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Model-Based Test and Evaluation

“ I often say that when you can measure what you are speaking about, and 
express it in numbers, you know something about it; but when you cannot 
measure it, when you cannot express it in numbers, your knowledge is of a 
meagre and unsatisfactory kind. ”

—William Thomson, Lord Kelvin
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Illustration credit:  from the article  
You Don’t Save Money by Doing Less Testing – You Save 
Money by Doing More of the Right Testing! 
by Andrew C Pickard, Richard Beasley, and Andy J Nolan  (page 70) 



Systems Engineering: The Journal of The International Council on Systems Engineering

Call for Papers
he Systems Engineering journal is intend ed to be a primary 
source of multidisciplinary information for the systems engineer-
ing and management of products and services, and processes of 
all types. Systems engi neering activities involve the technologies 

and system management approaches needed for
• definition of systems, including identi fication of user 

requirements and technological specifications;
• development of systems, including concep tual architectures, 

tradeoff of design concepts, configuration management during 
system development, integration of new systems with legacy 
systems, inte grated product and process development; and

• deployment of systems, including opera tional test and 
evaluation, maintenance over an extended life-cycle, and 
re-engineering.

Systems Engineering is the archival journal of, and exists to serve the 
following objectives of, the International Council on Systems Engineer-
ing (INCOSE):

• To provide a focal point for dissemination of systems 
engineering knowledge

• To promote collaboration in systems engineering education 
and research

• To encourage and assure establishment of professional 
standards for integrity in the practice of systems engineering

• To improve the professional status of all those engaged in the 
practice of systems engineering

• To encourage governmental and industrial support for research 
and educational programs that will improve the systems 
engineering process and its practice

The journal supports these goals by provi ding a continuing, respected 
publication of peer-reviewed results from research and development in 
the area of systems engineering. Systems engineering is defined broadly 
in this context as an interdisciplinary approach and means to enable the 
realization of succes s ful systems that are of high quality, cost-effective, 
and trust worthy in meeting customer requirements.

The Systems Engineering journal is dedi cated to all aspects of the 
engineering of systems: technical, management, economic, and social. 
It focuses on the life-cycle processes needed to create trustworthy and 
high-quality systems. It will also emphasize the systems management 
efforts needed to define, develop, and deploy trustworthy and high 
quality processes for the production of systems. Within this, Systems 
Engineer ing is especially con cerned with evaluation of the efficiency and 
effectiveness of systems management, technical direction, and integra-
tion of systems. Systems Engi neering is also very concerned with the 
engineering of systems that support sustainable development. Modern 
systems, including both products and services, are often very knowl-
edge-intensive, and are found in both the public and private sectors. 
The journal emphasizes strate gic and program management of these, 
and the infor mation and knowledge base for knowledge princi ples, 
knowledge practices, and knowledge perspectives for the engineering of 

systems. Definitive case studies involving systems engineering practice 
are especially welcome.

The journal is a primary source of infor mation for the systems engineer-
ing of products and services that are generally large in scale, scope, 
and complexity. Systems Engineering will be especially concerned with 
process- or product-line–related efforts needed to produce products that 
are trustworthy and of high quality, and that are cost effective in meeting 
user needs. A major component of this is system cost and operational 
effectiveness determination, and the development of processes that 
ensure that products are cost effective. This requires the integration of a 
number of engi neering disciplines necessary for the definition, devel-
opment, and deployment of complex systems. It also requires attention 
to the life cycle process used to produce systems, and the integration 
of systems, including legacy systems, at various architectural levels. 
In addition, appropriate systems management of information and 
knowledge across technologies, organi zations, and environments is also 
needed to insure a sustainable world.

The journal will accept and review sub missions in English from any 
author, in any global locality, whether or not the author is an INCOSE 
member. A body of international peers will review all submissions, and 
the reviewers will suggest potential revisions to the author, with the intent 
to achieve published papers that

• relate to the field of systems engineering;
• represent new, previously unpublished work;
• advance the state of knowledge of the field; and
• conform to a high standard of scholarly presentation.

Editorial selection of works for publication will be made based on con-
tent, without regard to the stature of the authors. Selections will include 
a wide variety of international works, recognizing and supporting the 
essential breadth and universality of the field. Final selection of papers 
for publication, and the form of publication, shall rest with the editor.

Submission of quality papers for review is strongly encouraged. The 
review process is estimated to take three months, occasionally longer for 
hard-copy manuscript.

Systems Engineering operates an online submission and peer review 
system that allows authors to submit articles online and track their 
progress, throughout the peer-review process, via a web interface. 
All papers submitted to Systems Engineering, including revisions or 
resubmissions of prior manuscripts, must be made through the online 
system. Contributions sent through regular mail on paper or emails with 
attachments will not be reviewed or acknowledged.

All manuscripts must be submitted online to Systems Engineering at 
ScholarOne Manuscripts, located at:  
  https://mc.manuscriptcentral.com/SYS 
Full instructions and support are available on the site, and a user ID and 
password can be obtained on the first visit.

T

https://mc.manuscriptcentral.com/SYS
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e are pleased to announce 
the March 2023 INSIGHT 

issue published cooperative-
ly with John Wiley & Sons 

as the systems engineering practitioners’ 
magazine. The INSIGHT mission is to 
provide informative articles on advancing 
the practice of systems engineering and to 
close the gap between practice and the state 
of the art as advanced by Systems Engineer-
ing, the Journal of INCOSE also published 
by Wiley.

The issue theme is model-based test 
and evaluation and is a follow-up to the 
March 2017 INSIGHT that was published 
in collaboration with the March 2017 issue 
of the International Test and Evaluation 
Association (ITEA) Journal on the common 
theme of the engagement of systems 
engineering with test and evaluation.

The recent December 2022 INSIGHT 
on the Archimedes initiative has several 
articles on model-based test and evalu-
ation and verification and validation. In 
particular, the overview article “TNO-ESI 
– Systems Engineering Methodologies for 
Managing Complexity in the High-Tech 
Equipment Industry: Our Roadmap” by 
Wouter Leibbrandt, Jacco Wesselius, and 
Frans Beenker references the TorXakis 
modeling language and tool for mod-
el-based testing (https://torxakis.org/ and 
https://torxakis.org/userdocs/stable/ ). The 
reference cites “Model-Based Testing with 
TorXakis” by Jan Tretmans and Piërre van 
de Laar, both with TNO-ESI, presented 
at the 2019 Central European Conference 
on Information and Intelligent Systems, 
Varaždin, Croatia (http://archive.ceciis.foi.
hr/app/public/conferences/2019/Proceedings/
QSS/QSS3.pdf ).

William Miller, insight@incose.net

FROM THE 
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W This issue of INSIGHT features relevant 
articles selected from past INCOSE 
symposia papers by authors representing all 
three INCOSE sectors: Americas; Europe, 
Middle East, and Africa (EMEA); and 
Asia-Oceania. Our intent is to encourage 
and stimulate our systems engineering 
community to focus more energy on test 
and evaluation. We thank the authors and 
their sponsoring organizations for their 
contributions. Articles referencing research 
and commercial systems engineering tools 
and products does not represent INSIGHT 
and INCOSE endorsement of referenced 
tools and products.

The March 2023 INSIGHT leads off 
with “The Challenge of Enabling Dynamic 
Innovation with Rigor” by John Frederick, 
Columb Higgins, and Angela Moore. 
This article examines lessons learned 
from recent verification and validation 
(V&V) summits and technical interchange 
meetings (TIMs) held by the US Federal 
Aviation Administration (FAA) V&V 
Strategies and Practices Branch, exploring 
the challenges of being agile and dynamic 
(in step with the pace of technology) while 
being effectively systematic and rigorous.

“Determining Reliability Requirements 
and Testing Costs in the Early Stages of 
Single Use Medical Product Design” by 
Fritz Eubanks examines methods for 
determining reliability requirements, the 
cost of reliability testing for single use 
medical devices in the design input phase 
of product development, and how the 
costs of testing and potential errors can be 
used to perform trade-off analysis between 
reliability tolerance and confidence level.

“A Concept for Set-based Design of 
Verification Strategies” by Pen Xu and 

Alejandro Salado presents an approach 
to apply set-based design to the design 
of verification activities to enable the 
execution of dynamic contracts for 
verification strategies, ultimately resulting 
in more valuable verification strategies than 
current practice.

“Formalizing the Representativeness of 
Verification Models using Morphisms” by 
Paul Wach, Peter Beling, and Alejandro 
Salado explores the use of system theoretic 
morphisms to mathematically characterize 
the validity of representativeness between 
verification models and corresponding 
system design.

“Verification and Validation of SysML 
Models” by Myron Hecht and Jaron 
Chen describes a methodology for 
performing verification and validation on 
models written in SysML. Both manual 
and automated methods are used to 
verify and validate these requirements. 
Manual methods are necessary where 
knowledge of the domain and other 
extrinsic characteristics are necessary. 
Automated methods can be used where 
the requirements cover the use of SysML. 
Examples from a public domain SysML 
model of a satellite are presented to 
demonstrate application of automated 
requirements verification.

“From Model-based to Model and 
Simulation-based Systems Architectures 
– Achieving Quality Engineering through 
Descriptive and Analytical Models” by 
Pierre Nowodzienski and Juan Navas 
leverages model-based systems engineering 
(MBSE) approaches and complement them 
with simulation techniques to improve the 
quality of system architecture definition to 
come up with innovative solutions.
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“System Verification and Validation Ap-
proach Using the MagicGrid Framework” 
by Aurelijus Morkevicius, Aiste Aleksan-
draviciene, and Zilvinas Strolia proposes 
an approach to perform verification and 
validation of a system using system models 
developed with the Systems Modeling 
Language (SysML) and in accordance with 
the MagicGrid (formerly known as MBSE 
Grid) framework. The approach covers 
system testing activities beginning with 
verification of the lowest modeled system 
elements against system requirements and 
finishing with validation of the system as a 
whole, against stakeholder needs.

“Configuration Management for Model 
Based Systems Engineering —An Example 
from the Aerospace Industry” by Adriana 
D‘Souza and Phanikrishna Thota explores 
the use of configuration management for 
modeling and simulation in an aerospace 
setting, with a specific example involving 
landing gear and its surrounding systems.

“You Don’t Save Money by Doing Less 
Testing —You Save Money by Doing More 
of the Right Testing!” by Andrew Pickard, 
Richard Beasley, and Andy Nolan examine 
the prediction of the fatigue lives of critical 
parts in gas turbine engines, to illustrate 
the more general case of performing tests 
to calibrate models that then have general 
applicability across multiple projects, rather 
than focusing testing on the needs of a 
specific project. In some circumstances, 
testing may not even be the best approach 
to take; if some level of error escape 
into service is acceptable (unlike the life 
prediction example given in this paper) 
then more focus on requirements validation 

and design review may provide a more cost-
effective approach. This is where the linkage 
in a systems engineering model between 
requirements, functions, failure modes and 
effects analysis, verification test cases, and 
available calibrated models can help with 
identifying opportunities and risks.

“Inconsistent and Incomplete 
Datasheet: The Case for Systematic 
Use of Requirement Engineering” by 
Lorraine Brisacier-Porchon and Omar 
Hammami explores the public user 
datasheet relevance compared to the 
system engineering requirements that are 
the artifacts of system design architecture. 
The use of connecting components off-
the-shelf (COTS) user manual to system 
requirements is discussed, even more if 
the systems are to be re-used in a system 
production line. For example, the rising 
complexity of unmanned ground vehicle 
(UGV) systems imposes engineering steps 
that would ensure both capabilities of the 
system and resilience to its future inclusion 
in a system-of system context. During its 
operational usage, the UGV is supposed 
to be maneuvered for specifically designed 
purposes following user manual datasheet 
of the COTS that are integrated.

“Exploring the Test and Evaluation Space 
using Model Based Conceptual Design 
(MBCD) Techniques” by David Flanigan 
and Kevin Robinson offers an approach to 
extend the MBCD methodology addressing 
the system concept in the early stages in the 
lifecycle as published in the December 2014 
INSIGHT (Volume 17 Issue 4) to better 
consider the T&E space.

“Framework for Formal Verification of 

Machine Learning Based Complex Sys-
tem-of-Systems” by Ramakrishnan Raman, 
Nikhil Gupta, and Yogananda Jeppu de-
scribes a novel approach applying machine 
learning based classifiers and formal meth-
ods for analyzing and evaluating emergent 
behavior of complex system-of-systems that 
comprise a hybrid of constituent systems 
governed by conventional models and 
machine learning models. The approach 
develops a machine learning classifier 
model that learns on potential negative 
and positive emergent behaviors, and 
predicts the behavior exhibited. A formal 
verification model is developed to assert 
negative emergent behavior. The approach 
is illustrated through the case of a swarm 
of autonomous UAVs flying in a formation, 
and dynamically changing the shape of the 
formation, to support varying mission sce-
narios. The effectiveness and performance 
of the approach are quantified.

We hope you find INSIGHT, the prac-
titioners’ magazine for systems engineers, 
informative and relevant. Feedback from 
readers is critical to INSIGHT’s quali-
ty. We encourage letters to the editor at 
insight@incose.net . Please include “letter to 
the editor” in the subject line. INSIGHT 
also continues to solicit special features, 
standalone articles, book reviews, and 
op-eds. For information about INSIGHT, 
including upcoming issues, see https://
www.incose.org/products-and-publications/
periodicals#INSIGHT . For information about 
sponsoring INSIGHT, please contact the 
INCOSE marketing and communications 
director at marcom@incose.net  .  ¡
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The Challenge of 
Enabling Dynamic 
Innovation with Rigor

  ABSTRACT
How do we incubate and accelerate innovation?  This article examines lessons learned from recent Verification and Validation 
(V&V) summits and Technical Interchange Meetings (TIMs) held by the Federal Aviation Administration (FAA) V&V Strategies 
and Practices Branch, which explored the challenges of being agile and dynamic (in step with the pace of technology) while being 
effectively systematic and rigorous.

John Frederick, Manager, FAA V&V Strategies and Practices Branch, john.frederick@faa.gov; Columb Higgins, 
columb.g-ctr.higgins@faa.gov; and Angela Moore, angela.ctr.moore@faa.gov
Copyright ©2023 by John Frederick, Columb Higgins, and Angela Moore. Published by INCOSE with permission

  KEYWORDS:  innovation, knowledge convergence, agile, test and evaluation, verification and validation

Figure 1. The 2022 V&V Summit theme—‘Enabling Dynamic Innovation with Rigor’

Innovation is critical in this transfor-
mational period where technological 
advancement and subsequent obsoles-
cence are moving at a rapid pace. Intel® 

claims that by 2030, there will be circuits 
with transistor counts of a trillion, roughly 
10 times the number of transistors current-
ly available on modern CPUs. If this is any 
indication of the pace of change, planners, 
designers, and developers cannot say with 
confidence what conditions will be or what 
users may need years from now. With this 
extreme pace of technology, the challenge 
for innovators in this dynamic environment 
is how to explore new opportunities and re-
main open to new concepts. All stakehold-
ers have to be open to innovate, not just 
analyze, and that requires accepting uncer-
tainty, embracing knowledge convergence, 
allowing space for various stakeholders to 
contribute, and not fearing change.

How do we create the space—physically 
and mentally—for innovation to take place? 
This article includes lessons learned con-
cerning accelerating innovation through 
knowledge convergence and agile principles 
presented during the 17th Annual Veri-
fication and Validation (V&V) Summit. 
The summit is hosted by the V&V Strat-
egies and Practices Branch of the Federal 
Aviation Administration’s (FAA’s) William 
J. Hughes Technical Center (WJHTC) in 

Atlantic City, New Jersey, US. V&V Strat-
egies and Practices Branch manager John 
Frederick started the summit to provide a 
collaborative environment for convergence: 
the assembling of different ideas from 
different groups to contribute knowledge 
and context to a complex idea so that com-
monalities and similarities become visible, 
and synthesis of understanding may occur. 
This year’s summit, held September 21–22 
in a hybrid attendance format, featured 
presenters and attendees at the National 

Aerospace Research and Technology Park 
(NARTP) adjacent to the WJHTC and 
others participating remotely via Zoom. 
Speakers and presentations delved into the 
theme: “Enabling Dynamic Innovation with 
Rigor.”

In addition to the V&V Summit, a 
companion Technical Interchange Meeting 
(TIM) was conducted (in a smaller break-
out group) with a specific focus to address 
the challenges and complexities inherent 
within agile principles and practices. There 
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were four presentations and a roundtable 
discussion in which moderators led brief 
discussions seeking discovery and clarifica-
tion on the topic.

Approximately 260 people attended the 
summit and TIM, with 17 speakers from 
the FAA, United States Space Force (USSF), 
United States Air Force (USAF), Depart-
ment of Defense (DOD), National Aero-
nautics and Space Administration (NASA), 
Carnegie Mellon University (CMU) Soft-
ware Engineering Institute (SEI), Stevens 
Institute of Technology, Verizon, Science 
Applications International Corporation 
(SAIC), and the Volpe National Transpor-
tation Systems Center. The post-summit 
reporting captures ideas and values from 
these speakers to help enterprises innovate 
and adapt.

CONVERGENCE: A SYNTHESIS OF IDEAS, 
CONCEPTS, AND PERSPECTIVES

Summits, conferences, and conventions 
can be powerful fora for knowledge conver-
gence.  Convergence is a natural synthesis 
that occurs when individual contributions, 
like strands of a web, are brought in context 
to converge and intertwine knowledge 
into a comprehensive innovative solu-
tion.  Imagine solving a complex problem 
where each contributor has a segment of 
the solution.  Separately, each solution 
element is only understood by its origina-
tor.  By creating spaces where convergence 
can occur, one or many big pictures and 
their possibilities take shape.  Placement, 
orientation, and the value of each element 
may inspire and spawn new associations 
to other segments of the solution and con-
cepts previously overlooked, disassociated, 
or misunderstood.

Innovation cannot occur until the con-
vergence among different kinds of knowl-
edge are synthesized to spawn innovative 
solutions. For instance, the first operational 
computer did not appear until 1946, even 
though all the necessary knowledge was 
available in 1918 (Drucker 2002). Some-

times a spark or catalyst (some may call 
it luck) is needed to create the innovative 
combustion. To accelerate the synthesis 
of ideas, we must be intentional about 
seeking and fostering knowledge gathering 
and exchange, challenging old concepts, 
and improving perceptions about poten-
tials. The V&V Summit aims to establish a 
network and community of V&V and Test 
and Evaluation (T&E) experts to exchange 
ideas, explore new concepts for future 
needs, promote continuous learning, and 
foster innovative collaboration. 

Recent summit themes focused on nur-
turing innovation, creativity, and collabora-
tion. The 2021 summit theme, “The Fusion 
of Art and Science,” addressed how V&V 
professionals will have to be more than 
scientists and engineers as they develop 
innovative and creative solutions for the 
future of aviation. The summit sought to 
foster new perspectives, increase aware-
ness, and inspire notions of curiosity and 
discovery for projects and organizations. 
The immediate past summit theme was 
“Enabling Dynamic Innovation with Rigor,” 
which examined the challenges of innovat-
ing with agility at the pace of technology 
while ensuring that mission-critical systems 
and services are safe, effective, and secure.

Innovation requires mental space as well; 
it must be both conceptual and perceptual, 
requiring not only cognition but imagina-
tion. Speakers at the 2021 V&V Summit 
highlighted the value of integrated arts and 
sciences to the advancement of innovation, 
focusing on new concepts and improved 
perceptions; learning through interacting, 
observing, and listening; challenging the 
status quo; and creating environments 
where good scientists (who are cognizant 
of their ignorance) can gain knowledge. 
Innovation requires a fine balancing act 
between rapid change and known stability. 
People resist change, doubt the new, and 
abhor complexity. They will often settle 
for a known deficiency rather than accept 
products that require a mental stretch. But 

while simplicity and certainty foster com-
fort and confidence, they can also lead to 
stagnation. Innovation requires being open 
to uncertainty and the unexpected.

The poet John Keats coined the term 
“Negative Capability,” by which he meant 
the ability of someone to hold opposing 
ideas in their mind simultaneously — “of 
being in uncertainties, mysteries, doubts, 
without any irritable reaching after fact and 
reason.” Negative capability is a powerful 
tool in literature because it leaves a key ele-
ment of the story unexplained, a tension or 
strategic opacity that invites the reader to 
fill in a backstory using their own imagina-
tion, or reconcile seemingly contradictory 
motivations and rationales. This technique 
releases “an enormous energy that had been 
at least partially blocked or contained by fa-
miliar, reassuring explanations” (Greenblatt 
2004). In science, analysts seek to explain. 
But in innovating they need to be open to 
uncertainty. Uncertainty is uncomfortable, 
but it is often where the “magic” occurs—at 
the intersection of art and science; the what 
if and what is.

Mental and Physical Modeling for 
Convergence and Innovation

Digital twins, simulators, sandboxes, and 
virtual reality can also be powerful tools 
for convergence. A digital twin is a virtual 
representation of an object or system with 
real-time, bidirectional data flow enabled 
by Artificial Intelligence (AI) and/or Ma-
chine Learning (ML). It can model cities or 
whole ecosystems. Users have the ability to 
simulate decisions and outcomes, allowing 
them to work together to create scenarios 
and model systems, integrate data from 
many different sources, and experiment 
without risk. Digital twin models and sim-
ulators provide environments where it is 
encouraged (and safe) to innovate through 
creation, building, play, trial, prototyping, 
and even destruction. Having facilities, lab-
oratories, skunkworks, and environments 
where ideas can be grown is critical to 
learning, training, and eventually imple-
menting those new ideas. A digital twin can 
accelerate contextual understanding, buy 
down risks for operational changes, and en-
able proactive and prescriptive adaptation 
instead of reactive management.

A digital twin can also serve as a virtual 
space for convergence between human 
users and AI. As AI develops, using explan-
atory models and reinforcement learning, 
relationships between human users and 
AI will be increasingly based on perfor-
mance and trust. Effective digital twins and 
simulators must also engage the user in an 
immersive experience. Numbers, statistical 
analysis, etc., are only a small part of the 
story told by digital twins and simulators. Figure 2.  Innovation requires convergence among different kinds of knowledge
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What matters most is the story told about 
the real-life applications of these numbers.

Creating a space for knowledge conver-
gence—physically or mentally—means 
accepting that there may not be one right 
answer. Indeed, there may be no imme-
diate answer at all. Instead, convergence 
welcomes many different perspectives with 
the aim of stimulating responsible discus-
sion. Leadership plays an important role 
in creating a space for knowledge conver-
gence. At the WJHTC, FAA leadership has 
fostered internship programs; employee 
engagement teams and mentoring; Aviation 
Science, Technology, Engineering, and 
Mathematics (AvSTEM) outreach ef-
forts; and the Innovation and Technology 
Advisory Council (ITAC) to allow for the 
constant cross-pollination of ideas. Coop-
erative research agreements between the 
FAA, Department of Defense (DOD), and 
Department of Homeland Security (DHS), 
and events like the Cyber Rodeo and Tech 
Center Showcase, are also valuable avenues 
for knowledge convergence.

AGILE: CONTINUAL MANAGEMENT OF THE 
TRAJECTORY TO STAY ON TARGET

Successful agile principles and practices 
will be critical to innovating at the pace of 
technology and obsolescence. Participants 
at the TIM on agile principles and practices 
did not arrive at one single definition for 
“Agile,” but they did describe consistent 
characteristics by offering their thoughts, 
lessons learned, and challenges. Discussion 
focused on three major areas: 1) defining 
agile, 2) culture change, and 3) developing 
the right metrics.

Defining Agile
Defining agile can be difficult, as 

different people have different ideas of 
what it means. However, there were some 
consistent characteristics of agile principles 
and practices raised throughout the TIM. 
During a breakout session, TIM partic-
ipants used interactive polling software 
to define what agile meant to them. The 
following terms were most commonly 
identified:

■■ Iterative
■■ Adaptive
■■ Discipline
■■ Flexible
■■ Collaborative
■■ Communication
■■ Multidisciplinary.
There are many myths and notions about 

what agile is, how it is applied, whether a 
framework is needed, and, if so, which one. 
One myth is that agile is always faster. Us-
ing an iterative process, teams can hone in 
on customer requirements more efficiently 
but this may not necessarily shorten the 

overall project timeline. Another myth is 
that agile reduces documentation. Actually, 
scope, content, and frequency of documen-
tation may be different from conventional 
large documentation efforts at the end of a 
milestone.

Agile is a set of values and principles. 
Agile practitioners value: 1) individuals 
and interactions over processes and tools, 
2) working software over comprehensive 
documentation, 3) customer collaboration 
over contract negotiation, and 4) respond-
ing to change over following a plan. Agile is 
about thinking big and acting small, failing 
fast and learning rapidly.

Agile is iterative. It is a responsive and 
constant process; more than just resched-
uling testing earlier in time. Through 
iterations, agile teams narrow the cone 
of uncertainty from the starting point of 
maximum ignorance, to a Minimum Viable 
Product (MVP), and then completion. They 
learn along the way and are smarter when 
they are ready to deploy.

Agile embraces the idea that there is a 
lot of uncertainty about the solution at the 
beginning of a project, so that is not the 
time to lock in scope and requirements. 
Instead, as knowledge converges and con-
cepts synthesize, refined requirements are 
developed, thereby increasing the probabil-
ity of success to build the intended product. 
Agile practitioners incrementally assure 
viability, which requires knowledge of the 
system, how it will be used, and the domain 
in which it will be used. We learn “what we 
don’t want” is just as valuable as “what we 
think we want.” This allows development 

efforts to adjust trajectory early and fosters 
an adaptive approach. Agile narrows the 
cone of uncertainty and facilitates staying 
on target and on time. Ultimately, success-
ful agile acquisition delivers what is really 
needed instead of what was thought to be 
needed.

A video by actor and comedian John 
Cleese on “The Importance of Mistakes,” 
shown during the 2022 V&V Summit, 
helps explain parts of an agile process. 
In the video, Cleese presents Gordon the 
Guided Missile. There can be two different 
approaches to sending Gordon to hit its 
target: either plan everything out and set 
its target before firing, or ask Gordon along 
the way how it is doing. The launch has a 
fixed direction and a setting. In a tradition-
al waterfall program, we are expected to 
have perfect aim. However, by asking along 
the way and correcting course, it may ap-
pear we are “making mistakes,” but we are 
actually learning by doing while adjusting 
so we hit the bullseye.

Agile requires management of uncertain-
ty. Agile practitioners must assess outcomes 
that may not necessarily be part of the plan. 
They need permission from leadership and 
stakeholders to change their minds later 
on. One key to agile development is asking 
illuminating questions early, which allows 
a team to build viability into the system. 
Agile practices should involve and integrate 
stakeholders into development. Data and 
test results should be available before dead-
lines so that examination can occur earlier 
when corrective actions are less expensive 
to make and options are more varied. V&V 
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Figure 3. The agile process (Blomberg 2018)
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should be involved in testing and validating 
the system as it is being developed, working 
with the product owner and team in writ-
ing acceptance criteria and validating the 
definition of “done.” Stakeholder feedback 
has to be a continual process and not just a 
gate that you pass through at the end.

Agile done poorly can circumvent con-
trols that are in place. Agile done well uses 
interdisciplinary teams that leverage their 
expertise early and often to build a system. 
Organizations cannot just focus on adopt-
ing some terminology and agile ceremonies 
without changing the way they perform 
the detailed technical work. Instantiating 
the methods as if they are templates to be 
filled out can lead organizations to miss the 
intended benefits.

Culture Change
Implementing and integrating all these 

values and ideas requires an organizational 
culture prepared to adopt agile princi-
ples and practices. Speakers at the TIM 
identified culture as the biggest barrier 
to adoption of agile practices. Tradition-
al waterfall development methods and 
organizational silos are comfortable and 
culturally accepted, but they may prevent 
an environment where ideas and people are 
free to fail, learn, adjust, and repeat without 
fear from punishment or other negative 
outcomes. To counteract this, agile teams 
need to be smaller, with natural lines of 
communication; self-empowered; and built 
for change.

Software engineer Scott Ambler offers 
the following definition of agile in regards 

to software development, which captures 
the organizational culture and mindset 
conducive to agile:

Agile (adj.): An iterative and incremen-
tal (evolutionary) approach to software 
development which is performed in a 
highly collaborative manner by self-or-
ganizing teams within an effective gov-
ernance framework with “just enough” 
ceremony that produces high-quality 
software in a cost-effective and timely 
manner which meets the changing needs 
of its stakeholders (Ambler 2013).

Agile organizational cultures welcome 
change requirements, deliver working 
products frequently, and consist of teams 
with high motivation and empowerment 
to get work done. By contrast, waterfall de-
velopment is a serial process with multiple 
handoffs between different groups. Compo-
nents are developed separately and integrat-
ed later with testing deferred until the end. 
Agile organizations produce fully tested, 
production-ready code at each iteration 
with MVPs serving as part of the assurance 
process. Put another way, traditional wa-
terfall development finds bugs, while agile 
organizations seek to prevent bugs.

Agile teams should consist of equal 
stakeholders at the table. If only one entity 
has all the power, then the scope, require-
ments, metrics, and verification will be 
slanted in their favor. Many times, who-
ever has the money controls the direction 
of a project. But what is best for the end 
user? To this end, communication within 

and between teams is crucial. Teams and 
stakeholder groups need to be comfort-
able communicating with each other, and 
organizations shouldn’t prevent groups 
from talking to each other for the sake of 
perceived independence.

One of the main features of a traditional 
waterfall approach is nothing is visible until 
everything is done. Enterprises tend to 
wait until integration tests to understand 
the individual contributors to the capabil-
ity of the system because they don’t have 
another way of doing it. Often, this comes 
about because of the nature of the organi-
zational structure. Dependencies exist on 
either side of boundaries, and capabilities 
are similarly sequestered by this boundary. 
Organizations that are successful view that 
both sides of a dependency have to operate 
together in a system where they succeed or 
fail together. Dependency encourages col-
laboration. Otherwise, the whole enterprise 
will be let down.

Enterprises should look to communicate 
and be transparent with sponsoring organi-
zations. Speakers at the TIM discussed the 
benefits of an institutionalized stakeholder 
engagement plan, which will be important 
moving into an agile world where stake-
holders, including testers, have to work 
together to make incremental success 
stories. In a stakeholder engagement plan, 
teams would have a specific cadence with 
associated schedules for each stakeholder. 
Everyone has to understand when to lead 
or follow, depending on the lifecycle phase.

There also have to be escalation rules for 
disagreements, where parties understand 
that nothing bad will happen to those who 
don’t get their way.

Meaningful Metrics
It is important that agile practices de-

velop and use the right metrics to control 
trajectory. Who owns the metrics? What 
supports them? If something changes along 
the way, can metrics change?

First, metrics have to be meaningful to 
everyone relative to target or goal. Ap-
propriate metrics should measure and be 
motivated by the benefit of the public or 
end user. Metrics cannot be viewed from a 
defensive posture—i.e., once a stakehold-
er is happy with a picture, the team can 
go back to the real work. Institution- or 
enterprise-wide metrics can be somewhat 
antagonistic to the agile process. Some-
times institutional metrics “silo” you into 
reporting a given metric; it is common 
that problems persist far down the chain 
because teams force processes to fit institu-
tionalized metrics. At the TIM, an example 
was given related to military readiness 
reporting where every model development 
is smashed into metrics spoken at the con-
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Figure 4. Narrowing the cone of uncertainty (Montemurro 2021)
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gressional level. Such practices can inhibit 
an organization’s ability to transition to 
agile types of processes.

Successful agile organizations consume 
data closer to the point where work is per-
formed rather than building a large data set 
entirely intended for an external audience. 
The agile user story considers what the 
system needs to do in order to achieve a 
desired outcome, and then specifies metrics 
to reach that outcome. If the need is prop-
erly decomposed at each level, measurable 
characteristics will emerge. In this way, we 
give assurance to the overall system that 
we’ve contributed the right values and right 
measurements for each of the components. 
As someone drills down, they can look and 
see what the inputs are for each metric.

To make sure they are meaningful, teams 
must also V&V their metrics. If the metrics 
are invalid, you can hit every mark and still 
fail. Like measuring a patient’s vital signs, 
body temperature could come back within 
an acceptable threshold, but the patient 
could still have high blood pressure. Suc-
cessful projects establish and validate what 
must be measured early and then march to 
those measurements. The sooner and more 
frequently the measures can be performed, 
the sooner adjustments and corrective 
actions can be performed. As any good 
project manager will attest, leading metrics 
allow one to “go on the offensive” rather 
than rely on lagging metrics that require 
defensive action and often generate waste.

Attendees discussed the level of orga-
nizational metrics versus developmental 
metrics. Astute filtering of metrics and 
measurement data must be tiered, and to a 
level of granularity appropriate for various 
reporting levels. For example, if airport 
noise (metric) is measured in decibels 
(measurement) and durations (measure-
ment) over a given location (measure-
ment), what are the acceptable ranges and 
tolerances for each individual measurement 
to prevent the metric from being out of 
bounds? If the public cares about airport 
noise, then the top levels in the agency will 
track that metric. However, at the gemba* 
where the work gets done, the separate 
design specifications that contribute to the 
individual measurements may be inade-
quate (when combined) to perform under 
the allowable noise threshold. Organiza-
tions must understand the allocation of 

metrics and their construction at each tier 
so that meaningful and relative information 
on each can be managed and monitored.

Agile teams must not be afraid to 
approach leadership when requirements 
or metrics need to be changed. This goes 
back to the importance of organizational 
culture and leadership. Stakeholders have 
to presume good faith and have a common 
perspective. As soon as we lose those, met-
rics become counterproductive.

LEADERSHIP
It is critical for innovators to act in a cul-

ture of leadership with peers who are agile, 
flexible, and poised for change. Leadership 
is key to creating spaces for knowledge con-
vergence and developing an organizational 
culture primed for innovation.

There are distinct differences between 
a leader and a “boss.” A leader communi-
cates the vision and shapes perceptions so 
people are able to see the future landscape. 
A leader helps to motivate people to want 
to innovate and sources training on how to 
implement change and empower indi-
viduals and teams to experiment without 
negative consequences. In contrast, a boss 
simply moves pawns on the chessboard, 
ignoring the ideas and perceptions of the 
staff. A boss hinders innovation by frown-
ing on new philosophies and methods, pre-
venting action on concepts she or he does 
not comprehend, and creates a punitive cul-
ture if an idea does not bring success based 
on financial metrics or personal glory.

In cultures of innovation, leadership 
combines the people, tools, training, and 
environments where freedom of thought is 
encouraged and rewarded. A servant-leader 
approach is valuable, providing the psycho-
logical safety needed in an organization to 
nurture self-empowered teams. Leaders are 
careful to “move out of the way” in the best 
interest of future success, even if it requires 
them to hand off power or lose organiza-
tional headship. Institutions that under-
stand this operating model make provisions 
for such behavior by providing lateral 
opportunities, new project assignments, 
financial incentives, or promotion.

Leadership needs to emphasize soft-
side skills too. Effective leaders celebrate 
internal milestones with the whole team, 
making public recognitions so that team 
members understand the desired behavior. 

Training should be regular and focus on 
how the enterprise wants to implement 
action, as well as equip the user with the 
right-sized tool set. But just training people 
on tools is counterproductive. If you give 
people a hammer, they are going to want 
to hit things. Valuable training doesn’t just 
provide information, it provides perspec-
tive. Leadership needs to ensure people 
understand the “why” so they are equipped 
to address new issues with appropriate re-
sponses. To impact culture, you want to im-
pact behavior. Perspective feeds behavior.

CONCLUSION
Defining a single way (a silver bullet) 

that addresses all needs while adopting ag-
ile practices with the rigor needed for safety 
and efficiency critical systems and services 
may not be 100% possible, especially in 
government acquisitions. On the other 
hand, even partial adoption of these princi-
ples and best practices would reap benefits 
for innovation and the implementation 
of complex systems and services. A key 
takeaway from the V&V Summit and the 
TIM is that these concepts will be hard to 
institute, but federal agencies, industry, and 
academia will need to increasingly adopt 
these principles and practices as more com-
plex systems of systems and indeterminate 
systems are developed.

Institutions and enterprises, in whole 
or in part, must adapt and change their 
organizational culture to innovate. They 
must embrace increased communication 
and stakeholder engagement; smaller, more 
empowered teams; and iterative product 
deliveries/releases. They need to be dynam-
ic, flexible, and agile while maintaining a 
rigorous and disciplined approach to inno-
vation, and they should expect disruption 
and the need to continually alter perspec-
tives and methods. Healthy organizations 
are open to change and are adept at trans-
forming business and technical strategies 
to be successful in a world with warp-speed 
technology.  ¡

*Gemba (  ) is the Japanese term for 
“actual place,” often used for the shop floor 
or any place where value-creating work 
actually occurs.
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INTRODUCTION

  ABSTRACT
The production of single use medical devices, particularly for home use by patients, continues to grow, and the reliability of these 
devices is a primary concern for manufacturers and end-users.  The systems engineer tasked with the device development needs 
methods and tools to establish reliability requirements and provide cost estimates for the testing necessary to show compliance 
with those requirements.  This paper examines methods for determining reliability requirements, the cost of reliability testing for 
single use medical devices in the design input phase of product development, and how the costs of testing and potential errors can 
be used to perform trade-off analysis between reliability tolerance and confidence level.

Fritz Eubanks
Copyright © 2010 Battelle Memorial Institute.  Published and used by INCOSE with permission.

Determining Reliability 
Requirements and Testing 
Costs in the Early Stages 
of Single Use Medical 
Product Design

Reliability is a product performance 
parameter, and consequently 
shares in the three-way balance 
between product performance, 

cost, and time to market. Design for high 
reliability requires varying combinations 
of high reliability components, functional 
redundancy, and periodic overhaul/
maintenance, all of which make the 
product more expensive to design, build, 
and test. On the other hand, disregard for 
reliability makes products more expensive 
to operate and maintain and leads to 
customer dissatisfaction and loss of sales.

Medical products can range from simple, 
single use devices, like tongue depressors 
and syringes, to large, complex systems like 
MRI systems and multi-assay in vitro di-
agnostic devices. Likewise, the complexity 
of the establishing and meeting the device 
reliability requirements will vary with 
device complexity. 

Product requirements for medical 
devices are established during the design 
inputs phase of product development. (QSR 

2009). The product requirements define 
the performance characteristics, safety 
and reliability requirements, regulatory 
requirements, applicable product standards, 
physical characteristics, and packaging and 
labeling requirements, among other things. 
(Trautman 1997). At the same time, project 
managers and systems engineers begin 
establishing the design and development 
plan, including major schedule milestones 
and overall program costs. Chief among 
design and development costs is product 
testing to verify compliance with product 
requirements. In the case of reliability 
testing, these costs can be substantial 
due to the large number of items and/
or amount of time required to obtain 
statistically sound data that serve to verify 
product reliability requirements. Methods 
to estimate testing lot sizes during the 
design inputs phase can prove valuable for 
both cost and schedule planning, as well as 
performing trade-off analyses for refining 
reliability requirements.

ASSESSING THE RELIABILITY REQUIREMENTS 
The Structure of Reliability Requirements

Reliability is defined as “the probabili-
ty that an item will perform its intended 
function under stated conditions over a 
specified interval.”  Therefore, the reliability 
goal must include specifications for the 
following items:

■■ Measure of success/failure
•	 A probability between 0 and 1, or a 

percentage between 0% and 100%
•	 A mean time to failure (MTTF) or 

mean time between failure (MTBF)
•	 A system availability between 0 and 

1, or a percentage between 0% and 
100%

■■ Definition of success/failure
•	 Success: No downtime, performance 

parameters within specification, no 
lost data

•	 Failure: no test result, false positive, 
insufficient output, complete system 
failure

■■ Range of normal operating conditions
•	 Temperature, humidity, pressure, 
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vibration, dust/pollution, liquid, 
power levels

■■ Interval over which probability of suc-
cess/failure will be measured
•	 Time, cycles, miles
•	 Note: this interval is not the same as 

product life

Examples of good reliability requirements 
are as follows: 

The system shall have mean time before 
failure of 1000 hours over a one-year 
period when operating under laboratory 
conditions where failure is defined as a 
false positive indication.

The power subsystem shall have a 95% 
probability of performing in accordance 
with specifications over 1000 hours in 
arctic conditions.

The vessel shall remain pressurized at 
100±5 psig without operator interven-
tion for 150 hours at 120°F with 99.5% 
reliability.

Collecting Basic Information 
The key reliability issues for any product 

or system are (RiAC 1996):
•	 What measures of reliability are import-

ant to the end-user? 
•	 What levels of reliability are necessary to 

meet the end-user’s needs? 
•	 How will the manufacturer determine if 

the required levels of reliability have been 
achieved? 

To answer these questions, it may be 
necessary to engage in a fact-finding effort 
that may involve a voice of the customer 
(VOC) study, benchmarking, and/or mar-
ket surveys. Through these activities, the 
manufacturer should to come to alignment 
with the end user’s needs on the following 
key reliability questions: 
•	 How often will the product be used?
•	 How many failures per 1000 attempted 

uses can be tolerated?
•	 How much operating time per use is 

expected?
•	 Who will be the regular user of the 

product?
•	 Where and under what conditions will 

the product be used? 
•	 How is success/failure of the product 

defined?
•	 What is the expected life of the product?

•	 For single use products, how long 
will the product be stored before use 
and under what conditions?

•	 Will users be compensated for failed 
items and, if so, how much?

For repairable systems, additional reli-
ability issues must be considered: 
•	 How many product failures can be 

tolerated over a 3-, 6-, or 12-month 
period? 

•	 How much product downtime for ser-
vice/repair of failures can be tolerated?

•	 Who will be tasked with performing 
service/repair?

•	 Will there be a warranty period and for 
how long?

•	 How much product downtime for routine 
maintenance can be tolerated?

•	 Who will be tasked with performing 
routine maintenance?

•	 How much will routine maintenance 
parts cost and who will pay for it?

