mindsight 
conveys a more flexible attitude established 
and modified by embracing multiple per-
spectives of the underlying truth forming 
the complex systems engineering (CSE) 
base. Through self-organized collabora-
tions, including individual view exchanges, 
a better understanding of the problem and 
what to do is likely. Nevertheless, recognize 
fully capturing the underlying truth will 
likely remain elusive.

Considering an outstanding software sys-
tem, and its many ideas including feature 
creation, development, change, mainte-
nance, evolution, and retirement, as one of 
the most important systems engineering 
domains, is an excellent mindsight to em-
brace. Systems and software engineers have 
much to learn from each other.

5b—Proposing Specific Interventions
There are many occasions when the 

SoSE team is almost ready to try something 
else to help the SoS advance in the desired 
direction. We should view these actions 
as interventions with uncertain outcomes 
because one cannot predict what will hap-
pen in a genuinely complex system. Before 
implementation, the team should propose 
each intervention to key stakeholders and 
obtain their reactions, leading to some 
plan alterations. The stakeholder may also 
indicate some additional modeling and 
simulation (M&S); see 6a below. Finally, 
before fully committing to a path, some 
experimentation would also be advisable 
(see 6b above).

Software developers should resist 
jumping into feature creation too seriously 
before telling other stakeholders their ideas 
to solicit further inputs and ideas influ-
encing the eventual application outcome. 
A systems engineer might be a worthwhile 
colleague to approach in this regard.

■  Routine Actions
4a—Stimulating Self-Organized 
Collaborations

Early in any process for confronting 
a problem and seeking improvement, 
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self-organizational efforts are appropriate. 
A leader or manager takes charge and 
assembles an initial action team (see 2b 
above). The team collects or requisitions 
resources (see 3a above) and establishes 
an overall vision or goal for problem 
resolution (see 2d above). During this 
time, the team must establish a healthy 
collaboration spirit among the participants 
to help facilitate (1) information sharing; 
(2) building trust; (3) developing 
individual perceptions, viewpoints, and 
opinions; (4) cooperation within and 
across teams; and (5) competition among 
teams. Collaboration is what enables 
the self-organization progress to deal 
effectively with the situation and achieve 
a solution. This is especially difficult in 
SoSs, as the component systems have 
their organizations, each naturally 
resisting routine collaboration with other 
organizations because self-interest naturally 
dominates the affinities with SoS objectives.

At this relatively early stage, software and 
systems engineers should seek each other 
out, get to know one another, and prepare 
to establish stronger relationships as the 
work proceeds. This activity also stimulates 
leadership opportunities for anyone 
involved, even temporarily given the 
various team members’ particular talents 
and inclinations.

4c—Brainstorming Potential Approaches
Brainstorming is too casual for this 

critical activity, but it conveys the proper 
meaning. Here the SoSE team, hopefully 
in a high-performing, collaborative state, 
shares ideas about potentially solving the 
problem, mainly from a technical view-
point. However, they must still consider 
the non-technical aspects and all the 
applicable trans-disciplinary areas. As in 
typical brainstorming, the ideas should flow 
freely before anyone on the team attacks 
ideas. This is where creativity should reign, 
potentially modifying the Figure 2 CASE 
methodology systemigram. Then the more 
evaluative phase begins. The team criticiz-
es, rejects, or refines the offered ideas. The 
remaining potential approaches should fit 
within the agreed vision/mission, desired 
outcome space (see 2d above), and system 
boundary (see 3b above). Finally, there 
should be decisions on which approaches to 
pursue vigorously or bring along with lesser 
degrees as backup options.

This process provides a great opportunity 
and solid foundation for collaboration 
where software and systems engineers can 
better understand each other’s language 
and term usage. Unless they come from 
a software background, most systems 
engineers are unlikely to appreciate 
software terminology or the pros and 

cons of software development languages. 
Similarly, software developers may want 
to move ahead with their preconceived 
implementation processes without paying 
much attention to alternative approaches 
to reach better solutions. One systems 
engineering role helps make the evolving 
software process more adaptable. There 
seems to be a fundamental cultural 
difference between software “agility” and 
the so-called classical (and no longer so 
influential) “waterfall V” development 
cycle previously associated with systems 
engineering, which we moved beyond with 
SoSE and other CSE forms.

6c—Taking Appropriate Actions
Complex systems operating where they 

should, at the edge of chaos, continue 
evolving whether one intervenes or not. 
Therefore, before taking further action, 
decision takers should objectively observe 
what occurs over time (see 5a above). 
Interventions are necessary; they are what 
decision takers expect to do. The action 
takers should take these actions in pursuing 
an opportunity while remaining informed 
of potential risks (see 2a above). Whatever 
actions the action takers within an SoS take, 
it is appropriate to describe these actions 
to other key stakeholders at the SoS level, 
within the SoS environment, and across the 
component systems or subsystems. Then 
they have increased abilities to consider 
their actions, hopefully improving the SoS 
situation. This information sharing is not as 
typical in traditional systems engineering 
environments, where it seems organizations 
punish, rather than reward, information 
sharing across organizations (see 4a above). 

Good leaders will ensure all team mem-
bers learn, via communication with their 
team representatives, the more important 
interventions and their status while waiting 
for results. Software engineers may respond 
to these inputs by providing helpful feed-
back on their assessments on the interven-
tion’s potential success. Everyone involved 
should try to be flexible in considering their 
future actions.

11—Renewing Continued Effort?
Our work is never entirely finished in 

a “healthy” complex system because the 
system continually evolves. Checkland’s 
SSM (Checkland 1999) already established 
this. One should view CASE as an iterative 
process revisiting several or all activities at 
various times, such as during each activity 
cycle or after cycling through all activities. 
The SoS level stakeholders should consider 
renewing the overall SoS at appropriate 
milestones. It may be necessary to apply 
renewed effort on some SoS portions in-
volving one or more component systems or 

subsystems. Such instances can apply CASE 
again on a smaller scale. 

Contemplating continued efforts is 
another activity greatly benefiting from the 
software and system leaders’ attention, wis-
dom, and advice on the achievement-effort 
tradeoffs especially when there is significant 
pressure for further change in improving 
the code or system capabilities.

■  Neutral Aspects
6a—Modeling and Simulating (M&S) 
Behaviors

After the SoSE team selects a few 
viable approaches, a primary alternatives 
analysis phase begins. M&S includes 
standard theoretical, analytical capability 
augmenting methods. To the extent a 
complex system can decompose into 
adaptable parts, M&S can help characterize 
the interactions among these system 
components and their environment and 
better determine the factors causing such 
adaptation. In complex systems where 
people are part of the system, intentionally, 
one can benefit from a complementary 
form called agent-based modeling. This 
involves postulating a small rule set that 
autonomous, independent agents follow 
while interacting with other agents within 
their hypothetical system environment. 
An SoS provides a fantastic opportunity 
for this, considering the numerous and 
various stakeholders at play. Thousands 
of iterations, including tens or hundreds 
of agents, can occur with only modest 
memories and computational power. 
Chances are, we can learn much from the 
behavioral results emerging from these 
exercises. We can modify the agent rules 
after adding or subtracting rules while 
seeing which rule sets seem most effective 
in illuminating what happens, for example, 
to agent behaviors, at least to the extent 
possible. As in more traditional M&S 
activities, the outcomes inform the SoS 
development or improvement. 

Modeling and simulating people through 
software programs should be an intriguing 
idea the more creative software develop-
ers might pursue. So far, the popular and 
prevalent model-based systems engineering 
(MBSE) techniques have concentrated 
mostly on technology and the internet of 
things (IoT) without making much prog-
ress on handling SoS stakeholders.

7—Measuring What Happens
Fundamentally, the SoSE team must want 

results that fit into the desired SoS outcome 
space. There should already be measures 
determining whether outcomes fall within 
that desired space. Better yet, each measure 
should include readily available metrics 
for gathering relevant data. For example, 
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component system or subsystem managers 
might report their contributions to the 
SoS level along with why they think each 
contribution will fit into the SoS’s outcome 
space, and the SoS level would record and 
share those instances. Teams should ensure 
whatever data they gathered help avoid 
wasting resources. 

Software and systems engineering leaders 
can weigh in, look at the data, and learn 
what valuable information, and hopefully 
knowledge, they can obtain. They can then 
apply these insights to improve the existing 
management processes.