Some of the answers to these questions 
may not be available in the concept/feasibil-
ity stage, but need to be considered and, if 
possible, estimated for the manufacturer to 
decide on how to position the product from 
reliability and cost perspectives.

Reliability Requirement Testing Costs 
The end user needs to know that reli-

ability goes hand in hand with product 
cost. “Four nines” reliability is great but 
may increase the cost of the product to an 
unacceptable level. Suppose that the end 
user of the single use syringe demanded 1 
failure for every 1000 attempts. Achieving 
this reliability will likely increase the cost of 
the device substantially.

The manufacturer needs to define 
the importance that reliability will have 
as a performance parameter relative to 
product cost and time to market. The 
importance aids in establishing the level of 
confidence required by the manufacturer 
when assessing how well the product has 
met the reliability requirements. This, in 
turn, allows the systems engineer to make 
a rough order of magnitude estimate of 
testing costs, because sample size and test 
time are driven by the combination of 
reliability and confidence interval. While 
testing approaches for more complex 
reparable and non-reparable system are 
well studied, simpler single use devices 
have not received a lot of attention. 
O’Connor (2002, 357) recommends that 
statistical acceptance sampling methods 
can be used for such devices. The success/
failure nature of single use devices suggests 
that statistics of population proportions can 
be applied. (Devore 2008, 306)

Establishing and testing requirements for 
large reparable systems is well studied and 
documented. The remainder of this paper 
will focus on requirements and testing for 
single-use devices.

Notation
It is important to note that the reliability 

values expressed in the following devel-
opment are not the same as are used for 

SINGLE USE DEVICE RELIABILITY 
VERIFICATION
Verification Testing Requirements

Verification testing provides the 
objective evidence that the product meets 
performance requirements, and that the 
product is ready for release to production. 
Devices used for product verification 
testing need to be equivalent to the 
device that will be produced for sale and 
distribution.

In the language of statistical hypothesis 
testing, the null hypothesis is that the prod-
uct performance meets the requirement 
being tested, while the alternative hypoth-
esis is that the performance falls outside 
the limits of the requirement. Reliability 
requirements are generally stated as a 
minimum, for example, at least 95% with 
95% confidence. Therefore, requirement 
verification will take the form of a one-
tailed hypothesis test with a null hypothesis 
that the reliability is greater than or equal to 
95%. The concern early in the design phase 
is to plan for enough tests to provide the 
required confidence in the validity of the 
verification test results.

Testing Errors and Sample Size
The two hypothesis test errors are de-

fined as follows (Devore 2008, 288):
A type I error consists of rejecting the 
null hypothesis when it is true.

A type II error consists of not rejecting 
the null hypothesis when it is false.

In terms of requirements verification test-
ing, these definitions can be re-written as:

A type I error consists of concluding that 
the requirement has not be met when it 
has.

Symbol Definition

R Required reliability as a 
population proportion

n Test sample size

α Level of significance; 
probability of type I error

β Probability of type II error

R′ Potential reliability due to 
type II error

β ( R′) Probability of type II error 
when R = R′

time-based reliability calculations. For this 
work, the device reliability is the ratio of 
the number of successes to the number 
of trials, commonly expressed as R = x/n, 
where x and n are discrete integer values. 
The notation is as follows:
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A type II error consists of concluding 
that the requirement has been met when 
it hasn’t.

While a type I error could result in 
schedule delays and additional testing cost, 
a type II error could result in the release of 
a product that does not meet the reliability 
requirement.  In the context of verification 
testing, a type II error means that the level 
of reliability realized in production will 
be below the level of reliability measured 
during verification testing. 

Statistical confidence is (1 - α), where 
α is the probability of a type I error.  
When nR ≥ 10 and n(1 - R) ≥ 10, p has 
approximately a normal distribution, and 
the lower confidence limit (LCL) for a 
one-sided, lower bound test of a population 
proportion can be computed.  Therefore, 
the minimum sample size needed to 
establish the confidence interval for 95% 
reliability using the normal 

approximation is n = 
10

1 - 0.95  = 200. Under 
the presumption that the reliability of the 
device will be 95%, and that the desired 
confidence is 95%, the LCL can be comput-
ed (Devore 2008, 266). See equation 1. 

Increasing the sample size to 400 would 
make the LCL around 93.2%. Here is the 
first point where the manufacturer must 
define the importance of reliability:

Q1: What lower confidence limit of 
reliability is acceptable at the desired level 
of statistical confidence?

If the manufacturer desires 95% reli-
ability with 95% confidence and LCL of 
93%, then the necessary sample size can 
be estimated as (Devore 2008, 267). See 
equation 2.

Statistical power is (1 – β), where beta is 
the probability of a type II error. Unlike α, 
there is not a single value for β. There will 
be a different β for each value of p con-

tained within the bounds of the alternative 
hypothesis. For example, if a test of 400 
units shows that the reliability is 95% with 
95% confidence, there is a 19% probability 
that the actual population reliability is 92%. 
In other words, there is an almost 1 in 5 
chance that the actual device reliability in 
production will be below the 95% one-sid-
ed lower confidence limit. Here is the 
second point where the manufacturer must 
define the importance of reliability: 

Q2: What tolerance for type II error 
(combination of actual reliability in pro-
duction and probability of realizing that 
reliability) is acceptable at the desired 
level of statistical confidence?

The calculation of sample size necessary 
to properly control both type I and type 
II errors in reliability verification testing 
contains 4 variables: the required reliability 
(R 0), the confidence level (1 - α), the prob-
ability of a type II error (β), and the lower 
bound at which β applies (R′). Continuing 
our example, the manufacturer desires at 
least 95% reliability with 95% one-sided 
confidence (α = 0.05). In addition, the man-
ufacturer feels they can only tolerate a 10% 
chance (β = 0.10) that the actual reliability 
in production is as low as 93%. The sample 
size can be estimated using (Devore 2008 
308). See equation 3.

Note that the increased sample size also 
reduces the confidence interval, resulting 
in a LCL of 94%. In this case, the desire for 
a low probability of type II error has driven 
the sample size to a level that provides 95% 
confidence that the LCL will be within 1% 
of the required reliability. 

Sample Size Tradeoff Analysis 
Considering that pre-production samples 

for testing can cost anywhere from $50 to 
$500 each, the cost of parts alone for a sam-
ple size of 1176 starts at $58,800 and goes 

up from there, not to mention the time and 
effort required to manufacture the prepro-
duction parts for testing. The manufacturer 
may want to examine options for possibly 
reducing the lot size for testing. Using the 
previous development, sample size can be 
calculated for combinations of acceptable 
limits of type I and type II errors. However, 
working with probabilities and sample sizes 
alone can be a little too abstract for making 
tradeoff decisions. What the manufacturer 
really wants at this stage is a rough order of 
magnitude estimate of the total cost of the 
reliability testing. 

Using experience from previous 
programs and judicious estimation, the 
systems engineer can collect some basic 
parameters used to estimate the costs of 
conducting verification testing. These 
values can be used to calculate a simple 
estimate of testing costs for various sample 
sizes. See equation 4.

Testing costs are driven by sample size, 
and in this context, lower is better. How-
ever, lower sample size results in a higher 
probability of type II error, and thus a 
better chance that the production reliability 
will be lower than anticipated. The impact 
of lower reliability in production will be felt 
as a loss to the manufacturer due to war-
ranty returns, customer dissatisfaction, and 
potential claims for property damage or 
personal injury. If the losses can be roughly 
estimated for each incremental shortfall 
in reliability, it can provide the basis for a 
tradeoff against testing costs. 

In some cases, the cost of device failures 
may have been computed as part of the 
business case used to justify the decision to 
proceed with design. Otherwise, a rough 
estimate can be obtained by summing up 
the estimated probability and severity of 
each potential outcome of a device failure. 
Potential outcomes and estimates of sever-
ity and probability can be generated from 

LCL = R – z α
R(1–R)

n
0.95(1–0.95)
200

= 0.95 – 1.645 = 0.925 (1)

n = R (1–R) z α
(R–LCL)
󶀣 󶀳

2
= 0.95 (0.05) = 3221.645

󶀣 󶀳
2

0.02
(2)

= 1176n = =
z α R 0(1–R 0) R′(1–R′)+z β

R′–R 0
󶁧 󶁷

2󵀄󵀄

0.93 – 0.95
1.645 0.95(1–0.95) 0.93(1–0.93)+1.282󶁧 󶁷

2󵀄󵀄
(3)

Testing Cost = [(Sample Size) ∗ (Part Cost)] + 󶁧(Sample Size)
(Testing Rate)

∗ (Labor Rate + Facility Rate) + (Fixture Cost)󶁷 (4)



SP
ECIA

L 
FEA

TU
R

E
M

A
R

CH
  2O

23
VOLUM

E 26/ ISSUE 1

17

previous experience with similar devices, 
or from high level risk assessments. For 
outcomes involving injury or property 
loss, Ayyub (2003) and Wilson and Crouch 
(2001) can be used to estimate costs. Ex-
pressing the severity in terms of cost to the 
manufacturer, the general expression would 
be equation 5.

where:
C(failure) = cost of a device failure
P(outcome)i = probability of potential 
outcome i occurring
C(outcome)i = cost of potential out-
come i to manufacturer
m = number of potential outcomes 
identified.

Recall that there will be a different 
probability of type II error for each value 
of R′ < R. For one-sided hypotheses, the 
probability is calculated as equation 6.

Therefore, the cost of potential type II 
errors can be expressed as the sum over 
potential values of R′ of the probability 
of type II error multiplied by the cost 
associated with products having reliability 
R′ instead of R 0. This calculation is not as 
intractable as it seems. For moderate values 
of sample size (n ≥ 400) with R = 95%, 
β (90%) is less than 1%.

The cost estimation and trade-off process 
is best illustrated through the following 
example.

SINGLE USE MEDICAL DEVICE EXAMPLE 
A pharmaceutical manufacturer devel-

oped a drug for treating a chronic pain 
condition. The drug requires intramuscu-
lar injection daily, and the manufacturer 
wanted to develop a one-button, home use 
solution for making the injection. Answers 
to the salient questions are as follows:

■■ How often will the product be used? 
Once 

■■ How many failures per 1000 attempted 
uses can be tolerated? 50 

■■ How much operating time per use is 
expected? No more than 5 seconds 

■■ Who will be the regular user of the 
product? Adults, 25-80 years old, no 
physical disabilities 

■■ Where and under what conditions will 
the product be used? Home use, weekly 
or monthly, US, Canada, EU 

■■ How is success/failure of the product 
defined? Success = proper dose 

delivered to patient’s thigh muscle 
within 5 seconds of activation 

■■ For single use products, how long will 
the product be stored before use and 
under what conditions? 2 years at 5°C

■■ Will users be compensated for failed 
items and, if so, how much? The cost of 
the device plus shipping.

Using the information above, the systems 
engineer can establish the following 
product reliability requirement:

The product shall deliver the proper 
dose to the patient within 5 seconds of 
actuation with a probability of at least 
95% when used in an environmentally 
controlled interior space with tempera-
ture of 15-35°C, humidity of 10-95% RH, 
and atmospheric pressure of 14.7-10.3 
psia following storage at 5°C for no more 
than 2 years.

The manufacturer 
believes that a single 
use device with 95% 
reliability provides a 
good balance between 
performance and 
cost. Production 
volumes are estimat-
ed at 50,000 devices 
per year. The trade-
off process starts by 
determining required 
sample size based 
on lower confidence 
limit and the level 
of confidence in 
achieving that limit 
in accordance with 
Equation (2). Table 1 
provides the trade-offs 
between confidence, 
LCL, and sample size 
for R=95%.

Note that using 
sample sizes below 
200 will require dif-
ferent treatment due 
to the restriction that 
n(1–R) ≥ 10 for the 
normal distribution 
assumption of R to 
apply. The estimated 
costs for reliability 

testing as a function of sample size calculat-
ed using Equation 4 are shown in Table 2.

Assume a preliminary selection of 
the 90% confidence level. Based on the 
confidence level, the additional cost of 
development must be weighed against the 
possible additional cost of operation due 
to a higher-than-expected failure rate, as 
measured by the probability of a Type II 
error. Calculated probabilities for Type II 
error for each level of combination of R′ 
and LCL in accordance with Equation 6 are 
shown in Table 3.

Assume that the manufacturer has 
performed a rough cost assessment of 
potential failure outcomes as follows:

C (failure) = P (outcome)i  ×  C (outcome)i ∑ m
i=1 (5)

β (R′) = 1– Φ
R – R′ – z α

R(1–R)
n

R′(1–R′)
n

(6)

LCL

Confidence 94% 93% 92% 91% 90%

95% 1286 322 143 81 52

90% 781 196 87 49 32

85% 511 128 57 32 21

80% 337 85 38 22 14

Table 1. Lot Size for Testing, R 0 = 95%

Part Cost = 	 $200 each

Testing Rate = 	 $6/hour

Labor Rate = 	 $100/hour

Fixture Cost = 	 $5,000

Facility Rate = 	 $75/hour

LCL

Confidence 94% 93% 92% 91% 90%

95% $299,708 $78,792 $37,771 $23,563 $16,917

90% $183,979 $49,917 $24,938 $16,229 $12,333

85% $122,104 $34,333 $18,063 $12,333 $9,813

80% $82,229 $24,479 $13,708 $10,042 $8,208

Table 2. Estimated Cost of Reliability Testing

Potential 
outcome

Proba-
bility

Cost

Serious 
injury

0.0001 $500,000

Moderate 
injury

0.005 $45,000

Minor injury 0.05 $6000

No injury 
– returned 
item

0.94 $500
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Using Equation 5, the cost per device 
failure is estimated to be $1,045. For a 
population of 500,000 devices, an addition-
al failure rate of 1% represent 5000 devices, 
for a potential annual loss of $5,225,000. 
Calculated potential losses for each level of 
combination of probability and magnitude 
of Type II error and their totals are shown 
in Table 4.

Our rough calculations indicate that a 
reliability test program that exhibits 90% 
confidence in a lower reliability bound of 
93% is a reasonable trade-off of testing 
cost versus potential loss due to reliability 
uncertainty. A sample size for verification 
testing of 1176 is calculated using Equa-

R = 	 95%

Confidence =	 90%

LCL

R′ 94% 93% 92% 91% 90%

0.94 0.18 0.55 0.69 0.74 0.78

0.93 0.00 0.20 0.42 0.55 0.63

0.92 0.00 0.04 0.21 0.37 0.47

0.91 0.00 0.01 0.09 0.23 0.34

0.90 0.00 0.00 0.03 0.13 0.24

Table 3. Probability of Type II Error

R = 	 95%

Confidence =	 90%

LCL

R′ 94% 93% 92% 91% 90%

0.94 $9,593 $28,971 $35,813 $38,866 $40,554

0.93 $290 $20,956 $44,143 $57,452 $65,315

0.92 $1 $6,995 $33,625 $57,618 $74,303

0.91 $0 $1,399 $19,352 $47,183 $71,426

0.90 $0 $191 $9,129 $33,734 $61,682

Table 4. Potential Loss due to Type II Error

tion 3. Note that the increased sample size 
brings the total estimated testing costs to 
around $94,000, but still represents a good 
trade when compared to the potential cost 
of lowering the acceptable LCL to 92%.

CONCLUSIONS AND FUTURE WORK
The production of single use medical 

devices, particularly for home use by 
patients, continues to grow, and reliability 
of these devices is a primary concern. 
The systems engineer tasked with the 
device development needs methods and 
tools to establish reliability requirements 
and provide cost estimates for the testing 
necessary to show compliance with those 

requirements. This paper presented a 
set of basic questions for determining 
reliability requirements during the design 
input stage. We also demonstrated that 
the cost of reliability testing for single use 
medical devices can be estimated during 
the design input stage, and the results used 
to perform trade-off analysis of between 
required tolerance, confidence level, and 
cost. We will continue to develop and 
refine the questions we ask to determine 
the proper reliability requirements, and the 
cost models for providing rough order of 
magnitude cost estimates as we apply them 
to future product development projects.  ¡
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INTRODUCTION

  ABSTRACT
In current practice, a verification strategy is defined at the beginning of an acquisition program and is agreed upon by customer 
and contractor at contract signature. Hence, the resources necessary to execute verification activities at various stages of the sys-
tem development are allocated and committed at the beginning, when a small amount of knowledge about the system is available. 
However, contractually committing to a fixed verification strategy at the beginning of an acquisition program fundamentally leads 
to suboptimal acquisition performance. Essentially, the uncertain nature of system development will make verification activities 
that were not previously planned necessary and will make some of the planned ones unnecessary. To cope with these challenges, 
this paper presents an approach to apply set-based design to the design of verification activities to enable the execution of dynamic 
contracts for verification strategies, ultimately resulting in more valuable verification strategies than current practice.

A Concept for Set-based 
Design of Verification 
Strategies

Pen Xu, xupeng@vt.edu; and Alejandro Salado, alejandrosalado@arizona.edu
Copyright © 2019 by Pen Xu and Alejandro Salado. Permission granted to INCOSE to publish and use.

Verification activities, which usu-
ally take the form of a combina-
tion of analyses, inspections, and 
tests, consume a significant part, 

if not the biggest part, of the development 
costs of large-scale engineered systems 
(Engel 2010). Verification occurs at various 
levels of a system’s decomposition and at 
different times during its life cycle (Engel 
2010). Under a common master plan, low 
level verification activities are executed 
as risk mitigation activities, such as early 
identification of problems, or because some 
of them are not possible at higher levels 
of integration (Engel 2010). Therefore, a 
verification strategy is defined “aiming at 
maximizing confidence on verification 
coverage, which facilitates convincing a 
customer that contractual obligations have 
been met; minimizing risk of undetected 
problems, which is important for a manu-
facturer’s reputation and to ensure custom-
er satisfaction once the system is operation-
al; and minimizing invested effort, which 
is related to manufacturer’s profit” (Salado 
2015). Essentially, verification activities are 
the vehicle by which contractors can collect 
evidence of contractual fulfillment in acqui-
sition programs.

In current practice, a verification strategy 

is defined at the beginning of an acquisition 
program and is agreed upon by customer 
and contractor at contract signature. 
Hence, the resources necessary to execute 
verification activities at various stages 
of the system development are allocated 
and committed at the beginning, when 
a small amount of knowledge about the 
system is available (Engel 2010). However, 
the necessity and value of a verification 
activity cannot be measured independently 
of the overall verification strategy (Salado 
and Kannan 2018b, Salado et al. 2018). 
Instead, the necessity to perform a given 
verification activity depends on the results 
of all verification activities that have been 
previously performed. For example, testing 
the mass of a component is considered 
more necessary if a previous analysis has 
shown low margin with respect to the 
success criterion than if the analysis has 
shown ample margin. Thus, contractually 
committing to a fixed verification strategy 
at the beginning of an acquisition program 
fundamentally leads to suboptimal 
acquisition performance. Essentially, the 
uncertain nature of system development 
will make verification activities that 
were not previously planned necessary 
and will make some of the planned ones 

unnecessary. The former can be handled 
through change requests (CR), but they 
require unplanned financial investments. 
The latter can be recovered in a few 
cases through negative change requests, 
but, in general, they imply a financial 
waste because the investment has been 
committed to the contractor. Hence, 
we contend that dynamic contracting 
of verification activities is necessary 
to guarantee optimality of acquisition 
programs in this area.

Informed by the benefits of set-based 
design in conceptual design (Singer et 
al. 2009), this paper presents a concept 
to apply set-based design to design 
verification strategies. Like its application 
in the conceptual design phase, an initial 
set of possible verification strategies 
is reduced as the system development 
progresses by evaluating the knowledge 
built by the results of verification activities 
and the available investment opportunities. 
In this way, verification activities can be 
contracted on each epoch in which the set 
is reduced by leveraging the knowledge 
generated while executing the verification 
strategy dynamically. 

This paper is organized as follows. 
First, background material is provided on 
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set-based design and its use in systems 
engineering, as well as on the basic verifica-
tion definitions used in this paper. Second, 
the concept proposed in this paper for 
set-based designing verification activities is 
presented. Third, an application example of 
the proposed approach is shown. Finally, a 
summary of the conclusions is given.

BACKGROUND
Set-Based Design (SBD)

As previously described, verification 
strategies are defined in current practice at 
the beginning of an acquisition program 
and are agreed upon by customer and con-
tractor at contract signature, when a small 
amount of knowledge about the system is 
available (Engel 2010). Such lack of knowl-
edge in early design activities motivated the 
emergence of set-based design (Bernstein, 
1998). Set-based design is built on the 
principle of working simultaneously with 
a plethora of design alternatives, instead of 
converging quickly to a single option (Ber-
nstein 1998). As the knowledge about the 
system increases, suboptimal alternatives 
are discarded until a preferred one remains 
(Bernstein 1998). A key aspect is that 
discarding is not an activity at a given point 
of time, like a traditional trade-off, but a 
time-continuous activity that occurs as new 
knowledge is available (Bernstein 1998). A 
formal formulation of set-based design and 
how it makes product development resilient 
against changes in external factors is given 
in (Rapp et al. 2018).

Set-based design has been success-
fully applied in the conceptual stages of 
naval systems (Singer et al. 2009), graphic 
industry products (Raudberget 2010), 
automotive products (Raudberget 2010), 
and aeronautic systems (Bernstein 1998), 
among others. Historical analysis of the 
use of set-based design has shown that it 
inherently eliminates root causes of rework 
in system development (Kennedy et al. 
2014). Researchers have integrated set-
based design with tradespace exploration 
to further strengthen its value by leveraging 
the numerous solutions that tradespace 
exploration provides to generate the initial 
set (Small et al. 2018). However, empiri-
cal research about the implementation of 
set-based design in an industrial setting 
showed that there are some discrepancies 
as to how to operationalize the approach 
(Hansen and Muller 2012). It remains to 
explore if this was an anecdotal episode or 
if it happens in general.

Verification
In this paper, a verification strategy 

is understood to be a set of verification 
activities organized as an acyclic directed 
graph where the verification activities are 

modeled as nodes and the edges represent 
their information influence (Salado and 
Kannan 2018a). A verification activity is 
understood to be the collection of in-
formation about a specific aspect of the 
system under development and verification 
evidence refers to such information (Salado 
and Kannan 2019).

A verification strategy can be modeled 
as a Bayesian network to capture the way 
engineers build confidence on the state of 
the system as verification evidence becomes 
available (Salado and Kannan 2019). The 
basic structure of such Bayesian model 
is given by three subgraphs (Salado and 
Kannan 2019):

1.	 A graph that captures the temporal 
sequence and information dependen-
cies between the different verification 
activities within the verification 
strategy.

2.	 A graph that captures the properties 
of the system architecture, that is, 
how the different parameters of the 
system and its building components 
relate to each other.

3.	 A graph that captures the ability of 
the verification activities to provide 
information about one or more sys-
tem parameters.

This modeling approach forms the basis 
for the mathematical model underlying 
the application of set-based design to the 
design of verification strategies presented in 
this paper. The basic notation is represented 
in Figure 1. System parameters are denoted 
by 𝜃i and verification activities by Vi . Ar-
rows represent information dependencies.

tivities in Figure 2. In the current paradigm 
(top part of the figure), a contract for a ver-
ification strategy is fixed at the beginning of 
the system development program. The strat-
egy is defined by the black dots connected 
by the orange line, which represent the 
verification activities that will be executed 
throughout the system development.

Without loss of generality, it is possible to 
assume that such verification strategy was 
determined optimal at the beginning of the 
program, that is, with the knowledge avail-
able at that point in time. Consider now 
that the verification activity V1 at t1 shows 
a tight margin with respect to the expected 
result of the activity. This may lead to a low-
er-than-expected confidence on the system 
being absent of errors that triggers the need 
for an additional, unplanned verification 
activity V2 at t1. Because the contract was 
fixed, such an activity needs to be contrac-
tually introduced through a change request.

Consider on the contrary, that the verifi-
cation activity V1 at t3 showed much better 
results than previously expected. This may 
yield a higher-than-expected confidence on 
the system being absent of errors, poten-
tially making verification activity V2 at t3 
unnecessary or of little value, because of 
how confidence builds up on prior infor-
mation (Salado and Kannan 2018b, Salado 
et al. 2018).

Consider now the proposed set-based 
design approach, depicted on the bottom 
side of Figure 2. In this case, an optimal 
strategy is also determined at t1. However, 
because the value of verification activities 
may change as results become available 
(Salado and Kannan 2018b), a set (rep-
resented by the dotted lines connecting 
the dots) is considered instead of just one 
strategy, and only the first verification 
activity V1 at t1 is contracted at this point. 
This set is the set of all possible verification 
strategies that are consistent with the opti-
mal verification strategy (that is, formed by 
all verification strategies that have the first 
activity in common).

Assume then that verification activity 
V1 at t1 provides low margin with respect 
to the expected results, as was the case 
before. With the updated confidence level, 
a new optimal strategy is selected within 
the remaining set. Then, the set is reduced 
to include only those verification activities 
that are consistent with the new optimal 
strategy. In this way, verification activity 
V2 at t1 is contracted as well. The process 
of identifying new optimal strategies based 
on updated confidence and reducing the set 
of remaining verification activities to those 
consistent with the new optimal strategy, 
continues at each t.

Assume later in the system development 
that, as was the case when describing the 

V1 V2 V3 V4

Figure 1. Example of modeling notation

In the example in Figure 1, 𝜃i could 
represent, for example, the performance 
of a prototype, which is verified through 
an analysis V1 and a test V2 (such that the 
result of the analysis shapes the confidence 
on the expected result of the test). Such 
prototype performance shapes the con-
fidence on the performance of the actual 
system 𝜃2 , which is verified through verifi-
cation activities V3 and V4.

CONCEPT: SET-BASED DESIGN OF 
VERIFICATION STRATEGIES 

The approach presented in this paper is 
graphically compared against the current 
paradigm for contracting verification ac-
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current paradigm, verification activity V1 
at t3 shows ample margin with respect to 
the expected result. The next assessment 
of the remaining optimal path yields a 
set of verification strategies that do not 
include verification activity V2 at t3 . Based 
on this result, V2 is not contracted at t3 . 
Consequently, this approach does not 
waste resources in activities that become 
no longer needed as verification evidence 
becomes available.

APPLICATION EXAMPLE
In this section, we provide a notional 

example of how the proposed set-based 
design approach to design verification 
strategies operates and compares against 
the current static paradigm.

Case Description
The notional verification strategy in 

Figure 1 is used for this example. All nodes 
are assigned binary values for computa-
tional simplicity. This simplification does 
not affect the purpose of this paper. System 
parameter nodes may take the values of 
no error or error, which will be denoted by 

¬e and e, respectively. Verification activity 
nodes may take the values of pass or fail. A 
time vector (T1,...,Tn ) is defined, where the 
element Ti precedes temporally the element 
Ti+1 for each i = 0 , ...,  n−1. No specific time 
unit is employed, because only temporal 
order is relevant to the example. Each 
element in the vector will be referred to as 
time event.

It is assumed that at most one 

verification activity is performed at each 
time event and that any given verification 
activity is performed at most once 
during the entire verification strategy. 
Furthermore, restrictions on the feasibility 
to perform a given verification activity at 
a given time event have been defined and 
are listed in Table 1. The restrictions are 
intended to capture realistic constraints 
that may exist on the feasibility to perform 
a given verification activity at some point in 
the system development. For example, it is 
likely that tests on prototypes can happen 
since an earlier time event than tests on the 
final product.

The goodness or preference of a ver-
ification strategy will be determined by 
three main factors: (1) its cost of execution, 
which is given by the fixed cost to execute 
each of its verification activities; (2) the 
expected cost to repair/rework the system 
when deemed necessary to do so as a func-
tion of the available verification evidence; 
and (3) the expected impact cost of the 
system exhibiting an error once deployed. 
Mathematically, the expected cost of a veri-
fication strategy S has modeled as:

t1 t2 t3 t4 t1 t2 t3 t4t1 t2 t3 t4 t1’ t2 t3 t4

t1 t2 t3 t4 t1 t2 t3 t4t1 t2 t3 t4 t1’ t2 t3 t4

This is the optimal
strategy, agreed upon
contractual signature.

This is the initial set of 
96 strategies, resulting
from optimal.

Circled activity showed
low margin. Unplanned
purple activity needs to
be added through CR.

Circled activity showed
low margin. Do purple
activity; reduce space to 
48 strategies.

Circled activity showed
nominal margin. No
change to strategy.

Circled activity showed
nominal margin. Follow
optimmal path; reduce
space to 24 strategies.

Circled activity showed
ample margin. Yellow
activity provides no
value, but it is executed.

Circled activity showed
ample margin. Strategies
with yellow activity are
suboptimal; reduce space
to 3 strategies. Choose one.

Coriginal = ∑ Cblack dots Cfinal = Coriginal +    p urple Cfinal = Coriginal +    p urple Cfinal = Coriginal +    p urple
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C final = ∑ Cblack dots
Cinitial = [a, b]; Set bounds depending on
strategy. Invest only what it is performed.

Figure 2. Current versus set-based approaches for designing verification strategies  (C: cost of executing verification; ti : 
verification events; /V: no verification; Vi : verification activity)

Table 1. Activity contraint table

Time 
event 

Feasible verification 
activities 

T1 L(T1) = {V3, V5} 

T2 L(T1) = {V3, V4, V5} 

T3 L(T1) = {V3, V4, V5} 

T4 L(T1) = {V5, V6} 

T5 L(T1) = {V5, V6} 

T6 L(T1) = {V5, V6} 

*L(Ti )={all feasible verification activities at Ti }
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The treatment of rework costs deserves 
additional discussion. A failed verification 
activity does not necessarily lead to rework; 
since rework is only necessary if worth do-
ing. An automated rework decision process, 
caricaturized in Figure 3, is used in this 
paper. Two confidence thresholds {Hl, Hu} 
= {0.4, 0.95} distinguished between three 
decision zones, which are defined such that:

1.	 Zone 1 reflects a confidence state 
that is considered not acceptable. 
Therefore, if the confidence on the 
system being absent of errors drops 
to Zone 1, then a rework activity is 
executed. The rework activity results 
in the confidence increasing to the 
level it would be, had the verification 
activity yielded pass results. This is 
meaningful because the purpose of 
the verification activity that failed was 
to achieve certain confidence level. 

2.	 Zone 2 reflects a confidence state 
that is in line with the confidence 
expected as the execution of the 
verification strategy progresses. 
Therefore, if (i) the confidence on the 
system being absent of errors falls 
in Zone 2 and (ii) the confidence 
level expected at completion of the 

verification strategy — assuming all 
remaining activities pass — falls in 
Zone 3, then the execution of the 
verification strategy continues as 
planned. If this condition is not met, 
then a rework activity is planned 
until such an objective is reached. 

3.	 Zone 3 reflects a confidence state that 
does not require the collection of 
additional knowledge; the engineer is 
convinced about the correct function 
of the system. Therefore, if the con-
fidence on the system being absent 
of errors falls in Zone 3, rework ac-
tivities are not executed. In addition, 
reaching Zone 3 implies for the set-
based approach presented in this pa-
per (with the corresponding dynamic 
contracting structure) that no other 
verification activity will be execut-
ed, and the system can be deployed. 
However, for the benchmark (with 
static contracting), it is assumed that 
remaining pre-contracted verification 
activities will still be executed.

Probability assignments use synthetic 
data and are given in the Appendix. 
Following the modeling approach presented 
in (Salado and Kannan 2019), prior beliefs 
are assigned to system parameter nodes, 
which capture the initial belief on the 
state of the system (that is, being absent of 
errors), and conditional probability tables 
are created for the verification activity 
nodes. Posterior beliefs are calculated 
for system parameters through Bayesian 
update of the outcomes of the verification 
activity nodes. Probability update was 
conducted in this study using the Bayesian 
network toolbox for MATLAB®, which 
estimates the posterior probabilities of all 
nodes by the variable elimination method.

Cost values employed in this example, 
given in Table 2, are also synthetic, but 
reasonable. The following assumptions 
have been made: (1) rework cost increases 
with time, (2) the impact cost during 
deployment is much larger than the rework 
cost and the verification cost; (3) rework 
cost is in general higher than verification 
execution cost; and (4) verification 
execution cost is positively related to the 
information it yields.

Generation of Strategies 
The verification strategy employed to 

model the benchmark design/contracting 
approach is set to be the optimal strategy 
before executing any verification activity; 
that is, before the first-time event. Then, the 
strategy may evolve to include additional 
verification activities in line with the 
description given in the previous section.

The verification strategy employed 
to model the proposed set-based and 
dynamic contracting approach is adaptively 
defined at each time interval. Adaptation 
is performed by choosing the optimal 
path of remaining activities right after 
each verification result is obtained, 
following also the guidelines described in 

Verification strategy S

 ∑
V∈V

 ∑
V∈V*

 ∑
V∈ L(Tj)

 ∑
k=1

o
 ∑
k=1

o
 ∑
j=1

n
E󶁢CT (S)󶁲 = CV (V) +  P(v) P(𝜃jk | v) δ (𝜃jk |v) CR (𝜃jk ) + P (v) P (𝜃k = e | v) CI (𝜃k = e) (1)

where:
CV (V ) is the fixed cost to execute verification activity V, 

V Is the set of verification activities included in the verification 
strategy S, 

v is a specific vector of verification results, 

P(𝜃jk |v) is the confidence level of the kth system parameter 
node at Tj given the verification results v, 

б(𝜃jk |v) is the indicator function that equals 1 if  P(𝜃jk |v) ≤ Hl , 
where Hl is a decision threshold, as will be explained in the 
next paragraph; otherwise its value is 0, 

CR (𝜃jk) is the rework cost necessary to recover a failure detect-
ed during verification at Tj ,

V* is the set of verification results and rework efforts possible 
as per the previous rework decisions given the set of verifica-
tion activities V,

P(𝜃 = e | v) is the probability that the system exhibits an error, 
given the specific verification results v, and

CI (𝜃 = e) is the financial impact of the system exhibiting an 
error once it is operational.

Stop Verification

Need More
Observation

Rework

Activity Vi

Zone 1

Zone 2

Zone 3

>Hu

Hu

<H1

H1

[H1, Hu]Compare
P(  ) & {H1, Hu} 

Figure 3. Zones for deciding next 
verification activity and need for rework
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Table 2. Cost values

Vi CV(Vi)($k) Tj CR at Tj($k) System error Ci(𝜃k)($k)

V1 50 1 100 𝜃2 60,000

V2 100 2 200

V3 75 3 300

V4 200 4 400

5 500

6 600

the previous section. Hence, at each time 
interval, a set of potential future verification 
strategies is kept. The corresponding 
algorithm is shown in Table 3. 

The goodness of the proposed set-based 
approach to design verification strategies 
with respect to the benchmark approach 
is assessed based on the expected cost of 
using each approach. This cost is calculated 
by considering the expected cost resulting 
from every possible verification strategy 
that could be executed when using the 
benchmark and the proposed set-based 
approach. As has been described, the 
resulting verification strategy at completion 
of all time intervals may differ in both 
approaches from the optimal one selected 
before the first-time interval. In the case 
of the proposed set-based approach, this 
difference is inherent to the approach. In 
the case of the benchmark, the difference 
may only result from the need to 
incorporate additional activities that were 
not previously planned.

Results
Given the constraints in Table 1, an 

initial set of 198 verification strategies 
could be enumerated before the first-time 
interval. Among them, the optimal one 
is S1 = (V1, V2, NoV, V3, V4, NoV), where 
NoV indicates that no verification activity is 
executed at that time interval. This strategy 
has an expected total cost of $3,226k and 
an initial confidence on the system being 
absent of errors of 0.76. As discussed, S1 is 
used as the baseline verification strategy for 
the benchmark.

As an example, the evolution of one 
of the paths for the proposed set-based 
approach is described here. V1 is executed 
in the first-time interval because it is part 
of the optimal strategy identified before 
initiating the execution of the verification 
strategy. If the verification activity pass-
es, the number of verification strategies 
remaining in the set reduces to 55 (all 
strategies that begin with V1) and the con-
fidence on the system being absent of error 
increases to 0.84 (as determined through 
Bayesian update of Figure 1). The optimal 
verification strategy out of the remaining 
set becomes S2= {V1, V2 V3, V4, NoV, NoV }, 
with a lower expected cost of $2,994k. On 
the other hand, if the activity fails, the set 
of remaining verification activities would 
contain 115 elements and the confidence 
on the system being absent of error would 
drop to 0.57. Since this level is still larger 
than 0.40, the rework activity would not 
be entertained yet. The process repeats 
again by identifying a new optimal strategy 
and reducing the set accordingly until the 
verification activity on the last time interval 
is executed.

Table 3. Algorithm to generate verification strategies

Dynamic Contracting Strategy  (N, ACT, C)

ACT —— Activity Constraint TableInput:

Output: Sopt = {Vopt(T1), Vopt(T2), … Vopt(Tn)}

N —— Bayesian Net;
C —— Cost Table

1: For t in T1 : Tn

2:	 Generate all feasible paths VS ti = {S1, S 2, … S m} at time point t;

3:	 Evaluate the expected cost of all verification paths; 

4:	 Select the minimum one S = {Vopt(T1), Vopt(T2), … Vopt(Tt) V(Tt+1) … 
	 V(Tn)} and update the optimal path Sopt = {Vopt(T1), Vopt(T2), …Vopt(Tt)};

5:	 Collect the results of V(Tt) and set the evidence adaptively;

6:	 Update the Bayesian network and ACT

7: End

8: Return the optimal path Sopt = {Vopt(T1), Vopt(T2), …Vopt(Tn)}

Table 4. Table of all cost items at T7

Path 
Number

Path 
Probability 

(PP)
P(𝜃2 =  

¬ error) E[C I] CR CV
Path Cost 

(CP=E[CI]+ CR+ CV)

1 0.0295 0.9077 5538 700 425 6663

2 0.0116 0.9077 5538 200 425 6163

3 0.1169 0.9657 2058 200 350 2608

4 0.0265 0.9077 5538 500 425 6463

5 0.0104 0.9077 5538 0 425 5963

6 0.1051 0.9657 2058 0 350 2408

7 0.0446 0.9364 3816 300 225 4341

8 0.0554 0.9364 3816 0 225 4041

9 0.0936 0.9316 4104 500 425 5029

10 0.0449 0.9316 4104 0 425 4529

11 0.4615 0.9750 1500 0 350 1850
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The possible set reductions lead to 11 
feasible paths for the proposed set-based 
approach. As illustrated in Figure 4, the set 
of all possible paths could be represented 
as a tree plot. The expected cost of each 
approach to design verification strategies 
is calculated as the sum of the cost of each 
path weighted by its resulting probability of 
occurrence. The probability of occurrence 
for each path is computed as the product 
of all the probabilities of all activities along 
the branch. Similarly, the benchmark 
could yield 16 possible paths. All paths 

are shown in Figure 5 (dotted, red lines 
represent benchmark paths; solid, blue lines 
represent set-based paths). The vertical axis 
represents the total expected cost of the 
verification strategy on each time interval. 
The resulting cost is given therefore after 
completion of the last time interval (to 
the right extreme in the plot). The total 
expected cost of the set-based approach is

PPi × PCi = $3,004k , ∑
11

i=1

which is smaller than that of the bench-
mark, $3,214k. This result provides an in-
dication that the proposed approach yields 
indeed more valuable verification strategies 
than the benchmark, although additional 
cases need to be run to confirm this result.

Figure 5 provides in addition an interest 
insight about the properties of the proposed 
set-based approach to design verification 
strategies and contract verification activ-
ities. As can be seen, the amplitude of the 
tree corresponding to the benchmark ap-
proach (red dotted line) is larger than that 
of the set-based design method (blue solid 
line). This indicates that the benchmark ap-
proach responds more slowly to adjusting 
its parameters than the set-based design 
approach when receiving information from 
verification evidence. In cost control terms, 
this indicates that the benchmark approach 
is inefficient when compared against the 
proposed set-based approach.

CONCLUSIONS 
This paper has presented and demon-

strated the capability to use a set-based 
approach to design verification strategies 
and contract dynamically verification activ-
ities. The study employs Bayesian networks 
to model, through Bayesian inference, 
how the evidence provided by verification 
activities is used to shape the confidence on 
the system being absent of errors. The value 
of a verification strategy is determined as 
a function of its expected total cost, given 
by the fixed cost to execute its verification 
strategies, the expected cost of rework in 
case it is necessary, and the financial impact 
generated by the system exhibiting an error 
while operational. A notional example with 
synthetic data has been used to assess the 
performance of the proposed approach 
against a benchmark that represents current 
approaches in industrial and government 
settings to design and contract verification 
strategies; based on point design methods 
and static contracts that only vary if gaining 
additional confidence is needed.

The study presents certain limitations 
that need to be addressed in future 
research. Primarily, additional scenarios, as 
well as sensitivity analyses, are needed to 
increase the robustness of and confidence 
on the findings indicated in this paper. 
In fact, it is not evident at this point how 
the source data, both in terms of prior 
probabilities, resulting Bayesian networks, 
and cost values influence the behavior 
of the benchmark and of the proposed 
approach. Furthermore, some aspects 
from real-life applications have been 
abstracted out in this study and may need 
to be incorporated into future studies. 
For example, verification activities may 
be executed at the same time intervals. In 
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addition, there may be certain contractual 
and pragmatic restrictions associated to 
activate or plan for potential activities, 
as well as from a contractor’s perspective 
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INTRODUCTION

  ABSTRACT
With the increasing complexity that is being introduced to engineered systems, the literature suggests that verification may ben-
efit from theoretical foundations. In practice and in teaching of system engineering (SE), we typically define a verification model 
(simulation, test article, etc.) under the assumption that the model is a valid representation of the system design. Is this assumption 
always true? In this article, we explore the use of system theoretic morphisms to mathematically characterize the validity of repre-
sentativeness between verification models and corresponding system design.

Formalizing the 
Representativeness of 
Verification Models using 
Morphisms
Paul Wach, paulw86@vt.edu; Peter Beling, beling@vt.edu; and Alejandro Salado, alejandrosalado@arizona.edu 
Copyright © 2022 by Paul Wach, Peter Beling, and Alejandro Salado. Permission granted to INCOSE to publish and use.

The last decade has seen an increase 
in calls for theoretical foundations 
of systems enginering (Triantis 
and Collopy 2014; Collopy 2015b; 

Collopy 2015a; INCOSE ; Rousseau and 
Calvo-Amodio 2019; Rousseau 2020, 2019; 
Hammami and Edmonson 2015; Schindel 
2019). One major perspective is that a 
“unifying” theory of systems engineering 
may not be feasible; however, a need for 
theoretical foundations remains unresolved 
(Collopy 2015b). The International Council 
on Systems Engineering (INCOSE) has 
defined a desire for systems enginering to 
be grounded in rigorous mathematics (IN-
COSE 2014). These rigorous foundations 
are being explored by various INCOSE 
sponsored initiatives and groups such as 
the future of systems engineering (FuSE) 
initiative (INCOSE 2020). In other re-
search, while some have called for renewed 
interest in general systems theory (Schindel 
2019; Rousseau 2020), others have suggest-
ed that mathematical approaches can be 
used to “disambiguate systems engineer-
ing” (Hammami and Edmonson 2015). In 
this context, verification has been deemed 
fundamentally broken for addressing the 
increasing complexity of modern systems 
(Collopy 2015a). In the article, the author 

described several areas of systems engineer-
ing in need of theoretical foundations, such 
as the need for systems engineering theory 
to characterize abstraction and elaboration, 
which is an aspect of the proposed path 
related to verification that we present in 
this article.

To account for resource constraints 
and reduction of technical risks, systems 
engineering relies on verification models 
that are perceived as representative of the 
design. Examples of these verification 
models include mass mock-ups, develop-
ment models, breadboards, integration 
models, structural models, thermal models, 
engineering models, qualification or cer-
tification models, and operational models, 
among others (Larson et al. 2009). A com-
mon belief in systems engineering is that 
the verification models do not need to fully 
represent the design; and instead, only need 
to represent the design “as far as required 
for test purposes” (Larson et al. 2009). For 
example, a breadboard may only account 
for selected functions of the design.

From experience of the authors in 
practice, a subject matter expert determines 
the validity of a model used for verification 
regarding the system design. As an exam-
ple, we generally assume that a verification 

model in the form of a mass mock-up may 
be a valid representation of a system design 
with respect to its mass. On the other end 
of the spectrum, we generally assume 
that a fully functional verification model 
physically produced on a precise basis of a 
system design to be a valid representation 
of the system design. While the assumption 
of validity of representation of a verification 
model at these two levels of abstraction is 
likely to hold, the assumption may not hold 
for every verification model. This becomes 
a particular concern when considering that 
the validity (that is, representativity) of 
verification models that partially represent 
the system design is left to the qualitative 
assessment of one or more engineers.

To establish the characterization of 
the validity of a verification model to its 
corresponding system design, we propose 
the use of systems theoretic morphisms. 
In exploration of this research thrust, we 
have found many morphisms that may have 
applicability within the context of verifica-
tion. This article serves to provide insight 
into those morphisms and how they may be 
used to provide theoretical underpinning 
to SE.

The remainder of this article is as follows. 
We provide a literature review on research 
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that may provide some comparison to our 
method. This is followed by background 
to the system theoretic context to which 
we will provide in detail later in the article. 
Then we provide a characterization of the 
morphisms and the inference that the mor-
phisms are expected to enable toward en-
hancement of verification. This is followed 
by a discussion and conclusion.

LITERATURE REVIEW
The use of morphisms in the context 

of systems engineering tasks is scarce; in 
fact, many of the references to morphisms 
in the literature provide only vague sense 
of meaning. For example, references to 
“self-morphing systems” (Ring 2007) and 
“morphable architecture” (Ring 2001) are 
discussed with minimal insights into mean-
ing. The concept of homomorphism seems 
to have been applied to categorically map 
processes of requirements definition used 
throughout the literature (White, Lacy, and 
O’Hair 1996). In another article, there are 
brief and abstract mentions of homomor-
phism to transform observation to possible 
representations of nature (Ferris 2009).

In Martin (2004), there is reference to 
“graph morphisms”, “concept morphisms”, 
homomorphisms, and “infomorphism” 
within a figure of the article; however, there 
is minimal elaboration as to the meaning of 
the morphisms and no use within the con-
text of representativeness of a verification 
models to corresponding system design 
such as we present in this article.

The term homeomorphism has been 
used in reference to topological mapping 
(Carl and Hofmeister 2004); and although 
we do not expressly use homeomorphism, 
there is indication of its relevance to our 
research. Specifically, George Friedman, the 
creator of constraint theory, has referred 
to homomorphism, seemingly in the same 
context as the use of homeomorphism, as a 
means to map the topologies of math mod-
els to their corresponding computer aids 
(Friedman 2007). Indeed, we view the re-
lation to constraint theory and topology to 
be a complementary factor to our research 
and evidence that morphisms provide a 
means to characterizing representativeness 
of verification models to corresponding 
system design.

Some articles reference to or build upon 
the research of A. Wayne Wymore, whose 
research leverages morphisms as a core 
concept. In one article, the word “homo-
morphic” is used in reference to under-
stand categories of systems (Ring 2007). 
The article is an output from an INCOSE 
Intelligent Enterprises Working Group to 
which Wymore was a contributor. Another 
article contains a reference to Wymore’s 
research and the use of homomorphism 

to characterize the relationship between a 
functional architecture and a correspond-
ing physical architecture (Lykins 1997). 
Indeed, in Shell (1999 and 2001), the article 
makes the case for leveraging Wymore’s re-
search to enable a science-based approach 
to engineer complex systems, a statement 
which our research agrees with.

Furthermore, Wymore used homomor-
phism to mathematically characterize the 
preservation of equivalence between a 
software system design, its corresponding 
hardware system design, and correspond-
ing functional system design (Wymore 
1993). Each elaboration and abstraction of 
the overall system design are mathemati-
cally characterized relative to one-another. 
To expand on the art of the possible, the 
implication here is that homomorphism is 
applicable to aiding in our understanding 
of modern complex cyber-physical systems 
(CPS). Although we do not address CPS in 
this article, our research agenda is slated for 
study of CPS with the means provided in 
this article.

Our research is based on Wymore’s theo-
retical contributions; however, it should not 
be considered one-and-the-same. Wymore 
largely limited his research to homomor-
phism between the functional and build-
able/physical designs/architectures. Based 
on the homomorphic mapping between the 
two, an implementable design is formed 
and verified. An assumption here is that 
testing (verification) is only conducted on a 
complete design, whereas in actual practice, 
models that may not be a complete system 
design are used for verification. Rather, 
a verification model may be created to 
partially represent the system design. Our 
research builds on Wymore’s use of homo-
morphism and suggests that all verifica-
tion models (for example, mass mock-up, 
partial-functional, full functional, simula-
tion, physical, etc.) should be characterized 

based on a morphic relationship to the 
corresponding system design for which 
confidence as to adherence to requirements 
is intended to be inferred. 

We aim to leverage the concept of a 
homomorphism and add other morphisms 
to the toolbox from which systems 
engineering can draw upon. The use 
of homomorphism has been recently 
applied in a verification context from the 
literature to define a theory for capturing 
verification strategies (Salado and Kannan 
2018). As an example, the authors suggest 
that a simulation [verification] model is 
homomorphic to the system design and 
can thus be used to establish confidence 
that the system design adheres to its system 
requirements. We agree that a simulation 
[verification] model should be morphically 
characterized as to representativeness to 
the system design. However, the morphic 
characterization may not be limited 
to homomorphism and should not be 
heuristically assumed.

THEORETICAL FRAMEWORK 
At the core for the research presented 

in this article is General Systems Theory 
(GST) (von Bertalanffy 1969). The concepts 
of GST were characterized in the context 
of systems engineering by A. Wayne 
Wymore originally in his Mathematical 
Theory of Systems Engineering (Wymore 
1967). Wymore refined his systems 
theory of systems engineering to define a 
mathematical approach to (and coining 
of the term (Bjorkman, Sarkani, and 
Mazzuchi 2013)) MBSE, which Wymore 
referred to as the Tricotyledon Theory of 
System Design (T3SD) (Wymore 1993). 
Despite its existence for several decades, 
the T3SD remains largely unexplored by 
the systems engineering community with 
some referring to Wymore’s research as 
mathematically dense such that only a 

Problem

Technology
bounds

results in

bounds

Component
& Coupling

Functional
Design

Buildable
Design

Implementation
& Testing

Figure 1. Abstract representation of Wymore’s T3SD and use of a morphism (red) 
to mathematically characterize the preservation of equivalence between the more 
abstract functional system design and more elaborate buildable system design
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mathematician may comprehend (Mabrok 
and Ryan 2017). Our research thrust has 
extracted elements of Wymorian systems 
theory that we believe to be relevant to 
modern systems engineering.

The concept of homomorphism is a key 
to establishing understanding of Wymore’s 
mathematically dense T3SD. To abstract 
the importance of homomorphism in the 
context of T3SD and the research body 
presented in this article, refer to Figure 1. 
The figure can be read as follows. There are 
three spaces of system designs. The first 
one, the space of functional system designs 
results from establishing a problem space 
(that is, system requirements). The second 
one, the space of buildable system designs, 
results from setting constraints on the 
available technology to build the system. 
Given that the buildable system design is 
established such that the functional system 
design is a homomorphic image of the 
buildable system design, the system is said 
to be an implementable system design and 
is then used as a basis for verification. 

We adopt the definition of morphism 
from systems theory as defined in (Zeigler, 
Muzy, and Kofman 2019), which defines a 
morphism as a claim relating the equiv-
alence of a pair of artifacts. In the case of 
this article, the pair of artifacts are a system 
design and a verification model. Essentially, 
the morphism mathematically characterizes 
the preservation of equivalence between a 
system design and a verification model.  

Note, we intentionally do not provide the 
mathematical notation as to not distract 
from the concepts. Our future articles will 
include mathematical context, to include 
metrics as to the validity of the represen-
tativeness of the verification models to a 
corresponding system design.

CONCEPTUAL POWER OF MORPHIC 
VERIFICATION MODELS 

In this section, we have selected mor-
phisms that we have discovered from the 
literature and provide insights into our 
conceptual understanding of use toward 
inference for verification.

Homomorphism. The concept of a 
homomorphism is used to characterize 
the preservation of structure and behavior 
between a potentially more abstract model 
and a potentially more elaborate model. 
A typical homomorphism may character-
ize a many-to-one relationship; however, 
given a relationship that is one-to-one, the 
characterization is said to be a special kind 
of homomorphism, referred to as isomor-
phism. We use Figure 2 to demonstrate the 
concepts of homomorphism.

We use Figure 2, from which we 
characterize a homomorphism between Z1, 
Z2, and Z3. First, we must clarify that Z2 is 

the resultant of the coupling of Z4 with Z4 
and that Z3 is the resultant of the coupling 
of Z5 and Z6. In this case, imagine that Z1 
is the high-level functional representation 
to which detailed architecture and system 
design must adhere to. Z2 and Z3 present 
alternative functional system designs that are 
equivalent to Z1. We can prove this by using 
a homomorphism to map Z2 to Z1 and 
another homomorphism to map Z3 to Z1.

An alternative perspective is to view 
Z2 and Z3 as detailed designs and Z1 as 
an abstract verification model. Similar 
to discussion in the previous paragraph, 
in Z2, two of the same components (Z4) 
are coupled to form the resultant system. 
We compare Z2 to Z1 to determine proof 
that, at the system-level, each has equiva-
lent structure and behavior. This proof is 
provided by homomorphism, which, when 
established, suggests that we have quanti-
tively determined the existence of a valid 
abstraction from Z2 to Z1, and understand 
the limitations to use of the abstract verifi-
cation model represented in Z1.

We now shift to the practical example of 
the flashlight represented in Figure 3. Like 
our discussion in the previous paragraphs, 
the two components Z9 and Z10 are cou-
pled to form the resultant system model Z8. 
Homomorphism can be used to character-

ize the relationship of Z8 to the more ab-
stract system Z7. The indication here may 
be in that Z8 is a verification model that is 
more elaborate than the current design to 
which we wish to test our assumptions for 
potential future design. As discussed previ-
ously, we could also view Z7 as the abstract 
verification model representing the more 
elaborate system design of Z8.

Isomorphism. While a typical homo-
morphism may characterize a many-to-one 
relationship, given a relationship that is one-
to-one, the characterization is said to be a 
special kind of homomorphism, referred to 
as isomorphism. We use Figure 4 to demon-
strate the concepts of isomorphism.

In the example above, the two func-
tions have the same structure and behav-
ior. Therefore, we can say that they are 
mathematically equivalent even though the 
variables may have changed. In the higher 
complexity of engineering practice, we can 
leverage well known isomorphisms such as 
the one between a mechanical mass-spring 
compared to an electrical circuit (Takahashi 
2021), which behave proportionally. In this 
way, one can use a certain mass-spring sys-
tem to verify properties of an isomorphic 
electrical circuit and vice versa.

Coupling Morphisms. There are many 
aspects of systems engineering to which 

4x

(A) (B) (C)

2x
Z4

Z1 Z2 Z3

2x
Z4

8x
Z6

x
Z51

2

Figure 2. Functional examples used to discuss the concepts of homomorphism 

On Off

{on, off}
Z7 Z8

Z9

Z10

{light, no-light}

(A) (B)

Figure 3. Practical examples used to discuss the concepts of homomorphism 

4x 4y

(A) (B)Z1 Z11

Figure 4. Functional examples used to discuss the concepts isomorphism



SP
ECIA

L 
FEA

TU
R

E
M

A
R

CH
  2O

23
VOLUM

E 26/ ISSUE 1

30

an understanding of system coupling is 
important. We can leverage coupling mor-
phisms to determine abstraction of cou-
pling structure and its impact on resulting 
behavior. To provide insights into coupling 
morphisms, we show Figure 5.

Consider that Z12 provides a black-box 
system model showing that the system 
transforms on/off inputs into the presence 
of light or no light, as well as a transforma-
tion of mechanical forces. Consider that 
Z13 captures the system design, which con-
sists of three components: the on/off switch 
(Z9), a lightbulb (Z10), and case (Z15) 
through which all mechanical forces are 
transferred. The connections indicate the 

exchanges between the different compo-
nents and between some components and 
the exterior of the system. All functionality 
is captured in Z13. 

Now consider system models Z8 and 
Z15, which are simplifications of Z13. 
Particularly, Z8 uses a coupling morphism 
to remove detail from Z13 (i.e., abstract 
Z13) to only account for the on/off to light 
functionality. System model Z15 also uses a 
coupling morphism, but in this case to cap-
ture only the transformation of mechanical 
forces of the system without considering 
the on/off to light functionality.

Parameter Morphisms. Here we discuss 
the use of parameter morphism, which 

is an approximate homomorphism. The 
concept of parameter morphism enables 
explicit accounting for and bounding of 
acceptable error while maintaining a degree 
of preservation of equivalence. We use the 
examples of a simple mathematical func-
tion and flashlight provided in Figure 6 and 
Figure 7 to discuss parameter morphisms. 

We first consider the functional example 
provided by Figure 6. In this case, we 
assume Z1 to be the system design and 
Z4 to be the verification model. We show 
Z1 in Figure 6A with inputs of {1, 2, 4}, 
which the system function transforms 
into outputs of {4, 8, 16}. We show Z4 in 
Figure 6A with inputs of {1, 2, 4}, which the 
system function transforms into outputs of 
{2, 4, 8}. Using the parameter morphism, 
we enable explicit mapping between the 
inputs of Z1, inputs of Z4, and the resulting 
distinctions in behavior. Furthermore, we 
can explicitly note that the system function 
of the verification model Z4 produces 
an error (deviation) associated with the 
behavior in comparison to that which is 
expected by the system function of the 
system design Z1.

For practical context of parameter 
morphism, we use the flashlight example in 
Figure 7. Here we assume Z8 to be the sys-
tem design, which has component Z9 that 
accepts on/off input in the form of a toggle 
switch mechanism and component Z10 
that provides an output of yellow light. We 
assume Z21 to be the verification model, 
which has component Z19 that accepts on/
off input in the form of a rotation mech-
anism and component Z20 that provides 
an output of blue light. Using parameter 
morphism, we can explicitly characterize 
the preservation of equivalence between the 
toggle on/off input of Z8 and the rotation 
on/off input of Z21 as well as between the 
yellow light of Z8 and the blue light of Z21. 
In other words, the parameter morphism 
allows to define equivalence on part of 
the behavior of the system. In practice, 
such surrogate verification models may be 
necessary to reduce risk from the lack of 
access to the system design. By explicitly 
characterizing the differences in parameters 
between the verification model Z21 and the 
system design Z8, we account for potential 
deviations in behavior and, therefore, we 
should adjust our confidence, in the system 
design adherence to system requirements, 
accordingly.

DISCUSSION
Our search of the literature suggests that 

minimal use of morphisms exist within 
systems engioneeirng nor do the software 
tools exist for implementation, especially 
within the context we presented here of 
characterization of verification models. This 

On Off

Z9
Z13

Z14

Z17

Z18

Z16

Z12

Z15Z8

Z10

On Off

Z9

Z10

{on, off}

{mechanical force}

{mechanical force}

{light, no-light}

(A)

(C)

(B)

(D)

Figure 5. Practical examples used to discuss the concepts of coupling morphism

4x 2x
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Figure 6. Functional example used to discuss the concepts of parameter morphism
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Figure 7. Practical example used to discuss the concepts of parameter morphism
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suggests a research gap and novelty to the 
approach that we present in this article.

The basic idea of a morphism within the 
context of systems theory, and therefore 
systems engineering, is a mathematical 
characterization of the preservations of 
equivalence of structural and behavioral 
similarities (or dissimilarities) (Zeigler, 
Muzy, and Kofman 2019). The use of the 
word structure is important to the future 
implementation of morphisms in practice. 
Essentially, a morphism is heavily depen-
dent on the mathematical construct used to 
model the system being engineered. In the 
case of Wymore’s T3SD (Wymore 1993), 
he used a mathematical construct based on 
the Moore state machine. This enabled ho-
momorphic comparison between the more 
abstract functional system design and the 
more elaborate buildable system design.

We used morphisms in a different article 
to create a metamodel of verification 
artifacts (Wach, Beling, and Salado 2022). 
Specifically, morphisms were leveraged to 
characterize the preservation of equivalence 
between system requirements and verifi-
cation requirements as well as between a 
system design and a verification model. In 
doing so, we provide a frame in which we 
characterize the argument for confidence of 
system design adherence to system require-
ments through the morphic preservation 
provided in the verification model and as 
observed through the morphic preserva-
tion as provided through the verification 
requirements.

Our research thrust is to bridge the 
gap between theory and practice. Based 

on personal experience, we believe that 
the detailed mathematical descriptions 
inherent in the theory of morphisms may 
distract from the necessary conversation we 
facilitate through our abstract representa-
tions provided in this article. As such, both 
in this article and in Wach, Beling, and 
Salado (2022), we have intentionally not 
provided the mathematical descriptions of 
the morphisms. Future research articles are 
expected to provide depth on the mathe-
matical descriptions necessary to provide a 
rigorous basis for morphisms.

Model-based systems engineering 
(MBSE) has emerged over the last decade 
as a paradigm to the modern study and 
practice of systems engineering. From 
review of the literature and experience 
of the authors, MBSE is serving as a core 
mechanism to enable the digital trans-
formation. Among the desired outcomes 
of the digital transformation is improved 
verification (Zimmerman, Gilbert, and 
Salvatore 2019), which MBSE may be able 
to enable. However, MBSE currently lacks 
theoretical foundations, which may hinder 
its ability to deliver the desired outcomes 
of the digital transformation. The lack of 
theoretical foundations of MBSE comes 
despite the INCOSE stated desire to have 
systems engineering “grounded in a more 
rigorous foundation of mathematics” 
(INCOSE 2014) and “based on [codified 
and] accepted theoretical foundations” 
(INCOSE 2022). In engineering domains 
outside of systems engineering, theoretical 
definition of the practice came first after 
which software was defined to implement 

the theoretical algorithms for practical 
modeling. MBSE currently remains largely 
qualitatively descriptive, rather than quan-
titively analytical such as is seen with finite 
element analysis and computational fluid 
dynamics. Therefore, the lack of theoretical 
foundations puts the ability of MBSE to 
deliver improved verification for the digital 
transformation into question, which we 
believe will be resolved in part due to con-
tributions from our research thrust.

CONCLUSION
We have presented an approach to math-

ematically characterize verification models 
(for example, simulation, physical articles, 
etc.) relative to the system design to which 
models correspond. In the practice of 
systems engineering, the characterization 
of a verification model relative to design is 
something we may take for granted under 
an assumption of heuristic validity. In 
doing so, we are creating a level of confi-
dence in adherence of the system design to 
system requirements, which may not hold 
given agreement based on the mathemat-
ical characterization that we suggest for 
employment in systems engineering prac-
tice. This research advances the theoretical 
foundations of systems engineering, and 
subsequently the theoretical foundations of 
our modeling practice (that is, MBSE). Fur-
thermore, the research we present in this 
article suggests that systems theoretic mor-
phisms can be leveraged to mathematically 
characterize verification model relative to 
the system design, which we believe will 
correspond to enhanced verification.  ¡
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INTRODUCTION

  ABSTRACT
Model-based systems engineering depends on correct models. However, thus far, relatively little attention has been paid to en-
suring their correctness. This paper describes a methodology for performing verification and validation on models written in 
SysML. The methodology relies on a catalog of candidate requirements that can be tailored for a specific project. Both manual 
and automated methods are used to verify and validate these requirements. Manual methods are necessary where knowledge of 
the domain and other extrinsic characteristics are necessary. Automated methods can be used where the requirements cover the 
use of SysML. Examples from a public domain SysML model of a satellite are presented to demonstrate application of automated 
requirements verification.

Verification and 
Validation of SysML 
Models

Myron Hecht, myron.hecht@aero.org; and Jaron Chen, jaron.chen@aero.org
Copyright © 2021 by Myron Hecht and Jaron Chen. Permission granted to INCOSE to publish and use.

Model-based systems engineer-
ing (MBSE) will not succeed 
without correct and complete 
system engineering models. 

Incorrect models can cause wrong design 
decisions or integration failures because of 
errors in representation of the architecture, 
design, or behavior; and many other rea-
sons. Therefore, verification and validation 
(V&V) of models is essential to successful 
MBSE projects.  However, system engineer-
ing model V&V is not widely practiced. In 
a survey conducted by the System Engi-
neering Research Consortium (SERC), 
more than 60% of government respondents 
disagreed with the statement “Our organi-
zation has defined processes and tools for 
V&V of models at appropriate levels and 
program phases” (McDermott, et al. 2020).   
Less than 3% strongly agreed with it.  The 
difficulties of verifying and validating sys-
tem engineering models include:

1.	 No definition of what a “correct” model 
is:  Without a set of requirements that 
define correctness, it is impossible to 
verify a model.

2.	 Failure to define model user needs: 
Without a definition of user needs, it 
is not possible to validate a model.

3.	 Difficulty of finding syntax errors: 
Most syntactic, value property, and 

data typing errors are difficult to find 
through manual inspection.

4.	 Inadequate documentation: Internal 
and external documentation of mod-
els is necessary to define the intent of 
the model and to minimize spurious 
assessments of model validity.

This paper describes an approach that 
addresses these difficulties. The next two 
subsections de- scribe previous work and 
the conceptual framework of our approach. 
The next section describes model require-
ments formulation, and the final section 
describes of verification and validation 
methods for SysML models.

There are many definitions of “verifi–
cation” and “validation.” IEC/ISO/
IEEE 24765 “Software and System 
Engineering Vocabulary” lists six 
definitions for verification and five 
for validation. There is a separate 
vocabulary entry for “verification and 
validation” which combines them. 
The meaning of both terms, either 
separately or collectively, is a set of 
activities intended to assess a model 
for correctness and suitability for 
the user. In this paper, “verification” 
means assessment of conformance to 

requirements and “validation” means 
assessment of suitability to user needs. 
For the methodology described in 
this paper, user needs are stated as 
requirements.

PREVIOUS WORK
A recent literature survey of 579 SysML 

publications between 2005 and 2017 
identified few that addressed verification 
and validation of SysML models (Wolny, 
et al. 2020). What has been published can 
be placed in two major categories: model 
transformation and model inspection.

Model transformation: Model transfor-
mation involves converting SysML models 
into other formalisms that could then 
subsequently be analyzed for conformance 
to specialized properties that could be 
analyzed with those formalisms. Ahmad, 
Dragomir, et al. proved invariant properties 
by transforming an XMI export of a SysML 
to an executable UML/SysML profile model 
(OMEGA2) of a diabetes patient and her 
refrigerator (Ahmad, et al. Jul 2013). The 
model consisted of two internal block 
diagrams and a state machine diagram con-
sisting of two 2 states. Jarraya and Debbabi 
demonstrated a method of probabilistic 
verification of SysML activity diagrams 
by transforming them into the PRISM 
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(probabilistic symbolic model checker) 
on a banking operation consisting of 10 
actions (Jarraya and Debbabi 2012). Rahim, 
Hammad, and Boukala-Ioualalen described 
an approach to verification by transforming 
activity diagrams into the Petri net markup 
language (PNML) and demonstrated it on a 
vending machine activity diagram consist-
ing of 9 actions (Rahim, et al. 2015). Our 
work does not use model transformations 
because they have not been successfully 
applied to large system models.

Model inspection:  Model inspection 
uses checklists or rules to assess confor-
mance. The inspections can be manual, 
automated, or both. Inspection cannot 
formally prove correctness but provides a 
“good enough” basis for acceptance. Pettit 
formulated a list of rules for inspection 
of UML models (Pettit 2003). Douglas 
(2017) defined a rule set for use with UML 
and SysML specifically tailored for the 
Rhapsody tool set. Baduel, Chami, Burel, 
and Ober described a corporate-specific 
approaching combining the use of domain 
experts to check compliance with exter-
nal “real-world” attributes against a set of 
criteria and of OCL to verify conformance 
with syntax rules and for a product line of 
train control systems (Baduel, et al. 2018). 
Vinarcik and Jukovic have developed a digi-
tal engineering profile containing hundreds 
of specific automated verification rules that 
check for violations of their own standards 
and have placed them in the public domain 
(Vinarcik and Jugovich 2020). The automat-
ed verification rules described in this paper 
adapted approximately 60 of these rules. 
SysML modeling tools such as the one used 
in this work (3DS/Nomagic 2021) have val-
idation rules based on the SysML language 
specification that check for basic viola-
tions (for example, connections made to 
incompatible ports). The limitation of these 
inspection-based approaches is that they 
are generic. Thus, application of these rule 
sets will not ensure that a model meets the 
needs and objectives of a specific project. 
To verify and validate a particular model, it 
is necessary to evaluate against the specific 
objectives and requirements of a particular 
modeling project including its sponsors, 
users, and developing organizations.

Conceptual Framework
Figure 1 shows a metamodel that defines 

the context and our approach to SysML 
model verification and validation. A pro-
gram sponsor is responsible for a project has 
needs for a model. As a result, it sponsors 
funds a SysML Model. The model represents 
a system, which is specified by its own 
system requirements. The sponsor needs 
are translated into model requirements. It is 
important to note that system requirements 

and model requirements are different and 
are satisfied by different items, that is, the 
model and the system respectively.

Model requirements are either generic 
(that is, project independent) or project 
specific.  Examples of generic requirements 
include specification of modeling language, 
tools, and profiles; sponsoring organization 
unique requirements (for example, security 
and protection of intellectual property); 
and organizational modeling conventions 
and rules.  Project specific requirements in-
clude the scope and level of detail of what is 
to be modeled, specific artifacts to support 
program management and design reviews, 
naming conventions, and rules related to 
use of model elements that are specific to 
the project.  Both manual and automated 
methods can be used for V&V of both 
generic and system specific requirements.

MODEL REQUIREMENTS
Formulation of SysML model require-

ments is a difficult task, but a catalog of 
sample requirements, or checklist can 
simplify the work and facilitate a more 
complete set of requirements. This section 
describes such a catalog whose organization 
is shown in Figure 2 (Hecht, et al. 2021). 
The major categories are overarching gen-
eral requirements, requirements, structure 
(including parametric diagrams), behavior, 
model data, and non-functional attributes 
(that cut across the other categories). More 
than 300 sample requirements have been 
defined within this framework. These mod-
el requirements represent lessons learned 
from a substantial amount of modeling 
and model review experience, but a metric 
of completeness is not yet possible. This 
section provides an overview. A full listing 
is available from the authors.

Figure 1. Verification and validation (V&V) metamodel
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General:  General Requirements cover 
the general user and model sponsor’s 
needs rather than a specific project model.  
Lower-level headings include:

■■ Development Requirements:  related to 
model language, stereotypes, tool selec-
tion, documentation of model elements, 
conformance to style guidelines, and 
use of prescribed modeling patterns.

■■ Model Organization:  requirements on 
consistent and logical model structure 
and organization, use of model naviga-
tion aids, and labeling of all packages. 

■■ Interface and Data Consistency: require-
ments for interfacing and provision or 
ingesting of data to at specified inter-
faces to other components of the digital 
engineering ecosystem and consistency 
with model libraries of the sponsoring 
organization.

■■ Views and Exports:  requirements spec-
ifying the information that the model 
provides to non-modeling users and in-
clude views into the model and exports. 
Such exports can include tables, “dash-
boards”, and even complete documents 
such as system and subsystem design 
documents, verification and validation 
plans, test procedures, test reports, and 
technical orders. 

User needs and system requirements: 
These requirements concern modeling the 
needs of the organization and users of the 
system under development (not the model) 
as would be stated in the Concept Defini-
tion Document and the System Require-
ments Document.  Topics covered include:

■■ Use Cases:  SysML model requirements 
that Use Cases capture mission objec-
tives and system operations, trace use 
cases to requirements and to verifica-
tion methods, standards for descrip-
tion and documentation for use cases 
and actors, and coverage of exception 
conditions.

■■ System Requirements:  requirements on 
system requirements, for example that 
the model shall include of all system 
requirements in the technical baseline, 
that all requirements shall include a 
rationale, and that all requirements be 
related either to other requirements 
through contain, derive or define 
relationships or must themselves have 
satisfy and verify relationships.

■■ System Requirements Diagrams and 
Tables:  requirements on the model to 
show requirements relationships – es-
pecially satisfy and verify relationships.

Structural content requirements: These 
requirements affect SysML blocks, block 
definition, internal block, and parametric 
diagrams.  Subheadings include:

■■ Structural Views: Requirements to 
capture context, logical architecture, 
functional architecture, and physical 
architecture, and to allocate model 
elements among all three architectures 
to enable traceability.

■■ Interfaces: Requirements that all block 
connections must be made through de-
fined interfaces, that interfaces on each 
side of connection must be compatible, 
that conventional interface control doc-
uments (ICDs) be linked to interface 
blocks that represent them, that all con-
nections have defined flows, and that 
operations and receptions be used when 
behaviors are part of the interface.

■■ Blocks: Requirements on traceability 
between SysML blocks and system re-
quirements, block naming conventions, 
documentation including description of 
pre- and post-conditions on operations 
and receptions, allocation of activi-
ties or actions to blocks, depiction of 
allocation of software to hardware, data 
typing, and others.

■■ Relationships and associations: Require-
ments for roles and multiplicity on part 
ends of composition relationships, pro-
hibition against both composition and 
inheritance to a single block, prohibi-
tion against cyclic inheritance, justifica-
tion for any block with no relationship 
to other elements, and others.

■■ Internal block diagrams: Requirements 
for all blocks to be connected through 
ports, flows to be shown on all 
connections, multiplicities on both 
ends of the connectors, typing of flow 
properties, and others.

■■ Parametric diagrams: Requirements 
for limits on the number of blocks 
and connections to retain readability, 
verification of numerical constraint 
blocks, visibility of binding connectors, 
and populated constraint specifications, 
and others.

Behavioral Content: Requirements in 
this area cover activity, sequence, and state 
machine diagrams. Topics covered include:

■■ General behavior: Requirements 
to model all dynamic behavior in 
the scope of the model and that all 
diagrams document the assumptions, 
design decisions, preconditions, and 
postconditions (all requiring manual 
verification).

■■ Activity diagrams: Requirements on the 
correctness of allocation of actions to 
blocks (swim lanes), and the inclu-
sion of error handling. Automatically 
verifiable requirements include: Input 
pins must have an incoming object 
flow, output pins must have an outgoing 
object flow, all control and object flows 

exiting a decision node must have de-
fined guards, forks and decisions having 
at least two outgoing flows,  joins and 
merges having at least two incoming 
flows,  and others.

■■ Sequence diagrams: Requirements that 
sequence diagrams capture behaviors 
on connections, model operations and 
receptions between diagrams, and that 
they capture error handling and recov-
ery; messages on sequence diagrams 
have signatures assigned (signal or 
operation); and others.

■■ State machine diagrams: Requirements 
for state machine such as that that 
all blocks that change state shall be 
modeled using state machine diagrams, 
naming conventions on states and 
transitions, capturing of signals, events, 
message flows as transition triggers, 
representation of error handling and 
recovery, and others.

Model Data: Requirements for model 
data including documentation, data types 
for all attributes and properties, consistent 
naming in accordance with naming con-
ventions, and a glossary.

Non-functional Requirements: 
Requirements covering performance, 
reliability/availability, safety, cybersecurity, 
and maintainability and sustainment 
modeling. Architectural design decisions 
can have a large impact these attributes 
(particularly if they are overlooked). This 
section is responsive to IEEE 15288 (ISO/
IEC/IEEE, 2015), Appendix F “Architecture 
modeling”, par. F.3.8 “Other model 
considerations”.

■■ Performance Modeling: Requirements 
for data necessary to analyze and 
calculate response time and capacity at 
any architectural level; data necessary 
to analyze and calculate response time, 
capacity, ability to simulate at any 
architectural level; and others.

■■ Reliability Modeling: Requirements for 
data necessary to analyze and calculate 
quantitative reliability attributes using 
analytical techniques such as reliability 
block diagrams, fault tree analysis, and 
Markov modeling; data necessary to 
analyze and reliability and availability at 
any architectural level; and others.

■■ System Safety Modeling: Requirements 
that the model allow for the input, 
storage, and export of data necessary 
to support all deliverables required 
under the program contract, data 
for all safety review and certification 
authorities whose approval is required, 
data input, storage, and export for 
all tasks related to explosive safety 
standards, production of reports 
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Table 1. Manual acceptance criteria for model requirements

Category Acceptance Criteria Examples

Inspection

General

• Reasonableness of model structure
• Effectiveness and correctness of model navigation and dashboards
• Correctness of access control assignment to packages and marking of elements
• Logical and reasonable naming conventions
• Correctness in the application of profiles and modeling patterns
• Correctness, completeness, organization, and appearance of model generated documents

Modeling of 
User Needs 
and System 
Requirements

• Clarity, specificity, feasibility, verifiability, and correctness of requirements in the model
• Correctness of links between use cases and requirements
• Correctness of derive and refine links between requirements and satisfy, refine, and trace links 

from requirements to other model elements
•	 Correctness of requirements documentation
•	 Completeness and feasibility of use case exception handling use cases, preconditions, 

postconditions, and assumptions
•	 Correctness and completeness of requirements rationale explanations

Structural 
Content

•	 Correctness of requirements documentation
•	 Completeness of the structural models
•	 Adequate level of detail in the structural model
•	 Correctness and completeness of block documentation
•	 Correctness and completeness of allocations between logical, functional, and physical model 

elements
•	 Correctness and completeness of translation of manually written ICDs into interface blocks

Behavioral 
Content

•	 Completeness of behavior modeling
•	 Completeness and correctness of documentation of assumptions, design decisions, 

pre-conditions, and post-conditions 
•	 Correctness of the allocation of activities and actions to blocks
•	 Correctness and completeness of message sequences 

Model Data •	 All value properties are defined and typed 

Non-functional 
Requirements 
Modeling

•	 Correctness and completeness of internal parametric diagrams for quantitative modeling of 
non-functional requirements

•	 Correctness in the selection of model elements exported to external quantitative modeling 
tools of non-functional attributes

•	 Correctness and completeness of documents created for approval and certification authorities

Analysis

Structural 
Content

•	 Calculation using an alternative tool of the content of constraint blocks within parametric 
diagrams. Acceptance criteria are the matching of results within allowed tolerances.

Behavioral 
Content

•	 Simulation (“animation”) of activity diagrams, sequence diagrams, and state machines.  
Acceptance criteria are the matching of model results with expected results determined by 
another method

Non-functional 
requirements

•	 For internal models, comparing results of parametric model constraints against alternative 
calculations.  Acceptance criteria are the matching of results within allowed tolerances

Demonstration

General

•	 Generation of required model reports that meet requirements (reports themselves would be 
validated by inspection as indicated in Table 1)

•	 Application of model profiles to provide expected results (for example, reports, tables, views)
•	 Demonstration of model views and navigation aids (model views and navigation aid 

correctness would be validated by inspection as indicated in Table 1)
•	 Demonstration of acceptable response times

Behavioral 
Content

•	 Simulation (“animation”) of activity diagrams, sequence diagrams, and state machines and 
observing that execution occurs and that the model is capable of continuing operation.  
Acceptance criteria are the matching of model results with expected results validated by 
analysis
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acceptably formatted, and display 
the status of activities required for 
safety certification approval at any 
architectural level.

■■ Cybersecurity Modeling: Requirements 
for the input, storage, and export of 
data necessary for deliverables for all 
cybersecurity standards or instructions 
required under the program contract, 
all cybersecurity accreditation and 
certification authorities, reports 
acceptably formatted for all tasks in all 
cybersecurity standards or instructions.

■■ Maintainability and Sustainability 
Modeling: Requirements for the input, 
storage, and export of data necessary 
to support all deliverables for all 
maintainability, sustainability, storage, 
repair, packaging, shipping, and 
handling and other activities required 
for all maintainability, sustainability, 
storage, repair, packaging, shipping, 
and handling standards.

■■ Cybersecurity Modeling: Requirements 
for the input, storage, and export of 
data necessary for deliverables for all 
cybersecurity standards or instructions 
required under the program contract, 
all cybersecurity accreditation and 
certification authorities, reports 
acceptably formatted for all tasks in all 
cybersecurity standards or instructions.

■■ Maintainability and Sustainability 
Modeling: Requirements for the input, 
storage, and export of data necessary 
to support all deliverables for all 
maintainability, sustainability, storage, 
repair, packaging, shipping, and 
handling and other activities required 
for all maintainability, sustainability, 
storage, repair, packaging, shipping, 
and handling standards.

VERIFICATION AND VALIDATION
This section describes the verification 

and validation of SysML model require-
ments.  The first subsection summarizes 
manual verification methods and the 
second covers automated methods.

Manual Methods
Table 1 summarizes manually evaluated 

model requirement acceptance criteria 
grouped by standard verification method 
(inspection, analysis, demonstration, and 
test) and the model requirement topic areas 
shown in Figure 2.

Our experience using manual inspec-
tion in SysML models of multiple large 
projects is that use of checklists derived 
from the requirements catalog has resulted 
in significantly faster and more thorough 
evaluations than with ad hoc inspection. 
Manual inspections also detect program 
specific issues (as expressed in the content 
of the model elements) that are not detect-
able using automated methods (discussed 
in the next section). However, there are two 
disadvantages: (1) manual methods only 
inspect what is visible in the model, and (2) 
manual inspection coverage of large models 
is difficult to assess.

Automated Methods
Automated methods rely on the capabili-

ties of SysML modeling tools to run scripts 
that query models to check SysML models 
for conformance with model element, 
relation, and connection requirements 
(sometimes called “validation rules”). A to-
tal of 127 requirements in the requirements 
catalog described earlier can be automati-
cally validated. Benefits of automated rules 
are that (1) they can identify subtle syntax 
errors far more rapidly and thoroughly than 
manual inspection, (2) while they cover a 

minority of the requirements, these scripts 
cover many more elements and diagrams 
than manually verified requirements, and 
(3) verification can be repeated at low cost.

Implementation of automated verifica-
tion differs across SysML modeling tools. 
In Cameo Systems Modeler (3DS/Nomagic 
2021), the tool used in this work, every 
rule violation needs to be associated with 
a model element. The output of the script 
associated with the rule must be Boolean. If 
the output is false, the error message will be 
displayed with the element that violates the 
associated. An output of true would mean 
that there is no violation. The scripts are 
written using the application programming 
interface in that tool to access model prop-
erties and navigate to other elements.

Figure 3 shows a script to check con-
formance a requirement that in a state 
machine diagram, there should be only 
one transition between any two states. As 
shown in the figure, the scripting language 
is Jython (Python implemented in the Java 
Runtime Environment).

The following examples show the 
results of application of these automated 
verification rules for use case, requirements, 
block definition, internal block, and 
activity diagrams. The SysML model 
used to demonstrate their application is 
a hypothetical satellite (Friedenthal and 
Oster 2017). The model authors created it 
as public domain example for identifying 
and evaluating alternative spacecraft 
architectures, and not as a full industrial 

Table 1. Manual acceptance criteria for model requirements  (continued)

Category Acceptance Criteria Examples

Demonstration

Non-functional 
requirements

•	 Demonstration that model data can be exported and executed by external tools and that 
results of external tools can be imported into the model.

•	 Acceptance criteria are that data interchange results are expected by analysis
•	 Demonstration that internal tools are capable of execution.  Acceptance criteria are the 

matching of model results with expected results validated by analysis

Test

General •	 Constraint blocks in reliability and availability, or performance models provide the same results 
as independent calculations

On Off

{on, off}
Z7 Z8

Z9

Z10

{light, no-light}

(A) (B)

Figure 3. Script for automated verification of a state machine diagram requirement
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grade model for representing a system. The model was not 
intended to be comprehensive, complete, or rigorous. However, it 
is model is representative of medium sized projects. Because the 
authors have contributed it to the public domain under a BSD-2 
license, it is also a valuable test and demonstration article. We 
gratefully acknowledge the effort and expertise that were invested 
in its creation.