8—Assessing Results
Here the main challenge is in reaching 

consensus across the SoS as to whether 
they have made improvements. The key 
stakeholders within any component 
system or subsystem may disagree on 
the relative tradeoffs between their local 
objectives and the SoS level stakeholder 
objectives. The team should also consult 
stakeholders within the SoS environment 
but not directly engaged in the SoS to see 
whether they noticed improvements. If the 
SoS provides a public service, the team can 
assess progress by (1) conducting limited 
polls or surveys; and (2) contacting selected 
government officials and lawmakers. A 
sense of accomplishment would do well 
toward continuing the improvement efforts.

At this stage, software engineers should 
view their work objectively in deciding to 
what extent their programs contributed 
to realizing a service. In parallel, systems 
engineers should build on the software 
subsystem consistency (and hardware) and 
understand the software engineer’s impact, 
making their systems engineering opin-
ions clear, hopefully with compliments or 
perhaps constructive suggestions.

9b—Instituting Lessons Learned
Everyone agrees learning lessons is a 

good thing. Sometimes, with pressing 
needs to get on with other work, lessons 
learned are often marginalized or even 
omitted, and people do not change their 
behaviors accordingly. Be wary of only 
a casual or short lessons-learned effort 
at the program or project’s end, for 
example, giving them “lip service” without 
calling attention to them verbally or with 
documentation. We must learn lessons, 
not just observe them! The essential trick 
is to retain and institute these lessons on 
follow-on programs and new projects 
where those lessons apply. Instilling this 
activity’s importance throughout the SoS is 
highly advisable, as is searching for lessons 
from previous projects at the start of each 
project. More to the point, a systemic 
process for collecting SoS-related lessons 

from all component systems would be a 
good idea. SoSs can share these with other 
SoSs as well for the benefit of all.

Systems engineers can publicize what 
they learned from the software engineers 
and vice-versa. This should strengthen 
their relationships and greatly benefit their 
future interactions.

■  Positive Aspects
9a—Adding Incremental Capabilities

Traditional systems engineering focuses 
on requirements near the beginning of 
every program or project and continues 
after that. This focus often continues 
because complex system requirements 
are incomplete, unclear, unstable, or 
even unknown. In SoSs, it is more 
realistic to rely on the (presumably 
already) established mission and desired 
outcome space (see 2d above) than firm 
requirements. With each intervention and 
its aftermath, decision takers assess the 
extent to which the SoS enjoys additional 
capabilities—or not (see 5a, 7, and 8 above). 
If the SoS moves in the positive direction, 
the subsequent intervention will target 
an additional capability, as suggested by 
Figure 3. If not, the decision takers should 
try something else, perhaps in conjunction 
with undoing the previous intervention. 
This process works best incrementally 
where one builds a little, tests a little, and 
fields a little. Gradually, with luck, the SoS 
situation improves.

With these gains, software and systems 
engineers can take pride in their work if 
they work faithfully together to benefit all.

10b—Publicizing Progress
Coinciding with result rewarding is 

publishing not only the recipients but also 
the results themselves. These publications 
do not need details; they could mimic stock 
market quotes, crude oil and gas prices, or 
public media reports. This serves another 
purpose—increasing others’ motivation to 
invest in accomplishing similar outcomes 
(see 3d above). Investments by the compo-
nent system or subsystem stakeholders in 
an SoS are necessary in a systemic process 

rewarding results only. We recommend (1) 
contractors not receive up-front funding 
with contract awards; (2) contractors’ 
promises to deliver the “goods” are record-
ed and held by SoS managers until those 
contractors actually deliver results to the 
field; and (3) only successful contractors 
receive reimbursement and bonuses (see 
3c above). Those successful contractors 
would develop “deep pockets” and be able 
to continue investing in new projects. The 
contractors unable to deliver would “dry 
up and go away.” Individual contributors 
within organizations tend to receive raises, 
bonuses, and promotions only after the 
fact, so this natural philosophy is merely 
extending upwards (see 10a above).

Software and systems engineers should 
celebrate their collaborative successes by 
publicly recognizing their joint achieve-
ments and highlighting significant increases 
in system capabilities while thanking those 
primarily responsible for those gains in 
performance.

CLOSING REMARKS
As any Complex Adaptive Systems En-

gineering (CASE) methodology reader has 
undoubtedly realized, the various individu-
al functional activities highlight somewhat 
distinct aspects but are interrelated. They 
overlap and correlate among themselves. 
There are many ways to proceed, but to 
apply CASE effectively, one needs to inten-
tionally view all key system stakeholders as 
being inside (not external to) the system. 
We must understand human behaviors and 
characteristics and try to move toward real-
izing idealistic principles in our efforts.

This write-up tries to help software and 
systems engineers work well together. As a 
final comment, we stress complex systems 
engineering requires exemplar leadership 
much more than good management, al-
though these practices are complementary 
(White 2015).  ¡

Existing Capability
A

Added Capability
B

Target Capability
X

Past Efforts Progress

Next
Target Capability

Y > X

New Capability
A & B Integrated

Figure 3. Conceptual process of adding targeted capabilities
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certain needs. If there was a need for the system, be it perceived or an actual problem, the system engineering process, which is 
constantly evolving, must be enhanced to meet the needs of the 21st century.
	 It is obvious that testing is necessary to validate that all the critical processes are functional and satisfy the system requirements 
allocated to software. However, there is a risk if the software is tested to a perceived operational environment based on theoretical 
workloads.
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Long, long time ago in a technology 
landscape not too far away there ex-
isted silos of engineering expertise. 
Unlike good object-oriented design, 

there was little or no cohesion between 
these silos even though their individual 
success was imperative to develop a cohe-
sive interrelated whole for the success of 
the mission. Why was this? Very succinctly 
a lack of trust and communication. It is 
necessary to improve the communication 
between these silos to accept and share the 
overall system level objective and how it 
meshes with the different engineering disci-
plines, i.e., share and compare the views for 
the common objective.

This article proposes incorporating the 
‘actual operational’ environment when 
developing metrics. Since the closer the 
test environment is to actual scenarios, the 
more effective the test is in demonstrating 
the dependability of a system. (Hecht et al 
1997) states that software failures are due 
code deficiencies, i.e. faults, which when 
triggered by data or a computer state that 

causes execution of these faults result in 
failures. The test environment must gener-
ate a large number of triggers if it is to be 
effective for demonstrating the dependabil-
ity of a high assurance system). This can be 
actual values or predictions based on actual 
operational scenarios and data. 

The operational scenario must be 
modelled more accurately by taking into 
account non-technical data points such as 
available resources, budget and schedule 
to weight the data to predict a test strate-
gy. This would act much like the familiar 
Bayesian statistics approaches (Okamura 
et al 2006) capable of estimating software 
reliability in cases where detected software 
faults are removed. The proposed model 
will also provide a capability of updating 
the reliability predictions based on new in-
formation being made available such that at 
the end of the test process, (Hu et al 2008), 
not only will we have results with a higher 
level of confidence in meeting the require-
ments but also a more mature reliability 
model for future programs.

BACKGROUND
The Quality of Software, (Bach 2003), 

states:
“Software quality is a simple concept, 

at least in the textbooks. Just determine 
your requirements, and systematically 
assure that your requirements are achieved. 
Assure that the project is fully staffed and 
has adequate time to do its work. Assure 
that the quality assurance process is 
present in every phase of the development 
process, from requirements definition to 
final testing”. However, as Bach puts it, this 
is not so easy in the field. Requirements 
change, staffing profiles change and most 
importantly, we have to remember that 
there’s lots of money to be made if you 
can sell the right product at the right 
time, or even something close enough to 
being right. Behind the veneer of metrics 
and Ishikawa diagrams, quality is just a 
convenient rendezvous for a set of ideas 
regarding goodness. As (Weinberg 1991) 
says, “quality is value to some person”.

The system engineering paradigm for 
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testing implies that a system requirement should be testable, the 
test should be repeatable and the test method should be validated 
and the requirement should be verified. This entails that metrics 
are carefully selected to ensure that these criteria are met. It is the 
intention of this paper to develop criteria for evaluating software 
quality, which defines the reliability and dependability of the 
software. Many factors influence software reliability including the 
software development processes, the complexity of the system and 
software requirements, experience of the software developers, the 
development environment, and the amount and thoroughness of 
testing. These factors are incorporated into a software reliability 
modelling approach based on the analyses of corrective action 
field data collection and failure recording of our software develop-
ment and testing experience.

(Cai et al 2003) suggested the use of controlled Markov chains 
be used to synthesize the required optimal testing strategy and 
adaptive testing strategy. Experience shows that the fault intensity 
rate (faults discovered per month) follows a Weibull distribu-
tion over calendar-time. Each build follows a separate Weibull 
distribution with its own time scale. For the added code, its time 
scale is adjusted such that it is considered as the starting or zeroth 
month. All of the builds’ fault intensity profiles are added together 
to create the composite curve.

PROPOSED MODEL
The first step in defining the model parameters is to describe 

the parameter and identify the metrics used to measure them. 
For example, the metric used to measure the software quality is 
the inherent reliability of the untested code. This means that after 
some level of testing the failure density of the code reaches a value 
that more or less remains constant over the operational life of the 
system. (Musa et al 1987) defines the following mean fault densi-
ties at the beginning of various testing phases as follows:

■	 Coding Phase:	 99.5 Faults per 1000 lines of Source Code
■	 Unit Test Phase:	 19.7 Faults per 1000 lines of Source Code
■	 System Test Phase:	 6.01 Faults per 1000 lines of Source Code
■	 Operational Phase:	 1.48 Faults per 1000 lines of Source Code

Thus having laid the ground rules, it is the intent of this model 
to flag the deviations in defining and measuring metrics to evalu-
ate and track software quality.

Inherent Fault Density:  
Even though the literature (Musa et al 1987) states that inher-

ent fault density is the number of faults per instruction, which 
translates to the fact that greater the program size, the greater the 
number of faults. From an Operational standpoint, the number 
of faults exposed due to usage is proportional to how much of 
this code is used in the normal operation of the software. Thus, 
for example, a very large software program, which is assigned a 
very large fault density, may never have these faults exposed or 
uncovered if it is not used very extensively. Thus is it imperative to 
ensure that the usage of the code is leveraged to modify or qualify 
the inherent value. The second aspect of assigning the inherent 
fault density is the fact that the deliverable source code is used to 
quantify the fault density. Studies referred to in (Musa et al 1987) 
show that there is good correlation between source code and fault 
density. However, the data does not completely support the num-
bers for subsystem and system test. This model can be extended 
to today’s design paradigm of reusing existing libraries to realize 
functions.

However, if one was to evaluate the size of the executable code 
in bytes or words and used this to define an inherent fault density, 
the variability of the programmer skill and experience has a lesser 
effect on predicting the fault density. For example, the executable 

size of the software module will be directly proportional to the 
CPU usage in performing a function and hence the workload 
of the function over a period of time will determine the fault 
exposure rate of that module. An executable size of 10K units 
using 30% of the CPU in performing the same function a 1000 
times a month can readily be compared with an executable size of 
30K units using 2% of the CPU in performing the same function 
f2, 100 times a month. The functions f1 and f2 are both needed to 
provide the overall system functionality.

Thus, the initial fault density, defined as:

d 0 = Predicted Faults per Unit Executable Size	 (1)

Initial Failure Intensity:  
(Musa et al 1987) define this parameter in terms of the linear 

execution frequency f of the program (or module), the fault expo-
sure rate K and the inherent faults ω0. Thus, initial failure intensity 
λ 0 , predicted as λ 0 = f K ω0. However, the model described in this 
paper defines the initial failure intensity as follows:

λ 0 = f K (d 0 Exec)	 (2a)

The linear frequency of the f defined by (Musa et al 1987) is the 
ratio of the average instruction execution rate r and the number of 
object instructions is in the program (or module). However, this 
paper uses the executable size Exec to track the actual instruction 
set so the linear execution frequency for the model, defined as 
follows:

f = Average Instruction Rate/Executable Size = r/Executable Size.

Initial failure intensity, defined as follows:

λ 0 = f K (d 0 Exec)	 (2b)

The fault exposure ratio, parameter K, estimated from the size 
of the program, the average instruction execution rate and the 
fault reduction factor. (Musa et al 1987) determines a value of K 
from the following relationship:

K = failure intensity/fault velocity = λ 0 / (f (d 0 Exec))	 (3)

B is the Fault Reduction Factor or ratio of net fault reduction 
to total failures experienced as time of operations approaches 
infinity or in other words at a steady state when the ratio remains 
a constant. Generally, the number of faults corrected is larger than 
the number of failures because in the correction process more 
faults may have been generated. The skill of the person fixing the 
fault and the skill of the person identifying the actual cause of the 
failure, i.e., identifying the fault is paramount in keeping this ratio 
close to unity. Based on a predicted number of failures υ 0,

B = d 0 Exec/ υ 0	 (4)

Typically, the values of B range from 0.925 to 0.993 with an 
average of 0.955. However, this number can be improved with 
perceptive fault identification and good fault reporting. If the 
personnel identifying the cause of a failure can discern common 
cause faults and report the information correctly and complete-
ly, the value of B can be more accurately predicted. From this 
relationship, the number of failures can be predicted before the 
start of test. The prediction of the expected number of failures is as 
good as the estimates for B and d 0.

υ 0 = d 0 Exec/B	 (5)
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In organizations where the complexity of software programs 
and the failure data associated with the developed software system 
is available and accurate, the value of B can be calculated from 
actual historical records. This method of obtaining data is more 
accurate than estimating it. However, it is only as good as the 
record and the similarity of the new program to the historic data. 
Nevertheless, it is the best place to estimate an apriori number for 
B. It should be noted that B is a metric that measures the quality 
of the software and the accuracy of the initial fault prediction. 
From equation (3) and (4), the fault exposure rate K is defined as 
follows:

K = (λ 0 / B f υ 0 )	 (6)

FAILURES PER UNIT TIME:
Having defined the ground-rules, the next step is to devise a 

process by which the failures per unit time can be measured and 
tracked. From the equations modified from Musa’s execution time 
model, the fault exposure rate for a newly developed software 
system is determined as follows. After the software system has 
been specified, designed and code developed, the elements of 
the system are tested first at the unit level and then at an execu-
tion chain or string level. The number of inherent faults in the 
software exposed before integration and testing starts depends on 
the expertise and experience of the software developer. The more 
experienced the developer, the greater the number of exposed 
faults. Initially the inherent fault density is predicted based on the 
expertise of the software developers and the historical information 
based on similar software systems and similar software functions. 
Using historical information, the initial inherent faults for the soft-
ware of size E, and fault density do is given by:

F = d 0 E	 (7)

As testing progresses, it is imperative to estimate how good the 
assertion that fault exposure is a good measure of failure rate of 
the software. In other words, does the exposure of a fault cause a 
single failure or does the correction of this fault create or inject 
more faults and hence increase the number of failures. In most 
software integration and test scenarios, there is an increased pro-
pensity of fault injection through initial fault exposure and fault 
fixes. Research has shown that the ratio of the net fault reduction 
to total failures, B approaches 0.955 as time of operations ap-
proaches infinity. However, it must be stressed that in most cases 
that initially this ratio is very much greater than one. The aim is to 
keep this as close to unity at steady state. To ensure that this ratio 
is reached quickly, the test profile should imitate the steady state 
profile as closely as possible. This implies that the design of the test 
profile is of paramount interest in achieving the steady state failure 
rate.

TESTING PROFILE
The test profile for optimizing a test strategy can be modelled. 

The test strategy can either be directed towards verifying that 
requirements are met or it can be directed towards verifying if 
the critical functionality of the system has been met. Most often, 
test profiles are developed based not only on technical underpin-
nings but also to adhere to the budgetary constraints, contract 
challenges and implementation schedules. It is imperative early in 
the test planning stage to lay down the constraints for achieving 
the required software quality. (Yuan and Gu 2006) elaborates that 
to ensure testing and development phases work in concert, it is 
necessary not only to allocate adequate time for each of the test 
phases, but also formulate and follow reasonable criteria. 