Use case diagram. Figure 4 shows how the automated verifica-
tion found a nonconformance with the requirement actors must 
have documentation” (actors outlined in red).  The other red-out-
lined use cases violate requirements on use case documentation. 

System requirements diagram. Figure 5 shows automated 
verification detecting non-conformances in a SysML requirements 
diagram. The model requirement being violated is “Requirements 
model elements must have one of (a) satisfied by relationship 
with another model element, or (b) a derived or refined relation-
ship with another requirement that is satisfied by another model 
element.” None of these requirements in this diagram had these 
relationships as shown by the red outline.

Internal block diagram: Figure 6 shows the result of running 
the validation rules against on an Internal Block Diagram. Among 
the requirements non-conformances that were found by the 
automated scripts are:  (1) attributes and properties were not 
typed, (2) absence of signals on connectors, (3) not all blocks were 
connected with ports, and (4) absence of flows on connectors.

S

S S

uc  [Mission Use Cases]

Detect and Monitor
Forest Fires in US

and CanadaForest Service
«stakeholder»

«stakeholder»

«include»

«stakeholder»
Operator

Provide Forest
Firw Data in Near

Real Time

Monitor and
Maintain Health &
Safety of FireSat II

Archive Data

Fire Department

Reference:
NEW SMAD
pg 52

Figure 4. Output of automated verification rule checking for 
actor documentation

Figure 5. Output of automated verification rules on block 
definition diagrams

Figure 6. Output of automated verification rules on Internal 
Block Diagrams

Figure 7. Automated verification rules output in parametric 
diagrams

Parametric diagrams: Figure 7 shows a parametric diagram of 
a mass analysis. The automated verification rules detected (1) lack 
of value property typing and (2) a parameter without a binding 
connector.

Activity diagrams: Figure 8 shows an activity in which the 
output pin outlined in red does not have an outgoing object flow 
detected by an automated validation script.  Figure 9 shows a similar 
requirements violation for a pin that does not have an output flow, 
but also has another violation:  Decision nodes must have a name.

CONCLUSION
For projects using model-based systems engineering (MBSE), 

verification and validation of the models on which they depend 
is essential. This paper has described a method for SysML model 
verification and validation using both manual and automated 
methods. The overall approach is based on model requirements, 
which state both general user needs and specific model functions 
or characteristics. Requirements addressing the extrinsic proper-
ties of the model, its purpose, and interaction with other software 
are verified manually. Other requirements addressing model ele-
ment use, syntax, and consistency can be verified using automated 
methods based on the scripting capabilities of SysML modeling 
tools. Together, the use of manually and automatically performed 
verification can lead to more correct and higher quality models. ¡
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:Generate
System

Commands

:Generate
Power

«valueType»
:Solar Radiation

{stream}

«allocate»
Avionics Subsystem

act  [ Provide Electrical Power-p ]

«allocate»
Solar Array

«allocate»
Battery

«allocate»
Power Mgmt SW

«allocate»
Power Subsystem

«allocate»
Power Harness

«allocate»
Subsystem

«allocate»
Power Conditioner

«allocate»
Power Distribution

«valueType»
:Electrical Power

{stream}

:Manage
Power

:Condition
Power

:Distribute
Power

:Connect
Power

:Consume
Power:Store Energyv

v

Figure 8. Activity diagram requirements violations detected by automated verification rules
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Figure 9. Requirements violations detected by automated verification rules displayed in the control attitude activity
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INTRODUCTION

  ABSTRACT
Systems architecture design is a key activity that affects the overall systems engineering cost. Hence it is fundamental to ensure that 
the system architecture reaches a proper quality. In this paper, we leverage model-based systems engineering (MBSE) approaches 
and complement them with simulation techniques, as a promising way to improve the quality of the system architecture definition, 
and to come up with innovative solutions while securing the systems engineering process.

From Model-based to Model 
and Simulation-based Systems 
Architectures — Achieving Quality 
Engineering through Descriptive 
and Analytical Models
Pierre Nowodzienski, pierre.nowodzienski@thalesgroup.com; and Juan Navas, juan.navas@thalesgroup.com
Copyright © 2022 by Pierre Nowodzienski and Juan Navas. Permission granted to INCOSE to publish and use.

System architecture is a key engineer-
ing artefact in systems engineering. 
It permits engineers to reach a com-
mon comprehension of the expecta-

tions of their customers, to orchestrate the 
design of the subsystems and components 
to reach the system purpose, to compare 
alternative orchestrations, to propose solu-
tions that are fitted to stakeholders’ expec-
tations, and to ensure that the engineering 
outcomes are compliant to these solutions.

The information contained in system 
architecture deliverables directly impacts 
(that is, an input for) a large part of other 
engineering activities and their related out-
comes; and in complex systems engineering 
practice the system architecture is often 
considered as the backbone of a large part 
of the engineering process and beyond, 
covering the whole system life cycle. Hence, 
ensuring a good architecture quality is 
strongly contributes to securing the further 
engineering activities.

Model-based systems engineering 
(MBSE) approaches have proven their 
value on improving the quality of system 
architectures. When properly set up, MBSE 

practices and tools can support the archi-
tects and guide them through systematic 
workflows that reduce the risk of inaccu-
racy, inconsistency, and incompleteness of 
the design. However, our experience shows 
that in some contexts the current MBSE 
capabilities do not suffice to reduce these 
risks as required. This is due to both the 
increasing complexity of the systems under 
design, and to the increasing complexity of 
the engineering workflows and organiza-
tions put in place to develop our systems.

As systems engineering practitioners, we 
acknowledge the existence of extensions of 
MBSE approaches that make use of simu-
lation to address these issues. However, we 
have identified a lack of formal, concrete, 
and effective proposals regarding the exten-
sion of MBSE methodologies to embrace 
analytical models.

In this paper, we present how, and under 
which conditions, simulation techniques 
can be articulated with MBSE methodol-
ogies so to fill the gaps of current MBSE 
approaches in ensuring proper quality 
architecture designs. We start by providing 
a necessary background on architecture 

design, MBSE for architecture design, and 
simulation of architecture design. Then we 
describe the objectives and the limitations 
of current MBSE approaches for architec-
ture design, and present how simulation 
can contribute to overcome these limita-
tions. A set of good practices for simulation 
is presented, along with an analysis of a 
case study that illustrates the proposals of 
this paper.

BACKGROUND
Systems architecture design

A system architecture is defined as the 
fundamental concepts or properties of a 
system in its environment embodied in its 
elements, relationships, and in the princi-
ples of its design and evolution (ISO/IEC/
IEEE 42010). The standard specifies the 
way system architectures are organized and 
expressed.

An architecture is defined with regards to 
a set of stakeholders, which are individuals, 
teams, organizations. or any other kind of 
entities having an interest in the system, for 
example. if the system of interest is a resi-
dential building, examples of stakeholders 



SP
ECIA

L 
FEA

TU
R

E
M

A
R

CH
  2O

23
VOLUM

E 26/ ISSUE 1

41

are the promoter, the future homeowners, 
the future administrator, and the architect 
herself. A concern is a matter of relevance or 
importance regarding the system of interest 
to a stakeholder; for example, one of the 
architect’s concerns would be to design the 
best possible atmosphere in which to live.

A (stakeholder) perspective is a way of 
thinking about an entity, especially as it 
relates to concerns, for example, how future 
homeowners may circulate across the resi-
dential building. An architecture aspect is a 
unit of modularization of concerns within 
an architecture description, capturing 
characteristics or features of the entity of 
interest, for example, the organization of 
common areas in the building and in its 
green zones. An architecture view is an 
information item comprising part of the ar-
chitecture description, for example, a plan 
of the green zones and its circulation paths.

Model-based systems architecture design 
Model-based systems engineering 

(MBSE) is the formalized application of 
modelling to support system requirements, 
design, analysis, verification, and valida-
tion activities beginning in the conceptual 
design phase and continuing throughout 
development and later life cycle phases 
(INCOSE 2014). In addition to providing 
an increased rigor in these engineering 
activities, one essential objective of a mod-
el-centric approach is to provide authorita-
tive sources of truth that can be shared with 
all stakeholders.

Overview of the Arcadia method. Ar-
cadia is a model-based method devoted to 
systems, software, and hardware architec-
ture design (Voirin 2017). It describes the 
detailed reasoning to understand and cap-
ture the customer need, define, and share 
the product architecture among all engi-
neering stakeholders, and validate early and 
justify the design. Arcadia can be applied 
to complex systems, equipment, software, 
or hardware architecture design, especially 
those dealing with strong constraints to be 
reconciled such as cost, performance, safe-
ty, security, reuse, consumption of resourc-
es, mass, and so forth. It is intended to be 
embraced by most stakeholders in system/

product/software/hardware definition as 
their common engineering reference. It has 
been applied in a large variety of engineer-
ing contexts for more than 10 years.

Inspired on ISO/IEC/IEEE 42010, the 
Arcadia method defines a set of perspec-
tives that the system architect can adopt 
when designing the architecture. The four 
main perspectives are summarized in 
Figure 1. Arcadia enforces a clear separa-
tion between the capture and analysis of the 
system context and needs (the operational 
analysis and system need analysis perspec-
tives), also called here need perspectives, 
and the design of the solution (the concep-
tual and physical architectures) also called 
here solution perspectives.

When following the Arcadia method, the 
system architect is led to consider five main 
aspects during the process of defining the 
system architecture:

■■ The purpose – the reason to exist of 
the entities, including the system: the 
services it provides in different contexts 
of usage, so to fulfill stakeholders’ 
expectations and provide them with 
valuable solutions.

■■ The form – the entities that are consid-
ered during the different contexts of use 
of the system, including the constitu-

ents of the system; here two sub-aspects 
may be considered: the structure of the 
architecture and the interfaces between 
its constituents.

■■ The behavior – the expected behavior 
of the entities in the context of usage, 
including the expected behavior of the 
system and of its constituents; here 
two sub-aspects can be considered: the 
functions that emerge from a functional 
analysis, and the modes & states of the 
constituents.

These aspects shall be considered for 
every perspective stated before. In addition 
to these aspects, Arcadia can be extended 
through viewpoints that address other 
aspects such as safety or cybersecurity, by 
defining new concepts, views and practices, 
and how those depend on or impact the Ar-
cadia standard concepts, views and practices.

The maturity of a system architecture, or 
of a reference architecture (Cloutier 2010), 
especially in a product line context (Oster 
2016), can be evaluated by considering the 
aspects that have been addressed in the ar-
chitecture design matrix shown in Figure 2.

As the lack of properly tailored tools 
has proven to be a major obstacle to the 
implementation of MBSE in industrial 
organizations (Bonnet 2015), Arcadia is 
recommended to be implemented using the 
open-source modelling workbench Capella, 
whose diagrams are inspired from SysML 
and that has proven suitable for systems 
engineers with diverse backgrounds and 
skills (Capella 2021a).

Overview of Arcadia concepts. In this 
paper we will use a subset of the concepts 
defined by Arcadia. For a sake of clarity, 
this section provides a brief definition of 
them. A capability is an entity’s ability to 
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supply a service. A system capability rep-
resents a usage context and is characterized 
by a set of functional chains and scenarios 
that describe the system behavior in a 
particular usage. 

Both functional chains and scenarios 
reference functions, which are actions, 
operations or services performed by entities 
– the system, one of its components, or 
also by any other entity interacting with 
the system. They also reference functional 
exchanges, that express possible interactions 
between source and target functions, and 
which are further characterized by exchange 
items, which reference the elements routed 
together during an interaction.

Entity’s behavior can also be represented 
by modes, which are behaviors expected 
under chosen conditions; states, which 
are behaviors undergone by entities in 
conditions imposed by the environment; 
and transitions, which are changes from one 
mode/state to another.

Simulation of an architecture design 
Wippler (2018) provides a broad defini-

tion of simulation as a cognition process 
that predicts effects, including any form 
of deliberation based on a model, and 
not only the use of a model executable 
by computer means. This permits us to 
consider simulation as a component of a 
control mechanism and hence as a valuable 
means for reaching a system architecture 
design that satisfies the system objectives 
and the stakeholders’ expectations. Figure 
3 illustrates the role of the simulation in the 
architecture process in the control loop.

By considering simulation as part of the 
engineering control loop, we can identi-
fy the contribution of simulation in the 
architecture design process, both in terms 
of reaching the objective quality of the sys-
tem, and of the time required to reach this 
objective quality.

Regarding reaching the objective quality 
of design, experience shows that 50% to 
70% of the total of design errors made 
during system development lifecycle are 
introduced before implementation phase, 

mainly during the orientation and design 
phase. It means that we expect at least half 
of all the design errors already exists at the 
preliminary design review (PDR). We can 
expect the quantity of errors to increase 
with the increase of system complexity the 
industry is facing, according to the metrics 
the aerospace domain provides regarding 
the growth of embedded software complex-
ity correlated with the number of source 
lines of code (SLOC) (Filho 2018).

Regarding the time required to reach the 
objective quality, simulation contributes to 
reach it sooner, reducing the design error 
costs. As presented in Stecklein (2004), 
design error fixing costs increase exponen-
tially with project phase: if the cost of fixing 
a requirements error discovered during the 
requirements phase is defined to be 1 unit, 
the cost to fix that error if found during the 
design phase increases to 3 – 8 units; at the 
manufacturing/build phase, the cost to fix 
the error is 7 – 16 units; at the integration 
and test phase, the cost to fix the error 
becomes 21 – 78 units; and at the operations 
phase, the cost to fix the requirements error 
ranged from 29 to more than 1500 units.

Whereas the control loop is a useful pat-
tern for identifying the role of simulation 
in architecture design, not all simulation 
mechanisms have the same effectiveness, 
and each mechanism requires different 
resources to be mobilized to ensure their ef-
fectiveness. Three existing mechanisms are: 

■■ Workshops in which experts deliber-
ate about the expected behavior of the 
system are relatively easy to perform, 
but its effectiveness strongly depend on 
factors that are difficult to assess, such 
as the skills of the experts and their 
ability to work together.

■■ Automatic validation rules, such as the 
ones provided by MBSE tools like Ca-
pella, are more reliable as they are based 
on the know-how of many experts and 
the return of experience of past proj-
ects. However, they only cover some 
quality aspects of the design, often its 
correctness and consistency.

■■ Computer-assisted simulation, in which 

executable models are created or gener-
ated from design models, is a powerful 
mechanism that may cover a large 
scope of quality aspects. However, the 
cost of putting in place and maintain 
simulation mechanisms is also higher 
than the previous ones.

In the rest of this paper, we will focus on 
this third mechanism. From now on, the 
term “simulation” alone refers to computer- 
assisted simulation.

ARCHITECTING OBJECTIVES, CURRENT STATE, 
AND LIMITATIONS 
Architecture design objectives 

As the architecture design strongly af-
fects a large set of the engineering activities, 
both the quality of the system architecture 
artefact and the efficiency of the architec-
ture design activity are key optimization 
levers for engineering organizations.

The usages of the architecture are 
manifold and depend heavily on endoge-
nous parameters such as the engineering 
organization, the engineering process and 
practices, the engineering teams, the indus-
trial domain constraints and regulations, 
the expectations of the customers in terms 
of engineering activities, among many 
others. However, our experience shows that 
the objectives of engineering organizations 
with regards to the architecture design 
activities can be categorized in:

■■ Share – improve communication, 
reduce ambiguities and reach, as fast as 
possible, a common understanding of 
the system’s purpose, form and behav-
ior, for example, use model-based archi-
tecture views to support discussions 
with customers.

■■ Secure – guarantee the quality of the 
engineering data, hopefully at any 
moment of the engineering process and 
beyond, for example, use architecture 
models as the backbone for textual 
requirements elicitation, analysis, and 
documentation (Bonnet 2019).

■■ Automate – automate the execution of 
the engineering processes to improve 
its efficiency, through (i) automatically 
generating engineering artefacts from 
architecture models, and (ii) automate 
architecture tasks, for example, generate 
document deliverables from mod-
els, generate software modules from 
architecture models, and automate the 
exploration of solution spaces.

The Share objective of architecture 
design deserves a few more words. This one 
is often despised and reduced to “having 
good-looking diagrams”, ignoring that:

■■ Improving communications requires a 
common (architecture) language and to 

Develop and describe
system architecture

Simulate system
architecture

Project and organization
architecting objectives

System
objective

System architecture
model-based description

Predicted system
objective

δ

Figure 3. Regulation role of simulation in the architecture design process
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use a common vocabulary, which is not 
a trivial task.

■■ Fluency in (technical) communication 
drastically reduces the time required to 
understand what the other says, enables 
active listening attitudes, and ultimately 
improves the efficiency of collaboration 
in engineering.

■■ Clear, concise, properly organized and 
well documented architecture design 
models and views, can have a positive 
impact on the perceived quality of the 
information contained in them, and on 
the perception of quality of the system 
itself (Iandoli 2018 and Bateman 2010).

■■ Experience shows that the share objec-
tive is often the first one that is set by 
engineering teams with few or no prior 
knowledge on MBSE practices and 
tools. This often means that the share 
objective is their first action of a wider 
change management initiative in their 
organization (for example, a digital en-
gineering transformation). The results of 
these first change management actions 
often determine what happens next.

Current state and limitations
Architecture design descriptions, such 

as the ones that can be obtained using the 
Arcadia method and its associated MBSE 
tool Capella, allow engineers to address the 
objectives presented above. Indeed:

■■ The systematic use of Arcadia per-
spectives in Capella (cf. Fig. 2), from 
operational analysis to physical architec-
tures and product breakdown structure 
definitions, permit engineers to build a 
complete and consistent digital thread 
from the expectations of their stakehold-
ers to the detailed definition of system 
components and expected behavior. 
This is particularly important both for 
business; to ensure that the expectations 
of future customers are properly ad-
dressed, and for certification concerns in 
mission-critical systems; to ensure that 
high-level safety and security concerns 
are properly addressed by lower-level 
components and their implementation, 
and that they can be validated.

■■ The systematic use of Arcadia aspects 
(cf. Fig. 2) permit engineers to ensure 
that each perspective is analyzed consis-
tently and exhaustively. Arcadia aspects 
complement each other, for example, by 
performing an analysis of components’ 
modes and states, a previously devel-
oped functional analysis is completed 
through the addition of new functions 
or the clarification of the textual re-
quirements attached to them. 

■■ The kinds of model views proposed by 
Arcadia were defined in close collabora-
tion with systems engineering practi-

tioners. Several of them are based on or 
are the same as SysML ones — such as 
modes and states machines or sequence 
diagrams – while others correspond 
to diagrams that have been drawn by 
systems engineers for many years – 
such as views presenting multiple layers 
of functional decompositions, or views 
presenting the structure, functional 
and interfaces aspects together (Capella 
2021b).

Nevertheless, experience on implement-
ing MBSE in the field has identified a set 
of limitations of the current tooled-up 
practices:

Describing the expected behavior. One 
of the main goals of architecture design 
is to reach correct, complete, and error-
free descriptions of the system behavior 
that is agreed with the customer, and of 
components behaviors as designed by 
architects and agreed by components’ 
engineering teams.

Arcadia concepts and methods, the fact 
that these methods are embedded in tools, 
and tool-specific features such as validation 
rules, all contribute to reaching correct-
ness and completeness to a certain extent. 
However:

■■ Ensuring a full consistency between 
Arcadia aspects, and particularly 
between the functional analysis and the 
modes and states analysis, require the 
execution of cross-checks that in many 
cases (i) are specific to the project’s 
needs, and (ii) cannot be specified and 
automated easily.

■■ In contexts such as Systems of Systems 
(SoS), or systems made mainly of 
subsystems, architecture models alone 
do not suffice to understand and master 
the behaviors that emerge from the 
composition.

■■ In contexts on which the system inte-
grates components that are capable of 
learning and of adjusting their behavior 
to improve their efficiency (for example, 
artificial intelligence (AI) powered 
components), current means for de-
scribing the system behavior need to be 
extended to consider different ranges of 
operation derived from the integration 
of these components.

Ensuring the quality of the integra-
tion, verification, and validation (IVV) 
strategy. In many of our engineering 
contexts, IVV strategies shall be defined as 
soon as possible, to secure the testability of 
the design, anticipate the means that will 
be required for IVV tests, and secure the 
execution of IVV campaigns. Therefore, 
architecture design is a major input of the 
definition of IVV strategies.

Ensuring the quality of the integra-
tion, verification, and validation (IVV) 
strategy. In many of our engineering 
contexts, IVV strategies shall be defined as 
soon as possible, to secure the testability of 
the design, anticipate the means that will 
be required for IVV tests, and secure the 
execution of IVV campaigns. Therefore, 
architecture design is a major input of the 
definition of IVV strategies.

FILLING THE GAPS WITH SIMULATION
One major root cause of the limitations 

identified above is the fact that architecture 
models today are mostly descriptive, and 
that prediction capabilities are limited. 
Descriptive models are different in nature 
from predictive ones, as they retain “gray 
areas” of ambiguity, and do not need to per-
form as accurately as the predictive models. 
Although allowing designers to define their 
architecture while keeping some gray areas 
has proven useful at introducing mod-
el-based engineering approaches in large 
organizations, these gray areas may induce 
negative consequences in the engineering 
contexts presented above.

To overcome all these limitations, simu-
lation offers capabilities to enable engineers 
to access the behaviors of the solution being 
designed. Simulation provides to an engi-
neer an executable virtual object that can be 
exploited to enhance communication be-
tween all stakeholders, to further evaluate 
and analyze the solution definition as well 
as to expand and automate the exploration 
of the solution space.

Improved communication through 
simulation

Descriptive models are often used to 
illustrate how the system behaves, either 
with modes & states machines or scenarios 
and functional chains. The overall behav-
ior of a system is then captured through a 
collection of such views, each one focusing 
on describing the behavior in a unique situ-
ation. Additionally for these types of views 
there is a compromise between complete-
ness of the behavior description (complete-
ness = unambiguous + full coverage of the 
scenario) and the easiness of readability.

The spreading of the information across 
views and the lack of readability or unambi-
guity (due to the above compromise) makes 
it hard to ensure a common understanding 
of the system behavior among stakeholders. 
Furthermore, the reader performs a model 
execution mentally to figure out what is 
the behavior described. In this case, the 
execution engine (that is, the human brain) 
is different from one reader to another and 
thus leads to a variety of simulation results 
(that is, interpretation) and not repeatable 
that dramatically increases the risk of inter-
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pretation divergence among stakeholders.
Simulation provides unambiguous 

means to figure out the system behavior 
such as time dependent curves, 2D and 3D 
rendering, and quantitative results based 
on post-processing of simulation outputs. 
The use of one or another depends on the 
purpose of the communication, the type of 
information to be shared, and the profile of 
the persons the information is shared with.

In addition to the simulation results 
themselves, the use of interactive simulations 
let the stakeholders (engineers, end-users, 
customers, managers ...) experience the 
future system for themselves, confirm or 
refine the expected behavior, or to get a 
better understanding of the system behavior 
for detailed design. The use of simulation to 
improve communication is mainly facilitated 
by “simulation as a service” capabilities as 
it provides easy access to simulation means 
(execution and visualization) while comply-
ing with security constraints.

For engineers in charge of the detailed 
design, an executable specification provides 
extra-benefits by securing the understand-
ing of the expected behavior. The simula-
tion environment provides similar capabil-
ities to the one provided by software IDE 
such as breakpoints with pause conditions, 
step forward and backward, model anima-
tion with highlighting or coloring, toggling 
data and much more. This set of debugging 
features clarifies the internal mechanisms 
and interactions between functions from 
which the system behavior emerges.

Another observed benefit is the rein-
forcement of concurrent engineering and 
collaboration. For system engineers, being 
able to share very early an executable 
specification that reflects certain aspects of 
the system with other engineering special-
ties is a powerful mean to enable the other 
specialties to start activities earlier and 
concurrently, to quickly iterate on the sys-
tem definition as early as possible. Without 
the use of simulation these activities would 
have been performed far later or in a less 
complete and detailed way. For instance, 
an IVVQ engineer can start experiment-
ing test cases with a virtual test bench and 
virtual object that mimics the system to 
test. This way the test campaign gets more 
mature and is verified before the execution 
of the test campaign on the real system. 
Actually, the test campaign elaboration and 
verification activity performed early in a 
virtual environment also offers opportunity 
to not only verify the test cases but also to 
provide feedback to systems engineers on 
defects detected during the test’s execu-
tion. In this case we can see the simulation 
as a concrete enabler for co-engineering. 
Another example is for safety engineering. 
Although the use of descriptive models 

is already a proven way to perform safety 
analysis (R. de Ferluc 2018) early in the 
design process based on the architectural 
descriptive model produced by the system 
engineering team and to feed the architec-
tural model back with the analysis results, 
the use of simulation offers more advanced 
analysis capabilities for reliability, availabil-
ity, maintainability, testability, and safety 
analysis (A. Garro 2012) that can be inte-
grated in a feedback loop process on system 
architecture design activity (cf. Fig. 3). This 
feedback loop can occur at any stage of the 
system architecture design.

Secure the design through simulation 
Leveraging simulation in the engineering 

process enables engineering project teams 
to early and continuously integrate, verify, 
and validate (IVV) the solution under de-
sign (that is, through execution of a subset 
of the system definition, called “item under 
design”). Having the capability to simulate 
the item under design at any time enables 
engineers to perform unit-test and inte-
gration-test to verify and validate the item 
under design after each small design step.

This brings two major benefits. The first 
benefit is that it drastically reduces the 
overall solution cost reducing the time 
between the introduction of a design error 
and the fix, as (i) the earlier an error hap-
pens the more the error might cost; (ii) the 
majority of errors occur before starting the 
implementation, which is relatively early 
in the development process; and (iii) the 
situation gets worse as the complexity of 
the systems increases.

Given this situation, it is critical for 
engineers to have means to test their design 
before the implementation, hence before 
it is physically accessible. Having access to 
virtual test means including a virtual item 
under test and virtual test bench at any 
time through the development process is an 
answer to minimize the cost of errors.

A concrete example is a system engi-
neering team who captured the logical 
architecture of the system (structural and 
functional aspect) by following Arcadia 
methodology and language. The systems 
engineers wanted to be more precise and 
unambiguous regarding the dynamics of 
exchanges between functions, as there were 
many intricate feedback loops and parallel 
branches. One system engineer started to 
build this simulation and it appeared the 
intellectual process required to build the 
simulation raised a lot of questions chal-
lenging the content of the logical architec-
ture. He found ambiguities in the behavior 
description and missing data in interfaces. 
These errors have been fixed very early, 
avoiding later discovery by other engineer-
ing teams who would have spent a lot more 

time dealing with these errors before reach-
ing out to the systems engineering team.

The second benefit is that it enables wid-
er solution space exploration and alterna-
tives comparison. Due to project planning 
pressure, systems engineering teams rarely 
invest the time required to fully explore 
the solution and design space as well as 
comparing alternatives. These are activities 
that lead to producing designs that will 
not be retained, and simulation reduces 
the time required to evaluate designs and 
determine which one is better than others, 
hence making the design space exploration 
and alternatives exploration more efficient. 
To further speed up the exploration, the 
simulation model can be parametrized and 
integrated into an optimization loop to 
automate this exploration and to converge 
towards the best solution.

As described in the previous section 
(“Improve communication with simula-
tion”), leveraging simulation not only helps 
to secure the design with early and continu-
ous IVV but also permits IVVQ engineering 
teams to secure the test campaign concur-
rently with the design activity. This opens 
new methodologies that can be applied to 
complex systems engineering such as test or 
behavioral driven development, provided 
the IVVQ team can provide comprehensive 
virtual test means for the foreseen solution 
to the system engineering team.

Automate tasks with simulation models
Working with models, be they descrip-

tive or executable, means working on 
digital data. Hence, access to and trans-
formation of this data can be automated 
with programming languages. MBSE tools 
often provide tasks automation such as 
document generation, code generation (for 
software component interfaces mainly) or 
descriptive models generation – for system 
to sub-system transition or to initialize 
dysfunctional models for instance. We can 
extend the range of tasks and enrich them 
based on simulation models. Maybe the 
more valuable capabilities are the design 
space exploration automation, design opti-
mization automation, early test execution 
automation and model coverage analysis 
automation (Camus 2016) to achieve high 
quality system definition.

Based on simulation models we can 
also enrich the document generation with 
parts of simulation models that would be 
non-ambiguous or with simulation results 
to better express a desired behavior. And 
finally, as simulation models are executable 
by nature, we can generate both the de- 
tailed software component interfaces along 
with the internal behavior of the compo-
nent (Fleischer 2009).
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GOOD PRACTICES PROPOSALS
As discussed above, there are many rea-

sons why we would want to rely on simu-
lation. Hence, adopting a simulation-based 
engineering process, that is, the use of sim-
ulation to support all engineering activities 
throughout the product lifecycle, leads to 
the creation of a multitude of simulations. 
As for any engineering activities, keeping 
consistency and coherency across all engi-
neering artefacts including simulations is a 
challenge. To overcome this challenge there 
are good practices to apply.

Separation of concerns. An all-in-one 
model merging descriptive architectural 
models and simulation may be considered 
as a response to the need of coherency and 
consistency. We encourage separation of 
concerns to keep architecture definition 
and simulations as distinct, differentiable 
but still coherent objects. This is to avoid 
the overload of architectural models that 
support specific modeling objectives owned 
and defined by system architects. The sys-
tem architect often requires a simple model 
to support the design thinking process. 
At some point, the overload of informa-
tion in a single representation becomes 
counter-productive to achieve system archi-
tecture goals. This choice is like the one ex-
isting in hardware engineering where there 
is a clear separation between modeling and 
simulation respectively named comput-
er-aided design (CAD) and computer-aided 
engineering (CAE).

Frame simulation design in your MBSE 
methodology. To help organize simulations 
and to ease the coherency and consistency 
of them with other engineering artefacts, 
simulation models should contribute to 
meet objectives defined in the applied 
MBSE methodology. For instance, if a 
simulation is built in the context of the 
system analysis, then this simulation must 
contribute to the system analysis objective, 
.that is, to define what the system must 
accomplish for the stakeholders. Further-
more, the simulation model should respect 
the same representation point of view as 
the one adopted in the Arcadia perspective. 
Again, if we consider a simulation built at 
the system analysis perspective, the way the 
system behavior is captured must be con-
sidered as a “black box” specification and 
not an implementation specification for the 
subsystem engineering teams.

One simulation per type of concern. 
Considering a single simulation to answer 
all the questions the engineers would have 
throughout the product lifecycle would 
mean this simulation is a perfect virtu-
al representation of the system in all its 
aspects throughout all its history. This is 
neither realistic nor achievable. Hence, we 
must consider the worst case that we would 

have one simulation for each engineer’s 
questions that will occur during the prod-
uct lifecycle. To reduce the number of sim-
ulations one proposal is to define typology 
of concerns and to build one simulation per 
type of concern or at least reusable simula-
tion components for each type of concern. 
To ease the management of these simula-
tions a proper governance is needed.

Maximize reuse of simulation assets. 
There are several ways to reuse simula-
tion assets: (i) reuse existing simulation 
components to build a new simulation, 
(ii) reuse an existing simulation to answer 
different questions from similar concerns, 
and (iii) reuse test harnesses and test cases 
throughout the development lifecycle. For 
the first type of reuse, we need to define 
simulation modeling rules that ensure 
reusability of components (for example, in-
teroperability formats such as FMU, HLA..., 
shared interfaces repository, ...), we must 
also minimize the number of simulation 
tools to keep the co-simulation constraints 
as low as possible, and define a standard 
component-based simulation architecture. 
For the last type of reuse, we need to ensure 
that the simulation facilities offer seamless 
support for software-in-the-loop (SIL), 
processor-in-the-loop (PIL) and hard-
ware-in-the-loop (HIL) to progressively 
transition from a full virtual testing to real 
system testing.

Automate the transformation of ar-
chitectural model element to simulation 
model element. To avoid human mistakes 
in the design of a simulation model based 
on existing architectural model, we strongly 
encourage automating this model trans-
formation. This provides confidence in the 
coherency and consistency between archi-
tectural models and simulation models. The 
automation can also integrate the traceabil-
ity links to ease the impact analysis and jus-
tification activity. A subsequent advantage 
of such automation is the standardization of 
the approach to building simulation models 
in the engineering organization.

CASE STUDY, ANALYSIS, AND DISCUSSION 
To test the proposed approach, we used a 

hypothetical, still realistic, drone-based sys-
tem capable of fulfilling multiple missions 
including the evaluation of the health of 
crops. Its architecture has been formalized 
in Capella following the Arcadia method, 
exploiting the Arcadia perspectives. The 
following paragraph is an excerpt show-
ing how an expectation of a stakeholder 
(evaluating crops in very large fields) drives 
to key capabilities (navigation) and key 
system and subsystem requirements (mass, 
integrity).

■■ Operational analysis – by identify-
ing operational entities (OE) and the 

analysis of their perceived value (for 
example, pains & gains), operational 
activities and processes. For instance, 
farmers (an OE) are interested on eval-
uating crops in very large fields.

■■ System needs analysis – by defining (i) 
the system capabilities and related func-
tional chains and scenarios, and how 
they provide value to the stakeholders 
(the OE); and (ii) the non-functional key 
system requirements. For instance, the 
drone-based system shall provide func-
tional capabilities such as navigation, 
acquisition of data, or mission planning; 
key system requirements include integri-
ty– related to the capability of navigating 
while avoiding obstacles.

■■ Logical architecture – by allocating 
functions to the conceptual logical 
components (LC) of the solution. 
For instance, both the drone and the 
ground station LC contribute to the 
navigation capability, including the ob-
stacle avoidance integrity feature. Key 
requirement for the drone subsystem is 
mass – as an enabler to navigate across 
large fields during the time required to 
do an evaluation.

■■ Physical architecture – by perform-
ing a detailed functional analysis and 
allocation of functions to the concrete 
components of the architecture. For in-
stance, detailed requirements regarding 
integrity (including those related to ob-
stacle avoidance) would be allocated to 
the navigation processors, and mass re-
quirements resulting from mass versus 
fuel capacity tradeoffs may be allocated 
to drone physical components.

In the case study we built simulation 
models to support architecture objectives 
of operational analysis, system analysis 
and physical architecture perspectives. On 
the operational analysis, simulations are 
used to verify and validate the operational 
processes and to optimize them. We have 
used a modeling language inspired from 
eFFBD to represent in a simulation tool 
the operational processes. The execution 
of the simulation is based on discrete 
event simulation which is a convenient 
type of simulation engine for processes 
that requires not much behavioral details 
to get ready to run. Hence it appears to 
be very well suited for early simulation of 
processes. Systems architecture design is a 
key activity that affects the overall systems 
engineering cost. Hence it is fundamen-
tal to ensure that the system architecture 
reaches a proper quality. In this paper, we 
leverage model-based systems engineering 
(MBSE) approaches and complement them 
with simulation techniques, as a promising 
way to improve the quality of the system ar-
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chitecture definition, and to come up with 
innovative solutions while securing the 
systems engineering process. Systems archi-
tecture design is a key activity that affects 
the overall systems engineering cost. Hence 
it is fundamental to ensure that the system 
architecture reaches a proper quality.

On the physical architecture, we per-
formed simulation to verify the correct-
ness of the functional analysis especially 
regarding the definition of the functional 
exchanges and to identify potential ambi-

guities in the architecture definition. We 
also performed architecture optimization 
leveraging a parametrized simulation 
model. The purpose was to optimize several 
characteristics of the system to reduce the 
overall mass of the drone given a collection 
of operational missions to accomplish.

Focusing in the system needs analysis, 
we leveraged simulation to (i) verify and 
validate the modes machine supervising the 
system, (ii) specify the expected behavior of 
a subset of functions in a functional chain 

context, (iii) integrate these functions to 
build the functional chain and verify and 
validate this functional chain, (iv) ensure 
a full consistency between the functional 
chain and the system modes as they 
interact each other, and finally (v) validate 
the emerging behavior coming from these 
interactions.

Figure 4 shows the modes machine used 
for the case-study, which is the one super-
vising navigation modes of the drone. Figure 
4 (bottom) shows the functional chain 

Figure 4. Drone-based system case study’s mode machine (top) and functional chain (bottom)
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used for the case-study, which involves the 
functions in charge of manually pilot the 
drone with an obstacle avoidance feature 
to preserve the integrity of the system. The 
transitions of the modes machine are trig-
gered by functional exchanges involved in 
the functional chain and the modes update 
function parameters to adapt the overall be-
havior of the system given the active mode.

It shall be noted that for all perspectives, 
simulation results were injected back into 
the architecture descriptive model, ensur-
ing the regulation role of simulation depict-
ed in Figure 3. Two cases were identified, 
they are illustrated below with examples of 
a simulation of the physical architecture:

■■ The simulation results modified the 
value of a property of an existing archi-
tecture element – for instance, the mass 
ranges of the concrete physical compo-
nents of the architecture, which are key 
requirements of the subsystems directly 
impacting the customer satisfaction 
(been able to evaluate large fields).

■■ The simulation results induced stronger 
modifications of the architecture, such 
as new functions, different allocations 
or new operating modes, that often 
require specific co-engineering actions 
– for instance, the early simulation 
of the obstacle avoidance feature 
led to these kinds of modifications, 
done under the responsibility of the 
system architect and involving several 
subsystems’ architects.

Limitations of the descriptive architecture 
model

On this scope, the architecture model 
has limitations to completely capture 
the desired behavior and to ensure full 
consistency between modes analysis and 
functional analysis.

First, it is nearly impossible to specify 
with a descriptive model only the desired 
dynamic of the drone, that is, how the 
drone reacts on an operator order. Similar-
ly, it is hard to explain how aggressive the 
response to an upcoming obstacle should 
be, or how the drone should behave when 
concurrent orders come from the operator 
and the obstacle avoidance functions.

Second, the content of modes and states 
machines must deal with a compromise 
between readability on one hand and 
formal expression and completeness on the 
other hand. By experience, the architecture 
model often favors the first aspect. Further-
more, even if the tool offers state machine 
simulation capability it is often at the price 
of detailed implementation effort. Hence, 
we must often deal with ambiguities and 
uncomplete specification.

Third, if the modes machine is growing 
in complexity, it becomes hard to verify it 

by mental simulation covering all the pos-
sible paths. Hence the potential is rapidly 
growing. Finally, it is hard to really capture 
the emerging behavior coming from the 
interactions between the functions, the 
supervising modes and the system states. It 
is also challenging to ensure full coherency 
across these three aspects of the system.

Simulation design workflow and benefits 
In the context of the case-study, we use 

Simulink as the main simulation tool as 
this tool supports the simulation of discrete 
event systems, state charts, data flow (dis-
crete or continuous time) and acausal sys-
tems (suited for multi-physics simulation). 
To support the simulation design, we have 
tooled-up the transition from Capella to 
Simulink. This tool (called Cap2SL) ensures 
the coherency, consistency, and traceability 
of shared elements. To maximize reuse 
across simulation models, Cap2SL imple-
ments modeling rules favoring componen-
tization and modularity.

In this workflow we consider two roles: 
the system architect is responsible for the 
architecture definition and generates a 
simulation request; the simulation engineer 
is in charge of building and running the 
simulation and providing data required by 
the request.

Case 1: Verify and validate modes 
machines. To build the simulation model 
from the modes machine defined in 
Capella, first we get an initialized version 
generated with Cap2SL. This simulation 
model captures the information stored in 

the Capella model. A substantial amount 
of data can be transformed applying a se-
mantic mapping rule with no ambiguities. 
However other mapping rules might be 
applicable depending on the modeling rules 
a company wants to apply and the meaning 
a company confers to modeling patterns. 
In case of potential ambiguities to map the 
semantics of the two tools, the information 
is transformed as textual information for 
the simulation engineer to have all existing 
information to build the simulation model. 
In our case, we must deal with:

■■ Transition trigger expressed in natural 
language such as “propellers are ON”. 
For such trigger, additional data 
manipulated in the system needs to be 
defined.

■■ Ambiguous guard expression: the data 
used to express the condition is part 
of several exchange items and these 
exchange items are carried by multiple 
functional exchanges. Hence, we don’t 
know if the data has a unique or several 
instance and if so, then which instance is 
to be tested in the condition expression.

For these two problems we already see 
value of simulation just in the process of 
building a simulation. It permits us to chal-
lenge the system definition in front of a sort 
of a reality. Thus, to identify incomplete or 
too ambiguous specifications very early in 
the development lifecycle. Indeed, these 
issues would have been raised either by 
the subsystem engineering team or by the 
software team and some of these issues are 
tightly connected with hardware because 

Figure 5. Drone-based system case study’s mode machine executable model
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of the required data to capture by a sensor. 
Hence some of these errors would have led 
to costly rework and planning shift.

After some collaborative work sessions 
with system architect and simulation 
engineer the simulation engineer comes 
up with an executable model shown in 
Figure 5. Concurrently, the IVVQ engineer 
develops a test harness shown in Figure 6, 
reusing the interface definition generated 
by Cap2SL, and a test scenario based on the 
scenarios captured in Capella.

From this point, the early-testing activity 
can start. In the specific context of this case 
study, a lot more effort has been spent on fix-
ing and improving the test scenario than on 
designing and fixing the item under test. We 
also used model coverage features offered by 
Simulink to identify missing scenarios. The 
early test raised a design error in the modes 
machine that was introduced in the Capella 
model and impacted the functional exchang-
es and exchange items definitions.

 Case 2: Specify functions’ behavior 
and verify functional chain. As for case 

1, we first started by leveraging Cap2SL 
to initialize the functions models, the 
functional chain (FC) model and all the 
required data and interfaces. The FC model 
is made by aggregation of function models 
individually created and with their own 
lifecycle. At this point the FC model is 
compilation-ready. It means that the model 
does not contain design error that prevents 
to generate an executable software from the 
model. This already verifies the correctness 
of the Capella model on this scope.