For example, if the customer desires to have the best quality 

in the shortest amount of time, which area has to be optimized 
from a functional standpoint. Does the customer want to have 
the best quality for the critical functional elements and have a 
reduced quality factor for the less critical functionality? (Poore 
and Trammell 1999) puts it very succinctly that the question is not 
whether to test, but when, what and how much to test. The more 
cost effective response to this question would be ‘yes’. However, if 
the customer has to satisfy several stakeholders who will use the 
system and not always to utilize the critical functions, the response 
is variable. For example, consider a system where the critical 
function to user A is to ingest time critical data, for example per-
taining to the path of a comet, and calculating the trajectory and 
position of the same for the next time period. Certain user B may 
require that this information be displayed in a digital 3-dimen-
sional image rather than in ASCII text. The display function is not 
as critical as the actual trajectory and position data. However, the 
customer may have to appease the users A and B; even though 
user B’s display function may be a complex software subsystem 
which could take time and resources to test and be implemented 
at an acceptable quality level. (Meyer 2008) states as one of his 
principles, that a test strategy’s most important property is the 
number of faults uncovered as a function of test time.

Having said this, it is imperative once a schedule date for system 
delivery is fixed, to evaluate the quality of the software that will be 
delivered. In industry, the objective is to develop a product within 
budget and schedule. In a research environment the objective is to 
develop and prototype systems for evaluating with an intent to use 
new technologies. The experience and expertise accumulated by 
over twenty years of working in industry and a research environ-
ment, the author has defined the quality of software as follows. 
The quality of the software can be graded on the following four 
factors: (1) Is the fault exposure rate at the end of system accep-
tance test acceptable? (2) Are the identified inherent faults in areas 
of the software code that can cause critical system to fail at a rate 
that is not acceptable? (3) Are there any optimization strategies 
that could minimize loss of critical functionality at an acceptable 
cost? In fact, (Dhavachelvan and Uma 2005) suggest a framework 
for testing based on complexity. (4) What are the main cost drivers 
from a software quality standpoint?

USE CASE
To illustrate the process by which these four quality factors are 

identified and then quantified, a software system was analysed and 
modelled using the basic premise underlined for phase-based test 
profiles. In this model, the fault exposure rates are also tied to how 
the resources are used. The first step in the process is to evaluate 
the functionality of the software system from a functionality point 
of view and derive a test profile to optimize the quality factors. 
These quality factors are then compared against the actual test 
profile and the quality factors of the actual system to demonstrate 
the relative difference and validate the advantage of using the 
prescribed approach.

REQUIREMENTS-BASED TEST PROFILE
A software system used to ingest time critical data and provide 

positional data very akin to a path of a comet, was developed 
using redundant hardware and software resources. The switchover 
and recovery time in the event of hardware or software failures 
were implemented using innovative sensing mechanisms to 
detect and fail-over to available redundant hardware and software 
elements. The customer and the developers agreed to a staged 
system sell-off based on requirements, i.e., a 75% requirements 
pass-rate meant that the system was 75% complete and testing 
to a perceived operational workload. The schedule was fixed and 
the system budget was optimized to sell-off as many require-
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ments as possible to meet the system milestones. Table 1 shows a 
conceptual application of how a test profile based on this premise 
can be used to test and deliver the software system. The different 
projections tabulated in Tables 4 through 6 are calculated using 
the assumed parameters shown in Tables 1 and 2.

ANALYSIS OF DEFECT PROFILES
COMPARISON TO RELATIVE DEFECTS FINDS

Finally, the predictions based on requirements and functional-
ity are compared against the defect find ratio to demonstrate the 
advantages of using the functionality model. Table 6 shows the rel-
ative number of defects/month that was found on a system, which 
had the same characteristics as the analysed conceptual software 
system. Figure 3 shows curves for the time phased test activities. 
The actual defects rate for the different software subsystems show 
a marked difference in the defect rate profiles.

Resources Phase 1 Phase II Phase III Phase IV

Time in 
weeks 28 44 24 28

Computer 
Resources 4 4 2 2

Personnel 12 12 6 6

Exposure 
Rate/week 6 3.25 4.25 1.25

Table 1. Requirements based defect finds

Subsystem A B C D E

Hand-off 1 1 25 7 4

Phase 1 (7 mth.) 2 4 18 6 1

Phase 2 (11 mth.) 1 3 16 6 1

Phase3 (6 mth.) 0 0 2 1 0

Phase 4 (7 mth.) 0 0 1 0 0

Table 5. Projected defect rates – functionality

Subsystem A B C D E
Func. 2 3 7 5 2

Ratefunc 0.11 0.16 0.37 0.26 0.11

Crit. 3 2 1 2 5

(Ratefunc) crit 0.04 0.08 0.37 0.13 0.02

Ratenorm 0.06 0.12 0.58 0.21 0.03

Table 4. Relative functionality test exposure rate

Subsystem A B C D E

Hand-off 1 2 15 15 7

Phase 1 (7 mth.) 1 3 10 15 5

Phase 2 (11 mth.) 0 2 6 8 3

Phase3 (6 mth.) 0 1 2 3 1

Phase 4 (7 mth.) 0 0 1 1 0

Table 3. Projected defect rates – requirements

Subsystem A B C D E

SLOC 5000 25000 85000 120000 40000

Defect Rate 0.02 0.09 0.30 0.44 0.15

Table 2. Relative requirements test exposure rate

Consider the software system made up of five separate software 
subsystems, which are of varying size in terms of Sources Lines 
of Code (SLOC). The testing profile is based on the size of the soft-
ware systems and testing profile is based on the relative size and 
the number of requirements that are being tested and passed. The 
total SLOC of the system was about 275,000 and the relative defect 
exposures of the subsystems were calculated as shown in Table 3, 
which are plotted in Figure 1.

Table 4 shows the defects find projection in the four test phases 
lasting 28, 44, 24 and 28 weeks. These defects are translated to de-
fects per month. These defect rates per month for all the software 
subsystems at every test phase are calculated, normalized and 
tabulated in Table 3.
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Figure 1. Predicted find – requirements
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Figure 2. Predicted find – functionality

FUNCTIONALITY-BASED TEST PROFILE
In a similar manner, the curves showing the functionality-based 

defect find rate over the test phases are calculated and plotted. In 
this case, the predicted defect find rate is based on the function-
ality allotted to the software subsystems. It is presumed that the 
stakeholders and the system implementers have agreed to buy-off 
the system based on the defects exposed based on a functionality 
and criticality test profile. The relative test exposure rate of the 
subsystems is shown in Table 4 and the defect rates per month 
for all the software subsystems for every test phase are calculated 
and are tabulated in Table 5. Figures 1 and 2 plot the values from 
Tables 3 and 4.
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The requirement-based test profile shows a wide variation in 
the defect rate through the different test phases as seen in Figure 
4. Whereas the projected functional defect rate shows a decreas-
ing defect rate as the testing proceeds, the requirement-based test 
profile shows a rising defect rate which rises to a maxima and then 
falls as the test proceeds. Furthermore, in time the test phases the 
defect rate rises again and then decreases sharply, but not to as low 
a level as the functional-based test profile.

completeness and appropriateness of the software is paramount in 
satisfying the stake-holders and achieving system acceptance.

It is an accepted fact that there is a hard schedule requirement 
for system acceptance; hence, it is important to optimize the 
testing profile such that the software quality at system acceptance 
is as good as we can achieve within the budget and schedule 
constraints. It can be argued that the since the most important 
objective is to ensure a satisfied customer, a contractor could in-
crease the resources such that the required quality level is reached. 
However, there is a point of diminishing returns, because there is 
a limit to the number test platforms and, as in this case, it is some-
times the limiting resource.

Translating the defect rate to a system failure rate, the following 
curves, shown in Figures 5 and 6, using generic time units and 
limitless resources, show that defining a test profile that exercises 
the functionally critical subsystems, ensures a lower failure rate, 
i.e., higher value on the y-axis, at the time of system acceptance.

Subsystem A B C D E   

Hand-off 1 1 10 10 5

Phase 1 (7) 1 2 13 13 6

Phase 2 (11) 0 0 0 1 0

Phase 3 (6) 1 1 11 12 2

Phase 4 (7) 0 0 4 5 1

Table 6. Defect find rates – requirement profile
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From the shape of the curve (based on a requirements-based 
test profile), the defect find rate for subsystem C contrary to the 
functional-based projections increases sharply after decreasing.

Finally, even though the cumulative defects exposed on a 
monthly basis is about the same for the functionality-based test 
profile, the requirements-based test profile rate does not follow the 
decreasing trend that was projected.