From here we start work sessions with 
the system architect and simulation engi-
neer to define the desired behavior of each 
function individually as the design model is 
not well suited to capturing this. As we are 
at the system analysis perspective, we can 
keep things with a high level of abstraction 
leading to interactive and collaborative 
work session iterating quickly on the 
simulation model. The main challenge is to 
get a robust set of test scenarios to ensure 
we don’t miss corner cases. Concretely, it is 
easier to specify expected behavior and cor-

responding scenarios at the FC boundaries 
than specifying the details of each function 
individually. Hence, we started by defin-
ing the test scenario for the FC and then 
working function by function in the same 
order than the sequence defined in the FC. 
For a given function involved in the FC, the 
system architect defines at a coarse grain 
level the expected behavior of the function. 
The test scenario is generated by executing 
the FC scenario and recording the outputs 
of the upstream functions. The key point is 
to quickly get a first executable FC model 
to leverage the better-defined FC expected 
behavior to identify errors in the individual 
functions’ definition.

In our case we decided to develop an 
interactive control dashboard to let the 
system architect and other stakeholders 
somehow related to this functional chain to 
experience by themselves the system within 
the FC scope to provide feedback.

Case 3: Integrate modes machine with 
functional chain. Once we get both the 
modes machine and the FC models veri-
fied, it becomes very easy to integrate them 
together, thanks to the componentization 
modeling rules we implemented in Cap2SL. 
The main concern we had was regarding 
how we should model the interactions 
between the modes machine and the func-
tions since they do not concretely appear 
as interfaces in the design model. Either we 
decide to keep the Capella layout to make 
the system architect more comfortable to 
dig into the simulation model, or we make 
these interfaces visible in the diagram but 
by doing so we modify the interface defini-
tion of the functions. Since the beginning 
we favored keeping the layout of Capella for 
modeling in the simulation tool, so we con-
tinued with this approach for the last stage. 
However, this choice can be discussed. The 
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simulation of this model did not raise any 
error; thus it contributes to increase our 
confidence in our system definition.

Feedback from the frontline
While this paper focuses on specific 

use-cases to illustrate the approach through 
concrete examples, the overall intention 
is to incorporate simulation activities in 
the daily system engineering work and 
to make it the new normal. According to 
return of experience from some company 
businesses already mature in this field, 
there is a measured project performance 
improvement when adopting simulation 
as the foundations for any design decision. 
Figure 7 shows the correlation between the 
amount of system requirements covered by 
analytical models and the integration and 
flight tests qualification effort.

Figure 7 also highlights an increase in the 
system quality with a drastically reduced 
technical debt. But this comes at the price 
of a multi-year journey transforming the 
organization, the culture, the skills, the 
processes, and the tools. Finally, it is worth 
to note higher benefits happen when the 
engineering process is transformed instead 
of optimizing locally. In this project exam-
ple, a large part of the benefits come from 
the continuous reuse of test cases built at 
the early stage of the development lifecycle 
down to the ground field tests.

CONCLUSION AND PERSPECTIVES 
The use of simulation to support archi-

tecture and detailed design activities is an 
efficient means to improve quality, cost and 
planning while reducing risks. It is rare 
enough to be noticed as most of the time 
these three key project objectives cannot be 

improved together. This often comes at the 
price of an increase of the project expense 
on the upstream engineering activities, 
which is often perceived as a gamble from 
the project management perspective. How-
ever, this is not always true and some other 
experiments on other projects have demon-
strated that the effort spent to specify the 
system with a simulation model is lower 
than doing it with textual requirements as 
a lot of effort is spent trying to identify all 
the missing cases, all the incoherencies and 
to make the textual requirements traced, 
coherent and consistent with the design 
model. This case-study has demonstrated 
clear benefits using simulation on top of 
design model. However, to be efficient, an 
automation tool is highly recommended 
as well as clear modeling rules that favor 
modularity and reusability.

One point of attention is when sim-
ulation is used as specification as the 
simulation can lead to over constrained 
specifications. Indeed, it is common to see 
an executable specification describing one 
nominal or ideal operating point. If the 
specification model is used as a scoreboard 
for equivalence testing, the probability of 
having the real system exactly match the 
behavior specified that way tends to zero. 
Hence it is critical as a system engineer to 
define margins in the expected behavior 
and to identify parameters’ tolerance. The 
same way, as a simulation engineer it is as 
important to quantify the uncertainty of 
simulation parameters and the credibility 
level granted to simulation results.

Regarding the case study we intend to 
extend it to demonstrate other use cases. 
Among others, the most prevalent are:

■■ To handle the round-tripping. As 

simulation is used, in the context of this 
study, as a supporting activity of the 
architecture definition there is a need to 
go back and forth between the archi-
tecture definition and the simulation. 
This round-trip can be either simple and 
straightforward or more complex. The 
simple case is when simulation is lever-
aged for architecture verification or for 
sizing and optimization. In these cases, 
the simulation request can clearly define 
what are the model elements of the ar-
chitecture model to update (verification 
status, architecture parameters’ value 
for instance). Hence, the update of these 
elements does not raise any issue. The 
complex case is when the simulation 
process raises some evolution requests 
on the architecture (ambiguities to 
resolve, missing data, incomplete defini-
tion...). This situation must be handled 
via a dedicated process to guarantee 
the integrity of the overall architecture 
definition. This process, when defined, 
can then be tooled-up to make easier 
the concrete update of the architecture 
model from simulation models.

■■ To perform simulation-based depend-
ability analysis in accordance with both 
the architecture model and the Arcadia 
method.

Finally, this work shall be continued 
to confirm applicability and define good 
practices for use of simulation in different 
contexts, such as simulation for architecture 
optimization from the orientation phase 
down to the detailed design, simulation in 
product line engineering (PLE) contexts, 
and simulation in agile contexts.  ¡
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INTRODUCTION

  ABSTRACT
The ongoing transformation in the industry from a document-based systems engineering to a model-based systems engineering 
approach reveals a need for new methods of verifying and validating systems. Traditional methods of testing the actual system 
are getting more and more expensive. A model-based environment could significantly reduce testing and, most importantly, ver-
ification and validation processes costs. It allows testing on the system model by applying various techniques, such as simulation, 
analysis, review, mock-ups, etc. There are, however, very few approaches today detailing how verification and validation of the en-
tire system (taking into count its components and subsystems) could be performed. This paper proposes an approach to perform 
verification and validation of a system using system models developed with Systems Modeling Language (SysML) and in accor-
dance with the MagicGrid (formerly known as MBSE Grid) framework. The approach covers system testing activities beginning 
with verification of the lowest modeled system elements against system requirements and finishing with validation of the system 
as a whole, against stakeholder needs.

System Verification and 
Validation Approach 
Using the MagicGrid 
Framework
Aurelijus Morkevicius, aurelijus.morkevicius@3ds.com; Aiste Aleksandraviciene, aiste.aleksandraviciene@3ds.com; and 
Zilvinas Strolia, zilvinas.strolia@3ds.com 
Copyright © 2022 by Aurelijus Morkevicius, Aiste Aleksandraviciene, and Zilvinas Strolia. Permission granted to INCOSE to publish 
and use.

Verification and validation (V&V) 
are independent processes. The 
purpose of verification is to 
provide objective evidence that 

a system or system element fulfills its spec-
ified requirements and characteristics. The 
purpose of validation is to provide objective 
evidence that the system, when in use, ful-
fills its business or mission and stakeholder 
requirements, achieving its intended use in 
its intended operating environment. Both 
are used together and are critical compo-
nents of system testing (ISO, 2015).

Testing the actual system is expensive, 
not only where testing to realistic condi-
tions cannot be achieved, but also when it 
is not cost-effective. Model-based systems 
engineering (MBSE) promises a more 
effective way to show theoretical compli-
ance. It allows testing to be performed 
using simulation on models or mock-ups 
(instead of actual/physical system elements) 
under defined conditions (INCOSE, 2015). 

Although it may sound promising, having 
a system architecture in the model-based 
environment does not automatically test a 
system. It is a common misunderstanding 
in systems engineering, that Systems Mod-
eling Language (SysML) is enough to fulfill 
the promise of MBSE. Silingas et al. (2009) 
states that the modeling language is just 
the language and must be combined with 
a methodology to be useful. In the MBSE 
environment, testing activities such as ver-
ification and validation depend heavily on 
the methodology used to develop system 
architecture. For this reason, finding the 
right approach for the specific environment 
is very difficult, or in the best case requires 
tailoring and customization.

In this paper, a new approach for model-
based V&V is proposed. The approach 
covers system testing activities starting with 
verification of the lowest modeled system 
elements against system requirements 
and going up to the system as a whole 

validation against stakeholder needs. 
The approach is aligned with the SysML 
language and MagicGrid (formerly known 
as MBSE Grid) framework. The approach 
extends the framework by introducing 
the V&V pillar to existing ones and 
demonstrating interrelationships between 
them. A thorough case study on the vehicle 
model is presented to prove the usefulness 
of the proposed approach in the overall 
lifecycle of the system engineering.

This paper is structured as follows: in 
Section 2, related works are analyzed; 
in Section 3, the proposed approach is 
presented; in Section 4, application of the 
proposed approach is described; and in 
Section 5, the achieved results, conclusions, 
and future work directions are indicated.

RELATED WORKS
Hazle et al. (2020) analyze the literature 

on verification and validation for systems, 
software and requirements engineering. 
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The paper examines their relevance to Sys-
ML models as used in MBSE. The authors, 
using the findings of their literature review, 
their experience, and the comments of 
the MBSE Working Group (INCOSE UK 
MBSE WG, 2019), have compiled a list of 
the techniques and principles they believe 
should be employed for an effective and 
robust approach to model V&V. One of 
the core principles is the importance of 
simulation and parametric solving. It is 
often easier to validate the model behavior 
via simulation than through the inspection 
of descriptive views (Debbabie et al., 2010). 
While applying simulation, the advantage 
of using an MBSE approach rather than 
a separate specification and simulation is 
that since all the engineering artefacts are 
within the same model, it allows trace-
ability from the stakeholder requirements, 
through to the elements being simulated 
(Stevenson et al. 2018), thus improving 
both verification and impact analysis. 

Though the V&V methods and MBSE 
methodologies can be analyzed separately, 
the closest comparison to our work would 
be utilizing the combination of both the 
V&V approach and the MBSE method-
ology. This way equivalent works can be 
compared directly and not overcomplicate 
the research. The following MBSE meth-
odologies that support V&V activities have 
been analyzed: object-oriented systems-en-
gineering method (OOSEM), IBM Rational 
Harmony for systems engineering, and the 
UML testing profile.

OOSEM. In this methodology, the 
validate and verify system activity verifies 
that the system design satisfies the system 

requirements and then validates that those 
requirements meet the stakeholder needs. 
For this, verification plans, procedures, 
and methods are developed. The primary 
inputs to the development of the test cases 
and associated verification procedures 
are system-level use cases, scenarios, and 
associated requirements. The verification 
system can be modeled using the same 
activities and artifacts described earlier 
for modeling the operational system. The 
requirements management database is 
updated during this activity to trace the 
system requirements and design informa-
tion to the system verification methods, test 
cases, and results (INCOSE, 2015).

OOSEM provides a clear process of 
which steps need to be carried out in per-
forming V&V; however, it defines no means 
of achieving it in practice.

IBM Rational Harmony for systems 
engineering. The IBM methodology covers 
a verification part related to real-time 
embedded systems and software. In a mod-
el-driven system development environ-
ment, the key artifact of the hand-off from 
systems engineering to subsystem develop-
ment is executable models. The Harmony/
SE Deskbook recommends an interactive 
verification using model execution, includ-
ing model animation, and a visual compar-
ison of the “as-is” behavior regarding the 
expected behavior. Integration test scenari-
os will be part of each composed subsystem 
hand-off package. These test scenarios can 
be used to verify a developed subsystem 
against the requirements (Hoffman, 2015).

The Harmony approach turns out to 
be very much tool-oriented and the exact 
modeling language constructs used to 
perform V&V are not clearly described. 
Moreover, the approach is embedded sys-
tems-oriented and does not describe how 

testing could be carried out in the higher 
levels of system hierarchy and with differ-
ent types of systems.

UML testing profile (UTP). UTP is a 
part of the UML ecosystem and as such, it 
can be combined with other profiles of that 
ecosystem to associate test-related artifacts 
with other relevant system artifacts, for 
example, requirements, risks, use cases, 
business processes, system specifications, 
etc. This enables requirements engineers, 
system engineers and test engineers to 
bridge the communication gap among 
different engineering disciplines (OMG, 
2019b). UTP provides a set of concepts to 
describe test planning, test architecture, 
test behavior, and data. In contrast, SysML 
has the only concept used for testing called 
‘test case.’ In SysML, a test case is defined 
as “a method for verifying a requirement 
is satisfied” (OMG, 2019a). It has a single 
return parameter named verdict which is 
typed by the enumeration ‘verdict kind.’ It 
is important to note this is consistent with 
the UML testing profile.

Though UTP is a well-defined language 
for capturing testing concepts, it is not a 
methodology, nor a method. Application of 
UTP depends on the methodology used for 
systems engineering in the context of the 
specific project or organization.

Analysis of related works helps us to 
understand how V&V is addressed today 
in the model-based engineering envi-
ronments. It also helps to identify core 
principles used in the context of MBSE, the 
importance of the model execution, and the 
gaps existing today that could be solved by 
our suggested approach.

SUGGESTED APPROACH
This section introduces an approach 

for performing system verification and 

Figure 1. MagicGrid framework
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validation activities using SysML models 
developed following the modeling work-
flow defined by the MagicGrid framework. 
Relevant extensions to the framework for 
supporting V&V are proposed.

Introduction to MagicGrid 
MagicGrid is a pure SysML-based frame-

work for MBSE (Mazeika et al., 2016). The 
structure of the framework can be depicted 
as a 2-D grid, displayed in Figure 1.

The rows of the grid represent different 
layers of abstraction, also referred to as 
domains: Problem, Solution, and Imple-
mentation. Every organization must deal 
with them, unless the system they develop 
is very small and simple, for example, 
some mechanical component without any 
embedded software. In the case of complex 
systems development, they are inevitable 
(Morkevicius et al., 2017).

The columns of the grid stand for 
different aspects of the SysML model. Also 
referred to as four pillars SysML (Frieden-
thal et al., 2008), these are Requirements, 
Structure, Behavior, and Parametrics, and 
the recently added Safety & Reliability pillar.

A cell at the intersection of a particular 
row and column represents the view, which 
determines what SysML diagrams and 
elements should be utilized to capture in-
formation when visiting that particular cell. 
The order of visiting the cells is defined by 
the modeling workflow of the MagicGrid 
framework. It is based on the best practices 
of systems enginering and technical pro-
cesses defined in ISO 15288 (Morkevicius 
et al., 2020).

MagicGrid Extensions for V&V 
So far, the MagicGrid framework has 

been applicable to the systems engineering 
activities that belong to the left side of the 
V model, to support the system develop-
ment all the way from stakeholder needs 
elicitation to the high-level (logical) design 
of system components. However, it does 
not provide much information on how to 
perform V&V activities.

Figure 2 illustrates how the framework 
can be extended to support early V&V of 
the system. This kind of V&V is carried out 
before starting the implementation of the 
system and can be very useful for detecting 
issues that normally are not discovered un-
til the testing of the physical system begins. 
The early V&V is applicable not only when 
testing the system in realistic conditions 
cannot be achieved (for example, space-
craft, satellite), but also when it is not 
cost-effective.

Since the physical system does not exist 
during the early V&V, its solution domain 
model built by following the MagicGrid 
framework serves as input to both activi-
ties. The solution domain model specifies a 
precise logical architecture and high-level 
(logical) design of the selected system 
configuration, including user interface (UI) 
mock-ups. Therefore, if it passes the V&V 
against the system requirements and stake-
holder needs, the system can be considered 
verified and validated as well.

Verification. The verification approach is 
bottom-up: it is performed gradually from 
the components’ level to the system level 
(in this paper, the components’ level is con-
sidered the lowest level of detail containing 
atomic elements of system structure).

The first iteration of verification can be 
performed as soon as component models 
are completed. Once these models pass the 

verification against the component level 
requirements, they can be integrated at the 
subsystem level. It is important to note that 
various design solutions can be proposed 
for each component; more than one con-
figuration (or candidate solution) model 
at the subsystem level can be produced. 
The subsystem models can then be verified 
against the subsystem level requirements. 
After these models pass the verification, 
they can be integrated at the system level. 
As with the subsystem level, more than 
one configuration of the whole system can 
be built, which are subsequently verified 
against the system level requirements. To 
assess the alternative configurations and 
choose the preferred architecture for the 
physical implementation at each level of 
detail, a trade-off analysis is performed 
(Morkevicius at al., 2021). 

The first iteration of verification can be 
performed as soon as at least one of the 
component models is completed. Once 
these models pass the verification against 
the component level requirements, they can 
be integrated at the subsystem level. It is 
important to note that various design solu-
tions can be proposed for each component; 
more than one configuration (or candidate 
solution) model at the subsystem level can 
be produced. The subsystem models can 
then be verified against the subsystem level 
requirements. After these models pass the 
verification, they can be integrated at the 
system level. As with the subsystem level, 
more than one configuration of the whole 
system can be built, which are subsequently 
verified against the system level require-
ments. To assess the alternative configura-
tions and choose the preferred architecture 
for the physical implementation at each lev-
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Figure 2. MagicGrid extensions for V&V activities
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Figure 5. Typical model for validation 
using MagicGrid

el of detail, a tradeoff analysis is performed 
(Morkevicius et al., 2021).

As defined by MagicGrid, the models 
at different levels of system hierarchy are 
usually created by different engineering 
teams or even organizations. Therefore, the 
verification of components and subsystems 
may be performed in isolation from each 
other.

The verification at each level of detail is 
performed by utilizing test cases, as a single 
test case enables users to check whether the 
related model or its fragment satisfies the 
relevant requirement. This information is 
captured as the verdict of the test case.

A test case can be captured in the model 
as SysML sequence, activity, or state ma-
chine. Each test case must be related to the 
relevant system, subsystem, or component 
level requirement by utilizing the «verify» 
relationship. Early verification of the system 
can be performed automatically by execut-
ing its models.

To perform early verification of the 
system, the same verification approach can 
be applied at each level of system hierar-
chy within the solution domain model. As 
Figure 3 depicts, a typical SysML model for 
performing early verification includes:

■■ Model of the system/subsystem/com-
ponent to verify. It is represented here 
as the Level N Model block with the 
state machine as its classifier behavior. 
In the block name here and elsewhere 
in the Figure 3, Level N can be replaced 
with system, subsystem, or component.

■■ Requirement against which the 
system/subsystem/component must 
be verified. It is represented here as the 
Level N Requirement with testing speci-
fied as its verification method.

■■ Analysis context. It is represented here 
as the Level N Model Analysis block. The 
analysis context block is responsible for 
orchestrating the execution of the test 
case and the behavioral model at the 
particular level of system hierarchy. It 
includes: (i) the model to verify/and (ii) 
the Tester block which represents the 

person who performs the verification 
by sending external trigger(s) to the 
appropriate model element. As shown 
in Figure 3, that external trigger can be 
a signal provided by a message as part 
of the executable test case.

■■ Test Case to capture the steps for 
verification. It is represented here as 
the Level N Model Test Case test case 
captured in the model as interaction 
and displayed using the infrastructure 
of the SysML sequence diagram. As 
the test case is owned by the analysis 
context block, the lifelines of the related 
sequence diagram represent both blocks 
that take part in this analysis block: (i) 
the model to verify; and (ii) the Tester 
block. The test case has a parameter 
named verdict (it appears in the follow-
ing figure, within the related analysis 
block), which is set to pass if the model 
passes the steps of the test case, or to 
fail if it does not. When the verdict is 
pass, the model can be considered as 
satisfying the related requirement.

Validation. Once the system configura-
tion model is verified, it is time to validate 
it against stakeholder needs. As part of sys-
tem architecture, UI mock-ups can be used 
for this. As Figure 4 shows, the UI mock-
ups (or UI prototype) can be produced by 
utilizing the UI prototyping profile which 

(in addition to the SysML profile) extends 
the UML 2 metamodel to support stereo-
types for UI prototype modeling (Silingas 
et al., 2010). Moreover, the UI prototyping 
profile enables users to integrate the UI 
mock-ups into the system architecture 
model, that is, relate them to the SysML 
model elements capturing relevant concepts 
of system architecture. Standard SysML / 
UML relationships, such as realization or 
“trace,” can be used for this.

The UI prototyping profile is imple-
mentation-independent and includes a 
minimal set of UI elements, along with 
their properties for the most common UI 
prototyping needs. These elements extend 
certain UML meta classes, such as compo-
nent or class, and are grouped into separate 
packages by type, as shown in Figure 4 
(Silingas et al., 2010). Just like UML or 
SysML elements, UI mock-up elements 
can be semantically related to each other. 
Element representations are taken from the 
Java Swing external library. A user interface 
modeling diagram to display them, is based 
on the UI prototyping profile and created 
using a typical workflow for creating the 
domain-specific modeling environment as 
presented in Silingas et al. (2009).

UI prototyping can be applied at various 
stages of an engineering project. For 
example, it can be used to facilitate the 
problem domain analysis to communicate 
with stakeholders. When applying the 
MagicGrid, UI mock-ups can be used to 
validate the system architecture. UI mock-
ups related to the elements of logical system 
architecture within the solution domain 
model must be related to the relevant stake-
holder needs, as well. As shown in Figure 5, 
the «refine» relationship can be utilized 
for this. UI elements are related to the 
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Figure 3. Typical model to perform early verification using MagicGrid
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architecture elements using the ‘represents’ 
metaproperty.

CASE STUDY
This part of the paper presents a case 

study example that illustrates the proposed 
approach. The modern car is a sophisticat-
ed system that holds many internal system 
elements that intricately interact with each 
other. The integration of different parts is 
a vital activity; hence this system can be 
recognized as a suitable example to demon-
strate the proposed system V&V method.

In the case study example, the car model 
is developed using SysML language and 
MagicGrid method and most of the model 
creation activities are not disclosed. How-
ever, it is still important to understand the 
structure of presented system of interest 
(SoI) and its internal components. For this 
reason, Figure 6 is used to display the car 
structure.

Figure 6 shows an SoI structure that is 
divided into five composition levels, begin-
ning from level zero that represents the car 
as one unit, and ending at level four, that 
characterizes the components of SoI. Due 
to the extent of the modern car systems 
and scope associated with them, it is not 
possible to disclose all required systems 
verification activities. For this reason, this 
case study example analyzes a small subset 
of internal car systems.

System Verification at Lowest Composition 
Level

The application of the presented ap-
proach is started from the second level of 
decomposition, depicted in Figure 6. At 
this level, the drivetrain system is chosen 
to be the target for system verification. This 
vehicle system is an elaborate system on its 
own and is composed of multiple internal 
systems that could require undergoing 
their own verification processes. In this 

paper, the assumption is made that internal 
subsystems of the drivetrain passed their 
system verification activities on the third 
and fourth levels of composition. For this 
reason, our main attention is directed to the 
verification of the drivetrain system.

For the drivetrain system, the transmis-
sion controller is one of the most import-
ant elements. Nowadays, the drivetrain 
component is implemented with integrated 
circuits, where software code is responsible 
for the correct application of this part of the 
vehicle. As reading and understanding soft-
ware requires specialized skills and knowl-
edge, it is a good idea to abstract it for a 
wider audience and retention of knowledge. 
The case study model accomplishes this by 
analyzing transmission controller behavior 
in the form of a SysML state machine dia-
gram, displayed in Figure 7 part A. Figure 7 

part B shows a SysML state machine dia-
gram that describes how another drivetrain 
component, clutch, behaves. Each of the 
drivetrain system elements (Figure 6) 
potentially could have a similar behavior 
description but this case study example 
overlooks that due to the extent related to 
their analysis. Verification concentrates 
on the clutch and transmission controller 
systems.

For our purposes, the vehicle drivetrain 
is identified as an automated manual type. 
This system is a mix of automatic and 
manual transmission types and has the 
characteristics of both. For example, like 
a manual transmission, the automated 
manual transmission has a clutch compo-
nent that needs to be engaged during the 
change of gears. However, in this type of 
transmission, clutch engagement is done 
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not by the driver but by the electrical motor 
component of the drivetrain system. For 
this reason, a verified system is required to 
ensure that the control logic of the trans-
mission controller adheres to the correct 
clutch operation in a timed manner.

To verify system behavior integration, 
the proposed approach suggests creating 
executable test cases. The test case should 
define a priori system behavior. Failure of 
the test case could potentially imply incom-
plete system behavior definition and at the 
same time improper system verification at 
this composition level. Figure 8 part A dis-
plays one the possible test case used for the 
verification. Here, the test case checks that 
driving mode changes on the transmission 
controller system result in correct clutch 
system behavior. To achieve this, the tester 
sends an external stimulus “reverse” in a 
message to the transmission controller ele-
ment. Upon acceptance of the message, the 
transmission controller element changes 
its states from “parking” to “reversing.” The 
state change on the transmission controller 
system needs to be propagated to the clutch 
system in order to connect it mechanically 
to the gearbox system and allow a drive 
mode change for the drivetrain system. As 
consequence, the clutch should also change 
its state from “off ” to “connected.” Failure of 
the lifeline represented element to be in the 
required state denotes the failure of the test 
case. This is verified with a state invariant 
element in the case study system model. 
Note that sequence diagram usage for the 

test case definition is not the only available 
possibility. Other model elements could be 
used as well, although this would require 
different test case checking techniques.

One potential limitation of this approach 
is the need to manually define test cases. 
Due to the many available driving mode 
change permutations in the system model, 
the presented test case is reduced to a lim-
ited set of driving mode changes (Figure 8 
part A). However, for complete verification 
of the drivetrain system, the model should 
pursue all of them. Though we consider 
this to be out of scope of our proposed 
approach and we do not explore available 
automatic test case generation methods 
from SysML models.

Figure 8 part B introduces a verify relation 
between a requirement and a test to show 
a logical and traceable link, in accordance 
to the proposed approach. As the proposed 
method is of executable type, a block is re-
quired for orchestrating model execution. In 

Figure 8 part B, the block “lowest level test 
case conductor” achieves this by associating 
the verified level SoI (drivetrain) and exter-
nal stimulus (tester) blocks.

The verdict of the test case verification 
should be retained. This is achieved by 
using a value property element (testResult) 
in the presented system model. If it is 
necessary to run multiple test cases for the 
same SoI, several value properties should 
be used for storing each test case verifica-
tion outcome. Lastly, multiple test case ver-
ification results could have different verdict 
values and there could be a need for their 
arbitration, hence the satisfy relationship 
between the value property and require-
ment is presented as an option.

Figure 9 shows the usage of the instance 
table to display multiple test case execution 
attempts in the form of an instance ele-
ment. The “fail” value of the value property 
“testResult” specifies a test case violation 
and “pass” marks a successful run of it. In 
our approach, “pass” signifies correct sys-
tem verification at this composition level.

System Verification at Intermediate 
Composition Level

At the intermediate level of an SoI 
structure, the case study example targets 
the powertrain system, composed of two 
subsystems: power source and drivetrain 
(Figure 8). Here, the proposed verification 
approach is repeated in the same way as in 
the lowest system composition level. First 
of all, a test case is defined using a SysML 
sequence diagram (Figure 10 part A). This 
test case checks that the drivetrain system 
changes driving mode when the parameters 
change on the engine system. Specifically, 
the drivetrain system part transmission 
controller should monitor the engine 
throttle position and engine speed sensors 
values. If monitored values comply with 
the predefined drive mode change patterns 
specified within the system requirements 
(Figure 10 part B), then the drive mode 
change should occur for the transmission 
controller system. In the test case, the cor-
rect driving mode selection is achieved with 
the state invariant element. Failure of the 
state invariant results in the failure of the 
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Figure 9. Multiple test case execution results displayed in instance table

Name testResult#

lowest Level Test Case at 2021.10.14 16.30 fail1

lowest Level Test Case at 2021.10.15 11.19 fail2

lowest Level Test Case at 2021.10.21 13.03 fail3

pass4 lowest Level Test Cases at 2021.10.21 13.23
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test case. Engine parameter changes are in-
voked by the external tester that sends syn-
chronous messages to the verified system 
elements. Upon acceptance of the message, 
the receiver calls a designated operation that 
has a method description, which invokes 
the required variable change in the model 
and with operations we can reuse repeating 
system variable change patterns.

In accordance with the presented 
approach, requirements are connected 
to the test case element for traceability 
purposes and a block (intermediate level 
test case conductor) is introduced for the 
test case and SoI behavior orchestration. 
For the execution results storage, a variable 
is required, thus in a SysML model, a value 
property (Figure 10 Part B) is used. As in 
the lowest system composition level, the 
pass of the test case execution denotes 
successful system behavior verification 
(Figure 9).

System Verification at the Highest 
Composition Level

In the last part of the case study exam-
ple, the highest SoI composition level is 
explored. At this level, a car is recognized as 
a single unit and system verification should 
be concerned with all vehicle systems and 
their incorporation into one working entity. 
The system verification procedure is repeat-
ed in the same way as before: definition of 
the test case, connection of the test case to 
requirements, executable model prepara-
tion and execution of it.

At the highest composition level, this 
case study example explores how a driv-
er-invoked driving mode changes with the 
electronic lever module result into a gear 
change for the drivetrain system (Figure 
11 Part A). As these two systems are on 
different vehicle structures, it is important 
to ensure their behavior synchronization 
for proper system verification.

For the test case definition, a SysML 
sequence diagram is used. Here, the state 
invariant is an element that confirms the 
test case correctness, because the system 
incapacity to be in the required state 
should result in test case failure. As before, 
related requirements are connected to 
the test case for traceability purposes and 
a block responsible for the test case and 
SoI behavior coordination is introduced 
(Figure 11 Part B).

Due to the large number of systems asso-
ciated with modern cars, in this paper it is 
impossible to display all test cases that are 
required for complete car system verifica-
tion. For this reason, the case study sample 
limits system verification to the successful 
pass of the test case, displayed in Figure 
11 Part A. However, a car system model 
should cover all required test cases for the 
proper system verification.

Additionally, UI elements could be 

Figure 10. A. Intermediate composition level test case description within SysML sequence diagram; B. Intermediate composition 
level test case linkage to requirement
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Tester
driver : vehicle.DTS.DTS

TCU : Transmission
Controler

vehicle.DTS.PSS.
ECU.ESS : Engine

Speed Sensor

vehicle.SUS.VSS.
 : Vehicle Speed

Sensor

vehicle.IS.GSS
: Electronic

Lever Module

Parking

Reversing

P

R

N

N

Idling

Idling

Automatic Driving

Driving Auto Mode

Manual DrivingManual Driving

Driving Manual Mode

FirstA

FirstM

Tester
«block»

Vehicle
«block»

driver vehicle

bdd [Package] Highest Level Test Casesd [Test Case ] Highest Level Test Case [ Highest Level Test Case ]

testResult : VerdictKind
values

«block»

Highest Level Test Case
«testCase»

«satisfy»

«verify»

Drive Mode Selection
Id = “6”
Text = “Driving mode
change with the lever
module shall result in the
same change for the
drivetrain system”

«requirement»

{500 ms}

{500 ms}

{500 ms}

{500 ms}

{500 ms}

3: Reverse(pr=”null”)

4: Neutral(pr=”null”)

5: Automatic(pr=”null”)

6: Neutral(pr=”null”)

7: Manual(pr=”null”)

1: setRPM1()
2: setParkSpeed()

Highest Composition Level Test
Case Conductor

A B

Figure 11. A. Highest composition level test case description with SysML sequence 
diagram; B. Highest composition level test case linkage to requirement

utilized for coordinating different systems 
behaviors and as a tool for validating a sys-
tem model. Figure 12 Parts A and B denote 
UI usage in the case study example. Figure 
12 Part C shows the necessity for displaying 
the correct gear in the instrument cluster 
when a driver changes the driving mode 
with the help of an electronic lever module 
in the form of a SysML requirement. 
The presented UIs are used to abstract 
and visualize car instrument cluster and 
electronic lever module systems. A “refine” 

relationship is employed to link them to 
the requirement. Since UIs are interactive 
windows during real-time model execution, 
they can display system model variables, 
states, or other element values. Therefore, 
a model user can employ them as a means 
for the system model validation. In the 
case study sample, the failure of displaying 
the correct drive mode during the model 
execution signifies denoted stakeholder 
requirement validation failure.

Lastly, UIs use for systems validation 

can be deployed in conjunction with the 
test case verification or as an alternative. 
However, it should be noted that this is a 
less rigorous approach compared to the test 
case verification method and is dependent 
on the experience of the modeler.

CONCLUSIONS AND FUTURE WORKS
Analysis of related works revealed that 

there are only a few scientific researchers 
in the area of V&V in the MBSE environ-
ment. There are some MBSE methodologies 
addressing V&V, such as OOSEM and 
IBM Harmony; however, none of them 
clearly, step-by-step, define V&V element 
relationships to the system architecture and 
requirements in the different layers of the 
hierarchy of system elements.

The proposed approach clearly defines 
the application of SysML to model-based 

A B C
Figure 12. A. GUI for instrument cluster; B. GUI for electronic lever module; C. 
Requirement stating the need of displaying drive mode in instrument cluster
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V&V in the context of the MagicGrid 
methodology. The applicability of the 
approach is demonstrated on the real-life 
vehicle model at every level of the hierarchy 
of system elements. Moreover, the 
approach uses pure SysML, without adding 
additional complexity by extending the 

standard language. Should it be necessary, 
organizations applying the approach can 
extend the proposed approach to support 
their required terminology.

A modern car (or any other current 
system) has a substantial complexity 
associated with it. Manual test case creation 

could be a laborious task that could 
potentially lead to inadvertent mistakes in 
the definition of the test case. Therefore, 
it is important to address it beforehand 
when verifying systems using the proposed 
approach.  ¡
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INTRODUCTION

  ABSTRACT
Model-based systems engineering approach is increasingly used to manage the complexity of modern systems and to reduce 
costs of their development. In the aerospace industry, modelling and simulation is not only a cost-effective verification and 
validation strategy where test rigs and flight tests are far more expensive but also is increasingly used in the certification process. 
Nevertheless, as with any digital artefact, if the models aren’t configured and traceability isn’t assured, then the models are not of 
much use. Configuration management comes into play as a key discipline to enable the use and maintenance of the models. This 
paper explores the use of configuration management for modelling and simulation in an aerospace setting, with a specific example 
involving landing gear and its surrounding systems.

Configuration Management 
for Model Based Systems 
Engineering — An Example 
from the Aerospace 
Industry

Adriana D‘Souza, adriana.dsouza@airbus.com; and Phanikrishna Thota, phanikrishna.thota@airbus.com
Copyright © 2022 by Ariana D‘Souza and Phanikrishna Thota. Permission granted to INCOSE to publish and use.

The main purpose of this paper is 
to emphasize the rigorous use of 
configuration management (CM) 
in all aspects of models and the 

resulting analyses that will form the basis 
for future “digital twins” (virtual represen-
tations of the physical product that repli-
cate not only the architecture but also the 
behavior of the real aircraft to the required 
degree and can be interchanged seamlessly 
in part or whole of the real aircraft). We do 
this by presenting two real-world examples 
where we summarize the lessons learnt. 
This paper is organized as follows: a brief 
overview of configuration management and 
its principles are discussed in the intro-
duction section followed by two real-world 
examples where configuration management 
principles have been applied to modelling 
processes with varying impact on product 
certification. The paper concludes on the 
usage of CM in the future where modelling 

and simulation will be used more exten-
sively to perform verification & validation 
(V&V) and certification.

Mathematical models have been used in 
engineering, especially for V&V through 
simulation and proof of concepts for quite 
some time now but model-based systems 
engineering (MBSE) is a relatively new 
subject to the aerospace industry.

So, what do we mean by the word model? 
There are many definitions out there but 
here are some definitions in the context of 
systems engineering (SEBoK, 2020):

■■ A simplified representation of a system 
at some particular point in time or 
space intended to promote understand-
ing of the real system.  (Bellinger 2004)

■■ A physical, mathematical, or otherwise 
logical representation of a system, entity, 
phenomenon, or process.  (DoD 1998)

■■ An abstraction of a system, aimed 
at understanding, communicating, 

explaining, or designing aspects of 
interest of that system (Dori 2002).

We prefer the first and last definitions 
because they stress the fact that a model 
is a simplification/abstraction of reality as 
we more often than not can’t replicate the 
system of interest to the nth detail. So, the 
process of modeling is to see which fea-
tures/characteristics are key to be described 
and in the words of Brian Greene (2011) 
“It’s the art of knowing what to ignore.”

Another part of modelling and simulation 
is the concept of model-based engineering 
(MBE) where models are used to investigate 
the behavior of system-specific (for example, 
landing gear, fuel, flight controls, etc.) 
components and their integrations into the 
larger context of the aircraft. Typically, MBE 
uses specific solvers provided by a variety of 
commercial and business-owned tools that 
simulate a particular type of physics using 
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variable step integration methods. Especially 
in the development phases of a product such 
as an aircraft or system, MBE suggests the 
use of models (where needed on an ad hoc 
basis) to assist the development process, but 
not as a master.

On the other hand, model-based systems 
engineering (MBSE) is defined as “the 
formalized application of modelling to 
support systems requirements, design, 
analysis, verification, and validation 
activities beginning in the conceptual 
design phase and continuing throughout 
development and later life cycle phases” by 
the INCOSE Systems Engineering Vision 
2020 (INCOSE, 2007).

The idea of MBSE is that we not only use 
models, but we use them in a consistent 
way in conjunction with requirements, 
V&V data, etc. throughout the lifecycle 
of the system/product/service. The 
fundamental objective is to ensure that 
different stakeholders of the system view 
the basic functionality, interfaces, and 
requirements to be correct and consistent. 
In order to use these views legitimately 
within the aircraft development and to 
ensure that the resulting artefacts can be 
used in the certification process, a robust 
traceability platform is needed, and this 
requires configuration management.

Configuration management. CM 
origins have roots in a widely spread story 
about a missile project (Gonzalez 2012):

When a successful demonstration was 
finally made and the projectile hit its target, 
the buyer said: ‘build me 100 more’, the 
industry found themselves in the following 
dilemma:

■■ Their prototype was expended…
■■ They did not have adequate records of 
part number identification, chronology 
of changes, nor change accomplish-
ment. Technical publications did not 
reflect all the various changes...

■■ ... it was obvious that a second success 
could not be guaranteed, nor an identi-
cal article produced.

Therefore, CM as a formal management 
approach was developed by the US Air 
Force for the US Department of Defense in 
the 1950s as a technical management disci-
pline for hardware material items – and it is 
now a standard practice in virtually every 
industry (Gonzalez 2012).

So, according to EIA 649 Configuration 
Management (CM) is defined as a technical 
and management process applying appro-
priate processes, resources, and controls, to 
establish and maintain consistency between 
product configuration information, and the 
product. (SAE, 2019).

CM today identifies five main activities 
(ISO 2003) and (SAE, 2019):

■■ Configuration management plan-
ning – over the life cycle of a product is 
essential to achieving effective, predict-
able, and repeatable CM processes.

■■ Configuration identification – addresses 
the composition of configuration infor-
mation, how each document, product, 
and unit or group of units of a product 
are uniquely identified (identifiers); 
how relationships are maintained in 
product structures; how elements of the 
configuration are verified and released; 
how the product configuration and 
components of it is/are baselined for 
change management; how interfaces 
are defined and managed; and how 
Configuration Items (CIs) are assigned/
designated.

■■ Change control – includes managing 
both changes to and variances from the 
approved product configuration infor-
mation, using a systematic, measurable 
process. The configuration change man-
agement function applies to all types of 
products and all program phases.

■■ Configuration status accounting – con-
sists of the recording and reporting 
of information needed to trace and 
manage a configuration effectively by 
providing information and process 
status, as well as CM process perfor-
mance data. The purpose of CSA is to 
capture, record, retrieve and report 
status and performance information 
about the product under configuration 
management and make the information 
accessible to support program/project 
activities as needed.

■■ Configuration audit – establishes that:
•	 Appropriate CM processes are in 

place and that they are effectively 
operating to maintain consistency 

between the product and its product 
configuration information through-
out the product life cycle.

•	 The approved product configuration 
information is complete, accurate 
and current to produce the product, 
and applicable operation and main-
tenance instructions, training, and 
spare and repair parts.

•	 The physical, functional, and inter-
face requirements, defined in the 
approved product definition infor-
mation, are achieved by the product.

Some of today’s standards that describe 
the requirements for CM are the ISO 
10007, EIA 649 C, EN 9100 and, in the do-
main of the civil aerospace industry, EASA 
and FAA regulation, as well as recommend-
ed practice such as specified in ARP4754.

CM FOR MBSE
Systems engineering addresses complex-

ity of systems by decomposing them into 
several subsystems etc. In the version 3.2 of 
the INCOSE Handbook (INCOSE 2012) we 
have an example of such a decomposition, 
see Figure 1.

The product breakdown structure (PBS) 
is a key part of the development as it 
identifies “how” a particular functionality is 
implemented within the final product. The 
PBS along with its links to the functional 
decomposition give the impact assessment 
in case of failures. In the example shown 
above the breakdown is shown with some 
configuration items (CI).

A CI is defined as:
■■ any portion of hardware, software or 
composite item at any level in the sys-
tem hierarchy designated for CM. A CI 
has defined functionality, is replaceable 

HWCI
CSCI

Hardware Configuration Item
Computer Software Configuration Item

IS Interface Specification

System

Element

HWCIISCSCI

ISCSCI HWCI HWCI HWCI

HWCI

HWCI

ElementElement

ISCSCI

Figure 1. Example project specification tree (INCOSE. 2012)
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as an item, has unique specification, 
and its form, fit and function is under 
formal control (Wiley 2015).

■■ an entity within a configuration that 
satisfies an end use function. Configu-
ration: interrelated functional and phys-
ical characteristics of a product defined 
in product configuration information 
(ISO 2003).

■■ a product, allocated components of a 
product, or both, that satisfies an end 
use function, has distinct requirements, 
functionality and/or product relation-
ships, and is designated for distinct 
control. (SAE 2019).

Now, what we define as a configuration 
item is an interesting debate and Steve Eas-
terbrook from CMPIC wrote a white paper 
(Easterbrook 2016) that reflects the debates 
around this topic. According to him a 
document can’t be a CI, but what about a 
model? Some of the definitions above are 
clear that the CI must be a portion of the 
product; others are happy for it to be a 
characteristic linked to the product.

The models that are referred to in this 
paper are associated with a specific product, 
the landing gear of an aircraft and corre-
spond to a real-world example. The aircraft 
decomposition in the aerospace industry 
has been standardized for the benefit of 
easier maintenance by the ATA standard 
starting with ATA 100 then the ATA Spec 
2200 and most recently the S1000D.

The landing gear is defined as ATA 
chapter 32 and then it further decomposes 
in the following sub-chapters:

➞	 00 General
➞	 10 Main Gear and Doors
➞	 20 Nose Gear and Doors
➞	 30 Extension and Retraction
➞	 40 Wheels and Brakes
➞	 50 Steering
➞	 60 Position Indication and Warning
➞	 70 Supplementary Gear.

So, we start having the first level of de-
composition of an aircraft (A/C) already by 
the standards, then we further decompose 
the A/C in equipment and software and 
link them back to the ATA section/subsec-
tion they belong to.

Modelling for the A/C and subsequently 
landing gear links to the systems that are 
put on the A/C. Some models are even 
being used to simulate the behavior of A/C 
components for the training of pilots so they 
need to be an accurate representation of the 
equipment/system they are modelling.

In the next section we will look at two 
different real-world examples of modelling 
within the landing gear domain and how 
configuration management was performed 
(or lacked) and draw lessons learned and 

potential steps for the future. In the two ex-
amples below, an industry standard MBSE 
process covering a seamless integration 
of operational, functional, logical, and 
physical elements is not followed. In these 
examples, the use of the term MBSE is 
limited to the management and integration 
of domain-specific models into a unified 
aircraft model and a manual traceability 
to requirement management systems, for 
example, DOORS. The models, however, 
are built and change-managed using an 
internal model management process that 
becomes part of the company’s business 
process and is certified by the authorities. 
Further details about this model man-
agement process where a single platform 
is used to specify, build, verify, validate, 
change and store models with complete 
traceability to the aircraft and system re-
quirements is defined in the next section.

VIRTUAL IRON BIRD FOR CERTIFICATION OF 
THE AIRCRAFT HYDRAULIC SYSTEM

Long before an Airbus jetliner takes 
to the skies, the flawless operation of its 
electrics, hydraulics, and flight controls is 
meticulously confirmed with the help of 
a giant test rig nicknamed the “Iron Bird.” 
(IB) shown in Figure 2 (Airbus 2017). 
Building, operating, and maintaining an 
Iron Bird is expensive and amounts to 
millions of Euros during the development 
of the aircraft and beyond.

The sheer cost of operating the physical 
iron bird combined with the push towards 
a more digital future triggered an oppor-
tunity to build a virtual iron bird. A virtual 
iron bird would not only optimize the costs 
but also maintain the same rigor in testing. 
The virtual iron bird would be a digital 
equivalent of the physical iron bird in all 
sense and purposes. It will therefore be a 
representative of the actual A/C within the 
margins identified at the beginning of the 
project and which are also agreed with the 

aviation authority. In the past NASA looked 
at similar concepts for spacecraft repairs 
and maintenance (NASA 2004).

The Airbus A350 model version –900 
aircraft (A/C) has a physical iron bird to 
achieve the integration tests of its hydraulic, 
electric, flight control system, and other 
transverse systems. These are necessary to 
cover verification and validation objectives 
in the frame of the A/C development life 
cycle.

The longer version of this A/C, the 
–1000 version, was considered a challenge 
in terms of the upgrade of the physical 
iron bird from the previous version A/C, 
–900 version. Therefore, it was decided to 
cover the verification and validation of the 
systems requirements mentioned above by 
several alternative test means including a 
virtual iron bird (VIB).

Test means for the -1000 A/C version 
included:

■■ Physical modifications of the actual 
iron bird

■■ The real-time virtual iron bird -1000
■■ The co-simulation platform related to 
the non-real time modelling

■■ Flight tests.

For developing a virtual iron bird that is 
a true image and functionality as the physi-
cal one it made sense to develop the virtual 
iron bird corresponding to the existing 
physical iron bird from the original model, 
the –900. This allowed us to test the virtual 
iron bird against the physical one.

Once the virtual iron bird for the -900 
was developed and tested the work on the 
–1000 virtual iron bird could start. As there 
was no physical iron bird for this version 
the development of the virtual one followed 
the traditional method of injecting small 
changes to the validated –900 virtual iron 
bird to bring it to the desired configuration 
(mainly piping modifications).

Figure 2. A full-scaled test rig nicknamed the “Iron Bird.” (Airbus 2017)
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The –1000 virtual iron bird was integrat-
ed onto the flight simulators of the aircraft 
which have real avionics inputs but virtual 
engines and landing gears.

Even if the virtual iron bird results were 
used for the certification process along-
side the flight test campaign its objective 
is extended to support safety of flight and 
development campaigns. even outside the 
type certification. It will also be used to 
perform integration tests and validate the 
sizing of the A350 –1000 hydraulic circuit.

As shown in Figure 3, the virtual iron 
bird was made up of several models that 
represented the shared resource of the hy-
draulic architecture and its corresponding 
consumers, such as landing gear systems, 
flight controls, and high lift systems. Here, 
the current aircraft refers to the aircraft 
for which a real iron bird is built to the 
full scale and the data from which is used 
to validate the models. The extended 
aircraft refers to the variant of the current 
aircraft with a higher payload capacity 
and extended range. Figure 4 shows an 
illustration of the actual versus virtual iron 
birds. Specifically, the virtual iron bird is a 
combination of detailed (Amesim model) 
and real-time (Simulink model) hydraulic 
models built to investigate both the dy-
namic and steady-state nature of the system 
under consideration. While the Amesim 
models are integrated using the tools spe-
cific functionalities, the real-time models 
for various systems are integrated as a C 
code and business-owned platforms. The 
combination of models can also be referred 
to as a “digital twin” or “virtual twin” of the 
physical and real iron bird.

One important aspect of building, ana-
lyzing, and comparing the virtual iron bird 
was to ensure a rigorous traceability exists 
between the equipment on the aircraft, 
equipment on the physical test rigs, and 
the corresponding equipment models in 
the virtual iron bird model. This means a 
comprehensive configuration management 
of both the equipment, and the models had 
to be in place to demonstrate that the repre-
sentativity is fully achieved in all aspects of 
the systems under test.

In this paper we focus on the configura-
tion management of the models but not the 
physical equipment, as the latter is part of 
the traditional aircraft development process 
that is mandatory for certification, oper-
ation, and maintenance. Specifically, the 
configuration management of the models 
was achieved using a “library approach,” 
where the system under test is an assem-
bly of subsystem models. These subsys-
tem models form a library that is version 
controlled with a one-to-one relationship 
with the real equipment. The configuration 
management was extended to the analyses 

that were carried out on the virtual iron 
bird to ensure a seamless comparison with 
the flight test campaign.

In the sections below we will look at how 
configuration management was established 
for the models in this example.

Configuration management planning
Configuration management processes 

are standardized inside the company for the 
development of the aircraft as the system 
of interest. However, when it comes to the 
development of the associated models, etc., 
this management is less strict and more 
heterogeneous. For the models which will 
go on the flight simulators, the specifying, 
building, compiling, sharing, integrating, 
and changing is performed through a com-
pany internal standard. This standard en-
sures that the models have clear traceability 
to the software and hardware items and link 
to a particular airline and each A/C.

In the case of the models used for the 
virtual iron bird, the configuration man-
agement planning performed for the virtual 
iron bird was firstly a development from 
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Figure 3. Systems overview of the iron bird

Figure 4. Actual iron bird versus virtual iron bird
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scratch of the models for the –900 version 
and then incremental development/changes 
of the –1000. However, no formal CM Plan 
was issued for this model development just 
the CM strategy was outlined in various 
other deliverables.

Configuration identification
The formal identification of configu-

ration items (CIs) is key. In this case the 
CIs were the models that represented the 
decomposed logical/physical system/equip-
ment of the aircraft and are drawn from 
the PLM corresponding to the full aircraft. 
The CIs in the modelling world correspond 
to the system that is being modelled and 
its elementary equipment also form CIs 
in their own nature. A software-specific 
approach of versioning the CIs was imple-
mented that generated a unique identifier 
that was linked to the actual software or 
physical item they were simulating.

As part of the standard model develop-
ment process a whole series of modelling 
artefacts are created that include, documen-
tation, model libraries, executable code, 
test scripts, analyses, and change requests. 
Therefore, each CI is allocated its associated 
set of artefacts and linked to the unique 
identifier that was generated earlier as 
part of the CI identification. Starting from 
the modelling requirements that include 
requirements of both functional and 
performance nature, the process follows to 
specifying the model to satisfy the require-
ments and its interfaces to other systems.

The model is given an ”ID” (Pro-
gramme_AirbusStandard_System_subsys-
tem_ver_X_Y_Z) which is a concatenation 
of the program, Airbus standard, system 
details, and version that is consistent with 
the official Airbus aircraft simulation mod-
els data bank. The version in the naming 
convention is made up of three separate 
parts representing the type and severity of 
change (documentation versus correction 
versus evolution of the model).

Change control
As iterated above, the key to successful-

ly creating the virtual iron bird (VIB) for 
the –1000 version from the –900 one was 
heavily reliant on successfully embodying 
the required changes to the system in a 
robust manner. For this, a manage model 
change process was used. The users (VIB, 
other test platforms, design office, integra-
tors, etc.) of the delivered models raised 
change requests either as a correction or an 
evolution for the model but the change had 
to be approved by internal modelling man-
agement authority along with the relevant 
design office and model developers. It was 
then analyzed and planned for implemen-
tation. The model is then executed, tested, 

and released and finally integrated into the 
platform.

Create model change request: Model 
change request is created to identify any 
new need, evolution, or problem during 
plan simulation model(s) development task. 
The model coordinator creates a change 
request for any system evolution possibly 
impacting the model. A recording of

model inputs and outputs is attached 
to the request identifying a functional 
problem.

Approve model change request: The 
model coordinator obtains approval and 
commitment of the model developer to 
take into account the change request for 
the next version during plan simulation 
model(s) development task. New user’s 
needs are identified in this process.

Analyse and plan model change: The 
model developer describes and plans a 
technical answer to the problem/need 
during plan simulation model development 
and updates model delivery

schedule according to the planned devel-
opment.

Execute, test and release model change: 
The model developer modifies model items, 
following a change request indication, 
and implements associated verification 
(non-regression tests, dedicated verification 
tests). The model developer releases model 
change(s) identified in model delivery. This 
task is performed during develop shared 
simulation model.

Validate model change: Change request 
initiator provides the validation status of 
the change.

Configuration Status Accounting
As iterated in the previous section, links 

between the model evolution/correction to 
the product configuration items were es-
tablished to record, approve, or disapprove, 
and coordinate changes to configuration 
items after formal establishment of their 
configuration identification. Configuration 
status accounting monitors the embodi-
ment of changes and link with the physical 
product thus supporting the verification 
and validation of the models and subse-
quently of the two virtual iron birds.

The model verification plan is created 
before developing the model. This plan 
contains a detailed list of tests that need 
to be carried out on the model to ensure 
that it satisfies the requirements listed from 
the stakeholders. A matrix of compli-
ance is produced with status “compliant,” 
“non-compliant” and “partially compli-
ant,” against the requirements. A model 
verification report is created along with 
the model delivery file that includes the 
summary of all the changes made and the 
applicable sections. The model delivery file 

is also the model description along with 
the parameters used in order for the end 
user to trace the modelling artefacts to its 
origins In addition to these documents, a 
whole array of change-related documenta-
tion exists that is applicable to the feedback 
on the model. For example, a model change 
request is raised against a model during its 
usage. This change request is then reviewed, 
approved, or declined, and the version 
controlled for traceability. If approved, the 
model is changed accordingly for the next 
delivery. All of these documents, along with 
the model are signed off by the relevant 
internal authorities, especially in light of 
the configuration management.

Configuration audit
The process was deployed to all impact-

ed parties and internal audits must have 
been performed but none were performed 
during the time on this example.

NEW EXTENSION & RETRACTION SYSTEM
In this section we present a case where 

system certification could not be achieved 
due to the lack of rigorous CM implemen-
tation. Specifically, we highlight the defi-
ciencies in the five main activities that are 
necessary to ensure a robust CM process.

The extension & retraction system is 
part of the landing gear (LGERS), which 
functions to reduce the overall drag on the 
aircraft by retracting the gear into the bay 
after take-off. To perform the V&V and 
certification activities related to this system, 
a physical test rig is built along with the 
accompanying hydraulic architecture of the 
shared resources. Typically, detailed models 
of the system are built and validated with 
the data from the physical rig and with the 
bench test data from the equipment suppli-
ers. These validated models are then used 
for performance analysis and risk mitiga-
tion for first flight.

The type certification standard of the 
system design is replicated in the physical 
test rig and used to qualify the system with a 
standard set of tests. This, however, becomes 
quite expensive to replicate for every major 
modification of the system or its equipment. 
Modelling and simulation is seen as an 
alternative to physical tests from financial 
and time-to-market perspectives. As the 
representative models already exist that 
represent both steady-state and transient 
dynamics of the system, this was deemed as 
a viable alternative to physical tests.

However, during the V&V and qual-
ification planning a major hurdle was 
identified to this approach. Specifically, 
lack of rigorous configuration management 
in place for the existing models, however 
detailed and representative they were, was 
a blocker. This was mainly because the 
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initial intention of building and validating 
these models was to use them for design 
analysis rather than to claim credit in the 
V&V and certification process. This put the 
whole plan into question although there 
was enough confidence that the models are 
a true and sufficient representation of the 
existing architecture.

Configuration Management Planning
The models that formed part of the de-

velopment and performance analysis of the 
new LGERS were always used on an ad hoc 
basis and only stored as results rather than 
a planned version controlled platform that 
had a unique relationship to the product 
being modelled. Therefore, no planning 
was done to ensure a rigorous configuration 
management. Moreover, the performance 
models created during this program were 
not initially intended to be shared and 
hence the standard Airbus procedure for 
shared simulation models has not been 
followed. This shows that identifying the 
purpose of the models before creating them 
is crucial to make the best use of them in 
the future.

Configuration Identification
The models themselves were identified 

as configuration items but not the corre-
sponding sub-models that represent the 
equipment. Therefore, no rigorous config-
uration identification has been performed. 
For example, the naming convention used 
was just to identify a change in the model 
but no details as to what the change specifi-
cally is and its severity.

Change Control
A clear one-to-one relationship between 

the changes in the models representing 
the components of the system and the 
real-world components was not truly estab-
lished. Moreover, no change control record 
was managed with the rigor mentioned in 
the earlier section with the change request, 
approval, and validation as part of the 
process. Some of the change control was 
done through emails rather than a traceable 
platform that can be fully audited.

Configuration Status Accounting
The models are version controlled 

through a standard version control 
platform. Each version is given a number 
that would be traced for the changes 
made to the model. However, the details 
of each equipment and the relationship 
to the physical part numbers doesn’t 
exist. Furthermore, the versions are only 
managed on an ad hoc basis to “save” the 
results and the corresponding model rather 
than the direct association with the real 
system and equipment.

Configuration Management Audit
The models were not subject to internal 

or external audit processes to ensure con-
figuration management was in place.

CONCLUSION
In this paper we looked at current trends 

for configuration management in the 
field of model-based systems engineering 
looking at two examples from the landing 
gear domain. It is our hope that the paper 
highlighted the need to further strengthen 
the need for configuration management 
application in MBSE and overall modelling 
and simulation. Especially, with benefits be-
ing ripen in many ways and thus outweigh-
ing the efforts needed for an appropriate 
configuration management process.

One of the biggest challenges in deploy-
ing a robust modelling and simulation 
strategy with the necessary tools and 
frameworks is expensive. Although there 
is truth in that challenge, the return on 
investment (ROI) on such deployment can 
yield long term benefits and mitigate risks 
corresponding to complex system devel-
opment. For example, the use of modelling 
and simulation to build a virtual iron bird 
needed several thousand hours of expertise 
and still resulted in more than a million 
dollars of overall development costs. This 
model will keep yielding the benefits in the 
future further increasing the ROI.

The use of modelling and simulation as 
a replacement for physical testing is not 
without its own risks. The representativity 
of a model can only be assessed in relation 
to an existing real-world system, which 
implies that a version of the system is 
already built, and similar tests have been 

performed on both the model and the 
physical system for validation. Therefore, 
soon, modelling and simulation can only 
be used to completely represent variants 
of a physical system rather than a brand-
new entity. Even in such a situation, the 
physical representativity of the surrounding 
environment (systems and environment) 
is critical to build confidence in the model. 
Therefore, a thorough assessment of the 
ROI, both near and long-term, should be 
evaluated on an individual basis.

In the context of tomorrow’s world of 
digital twins, configuration management 
plays a pivotal role in ensuring the success 
of the digitization program. If any A/C 
manufacturer intends to use a digital 
version of any given aircraft to analyze 
in-service issues or performance upgrades, 
then a digital version that is part-to-part 
identical needs to be built and that is only 
possible if all the models that are integrated 
are identified as configuration items, with 
change control in place with appropriate 
accounting for updates.

In fact, in the digital world each 
configuration item would probably have 
multiple fidelities of models which require a 
second layer of configuration management. 
This poses an additional challenge but is 
mandatory to do so as one model cannot 
satisfy the diverse and ever evolving needs 
of requests coming from the operational 
field of the aircraft.

As there are many digital twin versions 
of the same aircraft, configuration manage-
ment of the modelling artifacts is manda-
tory to deliver a safe and efficient aircraft. 
This principle applies to other industries 
attempting the digital twin approach.  ¡

Acronym Meaning

A/C Aircraft

ATA Air Transport Association of America

CI Configuration Item

CM Configuration Management

CSA Configuration Status Accounting

CSCI Computer Software Configuration Item

HWCI Hardware Configuration Item

ID Identification

INCOSE International Council on Systems Engineering

IS Interface Specification

LGERS Landing Gears Extension and Retraction System

MBE Model-Based Engineering

MBSE Model-Based Systems Engineering
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INTRODUCTION

  ABSTRACT
Like so many aspects of life, we are looking for value-for-money. But we need to consider the value in terms of both short and 
long-term gains.  Although certification standards require verification that requirements have been met, we need to recognize that 
verification is also there to bring value to a project and to the business as a whole.  However, prioritizing the value to the project 
over the value to the business can result in sub-optimization and an overall higher cost to the business. This paper examines 
a specific case, the prediction of the fatigue lives of critical parts in gas turbine engines, to illustrate the more general case of 
performing tests to calibrate models that then have general applicability across multiple projects, rather than focusing testing 
on the needs of a specific project. In some circumstances, testing may not even be the best approach to take; if some level of 
error escape into service is acceptable (unlike the life prediction example given in this paper) then more focus on requirements 
validation and design review may provide a more cost-effective approach. This is where the linkage in a systems engineering model 
between requirements, functions, failure modes and effects analysis, verification test cases, and available calibrated models can 
help with identifying opportunities and risks.

You Don’t Save Money by 
Doing Less Testing – You 
Save Money by Doing 
More of the Right Testing!

Andrew C Pickard, Andy.Pickard@incose.net; Richard Beasley, Richard.Beasley@rolls-royce.com; and Andy J Nolan, Andrew.
Nolan@rolls-royce.com
Copyright © 2021 by Rolls-Royce. Permission granted to INCOSE to publish and use.

A project to develop a product 
or system has requirements of 
its own beyond the technical 
systems requirements, most 

commonly including cost and timescale. 
These can often be seen as in competition 
with the work needed to develop and verify 
a solution that meets the technical require-
ments of the end-user system stakeholders.

When a program of work is proposed to 
develop and verify a product it can often 
appear too long and expensive to meet the 
business needs. The project cost/timescale 
requirements cannot be ignored. Unfortu-
nately, there is a risk of there not being a 
balanced decision, and the “wrong cuts” are 
made. For example: 

•	 Cutting what is seen as “unneces-
sary” pre-work to understand the 
problem, as this causes what is seen 
to be “delay” – in fact proper problem 

understanding can be shown to be 
differentiator between successful and 
unsuccessful projects (Honour 2014). 

•	 Removing activities to find and 
mitigate risk – without understand-
ing that risks emerge as the solution 
develops (Pickard et al. 2010). 

•	 Removing expensive testing – without 
realizing the purpose of the test. 

These issues can be summarized in the 
heuristic “you don’t make a project cheaper 
by not doing things; you make it cheaper by 
doing more of the right things” (Beasley et 
al. 2014), adapted for the title of this paper. 

A product that produces a system “on 
time and on cost” that doesn’t meet all the 
technical requirements, such as product 
safety, is not complete. A chief engineer 
accountable for safety would not allow its 
release, and expensive rework would be 

needed before the project can be described 
as complete. However, a product that is 
developed late and over cost would equally 
be seen as a failure.

There should be an understanding of 
both the technical requirements and what 
is needed to produce solutions to them – 
needing the capability to develop a product 
that can meet the technical issues and the 
program constraints (Beasley and Pickard 
2020). So, with a capability that ensures that 
we know what the right things to do are, 
the “right tests” are properly understood.

The remainder of this paper looks at 
one specific example, approaches to life 
prediction of critical parts in aircraft gas 
turbine engines, to illustrate the importance 
of performing “the right tests” to reduce 
testing costs. It starts with a discussion of 
regulatory requirements for the engine’s 
structural integrity, including a set of 
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definitions that lead to the identification of 
“critical parts.” Then there is a discussion 
of failure mechanisms, leading to 
requirements for reliable life prediction. 
The example focuses on fatigue life 
prediction for critical parts, comparing the 
“traditional” method for clearing fatigue 
lives for critical parts with a model-based 
approach. The findings are discussed, and 
some general principles are presented in 
the conclusions section of the paper.

AN EXAMPLE
The primary function of an aircraft 

engine is to provide thrust. The engine 
must meet stringent weight and fuel burn 
(efficiency) targets if this task is to be 
performed economically. This results in 
materials being used at high stresses and 
temperatures; under these circumstances 
there is a potential risk of failure of individ-
ual components.

The consequences of failure can be 
classified into various levels. A small loss of 
thrust, particularly if this is gradual, does not 
carry a high-risk factor. An abrupt change 
in, or total loss of thrust during take-off can 
be hazardous, although it may not be so at 
altitude. Failure that involves the release of 
high energy debris which could damage the 
aircraft, either structurally or functionally, 
form the highest risk category.

Figure 1 shows a sectional view of 
a typical gas turbine. The first step in 
establishing and minimizing the risk of 
failure for aircraft engines is to perform 
failure modes and effects analyses (FMEA) 
to assess the consequence of a failure of 
systems, subsystems and components. 
These product elements are classified as 
“critical” or “non-critical” depending on the 
consequences of their failure as identified 
by the FMEA. The various airworthiness 
regulators (Federal Aviation Authority – 
FAA, European Aviation Safety Agency – 
EASA, etc.) (FAA 2020; EASA 2018) have 

definitions and rules that are applied to this 
categorization, for multi-engine aircraft:

a)	 “Safe” engine failure: A “safe” engine 
failure is one in which the only con-
sequence on the aircraft is partial or 
complete loss of thrust or power (and 
associated engine services) from one 
engine and should be regarded as a 
minor effect. 

b)	 Minor effects: Minor effects will not 
occur at a rate more than that defined 
as reasonably probable. 

c)	 Reasonably probable: This is unlikely 
to occur often during the operation 
of each aircraft of the type but may 
occur several times during the total 
operational life of each aircraft of the 
types in which the engine may be 
installed. 

d)	 Non-critical component: Compo-
nents whose failure would result in 
a “safe” engine failure are normally 
classified as non-critical. 

e)	 Critical part: Where the failure anal-
ysis shows that a part must achieve 
and maintain a particularly high level 
of integrity if hazardous effects are 
not to occur at a rate in excess of ex-
tremely remote, then such a part shall 
be identified as a critical part. 

f)	 Hazardous effects: The following 
effects should be regarded as 
hazardous: 
i)	 Significant non-containment of 

high energy debris.
ii)	 An unacceptable concentration 

of toxic products being generat-
ed in air supplied to the airplane 
passenger or crew compart-
ments.

iii)	 Significant thrust in the opposite 
direction to that intended by the 
pilot, or complete inability to 
shut the engine down.

g)	 Extremely remote: This is unlikely 
to occur when considering the total 

operational life of many aircraft of the 
type in which the engine is installed 
but has to be regarded as possible.

Component Failure Mechanisms 
During the assessment of both critical 

and non-critical component lives, all poten-
tial failure mechanisms must be considered. 
These failure mechanisms can be divided 
into three major classes:

a)	 Low life failures, usually associated 
with the incorrect application of De-
sign Codes or unexpected overload-
ing of the component.

b)	 Macroscopically non-localized 
damage accumulation failure mech-
anisms; uniform creep, corrosion or 
erosion are good examples here.

c)	 Macroscopically localized damage 
accumulation failure mechanisms, 
usually associated with the nucleation 
and growth of cracks.

For gas turbine components, stress 
margin requirements (relative to the yield 
and/or failure strength of the material) 
are normally arranged to ensure that low 
life failure mechanisms are not present. It 
is normal practice to back up analytical 
estimates of stress capability with testing of 
representative components.

Macroscopically non-localized fail-
ure mechanisms are usually avoided by 
applying time limits to the service use of a 
component. These life limits are normally 
calculated by evaluating the deformation 
and failure response of the entire com-
ponent, for instance, predicting a turbine 
blade’s life by full-scale creep analysis of 
the blade. An alternative is to perform a 
statistical analysis of experience, such as 
examining the scatter in creep growth of 
turbine blades in engines and applying sta-
tistical models to predict the minimum life 
for a given, acceptable level of growth.

Macroscopically localized failures are as-
sociated with the nucleation and growth of 
cracks, usually resulting from fatigue (cyclic 
loading), creep, environmental mecha-
nisms, or their interaction. Occasionally, 
localized damage accumulation occurs 
from the start of service; a typical exam-
ple is the fatigue failure of a component 
containing a material inhomogeneity or 
surface damage that is sufficiently severe to 
behave as a crack from the start of cycling. 
Alternatively, localized damage accumula-
tion follows from a non-localized mecha-
nism, for instance, in the fatigue of smooth 
specimens. Cracking results eventually 
from the accumulation of macroscopically 
non-localized slip damage.

Traditionally, fatigue life prediction has 
been accomplished by statistical analysis of 
past experience, including specimen and 

Figure 1. Typical two-shaft gas turbine engine



SP
ECIA

L 
FEA

TU
R

E
M

A
R

CH
  2O

23
VOLUM

E 26/ ISSUE 1

69

full-scale rig test results. Fracture mechan-
ics methods for fatigue life prediction have 
increased in importance and application, 
since it was realized that most, if not all 
structural materials contain inhomogene-
ities which can act as fatigue crack nuclea-
tors. The statistical nature of the distribu-
tion of inhomogeneities and the relative 
stressed volumes of components and spec-
imens usually result in the risk of cracking 
from a large inhomogeneity or from surface 
damage being considerably higher for a 
component than for a specimen, highlight-
ing the importance of performing full-scale 
component fatigue tests and incorporating 
the results into life calculations.

In the case of macroscopically localized 
damage mechanisms, the fundamental 
criterion for safety of operation of compo-
nents in service can be stated quite simply:

“A crack in a component must not be 
allowed to grow to a size that can lead to 
the onset of rapid fracture under any en-
gine condition”, that is, commonly, a crack 
growth under low cycle fatigue (LCF, typi-
cally one or a few major cycles per mission) 
must not be allowed to reach the length at 
which either vibration or maximum load 
can promote rapid fracture (Asquith and 
Pickard 1988).

This emphasizes the importance of the 
need for reliable LCF life prediction mod-
els, which depend on understanding the 
fracture mechanisms and quantification of 
the controlling parameters.

Requirements for Reliable Life Prediction   
 Avoidance of in-service failure requires 

a sound knowledge of:
a)	 The environment and loads to which 

the component is subjected. This is 
fundamental to the design process.

b)	 The macroscopic response of the 
component to the applied loads and 
environment - temperatures, stresses, 
strains, corrosive/erosive conditions, 
etc. Accurate techniques for predict-
ing local temperatures and stresses 
are essential here. 

c)	 The microscopic response of the 
material from which the component 

is fabricated to the local temperature, 
stress, and environmental conditions. 
This requires a thorough understand-
ing of material behavior and applica-
ble life prediction techniques. 

d)	 Consistency of component 
manufacturing — so that parts 
subjected to testing represent all 
the parts in service. Table 1 shows 
the main issues that need to be 
considered from a component 
manufacturing viewpoint. 

Fatigue Life Prediction Methods for Critical 
Parts 

This illustrative example is based on 
fatigue life prediction methods for critical 
parts in engines. Typically, all of the disks 
(also called discs or wheels) in an engine 
are critical parts, because their failure 
results in high energy debris that generally 
cannot be contained by the engine struc-
ture. Figure 2 shows a typical high-pres-
sure turbine disk from a large commercial 
engine. The high-pressure turbine blades 
are located around the rim of the disk 
using features known as “firtrees”. The disk 
locates the blades axially and radially in the 
engine; in the case of a turbine, the blades 
extract energy from the hot gases from 
the combustor, where compressed air is 
mixed with fuel and ignited, and converts 
this into rotational energy that is used to 

drive the high-pressure compressor. This 
in turn includes disks with blades that 
as they rotate increase the pressure (and 
temperature) of the air entering the engine. 
The high-pressure compressor delivers this 
compressed air to the combustion chamber. 
The engine illustrated in figure 1 is a typical 
two-shaft engine; the fan is driven by the 
low-pressure turbine and the high-pressure 
compressor by the high-pressure turbine.

In this paper, we will compare two dif-
ferent approaches to predicting the fatigue 
lives of these types of critical parts:

e)	 The “traditional” safe predicted total 
life method.

f)	 The “databank” fracture-mechan-
ics (model) based life prediction 
approach.

Traditional Fatigue Life Analysis Methods

All “traditional” safe predicted total 
life analysis methods for aircraft engine 
components rely on specimen or full-scale 
component tests to define, statistically, a 
minimum life for the set of parts in service. 
All parts are then withdrawn from service 
before, or in the limit when they achieve 
this life. The statistical definition of min-
imum life is usually based on identifying 
the -3σ (1 in 739) or 1 in 1000 point in the 
distribution of component lives.

Although this approach sounds simple, 
and has been very successful in preventing 
in-service failures, there have been several 
areas of debate. The first of these relates to 
the choice of specimen or representative 
component tests to define the minimum 
life. Testing of a representative component 
guarantees that the life obtained is relevant 
to that part, with the correct standard 
of surface finish (machining, handling 
damage, etc.) and residual stress distri-
bution. Full-scale component tests are 
expensive and time consuming, however, 
and it is rare for sufficient test results to 
be available on any individual part to 
allow the full definition of the statistical 
distribution of component lives to be 
obtained. Specimen tests can normally be 
performed in sufficient numbers to allow 
a full statistical definition of the specimen 
life distribution, but the volume (or surface 
area) of material subjected to representa-
tive stresses is considerably smaller than 
for full-scale components, which implies 
that the component minimum life may be 
lower than that of the specimens, requiring 
additional statistical interpretation of the 
specimen results. Figure 3 illustrates this by 
comparing several Titanium alloy (Ti-6-4) 
disks bore test results with plain 0 – max 
load control specimen results; one of the 
disk results falls below the statistically de-
rived minimum life plain specimen results 

Material Surface Residual 
Stresses

Inspection 
Technique

Microstructure Machining and Damage Quenching Repeatability

Homogenity Scoring and Burning   Welds Reproducibility

Defect Content Dents and Bruises Machining Dectection Capability

Defect Type Fretting Level of Automation

Processing

Table 1. Component consistency – variables to consider

Figure 2. High-pressure turbine disk for 
a large commercial engine
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(Asquith and Pickard 1988). In this case, 
laboratory investigation revealed handling 
damage marks in the disks from which 
the early cracking had originated; fracture 
surface striation counting indicated that 
most, if not all the disk life was in the crack 
propagation phase, with very little if any life 
consumed in crack nucleation.

In general, fatigue life predictions based 
solely on laboratory specimen test results 
need to be treated with caution because of 

surface finish and stressed volume consid-
erations. Representative component testing 
is the “traditional” life prediction approach 
preferred by the civil engine certification 
authorities. Figure 4 identifies the factors 
normally applied to an individual com-
ponent result to define the predicted safe 
cyclic life (PSCL) (Pickard et al. 1987).

In this approach, the component cyclic 
life is considered to follow a log-normal 
Gaussian distribution, with a ratio of 6 to 1 

between +3σ and -3σ lives for most mate-
rials. The component tested is assumed to 
be in the top 5% of the distribution, and a 
ratio of 4 to 1 is applied to the tested life to 
obtain the minimum (-3σ) life. This gives 
95% confidence that the PSCL is truly the 
-3σ life. Typically (68.3% of the time) the 
component tested will lie between +1σ 
and -1σ area of the distribution, giving 
some additional life margin. Performing 
additional component tests can be used to 
reduce this factor and extend the PSCL.  

The second area of debate, with represen-
tative component testing, is the choice be-
tween running the test at the engine stress 
level or with an overstress factor. Testing at 
engine stress level is time consuming (for 
example, 80,000 cycles can take 30 to 60 
days of continuous cycling based on typical 
cycling rates for full scale components) and 
typically will not result in cracking or fail-
ure of the component. This “life clearance” 
approach results in suspended (no life end-
point) results in the statistical distribution, 
which limits their use when creating fatigue 
life prediction models.

Typically, the relationship between life 
and overstress factor is that a factor of 4 to 
1 in life corresponds to a factor of 1 to 1.3 
in stress–so that a given life can be cleared 
by testing to this life with an overstress fac-
tor of 1.3. From a life clearance approach, 
testing with an overstress factor of greater 
that 1.3 does not offer benefit because the 

Figure 3. Titanium alloy (Ti-6-4) plain specimen and disk bore test results

Plain Specimens – Typical (mean) Test Results

Plain Specimens – Minimum (–3σ) Test Results
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Figure 4. Log-normal Gaussian life distribution – traditional 
fatigue life prediction method
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regulators require that the test must run 
for at least the cleared cyclic life of the part. 
Testing with an overstress factor occasion-
ally results in cracking of the component, 
which gives a finite life. This also gives a 
cost-effective opportunity for a research 
project to fund continued running of the 
test to cracking or failure. However, proj-
ects often perceive that testing with a low or 
no overstress factor as “less risky”. This per-
ception drives “life clearance” as the project 
objective, rather than testing to cracking or 
failure to support model creation.

The “Databank” Model Based Life 
Prediction Approach   

One solution to the problem of lack of 
statistically relevant samples of tests on 
individual components is to find a means 
of correlating fatigue test results on various 
full-scale components and laboratory 
specimens such that all available results on 
parts with microstructure and surface fin-
ish representative of parts in service can be 
included in the statistical assessment of the 
life distribution and hence of minimum life.

The Rolls-Royce “databank” approach 
uses linear elastic fracture mechanics 
(LEFM) models and fatigue crack growth 
information to analyze each individual 
test result to determine an “effective initial 
flaw size” (EIFS) that would have had to 
be present, from the start of cycling, to 
result in failure or the size of crack seen in 
each test result. Several studies have been 
performed to validate the use of LEFM to 
predict crack growth in components (Pick-
ard et al. 1983; Jenkins and Pickard 1988). 
Statistical analyses of the distribution of 
effective initial flaw sizes may then be used 

to identify maximum size, on a +3σ or 1 in 
1000 basis, that will be consistent with min-
imum component lives. The LEFM models 
can then address variations in component 
geometry, stress level, stress gradient and 
residual stress fields when predicting min-
imum fatigue life for crack growth from 
the maximum EIFS (Pickard et al. 1987; 
Asquith and Pickard 1988).

Figure 5 shows the results of an analysis 
of the inverse of EIFS (inverse to explore 
the largest EIFS) for the Titanium alloy 
Ti-6-4. The distribution is bimodal, with 
mostly specimen results in the upper 

branch and a mix of component and 
specimen results in the lower branch.

Figure 6 shows an analysis of the lower 
branch of the distribution. A three-param-
eter Weibull distribution has been fitted to 
the distribution, resulting in the identifica-
tion of the maximum EIFS for the family of 
parts and specimens.

Figure 7 shows a comparison of the 
Titanium alloy disk bore test results from 
Figure 3 with the linear elastic fracture 
mechanics model-based prediction, for ini-
tial cracks equal to the maximum effective 
initial flaw size, and to half the maximum 
EIFS. The model-based approach now pre-
dicts a lower minimum life for test 5 than 
was achieved in the test.

An analysis was performed for all of the 
representative component tests, including 
suspended points. Figure 8 shows the ratio 
of actual to predicted life for each test. A 
three-parameter Weibull distribution is 
fitted to the results and the asymptote is 
equal to 1.

DISCUSSION
This fracture mechanics – based fatigue 

life prediction “databank” model was 
developed in the mid 1980’s. Many of the 
specimen and component test results that 
supported the development resulted from a 
research project called the life and methods 
program (LAMP) that was conducted 
during the mid–1970’s to early 1980’s time 
period. Databanks were developed at that 
time for the Titanium alloy shown in this 
presentation, a high-temperature Titanium 
disk alloy and a Nickel based superalloy 
disk material. Subsequently databanks have 
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been developed for additional materials. The 
regulatory bodies (at the time the British 
Civil Aviation Authority and the United 
States Federal Aviation Administration) 
approved these databanks in the mid 1980’s 
as an alternative means of compliance for 
predicting the fatigue lives of critical parts, 
following over two years of review and 
discussion They have been used following 
this regulatory approval by Rolls-Royce for 
prediction of the lives of critical parts in a 
variety of gas turbine designs, and have been 
extended to cover other component features.

The regulatory approval is that the da-
tabank critical part life prediction models 
could be used for components that have fea-
tures (bores, diaphragms, holes, etc.) that are 
included in the databank model and are of 
similar geometry and consistent method of 
manufacture without performing substantive 
additional full scale component tests, but 
further testing would be required to extend 
the databank to be used for a new feature or 
broader temperature range.

Performing representative component 
tests to cracking or failure as part of the 
LAMP program was a key factor in being 
able to develop this model-based approach. 
This illustrated to programs the benefit 
of testing at higher overstress factors for 
materials still using the traditional safe life 
approach, to allow these to be run on to 
achieve finite lives that can then be used to 
support databank model development.

There are a number of advantages to this 
model-based approach: 

■■ Reduction in the number of repre-
sentative component tests required to 
establish and approve the lives of critical 
parts.
•	 Prior to the introduction of the data-

bank life prediction approach, over 40 
tests were performed on three engine 
types to clear the lives of the features 
covered in the databank. Following 
the introduction of the approach, life 
clearance testing was only required 
for one new feature type incorporated 
in the next engine design. This new 
feature has subsequently been incor-
porated into the databank.

■■ Use of the databank methodology to 
establish maximum stress levels during 
design of new components to ensure 
that they meet predicted safe cyclic life 
requirements.  

■■ Use of the databank methodology to 
predict the minimum and typical stress 
– life curves for new features, to allow 
component test stress levels to be set 
with reasonable probability of a finite 
end point (cracking or failure) when test-
ing to extend the databank to cover these 
new features.
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Figure 7. Titanium alloy (Ti-6-4) disk bore test results and model – based prediction
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The databank has a scope, so when 
planning activities, there are some issues 
that have to be considered: 

■■ Will the new design have features that 
are out of scope of the databank? If so, 
you may need to plan to extend the 
databank or perform traditional life 
clearance testing of the new features. 
This can be a constraint on design style 
evolution.

■■ Will a new design extend to tempera-
ture ranges outside the scope of the 
current databank? If so, you may need 
to plan to extend the databank or per-
form traditional life clearance testing.

■■ What are the rules for deciding who 
pays to extend the databank? Is it a 
research activity, or if only one project 
needs the extension, does the project 
pay?

WHAT TESTS SHOULD I PLAN? 
The discussion above is about how to 

organize testing to obtain the best resulting 
value for the effort. However, sometimes 
testing may not even be the best way of 
achieving the desired result. Another factor 
is the effectiveness of validation and verifi-
cation (V&V) activities (Pickard and Nolan 
2013). In this earlier paper, we examined 
the relationship between V&V effectiveness 
and cost effectiveness of V&V activities 
(Figure 9).

Although the correlation is not strong, 
the implication is that more cost-effective 
V&V methods like requirements validation 
and review tend to have lower V&V effec-
tiveness, whereas high V&V effectiveness 
methods are not very cost effective.

The implication here is that the selection 
of V&V methods to use depends very 
much on how acceptable it is to have 
issues escaping into the released product. 
For safety critical systems, such as the 
example discussed above, where any 
undetected escape may have unacceptable 
consequences, it is clearly important to 
employ high V&V effectiveness methods 
like hardware component test, hardware 
module assembly, and test and hardware 
first article inspection.

Where some undetected escapes may 
be tolerable, it may be more cost effective 
to spend extra effort on hardware require-

ments validation and hardware design 
analysis and review.

CONCLUSIONS
■■ Use of model-based approaches to 
reduce costs is nothing new — the 
example shown was introduced in the 
mid — 1980’s.