SOFTWARE QUALITY AT SYSTEM ACCEPTANCE
The ISO/IEC 25010 characterizes software quality in terms 

of functional suitability, performance efficiency, compatibility, 
usability, reliability, security, maintainability and portability. This 
paper supports that characterization by identifying functionality 
as the most important characteristic.  The functional correctness, 
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Figure 6. Functionality–failure rate profile

From a system-engineering point of view, we have to ask the 
question:

(1) Is the fault exposure rate at the end of system acceptance test 
acceptable? This is dependent on what the stakeholder thinks is ac-
ceptable. It is the contention of the system design team that if the 
system meets the objectives for successful operations the system is 
acceptable. In many cases this means that the stakeholder requires 
the system to provide the primary services expected of the system 
when and how needed. The ‘when’ drives the availability of the 
system and the ‘how’ drives the fidelity and performance of the 
service. The availability of the system is directly proportional to 
the quality of the designed system, i.e., the hardware architecture 
and the software subsystems. Given that the hardware quality is 
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well defined in terms of hardware failure rates and repair times, it 
is imperative that ‘good’ data on the failure rate and recovery from 
failure times of the software is available. Good data is obtained 
from recorded and reported metrics and in the case of software; 
it is the defect exposure rate or ‘defect find rate’ when the system 
goes operational. Thus, if the projected failure rate of the system 
has been estimated in terms of hardware and software failure rates, 
the goodness of the estimation and the allocation to hardware and 
software thereof is as good as the projections. 

It is seen from the analysis, that though the estimation of the 
inherent defect estimates on the software system, as the whole do 
not vary appreciably between the different methods of evaluating 
the same, the defect exposure rate through the test phases does 
vary. The planned test profile did not correctly project the actual 
defect find rate, and hence and elevated risk of not meeting the 
software failure rate requirement.

 (2) Are the identified inherent faults in areas of the software code 
that can cause critical system to fail at a rate that is not acceptable? 
This is best answered by calculating the failure rates and verifying 
that the failure rate projected at system acceptance meets the criti-
cal requirement for the system. The functionality-based defect find 
rate curves are based on the criticality and functional executable 
code. From the defect find rate curves it is seen that the actual de-
fect find rate for the identified critical software subsystem does not 
follow the projected defect find rate, and hence in most probability 
will not meet the critical requirements of the system. 

(3) Are there any optimization strategies that could minimize 
loss of critical functionality at an acceptable cost?  The statement of 
work and the program schedule sets the constraints. Given a hard 
schedule date, test implementers can only meet a quality level that 
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  ABSTRACT
As software engineering adopts a more continuous delivery mode for embedded and complex systems, systems engineering must 
adapt and influence DevSecOps and related practices. In this article, I revisit agile, lean, and DevSecOps principles and comment 
on their interactions, focusing on those that may increase product and system development, deployment, and evolution risk, and 
those that increase improvement opportunities through productive engagement across the two disciplines. This material is also 
available as a Software Engineering Institute Blog Post from 15 March 2021 [https://insights.sei.cmu.edu/blog/comparing-devsec-
ops-and-systems-engineering-principles/.]
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the Principles
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ARE THERE FUNDAMENTAL ISSUES BETWEEN 
THE SYSTEMS AND SOFTWARE DISCIPLINES?

I believe we do not fully understand the 
interaction of these two disciplines, 
and experience from early application 
suggests counterproductive model 

clashes (Boehm, Port, and Al-Said 2020). 
The following table identifies fundamental 
differences between historically practiced 
systems engineering and systems engi-
neering for evolving software engineering 
environments. Mitigating the clashes could 
enhance the DevSecOps adoption suc-
cess rate and support adjustments to both 
disciplines. However, mitigation requires 
identifying the specifics and understanding 
model clash contexts and sources.

Due to the breadth of domains both 
disciplines cover, I have revisited theirbasic 
principles to better understand the model 
clashes. Systems engineering principles 
generally focus less on activities than the 
lean, agile, and DevSecOps principles. 
Therefore, I present them first and then 
discuss how the Agile, Lean and DevSec-
Ops principles interact with the systems 
engineering principles and activities.

SYSTEMS ENGINEERING PRINCIPLES AND 
ACTIVITIES

The Systems Engineering Body of Knowl-

[Distribution Statement A] Approved for public release and unlimited distribution.

edge (SEBoK) website [https://sebokwiki.
org/wiki/SEBoK_Introduction] defines systems 
engineering as

“…a transdisciplinary approach and a 
means to characterize and manage the 
development of successful systems, where 
a successful system satisfies the needs of its 
customers, users, and other stakeholders. 
Systems engineering focuses on holistically 
and concurrently understanding stake-
holder needs; exploring opportunities; 
documenting requirements; and synthe-
sizing, verifying, validating, and evolving 
solutions while considering the complete 
problem, from system concept exploration 
through system disposal.” 

Systems engineering principles tend 
to be less specific than Agile, Lean, and 
DevSecOps software engineering princi-
ples because they apply across so many 
domains. Systems engineering princi-
ples also evolve, and INCOSE and other 
organizations are addressing some of the 
differences identified in the previous table. 
However, just as with DevSecOps, the rate 
of practitioner use of these refined princi-
ples is difficult to determine. Here are 14 
principles developed by the NASA Systems 
Engineering Research Consortium [https://

www.nasa.gov/consortium/SystemsEngineer-
ingPrinciples ](I have highlighted critical 
concepts for this article).

COMPARING LEAN-AGILE PRINCIPLES TO 
SYSTEMS ENGINEERING 

DevSecOps is an extension of Lean-Agile 
principles, and depends on their presence 
for success. The following sections describe 
each Lean-Agile and DevSecOps principle 
and provide a brief commentary on its re-
lationship to key, related systems engineer-
ing activities. Given the numerous Agile 
and Lean principle versions, I used the 
collective principles articulated in the SAFe 
Scaled Agile Framework for this compari-
son (Scaled Agile Framework 2020).

Principle 1: Take an Economic View.
We make decisions by comparing 

clearly stated or unconsciously considered 
values. In systems development, specifi-
cally addressing values allows teams to 
make decisions in an economic framework 
(Reinertsen 2020). Value should be a work 
prioritization and sequencing factor.

Commentary: Understanding and inten-
tionally capturing requirement and design 
component value as multiple stakeholders 
see them enables better impact analyses 
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Systems Engineering as  
Historically Practiced 

Systems Engineering for Evolving Software and  
DevSecOps Environments

Large-batch processing (products, 
documents, events)

Small batch processing (products, documents, events)

Single-pass lifecycle (all requirements done 
before initiating the design; all design done 
before implementation)

Incremental, iterative multi-pass lifecycle (small product batches 
and their artifacts built/tested iteratively, delivered incrementally)

Single-point design Set-based design

Solution intent fixed early (all requirements 
defined in detail early)

Solution intent is variable early (only near-term requirements in 
detail; others are higher level with details based on learning)

Fixed point, large-batch integration 
(components all “done” before integration 
occurs)

Cadence-based, small-batch integration used as frequently as 
feasible; integrate as available to prevent rework (for software, this 
may be daily or continually)

Centralized, command-and-control 
leadership

Mix of centralized and decentralized leadership; “servant 
leadership” 

Detailed, allocated baseline early; high 
overhead change management practices 
remain for the rest of development

Allocated baseline abstraction level allows learning-based change 
throughout development; no high-overhead change processes

Hardware and software treated separately, 
integrated late

Hardware and software treated together, integrated early and 
frequently

Large-batch model-based engineering applied 
to improve requirement and design detail 
before implementation; often abandoned 
after design

Model-based engineering moves between large- and small-
batch modeling activities; models and simulations flow with 
implementation and support the entire lifecycle, development 
through sustainment

Projective (to be) requirements and design 
documentation dominates early discussion 
and activities

Projective documentation takes second place to working 
prototypes and demos; guides and does not specify; documentation 
is as-built, not to be.

Systems engineering function separate 
from hardware and software development 
functions

Systems engineering function integrated into capability-focused 
teams including all required disciplines (hardware, software, user 
experience, and reliability)

Component-based work breakdown structure Capability-based work breakdown structure

Systems engineering primarily as artifact 
transformation (Requirements->Architecture-
>Design) 

Systems engineering as a service (facilitating artifact 
transformation; focus on communication, coordination, conflict 
resolution, and collaboration)

System architecture decisions neutral to 
development approach

System architecture decisions strongly support loosely coupled 
components/subsystems, especially for software capabilities

Assumes early work is correct and late failure 
is a surprise

Assumes early work is inherently flawed and learning from early 
failure feeds the evolution of knowledge about the system

Freezes system and software architecture 
early 

Refines an intentionally extendable and iteratively evolving 
architecture throughout development and sustainment

User participation is only early and late User participation is continuous throughout the lifecycle

and prioritization in development and sus-
tainment. Using a common value-determi-
nation process, including all success-critical 
stakeholders , can provide decision visi-
bility; support decisions at deeper imple-
mentation layers; and support identifying 
temporal, internal, and external influences 
impacting value. Appendix C of Boehm 
and Turner’s work (2015) provides a model 
of value-based systems engineering.

Principle 2: Apply Systems Thinking.
Systems thinking broadens the 

development focus, encompassing the 
entire value stream in acquisitional, 
developmental, and operational 
organizations (Centers for Disease Control 
and Prevention 2017). It considers more 
factors than requirements or how the 
product system operates, and it enables us 
to understand the socio-technical system 

encompassing the product and its context.
Commentary: Systems engineering, by 

definition, incorporates systems thinking. 
Understanding the full effort (including the 
DevSecOps activities and requirements), 
the associated value streams, and overall 
value network is critical to system 
thinking’s holistic nature. Systems thinking 
is an obvious common principle.
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Principle 3: Assume Variability; Preserve 
Options.

Locking in a single, detailed description 
of a system that will take years to develop 
can become a barrier as soon as a change 
in one or more naturally evolving factors—
threats, political landscapes, economics, 
technology, or markets—invalidates an 
assumption or specification. Acquirers and 
developers must acknowledge variability 
and uncertainty as facts of life, and invest-
ing in and maintaining options and making 
decisions at the last responsible moment is 
a good way to manage change (Matts 2017).

Commentary: While specific systems 
engineering tasks look at risk management, 
safety, and security-failure modes, few-
er activities address understanding how 
environmental changes impact the actual 
development, once approved. Identifying 
and managing useful options to reduce 
the impact of changes requires ongoing 
resources and intentional activities.

Principle 4: Build Incrementally with Fast, 
Integrated Learning Cycles.

This principle provides feedback on 
estimates, assumptions, and feasibility 
quickly enough to eliminate high rework 
costs. Coupled with small batch size, it 
offers high stability in work planning and 

enhanced agility to capture opportunities 
resulting from uncertainty and variability. 
It eliminates the overhead of maintaining 
large, monolithic, and generally inaccurate 
master schedules and focuses on delivering 
value quickly.

Commentary: This principle is a key con-
cern. Systems engineering generally drives 
software development and sustainment 
to the bottom of the traditional V model 
(Miller 2019). Adaptation to DevSecOps’ 
continuous, incremental, and iterative 
nature forces an earlier and sustained focus 
on software-related systems engineering 
activities reducing the V model risks. The 
cultural challenge for systems engineering 
is moving from relatively rare interactions 
to continuous involvement in software 
development and evolution.

Principle 5: Base Milestone Completion 
on the Objective Evaluation of Working 
Systems.

Traditionally, systems engineering treats 
milestones as gates, with passage based 
on static technical artifacts with little 
completeness or accuracy evidence. Status 
demonstrations are more useful and pro-
vide more learning opportunities.

Commentary: Technical reviews 
(particularly those supporting milestone 

gates and progress measurement) often 
build on boilerplate documentation, 
overly formalized plans, incomplete or 
inadequately vetted requirements, or 
design specifications, including guesses 
made to remove “to be determined” items 
rather than acknowledging these items 
require further analysis at the milestone. 
The scope is also extensive, driven by 
complex critical resource scheduling. The 
minimal viable product (MVP) concept 
can apply in systems engineering to include 
demonstrable, measurable outcomes for 
smaller work efforts. Systems engineers 
often base their decisions on the analysis, 
prototyping, and experimentation results; 
such results could reasonably act as systems 
engineering MVPs.

Principle 6: Visualize and Limit Work in 
Progress (WIP), Reduce Batch Sizes, and 
Manage Queue Lengths.

Visualizing and limiting work in progress 
regulates the number of tasks worked on 
simultaneously (Atlassian 2019). It also 
keeps from overwhelming the human 
resources by the context switching between 
tasks. Managing batch size and queue 
lengths supports the WIP focus with the 
“stop starting and start finishing” principle 
since the user receives value only with 

NASA Systems Engineering Research Consortium Systems Engineering Principles

Principle 1: Systems engineering integrates the system and the disciplines considering the budget and schedule 
constraints.

Principle 2: Complex systems build complex systems.

Principle 3: A focus of systems engineering during the development phase is a progressively deeper 
understanding of the interactions, sensitivities, and behaviors of the system, stakeholder needs, and its 
operational environment.

Principle 4: Systems engineering has a critical role through the entire system lifecycle.

Principle 5: Systems engineering is based on a middle-range set of theories.

Principle 6: Systems engineering maps and manages the discipline interactions within the organization.

Principle 7: Decision quality depends on the system knowledge present in the decision-making process.

Principle 8: Both policy and law must be properly understood to not overly constrain or under constrain the system 
implementation.

Principle 9: Systems engineering decisions are made under uncertainty, accounting for risk.

Principle 10: Verification is a demonstrated understanding of all the system functions and interactions in the 
operational environment.

Principle 11: Validation is a demonstrated understanding of the system’s value to the system stakeholders.

Principle 12: Systems engineering solutions are constrained based on the decision timeframe for the system need.

Principle 13: Stakeholder expectations change with advancement in technology and understanding of system 
application.

Principle 14: The real physical system is the only perfect representation of the system.
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completed work, and work waiting in a 
queue is a waste (Reinertsen 2017).

Commentary: Systems engineering is of-
ten understaffed, and the continuous nature 
of a DevSecOps environment puts a strain 
on available systems engineering resources. 
Understanding how much work to expect 
and its production rate supports maximizing 
the flow and increasing the value of many 
systems engineering activities. Staffing 
practices are a significant factor for systems 
engineering in applying this principle.

Principle 7: Apply Cadence and 
Synchronize with Cross-Domain Planning.

Agile-Lean organizations work on a con-
tinuous understanding, implementation, 
and feedback cycle to provide the most val-
ue over a cycle with the available resources. 
Hayes (2017) explains setting cadences and 
synchronizing across the various teams and 
activities is the Lean answer to bounding 
uncertainty and are essential to:

■	 providing predictable results and feed-
back opportunity cycle

■	 aligning metrics
■	 converting unpredictable events into 

predictable ones
■	 providing opportunities to understand, 

resolve, and integrate multiple teams’ 
work and manage various stakeholder 
perspectives simultaneously.

Commentary: Predictive or “push” 
scheduling usually downplays uncertainty 
and provides reasonable estimates based 
on engineering analysis of static needs 
and operational environments. Aligning 
different cadences between systems 
engineering and software engineering 
activities may be challenging, but 
adjustments can maintain or improve either 
(or both) discipline’s value. One significant 
clash is the impact of complex integrated 
master schedule planning in such detail 
and over such long time periods that the 
opportunity value of uncertainty collapses 
into engineering constraints and becomes a 
significant risk to success.

Principle 8: Unlock the Intrinsic Motivation 
of Knowledge Workers.

To ensure motivation and engagement 
among team members, create an environ-
ment marked by autonomy, mutual respect, 
and mission understanding.

Commentary: This principle likely does 
not affect most systems engineering techni-
cal activities. However, effectively managing 
the systems engineering workforce entails 
considering whether the software engineer-
ing and other disciplines sufficiently engage 
the systems engineering personnel to main-

tain interest and situational awareness. This 
principle is fundamental in large complex 
programs, such as weapons systems, highly 
regulated systems, and systems of systems, 
where the work spreads across numerous 
organizations or companies.

Principle 9: Decentralize Decision Making.
Decentralized decision-making is a key 

component for achieving the shortest sus-
tainable value-delivery time.