■■ Use of this model-based databank 
approach was subjected to rigorous 
review by the regulatory authorities; 
acceptance by the UK Civil Aviation 
Authority and the US Federal Aviation 
Authority took over two years of review 
and discussions.

■■ The approach depends on a change in 
behavior – don’t test at engine stress 
levels to clear life, as in the traditional 
fatigue life analysis methods, but test 
with overstress factors to achieve finite 
(cracked or failed) component test 
results.

■■ You don’t save money by doing less test-
ing – you save money by doing more of 
the right tests! This is a specific instance 
of the heuristic “You don’t make a proj-
ect cheaper by not doing things; you 
make it cheaper by doing more of the 
right things” (Beasley, et al. 2014).

■■ And there’s more! The example model-
based approach to critical part life 
prediction helps when creating new 
designs and introducing new design 
features.

■■ Consider alternatives to testing to 
reduce the cost to develop products 
— but for safety critical systems, make 
sure that any model-based approaches 
are calibrated using a databank of test 
results, including representative full-
scale component tests.  ¡

Figure 9. V&V effectiveness versus cost effectiveness
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I.  INTRODUCTION

  ABSTRACT
The lifecycle of a system is extended from its early conception to its retirement of service. The lifespan of unmanned ground 
vehicles (UGVs) can be expected to last over 50 years in the defense market. In this context, the rising complexity of UGV 
systems imposes engineering steps that would ensure both capabilities of the system and resilience to its future inclusion in a 
system-of system context. During its operational usage, the UGV is supposed to be maneuvered for specifically designed purposes 
following user manual datasheet of the components off-the-shelf (COTS) that were integrated. This paper exposes the public user 
datasheet relevance compared to the system engineering requirements that are the artifacts of system design architecture. The use 
of connecting COTS user manual to system requirements is discussed, all the more if the systems are to be re-used in a system 
production line. This article is intended to explore system of system conception methods for future robotized battlefield.

Inconsistent and 
Incomplete Datasheet: 
The Case for Systematic 
Use of Requirement 
Engineering
Lorraine Brisacier-Porchon, lorraine.brisacier@ensta-paris.fr; and Omar Hammami, Omar.hammami@ensta-paris.fr
Copyright © 2022 by Author Name. Permission granted to INCOSE to publish and use.

Mobile robots are found in 
a wide spectrum of appli-
cations, such as farming, exca-
vation, demining, or military. 

There are categories of usage and size for 
ground robots. They are considered as com-
plex systems, because the cost of testing 
or simulating a significant amount of their 
behavior exceeds the investment and time 
that could be spent on design. Therefore, 
methods and process for prototype docu-
mentation is the key to manage its behavior. 
In this article, we consider the unmanned 
ground vehicle (UGV) basic functions are 
all-terrain navigation, heavy loads carrying, 
minimal maneuverability while being pilot-
ed. In the defense domain, where we intend 
to include swarm of robots, the UGV 
shall be robust, man walking fast, with the 
highest battery autonomy. Among others, 
we benchmarked a robot off the shelf, as 

if it were a product in development in a 
fictional company. The supposed expected 
performance for our system is presented in 
Table 1 system specification from datasheet. 
It shows small-scale problems assessed in 
complex system engineering and addresses 
a test scenario that draws integration of a 
robot in system of system battlefield.

The system mission on the field will 
be referred to as “mule concept,” which 
includes remote piloting a mule that 
would carry loads instead of the pilot in a 
predefined time at a predefined speed. The 
degree of autonomy given to the mule is not 
at stake in this article. We will consider that 
the capability of “carrying loads” has been 
exploited to describe the system require-
ments, and that this set of requirements has 
been used to build the robot.

In this article, we place ourselves as 
buyers of such a UGV system. Making the 

acquisition of such a robot represents an 
amount of money, and we describe a meth-
od to verify the systems expectations.

As described in Stevens (2017), valida-
tion and verification (V&V) time and costs 
are a gamble for the company as well as the 
client. In this article, we explore how to use 
the V&V system engineering documenta-
tion in other contexts: user manual descrip-
tion and next product specification reuse.

The goal of this article is to discuss the 
relation between requirements, system 
V&V, system capabilities and multi-ob-
jective optimization as mathematical 
foundation for systems engineering. 
Figure 1 system driven engineering flow 
shows a process proposition for system 
development that includes optimization 
techniques. This foundation could lead 
to the creation of a method to shift from 
system engineering process as described in 
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AFNOR (2015) to a digitally based process (Henderson et al., n.d.) 
that would directly generate the best suited methods and tool for 
the mule system design in our fictional company.

II.  STATE OF THE ART
a.  Requirements engineering

Requirement based engineering is the most popular practice for 
defense system engineering acquisitions and architecture design 
(Huldt and Stenius 2019). The state of the art on requirement 
redaction is consistent, and recent publications shows that the 
interest in “good” requirements expression exceeds the systems 
engineering domain.

As model-based engineering (MBSE) practices progress in be-
ing associated to requirements (Bonnet, Voirin, and Navas 2019) 
the definition of system in early design is improving as complexity 
challenges rises. The return on investment of such practices (Duffy 
et al. 2021) has been identified. The vision of INCOSE for 2025 
(INCOSE 2015a) seems to be carried out. Furthermore, the vision 
of the future (Voirin et al. 2020) extends MBSE to all models to 
implement the best systems in the most reduced cost and delays is 
being profiled.

The profile of model specifications could be adapted to the 
system context and categorization (Younse, Cameron, and Bradley 
2021). It is a widely accepted prolongation to the SysML 1.3 
success in system engineering (Wolny et al. 2020), because it adds 
views and connections to the system requirement expressions. 
The model aspects based on SysML does not express all required 
aspects of system design, which makes it incomplete, such as cited 
in Younse, Cameron, and Bradley (2021). This is a motivation for 
acquirers to specify systems in architecture frameworks, and to 
dig deeper on semantic approach (Duprez and Ernadote 2020) for 
system specification ambiguity reduction.

Publications on MBSE do not cover all expected transdisci-
plinary system behavior representations (Watson et al. 2020): 
mechanical or electrical requirements are rather considered as 
model-driven engineering (MDE). If those are the modeled ex-
pression of expected behavior, MBSE fails to represent all transdis-
ciplinary aspects of the system. Therefore, the performance of the 
system will remain ambiguous until tests are performed in a real 
environment. The system scale compromises defined in system 
engineering cannot be represented.

To the best of our knowledge, none of these foretold systems en-
gineering methods are the basis of system user manual generation. 

On the opposite, the teaser of requirement-based methodology 
state of the art is oriented in a top-down approach on the very 
early stages of system design. (Hahn et al. 2020) states that placing 
the ‘design phase’ above all considerations in order to gain time 
and/or costs is no guarantee of money efficiently spent. The article 
rather states the need for methods and tools tailored to the expect-
ed outcome of the product. If whole system lifecycle, for instance 
50 years, is taken in consideration, focusing efforts on modeling 
and requirement expression might be more efficient if it is used 
during all the lifespan of the system rather than until the system 
architecture is conceived.

The application of requirements seldom includes the generation 
of end-user system datasheet. This can be caused by the difference 
of model details required at the process stage: the user manual 
exposes details of finite usage of the system, whereas the concept 
elaboration requires high level information. The mix of model 
granularity and fineness blurs decision making. The problem of 
multiple level of models that work together is addressed in digital 
twin usage questions such as in Bachelor et al. (2020), but no 
information can be found on how to mix them.

To conclude, system specifications are used to engineer the sys-
tems. User manual is written to make the best usage of the system. 
Yet, the effort to ensure maintenance and usability seems to be 
redundant with the effort to specify the system, especially during 
its integration phase. Since we have not found publications that 
would imply this, we expose a method that establishes a connec-
tion between requirements and datasheet to avoid redundancy. 
This two-ways connection could simultaneously improve the next-
in-line product while reducing the costs and delays of engineering 
in comparison to its predecessor. The effect of our proposition 
will also be beneficial to the end-users because system capabili-
ties description as requirements should be used to generate user 
manuals.

b.  Experienced feedback on MBSE and IVV of complex systems to 
check the COTS engineering quality 

The engineering process that has resulted in the creation of the 
COTS is easily identifiable from the behavior of the system. If the 
supplier has executed system engineering to design the COTS for 
the system, then the system passed a V&V qualification proce-
dure. The testing environment that resulted in the system perfor-
mance claims would be easy to reproduce. The method applied in 
this article is exposed in that way: what if the acquirer of the UGV 
COTS were to verify the system capabilities?

The set-based vision of verification strategies (Xu and Salado 
2019) would be of help in passing the tests, but we would want to 
keep close to real-life situations where the scenario for our mule 
concept is too simple to afford long considerations before use. 
Furthermore, the changes in process and company organization 
to make this set-based vision a reality leaves the last call decisions 
to business investment. As resumed in Huldt and Stenius (2019), a 
lack of knowledge to integrate a model-based approach with cur-
rent business processes is one of four arguments that prevent the 
development of MBSE. If the views are not provided, the common 
business/engineering vision cannot be built. Investment in “best 
effort” often prevails.

There are also publications measuring the benefits of the MBSE 
approach in managing the complexity of a robotic space system 
(Younse, Cameron, and Bradley 2021). But it makes no mention 
on how to re-use the specifications and how to organize all veri-
fications that cannot be represented in SysML 1.3-like languages, 
such as measuring the tension of the battery in relation with the 
complete vehicle system. The multi-disciplinary requirements that 
should be the basis of system scale V&V cannot be represented 
in one model, and the best suited method and tools options for 

SDE methods

Customized SDE method
adapted SDE tool

SDE tools
Optimization

System categories

System
specifications

Figure 1. System driven engineering flow
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software development objectives cannot be the best compromise 
on a multi-objective point of view.

The absence of formal expressions, methods or process as-
sociated to the language, as well as to poor investment in early 
stages of requirement specification (INCOSE 2015b) is proven 
to be a plausible cause of ambiguities in engineering (Duprez 
and Ernadote 2020). But there is no practical mention on how to 
enhance the existing process while reducing engineering costs and 
time in engineering. Furthermore, the mention of a model that 
would measure system outcome linked with investment in testing 
methods and tools for all physical performances is not discussed. 
Furthermore, the client satisfaction depends on how well the 
announced performances are met as described in datasheet. To 
the best of our knowledge, there are no recent research that would 
combine the user manual descriptions and qualification datasheet, 
contractors trust, and risk management. This research question 
was raised in Stevens (2017) but not exploited yet from a sub-sys-
tem contractor point of view.

c.  Theoretical proposition: optimization process
The state of the art in multidisciplinary and multi-objective op-

timization is also consistent. The mention of a need for a semantic 
extension to MBSE (Wach and Salado 2020), is still an issue to 
cover specific system categories and requirements and there are no 
quantified application feedback of those methods. Pate, Gray, and 
German (2014) presents graphical representations of non-dominat-
ed compromises in a system design evaluation. Optimization offers 
a consistent model for multidisciplinary approach. But it contains 
no link to a specific system goals or category in particular. We have 
chosen to use anonymized datasheet on the specifications used as 
our usage profile for the UGV system to organize the tests sets the 
optimization objectives as systems engineering process, tools and 
methods selection guide, depending on the equation:

(Q(x) → max, R(x) → min, T(x) → min) (GOAL 1)

The engineering flow proposed is selected by computer assisted 
search in which illustrated in Figure 1. It proposes system-driven 
engineering, based on four pillars: specifications, system catego-
ries, method, and tool. All pillars are linked with optimization 
through a common language: a combination of models that are 
either objectives or constraints. Its main advantage is the focus 
on the multi-disciplinary decisions that can be made, evaluating 
simultaneously the best process options for system development, 
and at the same time sketching the expected resulting system 
architecture. Detailed design costs are anticipated in that way. 
Figure 1 illustrates a proposition of method that would implement 

SDE. Instead of standard system specification and validation with 
a “V” or “W” cycle, the representation focuses on the revision of 
specification (functional and non-functional), functional archi-
tecture, component modeling, and physical architecture followed 
by multi-objective optimization in order to pick the most valuable 
information from the previous specifications. In this article, qual-
ity maximization is at glance. It is called method-tools-system en-
gineering problem (MTS-EP). It states Q as a function depending 
on system specifications and category. Let x ∈ S be a system design 
possibility. The MTS-EP problem can be formulated as:

(Q(x) → max subject to g(x) ≤ 0 and h(x) = 0 (MTS-EP 1)

The goal for Q maximization is therefore to find the x ∈ S 
combinations that achieve the system defined objectives subject 
to constraints. The detail of the mathematical model is related to 
the investment and time input to the system concept elaboration. 
This problem alone is NP-hard based on the Knapsack problem. 
Functions g and h in (MTS-EP 1) are the mathematical expression 
of constraints of the problem, issued from specification, system 
category, and company’s system experience from past projects. The 
flow in Figure 2 matches the representations for adoption of MBSE 
methodology sketched in Wu et al. (2019) and adds a constraint 
that is not underlined in Wu’s publications, which is the end of the 
process, when allowed budget or schedule for system conception 
ends. This is an application of the principles of Wheaton and Mad-
ni (2018) on UGV system category: the identification of a Pareto 
front where the system scale budget and schedule constrains the 
concept choices.

In this article, x is instantiated by the UGV as it was designed 
and integrated. We want to put the UGV to a test and evaluate 
its quality as a mule system and evaluate the quality of its spec-
ification. If the system concepts definition quality is seen as an 
optimization problem, we could evaluate the performance of the 
acquired system with respect the specification, and at the same 
time make propositions that would simultaneously increase 
quality of the system and reduce method and tools investment to 
an acceptable compromise. The expected outcome of our system 
specification flow proposition (SSFP) can be measured in the 
next product that inherits of lessons learned from the previous 
solution. If system definition ambiguities can hardly be measured, 
its decrease can be measured. The adoption of our method can 
result in mastering of current expenses on concept exploration, 
direct generation of user manual automatically generated from the 
validation datasheet, maybe even obsolescence management, fol-
lowing Morgan, Holzer, and Eveleigh (2021) adding multi-physi-
cal dimensions to their claims.

Figure 2. System specification flow proposition inspired of Wu et al. (2019)
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revise system
specification

«OperationalActivityAction»

unfinished time and investment

time or schedule end

<max Q,min R;min T>

COTS
supplier
market
trading

exploration
investment
constraint

NSGA-II

specify system

Schedule
constraints



SP
ECIA

L 
FEA

TU
R

E
M

A
R

CH
  2O

23
VOLUM

E 26/ ISSUE 1

78

d.  A mobile robot: UGV system instance 
description 

Our instance is an all-terrain unmanned 
ground vehicle (UGV) for rapid prototyp-
ing and research applications and a robotic 
development platform. The capabilities of 
UGV can be expanded by multiple acces-
sories such as a LIDAR, a GPS, a camera, 
and an inertial measurement unit (IMU). It 
can be used in the perception, navigation, 
manipulation and teleoperation and it is 
fully supported by ROS (robot operat-
ing system). Figure 3 shows UGVi views 
through different angles. The choice of the 
UGV instance (UGVi) is motivated by its 
popularity, modularity, and availability. Its 
hull design is supposed to host a load plate, 
a radar, a camera, and a radio command. 
All mountable equipment components 
off-the-shelf COTS are not equipped in our 
system, because the mule concept scenario 
does not include all features available. We 
do not exploit all possibilities.

UGVi is a satisfying example for mule 
concept because the datasheet in Table 1 
offers a 50kg payload UGV. Our integrated 
human-augmented future battlefield re-
quired mules that would follow humans to 
help them carrying loads. It is also popular 
and has been the subject of publications 
for years in specific fields such as SLAM 
integration techniques, UGV positioning 
and vision/static and dynamic exploration, 
mixing optimization and further needs 
for UGVs, UGVi manipulations, specific 
objectives that can be stated for the UGVi 
in a software point of view. But the state 
of the art does not present multi physical 
propositions for UGVi usage modeling, 
nor its V&V process while being included 
in a wider system of system. Yet mono-dis-
ciplinary optimizations on the UGVi can 
be questionable regarding the expected 
multi-disciplinary use of the robot.

These aspects could be treated using the 
methodology depicted in Figure 2, giving 
multidisciplinary dimensions to cited ap-
plications of MBSE. Theoretically, the more 
precise and reliable COTS specifications 
are, the more chances system of system ca-
pabilities can be realized in acceptable costs 
and delays. The replacement of datasheet 
with specifications, all the more augmented 
by MBSE and optimization models to elicit 
the link between specifications and project 

costs and delays would lead to system of 
system simulation for early validation. This 
article depicts a practical experimentation 
to observe that theory in practice: if the 
datasheet proves to be incomplete and/or 
inconsistent, system of system modeling 
and simulation will not be available before 
buying 20 k€ robots and spending hours of 
time to describe its behavior.

III.  DATASHEET PRESENTATION
a.  Datasheet as requirements

For the experimentation, we have cho-
sen to exploit only four of the presented 

specification: numbers 4, 5, 7 and 9. It is an 
experimentation field that we figured suffi-
cient to address optimization quality model 
problem on practical view, because it pres-
ents contradictory requirements that in-
duce concept dimensioning choices, while 
being easy to measure and to confirm. The 
battery autonomy will be highlighted as a 
substantial multi physical compromise. If 
the operating time defined in #9 is typically 
3 hours, in which conditions can it be 
expected to reach this performance? If the 
laws of physics apply, the more load the 
mule is carrying, the more energy will be 

Figure 3. Different views of the UGV instance

1
Dimensions

990 mm length
670 mm width
390 mm height

39 in length
26.4 in width
14.6 on height

Track 555 mm 21.9

2 Wheelbase 512 mm 20.2

3 Weight 50 kg 110 lbs

4
Maximum payload 1 75 Kg 165 lbs

All-terrain payload 1 20 kg 44 lbs

5 Speed (max) 1.0 m/s 3.3 ft/s

6 Ground clearance 130 mm 5 in

7
Climb grade 45° 100% slope

Traversal grade 30° 58% slope

8 Operating ambient 
temperature –10 to 30° 14 to 86°

9 Operating time 3 hours typical; 8 hours standby (no motion)

10 Battery 24V 20Ah Sealed Lead Acid

11 Battery charger Short-circuit, over-current, over-voltage and 
reverse voltage protction

12 Charge time 10 hours

13 User power 5v / 12V / 24V; Each fused at 5A

14 Communication RS-232; 115200 Baud

15 Wheel encoders 78,000 ticks/m

16 Internal sensing
Battery status
Wheel odometry
Motor currents

Table 1. System specifications from datasheet
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consumed. What is “typical” referring to? The experimentations in 
place all refer to the battery extinction.

For example, it is mentioned that the operating time was about 
3 hours, but it was not explained on which type of ground, the 
supplied energy, with how much payload and with which speed, 
and if it were compatible with slope climbing. Furthermore, if the 
UGVi was optimized for requirement #9, we imagine it would 
be so in all cases explained in requirement #4, supposedly on all 
grounds with maximum payload.

On the other hand, it is expected not to outreach the expected 
performance, otherwise it would mean that the system is over-
qualified for some features. A perfect match between datasheet 
and real performance is at stake.

This selection of focus on four requirement exploitation, howev-
er arbitrary, covers all questions raised in the theoretical problem 
(MTS-EP 1). It addresses multi physical capabilities of the system 
with respect to its expected usage.

b. Maintaining the integrity of the specifications 
The mule concept is designed to follow human pilot, while 

carrying his supplies for 3hr at human walking speed (5km/h). 
We have observed previously that connection between the remote 
control and the robot starts to fail when the battery capacity low-
ers. If the tension falls, the electronical devices that controls the 
connection will observe a disconnection. The witness of the robot 
indicating the battery levels do not indicate the voltage threshold 
that makes the communication fail. To measure the decaying 
power, we plugged a voltmeter to our experiment, which we found 
not intrusive.

Our system specifications at a glance are the following (see 
Table above). Note that our use case scenario was executed at the 
maximum speed the robot could reach, which is 3.6 km/hr. It is far 
from our objective of 5 km/hr. 

IV.  TESTS AND BENCHMARKING 
We were inspired by the frameworks for vehicle tests: 

vibration, slope, and military standard procedures with adapted 
requirements. We have focused on battery level measurement to 
follow, inspired by Dogru and Marquez (2018). In this section, 
we will test the autonomy and energy specifications, the speed 
specification, as well as the climb capacities.

a. Measurements methods and means 
To carry out these tests, we used some measuring instrument:
■■ Distance ruler precision ±0:5mm.
■■ iPhone telephone timer to calculate the duration ±0:05s
■■ Voltmeter at the entry of the battery precision ±0:05V.

b. Energy tests
i.  TEST 001: Energy test, 50kg load on various ground
The environmental conditions, the nature of the soil and the 

payload have the biggest impact on the robot mobility. This has 
motivated us to test the 3 hours battery specification of require-
ment n°9 in Table 1 with 50kg payload and various ground nature 
as “best effort.”

■■ Test stop condition: Battery running out. 
■■ Environmental conditions presented in Table 2.

ID Title Requirement (mission) Test Method

001 Maximum Payload 
various ground

The system shall carry 50kg load 
following an 3h mission on campus

Test pass if the battery runs out in more 
than 3h with load = 50kg on various 
grounds (tarmac and dry grass)

002 All-terrain payload 
dry grass

The system shall carry 20kg load 
following a 3h mission on dry grass

Test pass if the battery runs out in more 
than 3h on grass with load = 20kg

003 All-terrain payload 
gravel soil

The system shall carry 20kg load 
following a 3h mission on gravel soil

Test pass if the battery runs out in more 
than 3h on gravel soil with load

004 All-terrain payload 
tarmac       

The system shall carry 20kg load 
following a 3h mission on tarmac

Test pass if the battery runs out in more 
than 3h on tarmac with load = 20kg

005 Speed (max on flat 
tarmac

The system shall maintain a 1m/s speed 
when following the mission onn tarmac

Test pass if the speed is measured to be 
≥ 1m/s with 20kg load on average on 10m

006 Climb grade on 
various grounds

The system shall climb 45° slope carrying 
50kg load when following the mission in 
the campus

Test pass if the robot climbs 5.5° and 25° 
on tarmac, and if it climbs 18.5°, 22°, 24° 
with load = 50kg

007 Climb test onn dry 
grass

The system shall climb 45° slope carrying 
20kg load when following the mission in 
the campus

Test pass if the robot climbs 35° slope 
with load = 20kg on dry grass

Temperature Machining and Damage

Humidity Scoring and Burning

Precipitation Dents and Bruises

Weather
Cloudy weather

50 kg

Powered components Lidar, GPS, calculator, WiFi, 
camera

Flat Ground

Type of soil Duration

Tarmac 1hr 15min

Wet grass 1 hour

Table 2. Test log on various grounds, 50kg load

Observations:  test fail
1.	 After 1hr 30min of operation, we started to lose the commu-

nication with the robot (about 12 times in 30 min)
2.	 After 2hr 15min of operation, we totally lost communica-

tion. The autonomy requirement has not been met in our 
conditions.



SP
ECIA

L 
FEA

TU
R

E
M

A
R

CH
  2O

23
VOLUM

E 26/ ISSUE 1

80

Since our first test was unsuccessful, we planned to be more 
specific with the ground nature and load, and to report the behav-
ior of the power system. The system will be loaded with 20kg in 
the next tests. The ambiguity of the Table 1 requirements will be 
resolved with our next tests.

ii.  TEST 002: Energy test, 20kg load on grass
■■ Test stop condition: battery running out.
■■ Test results in Table 3.

5.	 Compared to test 001, the battery autonomy was extended 
by 30 minutes in similar conditions. This is a clue to the 
impact of the load on the system autonomy

6.	 from 16hr 20min, that is, in the last ten minutes of the 
experiment, even if the robot is controlled to go straight 
ahead, it cannot drive straight ahead (when controlled to go 
straight ahead, its trajectory is affected.

Figure 4. Dry grass test environment

Observations:  test fail 
1.	 After 1hr 55min of operation, we started to lose com-

munication with the robot (about 8 times in 50 min), we 
measured the voltage at each communication loss, and we 
presented the values in Table 4.

2.	 After 2hr 45min of operation, we have totally lost the com-
munication. The 3 hours have not been reached.

3.	 We noticed that the communication with the robot de-
pends on the Wi-Fi, but the minimum voltage and current 
required for normal operation of the Wi-Fi are 24VDC and 
0.3A, this can explain the total loss of communication in this 
test and which occurred when the voltage was 24.05V.

4.	 The site chosen for this experiment is a dry grass, which is 
relatively flat, without tall grass, and therefore the robot can 
move forward without wasting much energy to submerge 
the grass, and there is not an up or down process during the 
operation.

Starting time Ending time

Time 13hr 45min 16hr 30min

Temperature 26° 27 °

Humidity 42% 39%

Precipitation 0 0

Wind 7.2 km/hr 7.2 km/hr

Weather Sunny weather Sunny 
weather

Voltage 27.55 V 24.05 V

Load 20 kg

Powered components Lidar, GPS, calculator, WiFi, 
camera

Flat Ground
Type of soil Duration

Dry grass 24hr 45min

Table 3. Test log energy on grass, 20kg load

Table 4. Voltage measurements test grass, 20kg

Time Voltage

15 hours 40 minutes 24.53  Volts

15 hours 57 minutes 24.45  Volts

16 hours 09 minutes 24.27  Volts

16 hours 16 minutes 24.16  Volts

16 hours 20 minutes 24.12  Volts

16 hours 24 minutes 24.09  Volts

16 hours 27 minutes 24.05  Volts

16 hours 30 minutes 24.05 V

Starting time Ending time

Time 14hr 20min 17hr 55min

Temperature 26° 27 °

Humidity 45% 46%

Precipitation 0 0

Wind 10.8 km/hr 10.8 km/hr

Weather Sunny weather Sunny 
weather

Voltage 27.4 V 23.79 V

Load 20 kg

Powered components Lidar, GPS, calculator, WiFi, 
camera

Flat Ground
Type of soil Duration

Tarmac 3hr 35min

Table 5. Test log energy on tarmac, 20kg load

Figure 5. UGVi on 
tarmac

iii.  TEST 004: Energy test, 20kg load on tarmac
■■ Test stop condition: Battery running out or loss of 
communication. 

■■ Test results in Table 5.
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Observations:  test successful
1.	 Compared to test ii, the battery life was extended by another 

50 minutes this time. This could indicate an influence of the 
ground nature on the battery autonomy.

2.	 After 3hr 35min of operation, we totally lost communica-
tion, but before that, we did not lose it. However, during the 
last almost 20 minutes of the experiment, the response speed 
of the robot to various operations degraded, and the rotation 
speed was significantly reduced.

3.	 We chose a flat tarmac. Compared to grass test 002, the 
tarmac has fewer gullies, so the robot has fewer bumps when 
moving forward. As a result, the power consumption was 
slower, and the communication system had less “chattering” 
because the direct current was not drawn to make punctual 
efforts to pass gullies.

iv.  TEST 003: Energy test, 20kg load on gravel soil
■■ Test stop condition: Battery running out or loss of communi-
cation.

■■ Test results in Table 6. 

2.	 After 2hr 40min of operation, we have totally lost the com-
munication.

3.	 There is a lot of coarse gravel on the ground, which can 
increase the friction when the robot moves, and make the 
progress of the robot very bumpy, where the bumps are 
much bigger than on tarmac and on dry grass.

4.	 Due to these gravels, the rotation speed of the robot de-
creased significantly, the rotation became very difficult and 
bumpy.

5.	 Although the experiment lasted 2 hours and 50 minutes in 
total, at the beginning it took us about 40 minutes to bring 
the robot to the test site, which is the ground with gravel. 
During these 40 minutes, the robot was moving on tarmac. 
In comparison with test 004, we assume that 40 minutes on 
tarmac could only improve the performance on our test on 
gravel.

6.	 This test should be run again to know if the performance 
on gravel is better than grass or not. But the fact that the 
test was still unsuccessful even with 40 minutes on tarmac 
and extra care on that day proves our point for this article: 
the requirement on “3hr typical” was not met in those 
conditions.

c.  TEST 005: Load and speed tests
The maximum speed of the robot supposed to be equal to 1 m/s 

(as indicated on the Datasheet), So we did a speed test with 20kg 
load on Tarmac to put to test requirement n°5 from table 1.

Starting time Ending time

Time 14hr 20min 17hr 10min

Temperature 26° 27 °

Humidity 45% 45%

Precipitation 0 0

Wind 10.8 km/hr 10.8 km/hr

Weather Sunny weather Sunny 
weather

Voltage 27.47 V 23.92 V

Load 20 kg

Powered components Lidar, GPS, calculator, WiFi, 
camera

Flat Ground
Type of soil Duration

Dry soil with 
gravel

2hr 50min

Table 6. Test log energy on grass, 20kg load

Figure 6. Gravel soil illustration

Observations:  test fail
1.	 After 1hr 45min of operation, we started to lose the com-

munication with the robot (about 7 times in 45 min), we 
measured the voltage at each communication loss, and we 
presented the values in the following table.

Table 7. Voltage during test 003

Time Voltage

16 hours 35 minutes 24.36  Volts

16 hours 49 minutes 24.28   Volts

16 hours 58 minutes 24.15   Volts

17 hours 03 minutes 24.06  Volts

17 hours 06 minutes 23.99  Volts

17 hours 08 minutes 23.95  Volts

17 hours 10 minutes 23.92  Volts

Table 8. Test log combining load and speed on tarmac

Temperature 25° C

Humidity 42%

Precipitation 0%

Wind 11 km/hr

Weather Sunny weather

Load 20 kg

Flat ground Tarmac

Observations:  test fail
1.	 The robot covered 9.57m in 9.90sec (on average) (for 5 tri-

als: 10.00sec, 9.98sec, 9.78sec, 9.71sec, 10.02sec) on tarmac. 
speed= 0.967 m/sec.

2.	 The robot covered 17.94m in 18.47sec (on average) (for 5 
trials: 18.55sec, 18.45sec, 18.26sec, 18.62sec, 18.46sec) on 
tarmac. speed= 0.971 m/sec.
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3.	 We used the lines perpendicular to the edge of the road 
as the starting line and the ending point, but they are not 
completely vertical, so the robot was tilted when it moves 
forward, so the actual walking route is greater than the 
distance between the lines that we measured. Therefore, the 
measured speed is less than the actual speed at that time. If 
the robot tilts as it moves forward, the further it moves, the 
larger the distance measurement error and the larger the 
speed measurement error. At the end of the experiment, we 
found that if the side of the robot is aligned with the edge of 
the road at the beginning, the robot can better avoid tilting.

For accuracy, we have +/-0.5 mm at 1 m for the tape measure 
that was used to measure the distance and the error of the iPhone 
timer was +/-0.05s. However, we believe that the main source of 
error in the timing of the experiment is human reaction time. The 
coordination of the start timing, the reaction time when crossing 
the finish line, these errors will be greater than the instrument 
error and will depend on the timekeeper. This introduces a bias in 
the validation team that would motivate automatic simulation in 
later testing process.

d.  TEST 006: Climbing tests
The maximum climb grade of the robot supposed to be 45° as 

indicated on the requirement n°7, so we did a climb test on wet 
soil, with minimal payload. Figure 7 represents the conditions:

e.  TEST 007: Stress tests
The robot is suppose to climb 30 slopes with 20kg load, so we 

did a stress test with 50kg load on different slopes. This exceeds 
the all-terrain recommended payload in requirement n°4. Figure 8 
represents the Tarmac test conditions, and Figure 8 to 12 represent 
the wet grass tests conditions.

Temperature 12°

Humidity 27%

Precipitation 10%

Wind 24 km/hr

Weather Cloudy weather

Load 20 kg

Powered components Lidar, GPS, calculator, WiFi, 
camera

Sloping Ground
Type of soil Slope angle

Wet soil 34.5°

Table 9. Test log climbing 34.5° slope, 20kg load

Figure 7. UGVi climbing test 35° slope on wet grass

Observations:  test fail
1.	 We tested the robot on a 35° slope on wet soil: the robot 

failed to climb it. It climbed about one meter upthe slope 
then it started to diverge to the right and started to tumble 
down the slope. as seen in Figure 7. The requirement was 
not met in these conditions. 

Temperature 12°

Humidity 72%

Precipitation 10%

Wind 24 km/hr

Weather Cloudy weather

Load 50 kg

Sloping Ground

Type of soil Slope angle

Tarmac 5.5°, 25°

Wet grass 18.5°, 22°, 24°

Table 10. Test log stress slope, 50kg load

Figure 8. UGVi on tarmac 5.5° slope

Figure 9. UGVi on tarmac 25° slope

Figure 10. UGVi on grass 22° slope

Figure 11. UGVi on grass 18.5° slope
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Observations:  test pass
1.	 We tested the robot on two slopes less than 20 °, the first one 

is about 5.5° on tarmac and the other one is about 18.5 ° on 
wet grass.

2.	 We tested the robot on three slopes less than 30°, two slopes 
on wet grass of 22 ° and 24 °, and a 25 ° slope on tarmac.

This indicates that for some requirements, the UGVi performs 
better than expected. This indicates that for this purpose only, 
the specification is not efficient, because these performances were 
never clearly specified.

V.  DISCUSSION
The V&V on our UGVi demonstrated that the datasheet 

furnished no insight/hint to system usage, and that the UGVi 
system was not fit for our mule capability. Moreover, since almost 
no datasheet performance was met, we could not determine 
whether the system is intended for our purpose or not. At this 
point, we would have preferred to read the initial requirements, 
which are meant to express the system functions. Last, if the 
system were picked from a set of non-dominated optima solution 
to (MTS-EP), there would be a perfect match between the 
original intended capability of the system and its performance. 
The following actions could be set: lower the buyer’s expectations, 
which could lead to the end of business, improve the datasheet, and 
improve the system performance toward some chosen capabilities.

We have introduced a loop that ensures the increase of com-
pany knowledge, and at the same times links directly the system 
requirements to its intended use cases and user documentation. 
Failing all tests on UGVi performance gives enough reasons to 
invest in a method that would benefit both user manual descrip-
tions and correlation between system and its intended capabilities. 
The inclusion of MBSE in the process of capability description 
would decrease ambiguities on the intentions of the builder in 
the requirements and in the user manual. Our process can also 
include physical models at the highest level of conception. The 
complete optimized system-driven engineering architecture 
conception flow will include some re-engineering to transform 
the UGVi into an optimized mule system. This involves re-writing 
the system specifications and re-designing it in the first step, and 
then propose a re-design in those objectives that would fit the 
objectives better. The solutions could be explored with simulation 
rather than real-life V&V, to reduce the costs of re-design. The test 
logs could be smartly combined to improve the next specifications 
for future product developments.

We have considered the “mule concept” as the systems expect-
ed capabilities. There were no declared capabilities on the UGVi 
design details. There is no proof that the UGVi was designed as a 
“mule concept” more than another purpose. The concept archi-
tecture capabilities have never been exposed by the builder. This 
could be improved with more visibility on the system capabilities 
by the builder, using for instance the operational views in domain 
specific architecture frameworks and/or detailed representations 

Figure 12. UGVi on grass 24° slope

of the system instance in model-based design or MBSE.
The SSFP design flow described is a proposition that match-

es requirement improvements, V&V practice, and user manual 
redaction challenges. It introduces a method that enhances the 
quality of the system V&V context, shares the best-known intend-
ed performances of the system, and automatically generates the 
user manual datasheet. Furthermore, the SSFP flow introduces a 
re-engineering method that would continuously improve engi-
neering specifications while mastering products engineering costs 
and delays over the concept and maintenance phase of the system 
lifecycle. This could smoothly replace the “best effort” system 
engineering by a promising optimized system driven engineering. 
Further research shall focus on quantification of the gains using 
such a method UGV-category product development.

The correlation between the objective expression will be subject 
of other publications and will bring insight to the complete GOAL 
equation rather than only the “MTS-EP”. If our proposition 
could help enhancing the quality of the system, the outcome on 
resource and time of design are considered “best effort.” Further 
publications will fill the other goals of (GOAL) introduced in the 
state of the art.

For defense system definition, robots on the battlefield will 
follow the military standards given by ISO and STANAG, which 
will advise contract managers on how V&V for system behavior 
on battlefield will be considered (Michelson 2021). Therefore, the 
COTS which cannot prove to be compliant with the standards will 
be excluded from defense contracts because it will be impossible 
to integrate them in the larger system of system capability forecast.

VI.  CONCLUSIONS
Datasheets are not adequate to reflect the properties of a system 

but can be replaced by system engineering specifications which 
improve accuracy of subsystem behavior description. The lack of 
completeness and ambiguity carried out by the very structure of a 
usual datasheet ends up with cumulative ambiguity and over-test-
ing with no guarantee of results for end systems. Should datasheets 
be banned in favor of systematic requirement engineering files or 
documents requires that all suppliers of components and subsys-
tems are trained and master the systems engineering process.

On the opposite side, datasheets easily reveal the lack of knowl-
edge in systems engineering and requirements engineering. 
Therefore, companies have three options: (a) stick to the usual 
“reliable” supplier with no investment in writing the “should-be” 
requirements and avoid evolving equipment, (b) stick to the usual 
“reliable” supplier with consistent investment in writing the “should-
be” requirements and pay for the component evolutions, or (c) 
impose systems engineering exchange protocols. Some industries 
such as the semiconductor and the embedded system industry are 
not familiar with systems engineering and make extensive use of 
component and subsystem datasheets. If the aim is to lay out seam-
less system engineering flow down to physical architecture and up 
to V&V, there is a major overhaul to be conducted.

In our multi-physical UGVi example, system tests failed: 
technical validation was not reached. If the system was sold to a 
client, none of the claimed capabilities could be covered as proved 
in our bench-marking. The only objective that was reached was 
not even specified, therefore would have generated no outcome. 
The experiment presented here illustrates the necessity of 
introducing environmental conditions and objectives to technical 
specifications. It also indicates that the original requirement 
artifacts for the system would do a better job at describing the 
expected performance of the system, especially if it is enhanced 
by architecture frameworks and MBSE concept design, which 
are the trends to seek completeness and unambiguous system 
description.  ¡
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APPROACH / OUTLINE

  ABSTRACT
During the initial concept development phase, systems engineers focus on defining the problem space and system functions to 
explore candidate concepts that may address the systems engineers’ problems. Model-based conceptual design (MBCD) tech-
niques may be used to assist the customer and other stakeholders develop a greater understanding of the system concept, as well 
as identifying areas in the system that are affected by changes in requirements. This approach has generally been documented 
for describing the system concept in the early stages in the lifecycle, without significant focus on the test and evaluation (T&E) 
space that would be needed to evaluate these concepts, or identifying where the T&E space would be affected with a change in 
requirements. Our hypothesis is that decision makers would equally gain insight into the T&E considerations as well as system 
space considerations using MBCD techniques. An approach is offered to extend the previously published MBCD methodology to 
better consider the T&E space.

Exploring the Test and 
Evaluation Space using 
Model Based Conceptual 
Design (MBCD) Techniques

David Flanigan, david.flanigan@jhuapl.edu; and Kevin Robinson, kevin.robinson@shoalgroup.com
 Copyright © 2019 by David Flanigan and Kevin Robinson. Permission granted to INCOSE to publish and use.

Developing a system concept 
requires defining the problem 
space and required capabilities, 
functionality, and interfaces of 

the system concept space. A Model-based 
conceptual design (MBCD) technique can 
describe the linkage of these problems and 
potential solution space in order to visual-
ize the impact of changes from the problem 
to the solution space, and vice versa. The 
MBCD approach is conveyed via a struc-
tured entity-relationship descriptive model 
instead of a traditional static document, 
which may promote rapid understanding of 
the causality of changes and may encour-
age quicker decision making and become 
informed of the problem space.

This paper offers an additional emphasis 
to the existing MBCD process by extending 
it to integrate test and evaluation (T&E) 
artifacts and interfaces more thoroughly 
to the operational domain, system do-
main, and analysis domain as previously 
described by Robinson et al. (2010). The 

paper starts by describing the motivation in 
incorporating the T&E domain to the exist-
ing methodology, and how the test domain 
artifacts can be modeled and analyzed, 
to quantify the impacts of changes to the 
other domains. For clarity of reading, an 
illustrative example is offered to explore the 
modified technique and offers examples of 
what these metrics may look like to provide 
insight to decision makers.

INTRODUCTION / MOTIVATION
The MBCD technique has been intro-

duced to aid in understanding the problem 
space. Like existing model-based systems 
engineering (MBSE) techniques employed 
later in the lifecycle, it helps to visualize 
and structure systems engineering infor-
mation. It allows for a richer visual picture 
to structure how changes in the capabilities 
/ requirements may result from changes in 
the problem definition space, ultimately 
influencing the system capability space, con-
cept of operations, or interfaces needed to 

successfully complete the mission. This ap-
proach can be helpful in the initial concep-
tual phase but does not currently consider in 
detail the T&E phase of the project during 
development of a conceptual system design. 
By including the information that more fully 
describes the T&E activities of the project, 
additional insight into the full system design 
may be considered, to include the require-
ments / capabilities to be tested as well as 
the complex test ranges and equipment to 
verify these requirements and changes in the 
requirements. Decision makers may receive 
equal insight into the entire system concept 
by incorporating the T&E elements into 
the MBCD process, as well as considering 
operating and system concepts.

LITERATURE REVIEW 
MBCD is implemented through a series 

of models to provide communication be-
tween the various system development ele-
ments (developers, stakeholders, users, etc.) 
and is described by Wylie et al. (2016), and 
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Aluwihare et al. (2014) from which this pa-
per takes motivation to extend the current 
methodology. Cook et al. (2015) uses the 
MBCD approach to assess the technical risk 
of concepts using modeling and the un-
derstanding of interdependencies between 
the different models, which can inspire the 
use of modeling to conduct analysis on 
the various concepts. Do et al. (2014) have 
used MBCD to explore the interactions that 
are needed when exchanging information 
and insights while executing contracts 
between the acquirer and supplier. Tetlow 
et al. (2013) utilize the MBCD approach 
to further explore the requirements and to 
assess the mission success of the conceptual 
system using a model-based approach. Do 
and Tetlow’s descriptions detail the linkage 
between the user needs and system model-
ing, to develop a credible and valid system 
model for further analysis of the needs. 
Other uses of models to inform system sim-
ulations have been produced (Yaroker et al., 
2013) that utilize a similar methodology as 
the MBCD approach.