Commentary: Decisions requiring 
sequential acceptance by multiple authority 
levels can destroy cadence, delay prog-
ress, and often lead to decisions based on 
outdated information. Strategic decisions 
are more effective if centralized, but teams 
should strive to delegate all other decisions 
to the level closest to the information in-
volved and balance the need for continuous 
collaboration with the delays of sequential 
acceptance. Most systems engineering ac-
tivities support rather than make decisions. 
Regardless of the decision-maker, those 
closest to the problem should develop the 
recommendations made by the systems 
engineering workforce. Those making 
a recommendation must have sufficient 
access to information and the visibility to 
understand the recommendation conse-
quences. Analysis paralysis is contagious 
and should never become a factor (See vari-
ability and options above).

COMPARING DEVSECOPS PRINCIPLES TO 
SYSTEMS ENGINEERING 

DevSecOps broadens these principles, 
and they help integrate development, 
security, and operation activities into a con-
tinuous integration/continuous deployment 
(CI/CD) pipeline (Wrubel and Yasar 2018). 
The SEI (Morales et al. 2020) defines these 
principles as follows:

Principle 1: Collaboration.
Full stakeholder engagement in every 

software development lifecycle aspect 
facilitates full awareness and input on all 
decisions and outcomes. Developers, oper-
ators, engineers, end-users, customers, and 
other stakeholders are active participants in 
decision-making and work progress (Davis 
2017).

Commentary: Having ongoing access 
to systems engineering expertise is key in 
maintaining DevSecOps activities. Simi-
larly, having software engineers involved 
in technical systems engineering activities 
reduces significant conflict and associated 
rework opportunities. Collaboration among 
systems and software engineers can also 
improve collaboration with project and 
program management.

Principle 2: Infrastructure as Code (IaC).
Klein (2018) explains IaC are software 

artifacts specifying the hardware/software 
components needed to run correctly and 
accessing, configuring, and installing each 
artifact. Infrastructure components can be 
actual, virtual, or both.

Commentary: While IaC is not specif-
ically a systems engineering activity, IaC 
provides complete documentation of the 
execution environment maintained in the 
same repository as the code and supports 
the configuration management issues often 
plaguing software and system components. 
It also eases transitioning the code to an 
altered or completely new environment by 
providing a clear expectation description 
and identifying what software components 
need changing.

Principle 3: Continuous Integration.
Continuous integration automatically 

unifies individual system components into 
a single entity (Cois 2015). Unification 
occurs regularly, and the components, once 
unified, function together as a whole. The 
components may have dependencies on 
one another to function correctly.

Commentary: When coupled with IaC, 
continuous integration implements short 
learning cycles/increments giving systems 
engineering constant visibility into the 
code and ensures teams or teams of teams 
develop code while avoiding unexpected 
integration problems late in the develop-
ment cycle. Rather than developing multi-
ple components or capabilities in separate 
insular silos, continuous integration enables 
rapid access to integration issues before 
they cause significant rework (See the Envi-
ronment Parity principle).

Principle 4 and 5: Continuous Delivery and 
Continuous Deployment.

Continuous delivery refers to automated 
software transfer to a staging environment 
similar to the production environment. 
Once delivered, the operations organiza-
tion may conduct further testing but must 
decide when to deploy the software man-
ually—for example, unclassified software 
running on classified data produced by 
another system, independently changing. 
Operations may want independent testing 
using live data before deployment. It also 
allows the operations team to decide if 
updates are valuable enough to deploy.

Continuous deployments need no opera-
tions team activity and transfer operational 
software directly into a production environ-
ment. It relies solely on rigorous static source 
code testing and dynamic deployable artifact 
testing within the CI/CD pipeline.



SP
ECIA

L 
FEA

TU
R

E
JU

LY
  2O

21
VOLUM

E 24/ ISSUE 2

42

[Distribution Statement A] Approved for public release and unlimited distribution.

Commentary: Both continuous modes 
pass the fully integrated and tested soft-
ware, including complete documentation 
and deployment information, to the op-
erational organization. A continuous user 
transition mode provides a more rapid res-
olution for evolving cybersecurity vulner-
abilities. While both methods reduce delay 
in capability delivery, each provides for 
different circumstances. When completing 
the testing in a duplicated operational en-
vironment, continuous deployment makes 
sense. If there is not absolute congruity 
between the testing environment and the 
operating environment—perhaps because 
of security or infrastructure needs—con-
tinuous delivery allows the organization 
to adjust the deployment cadence to their 
need without impacting the software 
development velocity. Continuous delivery/
deployment provides systems engineering 
with a complete, fully documented software 
sequence. The drawbacks include the trust 
required and the rapid baseline evolution.

Principle 6: Environment Parity.
When two or more system environments 

are as identical as possible, they are in 
parity. DevSecOps pursues parity between 
development, staging, and production 
environments. IaC and deployable artifacts 
are critical to achieving parity.

Commentary: Like IaC, maintaining 
environment parity supports continuous 
testing integration and acceleration. An 
environment parity maintenance exam-
ple is including security testing from the 
initial development through deployment. 
A constantly changing environment risks 
significantly delaying defect identification 
due to an environmental anomaly.

Principle 7: Automation.
A pipeline is technically implementing 

DevSecOps principles to assist all stake-
holders in every software development 
aspect, including building, testing, delivery, 
and monitoring (Ficorilli 2017). Automated 
pipelines can also include configuration 
management and test environment gener-
ation.

Commentary: Automation significantly 
impacts systems engineering by providing 

substantial software status visibility, 
verification, and validation throughout the 
lifecycle (Nielsen 2019). It ensures teams 
perform testing at every level and do not 
sign off on any package until they integrate 
and test it. Automation also enables earlier 
and consistent verification and validation 
inclusion across systems and components.

Principle 8: Monitoring.
Continuous performance metric mon-

itoring simultaneously drives pipeline 
improvement and software quality. Teams 
also need to monitor security for both 
the developing software and the pipeline 
automation.

Commentary: Historically, systems engi-
neering monitoring focuses on key perfor-
mance parameters and engineering targets. 
These are still critical tracking values. In 
a continuous integration and deployment 
environment, the information available for 
determining or demonstrating actual values 
will be more inclusive and more frequent. 
Systems engineers should have consistently 
better data to track 

SO NOW WHAT?
It appears the principles generally align, 

but the foci of the practices are very differ-
ent. Agile, lean, and DevSecOps are narrow, 
specific, and highly automated. Systems en-
gineering practices incorporate the broader 
systems view. These should be mutually 
supportive. Unfortunately, many practice 
contexts, values, and incentives run counter 
to other practices within and between both 
disciplines. This is not insurmountable, but 
we need collaboration on mitigations and 
solutions. Hopefully, both disciplines strive 
to grow their understanding of the other’s 
needs and goals, and the general principle 
alignment will provide room for innovation 
and improving outcomes.  ¡
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INTRODUCTION AND BACKGROUND

  ABSTRACT
As interdisciplinary systems thinkers, we in the systems engineering field – especially the members of the Systems and Software 
Interface Working Group (SaSIWG) – are wired to believe that a “systems mindset should be everywhere.”  To catalyze the con-
versation about increasing the relevance of systems engineering and systems thinking in software- and data-intensive settings, 
this paper offers eight thought questions, which span governance, people, process, technology, and business concerns. The goal: 
resilience in the face of ever-increasing volatility and complexity.  Join our conversation!

Systems Thinking and 
Business Resilience: 
Questions That Should 
Keep Us Up at Night

  KEYWORDS:  anti-fragility, complexity, resilience, systems engineering, systems thinking
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1	 Anti-fragility is a property where systems capability increases in response to stressors, 
volatility, variability, or uncertainty. It differs from robustness (recovery from failure) and 
resilience (resistance to failure). (Taleb)

“…Most of the problems faced by 
humankind concerns our inability to grasp 
and manage the increasingly complex 
systems of our world.”	 —Peter Senge 

We have become accustomed 
to the phrases “everything is 
software” and “everything is 
data” as well as “everything 

is being digitally transformed.”  
“Everything is a system” is not spoken 

with the same prevalence.  Yet most things 
we encounter day to day are systems, as 
evidenced by these basic definitions:

■	 a set of things working together as parts 
of a mechanism or an interconnecting 
network. [Oxford languages]

■	 a group of interacting or interrelated 
entities [parts] that form a unified 
whole. [Wikipedia]

■	 a set of principles or procedures 
according to which something is done, 
an organized framework or method. 
[Oxford languages]

■	 an ordered and comprehensive assem-
blage of facts, principles, doctrines, or 
the like in a particular field of knowl-
edge or thought: a system of philoso-
phy. [Dictionary.com]

■	 a coordinated body of methods or a 
scheme or plan of procedure. [Dictio-
nary.com]

■	 An engineered system is a system 
designed or adapted to interact with 
an operational environment to achieve 
one or more intended purposes while 
complying with applicable constraints. 
(INCOSE)  

As an interdisciplinary field, systems 
engineering’s bodies of knowledge are wide 
and deep, going well beyond a “product and 
technology” focus that many might expect. 
They span strategy, governance, people, 
process, and methods (including architec-
ture, modeling, and analysis), and data. 

With systems thinking principles at our 
core, we hold a variety of roles in organiza-
tions, we work to mission and we are wired 
to believe that a “systems mindset should 
be everywhere.”   

We observe that there are gaps in this 
mindset in many organizations.  We seek to 
close these gaps, positioning organizations 

for not only flexibility and adaptability 
but also robustness, resilience, and anti-
fragility 1 at speed and scale, in the face 
of ever-increasing volatility, uncertainty, 
complexity and ambiguity (aka VUCA).  

If we are to realize this vision and 
increase the relevance (and usability) of 
systems engineering and systems thinking 
in software- and data-intensive organi-
zations and programs, we need to apply 
our own expertise to the challenge: take a 
systems view, starting with key questions 
and leading to useful models (which we 
love to create!).  

Eight questions, with elaborations, are 
shared here to catalyze the conversation.  

QUESTIONS OF PEOPLE, PROCESS, 
TECHNOLOGY 

“Systems Thinking is a discipline for 
seeing … complex situations, and for 
discerning high from low leverage change…   
By seeing wholes, we learn how to foster 
health.”	 —Peter Senge
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If as a matter of principle, we accept the 
value of an increased systems mindset, then 
we need to address fundamental questions 
of context (for situational awareness); 
roles; processes, tools, and methods; and 
people and their capabilities. By fostering 
this broad understanding, we can model 
effective ways to operationally integrate and 
interface systems, software, and data.    

1.	 Context: How do we characterize and 
categorize software-, systems- and data- 
intensive settings?  Consider:

■	 types of systems, products and 
services produced: e.g., embedded 
real-time, Information Technology 
(IT) infrastructure, shrink-wrapped 
product with unpredictable behavior 
in sometimes unpredictable ecosystem 
behavior.

■	 sectors and their classes: safety critical, 
like flight and health, finance, retail.

■	 complexity: of the product, service, or 
system being produced.

■	 more complexity: of the ecosystem or 
market in which it functions, such as 
regulated markets, and 2-sided plat-
forms and markets.  

■	 size: number of people, revenue gener-
ated, and other ways to measure.

2.	 Roles: What roles should be held by sys-
tems thinkers throughout an organiza-
tion and particularly relative to leader-
ship, governance, decision-making and 
coaching accountabilities? Consider:

■	 What should be the systems presence 
in executive roles as well as in program 
and engineering arenas?

■	 Which roles are “all about systems” 
(e.g., “Chief Engineer” or “Chief 
Architect”) and which roles need to 
be infused with systems thinking (e.g., 
C-Suite)?

■	 How do we reconcile overlapping or 
duplicative role titles across disciplines?  
e.g., “architect” (preceded with any 
number of adjectives and qualifiers).

■	 Is broad cross-industry consensus on 
this topic possible or practical?  

3.	 Processes and Methods: How does sys-
tems engineering dovetail with software 
engineering, data science, and (new!) 
digital engineering in the execution of 
work? This is not a trivial question. A 
few notes on each are offered here to 
highlight connections (and hopefully 
will not draw ire because of incomplete-
ness). Consider:

■	 Systems engineering is an 
interdisciplinary field that focuses on 
how to design, integrate, and manage 
complex systems over their life.  Its 

spans products, services as well as 
enterprises. With systems thinking 
at its core, it unifies all disciplines 
participating in an endeavor, often 
leveraging mathematical, graphical, and 
engineering models. 

■	 Software engineering is the application 
of computer science, software develop-
ment, and related fields to build appli-
cations, operating systems and systems 
software that solve a broad range of 
business problems.  

■	 Data science is an interdisciplinary 
field at the intersection of software 
development, computer science, math-
ematics, data structures and business. 
Data scientists solve complex problems 
via models (preferably causal).

■	 Digital Engineering is an integrated 
approach that uses authoritative sources 
of system data and models as a contin-
uum across disciplines to support life-
cycle activities from concept through 
disposal.  (www.wpafb.af.mil)

■	 Prevalent frameworks and life cycles, 
through which we all conduct work, 
include Agile, Scaled Agile, DevSecOps 
and Lean Portfolio Management.

4.	 People: How much “systems mindset” 
should software engineers and de-
velopers have?  How much “software 
mindset” should systems engineers 
have? Consider:

■	 In the context of Questions 2 and 3, 
and honoring each discipline’s bodies of 
knowledge, how do we pinpoint specific 
necessary shared principles and skills?

■	 Then how do we incorporate them into 
the state of the practice?

5.	 Synthesis: How do we, as systems en-
gineers and systems thinkers, apply our 
own tools to create consumable, elegant 
and useful models for the preceding 
questions? Consider:

■	 What we do is valuable, but often 
overwhelming to people, hence this 
dialogue.

■	 What are our most basic tools, for clar-
ifying interfaces, data flow, and cause 
and effect? When do we use those vs. 
more sophisticated methods?

■	 What reusable models can we build?  
What must be handled within each 
organization?

■	 How do we engage participants, one 
step at a time? How do we become mas-
terful facilitators? e.g., group modeling 
using cause and effect loop diagrams.  

■	 And at the end of the day, remember 
the words of George Box: “All Models 
Are Wrong; Some Models Are Useful.”   
We must strive for useful.

MAKING IT REAL: QUESTIONS OF BUSINESS
“94% of problems in business are systems 

driven…”	 —W. Edwards Deming

“Leaders: If you’re too busy to build good 
systems, then you’ll always be too busy.”	 
			   —Brian Logue

We will get the most traction on our 
vision and above tactical questions when 
there is good business fit, which brings us 
to a short list of complementary questions:

1.	 Fundamentally, what is the business 
case – the concrete business value – for 
implementing broad models of systems 
engineering and systems thinking 
throughout the organization? Consider:

■	 How do we monetize matters of resil-
ience and anti-fragility? Adaptability 
and flexibility? Speed of innovation? 

■	 How do we convince the constituencies 
that it matters to be proactive, and that 
systems thinking and engineering are 
key to success?

2.	 Culturally, how do we persuade organi-
zational leaders to proactively “engineer 
the systems”? Consider

■	 What is the scope and scale of “engi-
neering the systems”?  e.g., products, 
services, organizational systems (busi-
ness and technical strategies, process-
es, culture, structure), interfaces and 
interactions with market and regulatory 
ecosystems

■	 What do we mean by proactive vs. 
responsive vs. reactive? 

■	 Who should be accountable to under-
stand, model, build and direct these 
systems?

■	 What is the leadership and follower-
ship  model? (Followership: having the 
courage of one’s convictions to execute 
the vision of the leader within the 
framework of personal accountabilities 
(Geldart); to demonstrate teamwork, to 
build cohesion among the organization 
(Suda))

3.	 How do we stay abreast of industry 
trends (such as “digital engineering” 
which has been included in this paper) 
as well as within-organization trends, 
ensuring that the business, operating 
and technical models we set forth 
remain fresh and relevant? Consider:

■	 How do we build effective and active 
coalitions with business and cross-
discipline thought leaders?  With our 
internal colleagues?

■	 How does systems engineering have a 
“seat at the table” and be “in the conver-
sation” relative to business, operational 
and technical strategy?
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PLEASE JOIN US IN THE CONVERSATION
The time has come to mainstream systems engineering and sys-

tems thinking, as we strive to ensure that our software- and data- 
intensive systems and organizations are resilient and anti-fragile.

Systems engineering is both the object of this endeavor and the 
enabler of the solution. We systems engineering practitioners are 
masters of our fate, if you will. We thrive on navigating complexity 
to meet our mission. We have the wherewithal to create broad 
reusable models as well as specific fit-for-use models needed for 
each organization’s journey.

With these questions and perspectives offered in this special 
issue, we begin to create agency for us to do so. We invite you to 
join the dialogue.  ¡
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