It can be concluded from the literature 
review that MBCD has a wide range of 
applications and user communities, which 
provides motivation to incorporate the 
T&E community in this methodology.

DESCRIPTION OF THE APPROACH 
The modified MBCD approach is 

described in five separate segments. The 
first defines how MBCD is used for system 
concept development and discusses the 
relevant artifacts, actors, and information. 
The second describes the proposed T&E ex-
tension to the MBCD technique. The third 
segment describes the linkage between the 
test domain and the other MBCD domains 
(notably the operational, system, and anal-
ysis). The fourth segment offers additional 
considerations to evaluate the entire system 
model. The last segment offers an approach 
to evaluate the new linkages and to visu-
alize the insight gained when one domain 
causes changes to the other domains.

First Segment: MBCD Usage 
MBCD is used to structure and link 

information about the understanding of a 
problem to possible solutions. Wylie et al. 
(2016) describe the usage of MBCD using 
descriptive models to describe the problem 
space, what the system is comprised of, and 
how the system interfaces are described. 
In their approach, they provide a logical 
design-based process to define the traceabil-
ity, and therefore design rationale, between 
strategic guidance, operational activities, 
operational needs, functions, functional 
requirements, refined requirements, and 
software components. Through use of the 
descriptive models, the software developers 

are then able to develop their model of the 
system, and how it traces to the previ-
ously described artifacts. This traceability 
visualization can then aid the software 
developers and decision makers to appreci-
ate where changes in the modified artifacts 
could affect the current software develop-
ment plans. This level of insight can assist 
the decision makers to address the right 
problem and assist the developers to focus 
on the right solution set. Figure 1 provides 
an example of this traceability between do-
mains through an abstraction of the schema 
employed to structure the model.

Second Segment: T&E Extension
An additional domain is proposed for 

inclusion into the MBCD methodology to 
address the T&E domain. This includes in-
formation elements that would describe the 
activities needed to test the requirements 
and functions, trace the tests to the require-
ments, and include the system components 
that would need to be tested. Proposed ele-
ments of the test domain would include test 
plans, test ranges, test events, test articles, 
test targets, and test constraints. Based on 
the authors’ experiences across the concep-
tual design and T&E domains, a high-level 
example of the schema of this test 
domain is provided in Figure 2.

Third Segment: Test-Domain 
Linkage to Existing MBCD 
Domains

The newly formed test domain 
model may be integrated into the 
MBCD model through the inte-
gration of the schemas. Robinson 
et al. (2010) define a model-based 
systems engineering approach to 
describe a complex capability to 
include the enterprise context, 
operational domain, system 
domain, and the analysis domain. 
The strategic domain (enterprise 
context) focuses on the guidance. 
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The operational domain focuses on the 
mission tasks, operational environment, 
and service requirements. The system 
domain focuses on the functions needed to 
address the mission, as well as the specific 
components that perform the functions. 
The analysis domain supports the studies 
and analysis to analyze the operational 
and system domain. Figure 3 (next page) 
augments the existing schema of opera-
tional domain and system domain with the 
test domain, thus providing the framework 
for developing the enhanced descriptive 
model, including the T&E activities.

As more domains are included with 
the model, the abstracted schema repre-
sented in Figure 3 increases in complexity 
and becomes less readable. For clarity of 
reading, the interfaces and directionality 
from Figure 3 have been converted into an 
interdependency matrix, shown in Table 1.

The table is intended to be read from 
left to right, from the source node (row) 
to the target node (column). A number of 
“1” indicates there is an interface from that 
specific source to target node. Note that the 
directionality should be reflected in this 
matrix, as not all interfaces have a 2-way di-
rection, although can if desired for usability 
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Figure 2. Test domain MBCD model
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are then able to develop their model of the 
system, and how it traces to the previ-
ously described artifacts. This traceability 
visualization can then aid the software 
developers and decision makers to appreci-
ate where changes in the modified artifacts 
could affect the current software develop-
ment plans. This level of insight can assist 
the decision makers to address the right 
problem and assist the developers to focus 
on the right solution set. Figure 1 provides 
an example of this traceability between do-
mains through an abstraction of the schema 
employed to structure the model.

Second Segment: T&E Extension
An additional domain is proposed for 

inclusion into the MBCD methodology to 
address the T&E domain. This includes in-
formation elements that would describe the 
activities needed to test the requirements 
and functions, trace the tests to the require-
ments, and include the system components 
that would need to be tested. Proposed ele-
ments of the test domain would include test 
plans, test ranges, test events, test articles, 
test targets, and test constraints. Based on 
the authors’ experiences across the concep-
tual design and T&E domains, a high-level 
example of the schema of this test 
domain is provided in Figure 2.

Third Segment: Test-Domain 
Linkage to Existing MBCD 
Domains

The newly formed test domain 
model may be integrated into the 
MBCD model through the inte-
gration of the schemas. Robinson 
et al. (2010) define a model-based 
systems engineering approach to 
describe a complex capability to 
include the enterprise context, 
operational domain, system 
domain, and the analysis domain. 
The strategic domain (enterprise 
context) focuses on the guidance. 
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The operational domain focuses on the 
mission tasks, operational environment, 
and service requirements. The system 
domain focuses on the functions needed to 
address the mission, as well as the specific 
components that perform the functions. 
The analysis domain supports the studies 
and analysis to analyze the operational 
and system domain. Figure 3 (next page) 
augments the existing schema of opera-
tional domain and system domain with the 
test domain, thus providing the framework 
for developing the enhanced descriptive 
model, including the T&E activities.

As more domains are included with 
the model, the abstracted schema repre-
sented in Figure 3 increases in complexity 
and becomes less readable. For clarity of 
reading, the interfaces and directionality 
from Figure 3 have been converted into an 
interdependency matrix, shown in Table 1.

The table is intended to be read from 
left to right, from the source node (row) 
to the target node (column). A number of 
“1” indicates there is an interface from that 
specific source to target node. Note that the 
directionality should be reflected in this 
matrix, as not all interfaces have a 2-way di-
rection, although can if desired for usability 
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Table 1. MBCD Model interdependency
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and readability. This table shows the three 
domains (operational, system, and test), 
which each have three possible domain 
interactions (one internal and two external).

Fourth Segment: Evaluation of the New 
Linkage 

The fourth segment evaluates how the rest 
of the overall descriptive model is affected 
when one domain element is changed. 
Changes may be viewed from different 
perspectives: the decision makers will view 
changes to the model as a change in capa-
bility or fielding date, which may affect their 
investment strategy. Developers may view 
changes to the model as changing their de-
livery dates or scheduling of efforts. Analysts 
may view changes to the model as updating 
their assessment of the system capability, 
which then may affect the decision maker’s 
insight of the system’s capability. Testers may 
view changes to the model that may affect 
their existing testing capabilities or future 
testing capabilities that need to be developed.
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Changes to one domain may affect 
other domains described in the model. 
For example, if there are changes to the 
operational domain (such as requirements), 
this may affect the system development 
efforts if there are new capabilities needed, 
or if the system design approach needs to 
be modified. As a result of this operational 
requirements change, testing approaches 
may need to be changed, which may affect 
the scheduling of the test facility or modifi-
cation of the test articles or targets.

Fifth Segment: Impacts of the Changes
Once the MBCD model has been 

modified, evaluation of the model should 
be conducted to ensure that the MBCD 
concepts are still valid, and the decision 
makers and other actors gain insight into 
the problem when changes to one domain 
are introduced. Several means are offered to 
evaluate how the linkages may be conduct-
ed. One method could be to leverage the 
network science community, to describe 
the number of nodes that are affected 
by a node that will change (for example, 
changing requirements and understanding 
what impacts this change would have in 
the other domains). Other network science 
metrics are size, average degree, average 
path length, connectedness, node centrality, 
and node influence.

As the triad of systems, operational, and 
testing domains are affected by changes 
in one of the domains, we may observe a 
change in both the primary and secondary 
influences that a domain has on the rest 
of the system. Using Table 1, changes to 
the test domain could affect the system 
and operational domain as the primary 
influence. However, each of these domains 
has their own potential influences, creating 
a secondary influence (system domain may 

affect the test and operational domain, and 
operational domain may affect the system 
and test domain). There exists a potential 
for the primary change in one domain to 
indirectly affect itself through the primary 
domain influenced. It may be postulate that 
a lesser impact will be seen through the 
secondary domain effect but leave this for 
future work to quantify the primary and 
secondary impacts. Table 2 provides an 
example of such a primary (left side) and 
secondary (right side) of impacts based on 
one modification (function from system 
domain). An example of a primary impact 
is by affecting the “function” within the sys-
tem domain, will affect five elements in the 
system (highlighted in orange). An example 
of the secondary effect is that each of these 

elements will have their own influence on 
the operational, system, and test domain, 
moving up and down the columns (shown 
on the right side in blue), affecting seven 
elements within the system. 

Illustrative Example
An illustrative example is offered to 

evaluate if the modified MBCD technique 
has merit and offers additional value to the 
stakeholders when changes are introduced. 
Here an existing example that uses MBCD 
to evaluate fire and emergency services 
(Spencer and Harvey 2014) is leveraged 
and simplified. This example was developed 
for the Department of Fire and Emergency 
Services (DFES) of the Government of 
Western Australia. The MBCD process was 
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Figure 4. Modified DFES operational context diagram (OV-1)

Systems Engineering for Specifying Complex Capability.” 2010 
Systems Engineering Test and Evaluation Conference: SETE. 
Engineers Australia.

■■ Spencer, Daniel, and David Harvey. 2014. “A Model-Based 
Approach to Capability in Fire and Emergency Services.” 2014 
Systems Engineering Test and Evaluation Conference: SETE 
2014. Engineers Australia.

■■ Tetlow, M. et al. 2013. “Modelling Requirements for Mission 
Success Prediction.” MODSIM2013, Adelaide, AU.
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Table 2. MBCD model interdependency primary and secondary impacts
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followed to define the DFES mission, driv-
ers, and capabilities, and used the capability 
management framework to consider during 
the planning, development, and execu-
tion of the capability development more 
thoroughly.

This example is utilized to introduce 
the MBCD process and the test domain. 
The intent of the example is to exercise the 
interdependency and quantification of the 
impact of changes when portions of the 
entire model are changed.

Operational Domain Description
The operational domain is defined by 

the DFES mission to detect, analyze, and 
respond to emergencies and incidents.  
Depicted in Figure 4 is the mission in 

graphical form using an OV-1.  Within 
each of these domains, the following 
elements are defined in Table 3.

System Domain Description
There are numerous systems that are 

used in this example. These are organized 
by the various phases of the operation 
(sensing, alerting, processing, dispatching, 
transporting, and responding). These 
systems are also listed in Table 3. Note that 
these systems will also include the actors that 
will operate the systems and other aspects 
not included in the simplified example.

Test Domain Description 
The test domain will identify several 

elements that would be used to test the 

various mission activities that are being 
evaluated.  From our example, four capabil-
ities would be tested, listed in Table 4 that 
are organized by capability test objective, 
and applicable test elements.

Insight and Utility of the Modified MBCD 
Process

The modified model can be utilized to 
incorporate the test domain along with the 
operational and system domains. While the 
stakeholders, development team and test 
team are developing their respective efforts, 
we would expect numerous interactions be-
tween the three teams during the capability 
development. Expected questions in re-
sponse to a domain change should start with 
“how does that affect the other domains?”

The model would be developed and 
then verify with the three domain teams to 
ensure that the elements and interactions 
are correct. Data would be elicited through 
tailored interviews and workshops to deter-
mine if sufficient insight was gained by all 
parties during the system development.

CONCLUSIONS / NEXT STEPS
This paper has offered a modification to 

the existing MBCD process to incorporate 
the test domain into the conceptual devel-
opment phase. The aim being to ensure that 
the testing community and capabilities are 
also considered during the initial devel-
opment to identify long-lead capability 
development, or how interdependent the 
operational and system development teams 
are to affect the test capabilities.

Next steps would be to identify an 
example project that this approach could 
be applied to and gain concurrence by 
all three domains. A model would be 
developed to describe the specific domains 
and follow the MBCD process during the 
system development lifecycle. Data could 
be collected at relevant milestones (for 
example, preliminary design review, critical 
design review, test readiness review, etc.). If 
the hypothesis proves correct that insight 
is gained by all domain stakeholders, the 
project could progress to a larger and 
more interdependent system concept for a 
further proof of concept.  ¡

Functions Systems Actors

Sense smoke/incident Sensor Fire service personnel

Send alert Telephone/radio Rescue coordinators

Confirm incident/select 
action Data Terminal

Dispatch response units Tanker, pumps, hoses

Respond to incident Transport vehicle

Table 3. DFES domain elements

Functions Test Objective Test Element

Sense smoke/incident Determine if incident is 
properly detected

Sensors, fire source, 
facility environment

Send alert Determine if alert is 
sent timely

Communications 
(transmitter and receiv-
er), communications 
environment

Confirm incident/
select action

Determine if response 
is correctly determined

Dispatcher, displays, 
dispatcher environment

Dispatch response 
units

Determine if dispatch is 
correctly executed

Response units, trans-
portation environment

Respond to incident Determine if response 
is adequately executed

Responders, fire source, 
facility response 
environment

Table 4. DFES test elements
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INTRODUCTION

  ABSTRACT
A complex system is characterized by emergence of global properties which are very difficult, if not impossible, to anticipate 
just from complete knowledge of component behaviors. Emergence, hierarchical organization, and numerosity are some of the 
characteristics of complex systems. Recently, there has been an exponential increase on the adoption of various neural network-based 
machine learning models to govern the functionality and behavior of systems. With this increasing system complexity, achieving 
confidence in systems becomes even more difficult. Further, ease of interconnectivity among systems is permeating numerous 
system-of-systems, wherein multiple independent systems are expected to interact and collaborate to achieve unparalleled levels of 
functionality. Traditional verification and validation approaches are often inadequate to bring in the nuances of potential emergent 
behavior in a system-of-systems, which may be positive or negative. This paper describes a novel approach towards application 
of machine learning based classifiers and formal methods for analyzing and evaluating emergent behavior of complex system-
of-systems that comprise a hybrid of constituent systems governed by conventional models and machine learning models. The 
proposed approach involves developing a machine learning classifier model that learns on potential negative and positive emergent 
behaviors, and predicts the behavior exhibited. A formal verification model is then developed to assert negative emergent behavior. 
The approach is illustrated through the case of a swarm of autonomous UAVs flying in a formation, and dynamically changing the 
shape of the formation, to support varying mission scenarios. The effectiveness and performance of the approach are quantified.

  KEYWORDS:  Complex System-of-Systems, Emergent Behavior, Machine Learning, Formal Verification

Framework for Formal 
Verification of Machine 
Learning Based Complex 
System-of-Systems

Ramakrishnan Raman, ramakrishnan.raman@honeywell.com; Nikhil Gupta, nikhil.gupta4@honeywell.com; and Yogananda 
Jeppu, yogananda.jeppu@honeywell.com
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A system can be considered as an 
integrated and interacting com-
bination of elements and/or sub-
systems to accomplish a defined 

objective (INCOSE 2015). These elements 
may include hardware, software, firmware, 
and other support. Systems-of-systems 
(SoS) are systems of interest whose system 
elements are themselves systems (Jamshi-
di 2008). SoS has evinced keen interest 
among the systems engineering communi-
ty, and there has been significant research 
pertaining to principles and practices on 
the architecture design, development, de-
ployment, operation, and evolution of SoS 
(Lane 2013; Nielsen et al. 2015; INCOSE 

INSIGHT 2016; Raman and D’Souza 2018; 
and Raman and D’Souza 2019). Applica-
tions of SoS principles and practices span 
many domains, including electrical power 
distribution, and Internet-of-Things. SoS 
characteristics discussed in literature 
include operational/managerial indepen-
dence, emergent behavior, and evolutionary 
development.

In a general sense, the adjective “com-
plex” describes a system or component that 
by design or function or both is difficult 
to understand and verify. A complex 
system is characterized by emergence of 
global properties which are very difficult, 
if not impossible, to anticipate just from 

a complete knowledge of component 
behaviors (Aiguier et al. 2008). Emergence, 
hierarchical organization, and numerosity 
are some of the characteristics of complex 
systems (Ladyman et al. 2013). Specifically, 
for complex SoS, the “stringing” together 
of the constituent systems results in unique 
functionality and emergent behavior being 
exhibited at the SoS level that is very diffi-
cult to envision and predict and cannot be 
attributed to any of the constituent systems 
individually. Understanding measures of 
effectiveness (MOEs) (INCOSE 2015), 
is critical to analyze the impact of the 
emergent behavior at SoS level. There are 
different types of complexity measures dis-
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cussed from different perspectives (Kinsner 
2008). The perspective of complexity used 
in this paper is with respect to the degree of 
difficulty in accurately predicting the future 
behavior. This complexity is determined 
by the entity being observed, the capabili-
ties of the observer, and the behavior that 
the observer is attempting to predict. This 
paper proposes an approach for analyz-
ing and evaluating emergent behavior of 
complex SoS. In our proposed approach, 
the entity being observed is a complex SoS, 
the observer being a machine learning clas-
sifier, and the behavior being attempted to 
predict is the positive or negative emergent 
behavior of the complex SoS.

The rest of the paper is organized as 
follows: The next section discusses key 
elements pertaining to the proposed ap-
proach, namely emergent behavior, MOEs, 
machine learning, and formal methods. The 
subsequent section discusses the proposed 
approach and illustrates it through case of a 
complex SoS that comprise a hybrid of con-
stituent systems governed by conventional 
and machine learning models. The case tak-
en is a swarm of autonomous UAVs flying in 
a formation, and dynamically changing the 
shape of the formation, towards supporting 
different mission scenarios. Finally, benefits 
and limitations of the proposed approach, 
conclusions and future work are discussed.

EMERGENT BEHAVIOR, MOEs, MACHINE 
LEARNING, AND FORMAL METHODS 

This section discusses some of the 
key elements pertaining to the proposed 
approach.

Emergent Behavior 
Emergence refers to the ability of a 

system to produce a highly structured 
collective behavior over time, from the 
interaction of individual subsystems 
(Kinsner 2008). Common examples include 
a flock of birds flying in a V-formation, and 
ants forming societies of different classes 
of individual ants, wherein these patterns 

are not induced by a central authority. For a 
system, emergent behavior refers to all that 
arises from the set of interactions among 
its subsystems and components. Complex 
systems are expressed by the emergence of 
global properties which are very difficult, 
if not impossible, to anticipate just from 
a complete knowledge of component or 
subsystem behaviors (Giammarco 2017). 
Emergent behavior can be characterized 
as positive or negative, depending on the 
impact on the MOEs. The challenge for 
complex systems is that there is inadequate 
knowledge on combination of events 
that would result in a negative emergent 
behavior. The intent of our proposed 
approach is towards learning from 
emergent behaviors exhibited and asserting 
for occurrences of negative emergent 
behaviors for complex SoS.

Measures of Effectiveness – MOEs 
MOEs. Measures of effectiveness are the 

operational measures of success that are 
closely related to the achievement of the 
objective of the system of interest, in the 
intended operational environment under a 
specified set of conditions (INCOSE 2015). 

It reflects the overall customer and user sat-
isfaction, and it manifests at the boundary 
of the system. MOEs are independent of the 
specific solution (INCOSE 2005). Example 
of MOEs include service life of a satellite, 
search area coverage, and survivability. Fail-
ure of the system to meet an MOE implies 
that the system does not meet its purpose 
and objectives (Smith and Clark 2006).

SoS MOEs versus System MOEs. In the 
context of SoS, each constituent system of 
the SoS has its own MOEs. The MOEs for 
a constituent system can be independent-
ly measured to assess its success. MOEs 
of the SoS are the operational measures 
of success for the SoS as a whole. Figure 
1 illustrates SoS MOEs versus constit-
uent system MOEs. System A can have 
MOEs: SysA-MOE-1, SysA-MOE-2, and 
SysA-MOE-3. The MOEs of System A rep-
resent the measures of success for System A 
as an independent system, and the MOEs 
for System A can be independently mea-
sured to assess the success of System A. In 
addition to each constituent system having 
its own MOEs, MOEs are also relevant at 
the SoS level, that is, SoSx would also have 
its own MOEs. The MOEs at the SoS level 
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represent the measures of success for the 
SoS as a whole. Figure 1 further illustrates 
the impacts on MOEs at system level and 
at SoS level. The MOEs of the system are 
impacted by the behaviors exhibited by the 
system. Similarly, the MOEs of the SoS are 
impacted by the behaviors exhibited at SoS 
level. Further, the behaviors exhibited at 
constituent system level also impacts the 
SoS MOEs.

As discussed earlier, one of the char-
acteristics of SoS is that the stringing 
together of the constituent systems results 
in unique behavior and functionality that 
gets exhibited at the boundary of the SoS, 
that is, the behavior may not be attributed 
to any of the constituent systems function-
ing independently. With this being the case, 
the relationships between the MOEs of the 
SoS vis-à-vis the MOEs of the constituent 
systems might turn out to be complex and 
dynamic. There are different means to 
analyze the MOE relationships between the 
constituent systems and SoS. SoS-System 
MOE relationship matrix (Raman and 
D’Souza 2017; and Raman and D’Souza 
2019) is one of the means to analyze the 
relationships, as indicated in Figure 2. The 
impact of different system MOEs on the 
SoS MOEs could vary. There might be sce-
narios where a specific constituent system 
might be meeting all its MOEs, but the SoS 
MOEs might not be met. Similar scenarios 
will be discussed in this paper in the next 
section.

Machine Learning 
Machine learning can be broadly 

defined as computational methods using 
experience to improve performance or to 
make accurate predictions (Mohri et. al. 
2012). Here, experience refers to the past 
information available to the learner, which 
typically takes the form of electronic data 
collected and made available for analysis. 
Machine learning represents the field of 
study that allows computer programs to 
learn without being explicitly programmed. 
The often-used definition is: “A computer 
program is said to learn from experience 
E with respect to some task T and some 
performance P, if its performance on T, as 
measured by P, improves with experience 
E” (Mitchell, 1997). Artificial neural net-
works (NN), inspired by biological neural 
networks in brains, comprise a collection 
(organized in layers) of interconnected 
units (nodes), with each node having the 
capability to receive a signal, process the 
signal, and transmit the processed signal to 
other units linked to it. NN has been used 
on numerous learning problems, including 
vision, speech recognition, social networks, 
board games, and medical diagnosis. In 
a neural network, the first layer is termed 

the input layer since it is connected to 
the external input data. The last layer is 
termed the output layer since it provides 
the outputs of the total neural network. All 
the other intermediate layers are termed 
hidden layers. Each node unit processes 
the signal via an activation function. Each 
input has a weight that can be modified. 
Each unit computes the activation function 
f of the weighted sum of its inputs.

Recently, there is an explosion in the 
adoption of neural network-based machine 
learning models in various systems and are 
increasingly being used to control many 
physical systems, such as cars and drones. 
A good starting point to get the context 
of the work discussed in this paper is a 
comprehensive survey paper that provides 
a detailed look at the field with a review of 
over 150 odd papers (Xiang et al. 2018) that 
discusses the use of neural network-based 
machine learning techniques in safety 
control systems, and the formal methods/
verification used to validate the networks. 
The verification of NN is a hard task as it is 
said to be an NP complete problem. Most 
of the difficulties arise from the presence of 
activation functions and the complex struc-
ture of the neural network. Nevertheless, 
neural networks-based machine learning 
techniques have been used in some of the 
safety critical systems: F-15B intelligent 
flight control system (William-Hayes 2005) 
and intelligent autopilot system (Baomar 
and Bentley 2017). Neural networks are 
however susceptible to small changes in 
their inputs, and therefore ensuring their 
correct behavior under various conditions 
is very important. The Reluplex algorithm, 
which stands of ReLU with Simplex caters 
to the activation function Relu using the 
simplex algorithm, is evaluated on a set of 
45 real world NN problems (Katz 2017). 
In this paper, we have used MathWorks® 
MATLAB R2020b Statistics and Machine 
Learning Toolbox™.

Formal Methods 
Formal methods are mathematics-based 

techniques for the specification, develop-
ment, and verification of digital systems 
(RTCA 2011). The mathematical basis 
of formal methods consists of formal 
logic, discrete mathematics, and comput-
er-readable languages. The use of formal 
methods is motivated by the expectation 
that, as in other engineering disciplines, 
performing appropriate mathematical 
analyses can contribute to establishing the 
correctness and robustness of a design. 
Formal methods can be used to model 
complex systems as mathematical entities. 
The complex system behavior is broken 
down into smaller units and each one of 
these is defined as mathematical equa-

tions. Defining systems formally enables 
system validation (mathematically correct 
behavior – mostly safety criteria) using 
means other than testing – like a proof of 
correctness. The mathematical techniques 
are used to prove the correctness of the 
assumptions and theory using property 
proving. There are many tools that can be 
used for formal methods in the systems 
development V-Model (Nanda et al. 2018). 
Another branch of formal verification is 
called model checking, which involves a 
model of the system and a way to define the 
property of the system. The model checking 
tool then explores the possible states the 
model can be in and checks for violations 
of the property. A violation of the property 
yields a counter example that is used for 
debugging the model. It may give concrete 
evidence of the correctness of the property 
and this proves that the property can never 
be violated for any combination of states 
and within the overriding assumptions. 
There is a possibility of the formal methods 
tool to provide an outcome stating that 
the property cannot be proved due to the 
limitation of the tool. This usually happens 
due to the large state space that is created 
and makes the proving impossible given 
the memory limitation of the computing 
platform. In such cases one must slice the 
model or limit the input space to reduce the 
bloat-up of the state space. In this work, we 
have used Simulink Design Verifier, a tool 
from MathWorks (SLDV 2020) that uses 
formal methods to generate test cases, find 
design errors and to prove the correctness 
of assertions or properties defined as Sim-
ulink blocks or MATLAB code. We have 
successfully demonstrated the use of SLDV 
in our earlier work (Raman and Jeppu 
2019). In this paper, we also look at another 
tool called CBMC (2020). This tool is a 
bounded model checker that looks at prop-
erties in a small defined region and bound 
and argues on its correctness. CBMC works 
on the C code, and it has additional features 
like MC/DC testing, array checks, branch 
coverage etc. that can be used on the gen-
erated code. We explore the use of CBMC 
in the current problem statement to look at 
the NN correctness and the SoS behavior.

PROPOSED APPROACH 
This section discusses the proposed 

framework towards application of machine 
learning based classifiers and formal meth-
ods for analyzing and evaluating emergent 
behavior of complex system-of-systems. 
Figure 3 provides an overview of the 
proposed approach. The complex SoS has 
a set of defined MOEs. The SoS comprises 
independent constituent systems, with each 
having their own corresponding system 
MOEs. The proposed approach involves 
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UAVs is taken from publicly available liter-
ature (Tahir et al. 2019; X. Dong et al, 2019; 
and Hassanien and Emary 2016). This is 
specifically done to avoid any restrictions 
that may come in sharing the work with the 
community. The example, though generic, 
is sufficiently complex and is of significant 
relevance to the aerospace community 
and can further be scaled up to serve more 
complex use cases.

Swarm Formation Flying
As discussed in the earlier section, emer-

gence refers to the ability of a system to pro-
duce a highly structured collective behavior 
over time, from the interaction of individual 
subsystems. A typical example pertains to a 
flock of birds flying in a specific formation, 
which is supposed to give many benefits 
including reduced energy requirements and 
safety. Similar approaches have been adopt-
ed for swarm of UAVs too, wherein specific 
formation shapes are expected to provide 
specific benefits – including fuel savings 
and redundancy in mission coverage. The 
scenario being simulated is a system-of-sys-
tems comprising six autonomous UAVs as 
the constituent systems. The autonomous 
UAVs collaborate with each other during 
the required situations and fly in a forma-
tion to leverage the desired benefits as and 
when required. Various scenarios pertain to 
the different formation shapes as required 
for the mission. For an individual constitu-
ent system UAV, the MOEs would pertain 
to parameters such as whether the required 
speed constraints are adhered to or not, and 
whether the required space constraints with 
adjacent autonomous UAVs are adhered to 
or not. For the SoS comprising the various 
autonomous UAVs, MOEs would pertain to 
aspects such as the time duration to transi-
tion from one formation shape to another, 
the safety and separation constraints being 
adhered to by all the autonomous UAVs, 
and the formation shape being maintained 
without distortion. For experiments, 
simulations were done to study various 
scenarios that would be encountered during 
the autonomous UAV formation flying. 
MathWorks® MATLAB R2020a Aerospace 
& Control System Toolbox was used to 
build the models for the same.

The high-level SoS model is illustrated in 
Figure 5. The formation shape and indexing 
for the six autonomous UAVs is indicated 
in the figure (in “formation order”). For the 
specific formation, UAV-1 is considered as 
the leader of the formation. Each signal line 
depicted in the model represents data from 
all the six UAVs. The states of each individ-
ual UAV include the inertial position and 
velocities. The states are initialized in the 
vehicle block with random initial positions 
with respect to the leader of the formation. 

Figure 3. Overview of proposed approach

building a machine learning (ML) classifier 
that observes the various MOEs at SoS level 
and constituent system level, leverages the 
MOE relationship matrix (Figure 2), and 
learns the emergent behavior. The formal 

verification engine is used to assert the 
occurrence of negative emergent behavior. 
Figure 4 provides details of the proposed 
approach. To illustrate the proposed 
approach, the generic case of a swarm of 
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The states are consumed by the swarm 
instincts block to generate desired states 
to maintain or change the formation. The 
desired states are passed onto the control-
ler which generates required forces to be 
applied on the vehicle.

The required forces are then sent to the 
vehicle, which integrates them to get the 
current states. MATLAB animation display 
was used for visualizing the formation in 
real time during the various simulation 
runs. The constituent system autonomous 
UAV vehicle block is illustrated in Figure 
6. The forces from the controller block are 
integrated within the 6-degree of freedom 
(6DOF) point mass block to generate the 
inertial position and velocities in ENU (east 
north up) frame. Impulse noise block intro-
duces an impulse force at a random instant 
and of random total magnitude. This was 
used to simulate various scenarios such 

as wind gust. The force noise block adds a 
Gaussian noise to all the forces to simulate 
real world conditions. Figure 7 illustrates 
the model that pertains to the various 
formation shapes as part of the simulation 
runs. There are three frames of relevance 
in the model: (a) leader relative formation 
plane frame, in short, referred to as the 
formation plane (b) leader relative inertial 
frame, and (c) absolute inertial frame. The 
desired shape of formation and formation 
plane angles are taken as input, either from 
a time series file or from a signal genera-
tor. The desired formation plane angle is 
defined by Euler angles, which is consumed 
as a time series file or from a signal gen-
erator. The angles are converted to DCM 
(direction cosine matrix) in ZYX (axis) 
order. The desired positions in formation 
plane are transformed to the leader relative 
inertial frame using the DCM of formation 

plane. Leader relative inertial positions are 
converted to absolute inertial by adding 
leader’s inertial frame position. Figure 8 
illustrates the individual controller model 
that resides in each of the autonomous 
UAVs. The controller generates the desired 
forces to achieve the desired states from the 
actual current states. The cascaded propor-
tional–integral–derivative (PID) is used 
to control the outer loop positions and the 
inner loop velocity. Saturation is added to 
the outputs to limit the control corrections 
to realistic values. Some of the formations 
are illustrated in Figure 9, along the rolling, 
pitching and yawing planes.

Design of Experiments
An orthogonal array of experiments is 

devised to analyze the behavior of the SoS 
for different values of various state param-
eters, as indicated in Figure 10. Following 

Figure 6. Constituent system model – an autonomous UAV
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parameters are considered for behavior 
analysis: (1) initial / final formation shape, 
(2) angles of rotation of formation’s plane 
of reference, as defined by Euler angles phi 
ϕ, theta θ, psi ψ, (3) vehicles facing wind 
gust, and the corresponding magnitudes on 
X,Y,Z axes, with/without forces.

Principal Component Analysis (PCA) and 
Zone Visualization

There are many factors that impact the 
emergent behavior of SoS, and visualization 
of the SoS state parameters would provide 
deeper insights. However, to understand 
the interplay of the various factors on SoS 
emergent behavior, a higher dimensional 
visualization is required which would be 
difficult to represent. Principal component 
analysis (PCA) (Martınez and Kak 2001) 
is used towards getting lower dimensional 
views. PCA comprises projection of an 
n-dimensional input data onto a reduced 
k-dimensional linear subspace, such that 
the reconstruction error is minimized. The 
lower-dimensional view is a projection of 

various points in the multi-dimensional 
space when viewed from its most informa-
tive viewpoint. PCA can be done by singu-
lar value decomposition of a data matrix, 
after mean centering, and normalizing the 
data matrix for each attribute.

Figure 11a illustrates the plot of PCA of 
UAV pair-wise distances (15 pairs between 
the five UAVs), against the PCA of UAVs 
pair-wise slopes (15 pairs between the five 
UAVs, with two slopes along XZ and YZ). 
The figure essentially represents the state 
of the SoS, reducing the multi-dimension-
al state parameters to lower dimensions, 
enabling identification of specific regions/
zones of positive (1) and negative (0) emer-
gence. Further, the state space of a constitu-
ent system can be analyzed against the state 
space of the SoS, with respect to the emer-
gent behavior and the MOEs. Figure 11b il-
lustrates the plot of PCA of SoS versus PCA 
of UAV#3 MOEs. The following 3 scenarios 
are depicted in the figure: the zone of both 
SoS and UAV#3 exhibiting bad behavior 
(legend 0 in the plot, red); the scenario of 

UAV#3 meeting its own MOEs, but SoS is 
exhibiting negative behavior (legend 1 in 
the plot, yellow); and finally, the scenario 
of both UAV#3 and the SoS exhibiting pos-
itive behavior (legend 3 in the plot, green). 
Further the scenario of UAV#3 not meeting 
its MOEs while the SoS exhibiting posi-
tive behavior does not occur. This implies 
scenario wherein the constituent system is 
a key player in the SoS (scenario depicted 
in MOE relationship matrix in Figure 2). 
Three different supervised learning classifi-
cation algorithms were tried (a) naïve Bayes 
classification, (b) fitted binary classification 
decision tree, and (c) KNN-nearest neigh-
bor (Mitchell 1997). The decision surface 
of these different classification algorithms 
is illustrated in Figure 12, matching well 
with Figure 11b (legend used in Figure 12 is 
same as used in Figure 11b).

Machine Learning Model – ML Classifier 
In the simulation runs of the complex SoS 

comprising autonomous UAVs, various state 
parameters of the formation are logged — 

Figure 8. Constituent system: autonomous UAV – controller
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Experi- 
ment # Initial Shape Final Shape Final 

psi
Final 
theta

Final 
phi Gust UAVs Gust X 

(kN)
Gust Y 

(kN)
Gust Z 
(kN)

Force 
on/off

1 Triangle Triangle -45 -45 -45 0 5 5 5 0

2 Triangle Triangle -45 -45 0 UAV3 2.5 2.5 2.5 1

3 Triangle Triangle -45 -45 -45 UAV 3 and 6 1.6 1.6 1.6 1

4 Triangle Inv. Triangle 0 0 -45 0 5 2.5 2.5 1

5 Triangle Inv. Triangle 0 0 0 UAV3 2.5 1.6 1.6 1

6 Triangle Inv. Triangle 0 0 45 UAV 3 and 6 1.6 5 5 0

7 Triangle Closed Loop 45 45 -45 0 5 1.6 1.6 1

8 Triangle Closed Loop 45 45 0 UAV3 2.5 5 5 0

9 Triangle Closed Loop 45 45 45 UAV 3 and 6 1.6 2.5 2.5 1

10 Inv. Triangle Triangle 0 45 -45 UAV3 1.6 5 2.5 1

11 Inv. Triangle Triangle 0 45 0 UAV 3 and 6 5 2.5 1.6 0

12 Inv. Triangle Triangle 0 45 45 0 2.5 1.6 5 1

13 Inv. Triangle Inv. Triangle 45 -45 -45 UAV3 1.6 2.5 1.6 0

14 Inv. Triangle Inv. Triangle 45 -45 0 UAV 3 and 6 5 1.6 5 1

15 Inv. Triangle Inv. Triangle 45 -45 45 0 2.5 5 2.5 1

16 Inv. Triangle Closed Loop -45 0 -45 UAV3 1.6 1.6 5 1

17 Inv. Triangle Closed Loop -45 0 0 UAV 3 and 6 5 5 2.5 1

18 Inv. Triangle Closed Loop -45 0 45 0 2.5 2.5 1.6 0

19 Closed Loop Triangle 45 0 -45 UAV 3 and 6 2.5 5 1.6 1

20 Closed Loop Triangle 45 0 0 0 1.6 2.5 5 1

21 Closed Loop Triangle 45 0 45 UAV3 5 1.6 2.5 0

22 Closed Loop Inv. Triangle -45 45 -45 UAV 3 and 6 2.5 2.5 5 1

23 Closed Loop Inv. Triangle -45 45 0 0 1.6 1.6 2.5 0

24 Closed Loop Inv. Triangle -45 45 45 UAV3 5 5 1.6 1

25 Closed Loop Closed Loop 0 -45 -45 UAV 3 and 6 2.5 1.6 2.5 0

26 Closed Loop Closed Loop 0 -45 0 0 1.6 5 1.6 1

27 Closed Loop Closed Loop 0 -45 45 UAV3 5 2.5 5 1

Figure 10. Design of experiments (DOE) 

including distances and bearings between 
each of the UAVs. The scenarios are labelled 
as “good”(1) or “bad”(0) based on the 
behavior seen at the SoS level. These labelled 
scenarios are fed into a neural network, and 
supervised learning algorithms were devised 
so that the network learns on the positive 
and negative emergent behaviors. Figure 
13 illustrates the neural network-based ML 
model. The number of hidden layers, and 
number of units in the hidden layer defines 
the topology of the network. The inputs 
to the ML model are the various pairwise 
Euclidean distances, YX slopes (β) and 
ZX slopes (α) in the swarm, as illustrated 
in Figure 14. The trend of the parameters 
for a window of 4-time steps is provided 
as the learning data set. The data set is 

Figure 11. PCA analysis and visualization
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further split into training set, validation set 
and test sets. Typically, the training set is 
used to fit the model, while the validation 
set is used to estimate prediction error for 
model selection. The test set is then used for 
assessment of the generalization error of the 
final chosen model. Learning algorithms 
are devised that can automatically tune 
(and learn) the weights and biases so that 
the output produced by the network closely 
matches the desired output. Mathematically, 
this close matching involves an associated 
cost function that needs to be minimized. 
Hence, the training process is iterative, 
to minimize the cost function below a 
threshold, with each iteration fine tuning 
the parameters. The iteration concludes 
once the cost function reaches the minima, 
below the expected threshold. The weights/ 
biases thus learned by the neural network 
at the end of the iteration represents the 
parameters that can be used to directly 
transform the inputs to outputs. The data 
set comprising over half a million records is 
split between training (75%), testing (15%), 
and validation (15%) sets.

The performance of the learning is 
assessed in terms of cross entropy function, 
wherein minimizing the cross-entropy 
(CE) leads to better classifiers. Figure 15 
illustrates the ML classifier training perfor-
mance, for the scaled conjugate algorithm. 
The confusion matrix indicated in the fig-
ure illustrates the accurate and inaccurate 
classifications. The rows correspond to the 
predicted class (output class) and the col-
umns correspond to the true class (target 
class). The diagonal cells (green color) in-
dicate the correctly classified observations. 
The off-diagonal cells (light rose color) are 
the incorrectly classified observations. Both 
the number of observations and the per-
centage of the total number of observations 
are shown in each cell. The column on the 
far right of the plot shows the percentages 
of all the examples predicted to belong to 
each class that are correctly and incorrectly 
classified. These metrics are the precision 
(or positive predictive value) and false 
discovery rate, respectively. The row at the 
bottom of the plot shows the percentages 
of all the examples belonging to each class 
that are correctly and incorrectly classified. 
These metrics are often called the recall 
(or true positive rate) and false negative 
rate, respectively. The cell in the bottom 
right of the plot shows the overall accuracy. 
As seen, overall, the prediction accuracy 
performance achieved is 99.6%.

ML Classifier – Behavior Predictions 
The trained ML classifier is used to 

observe the SoS behavior and predict 
positive and negative emergence. The ML 
classifier is plugged onto the SoS model as 

Figure 13: Machine learning ML classifier 
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Figure 14. UAV formation – state parameters w.r.t pairs of constituent systems
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Figure 15. ML classifier – training performance
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illustrated in Figure 16, to understand and 
predict the emergent behaviors as positive 
and negative behaviors. Figure 17 indicates 
snapshots of the tool scope monitor, 
wherein values closer to 1 indicates positive 
emergent behavior being exhibited, while 
values closer to 0 indicates negative 
emergent behavior.

SoS with Hybrid (conventional + machine 

learning) Constituent Systems
The scenario of the SoS comprising a mix 

of conventional constituent systems and 
machine-learning model-based constitu-
ent systems is then studied. Towards this, 
the conventional controller (Figure 8) is 
replaced with a machine learning based NN 
controller for UAV numbered #3 (Figure 
5). The NN controller (Figure 18) is built 
by tapping the data from the conventional 

Figure 16. ML-classifier integrated into SoS model

Figure 18. NN controller

Figure 17. Machine learning model predictions of emergent behavior. (top) Sos 
Behavior Labelled on tiime steps as “good” (1) or “bad” (0); (bottom) ML Classifier 
predicted behavior probabilities, between 1 (“positive emergence) and 0 (“negative 
emergence”)

controller (UAV#3), and feeding it to a 
neural network, and making the network 
learn the functioning of the conventional 
controller. The data set comprising over 
three million records is split between 
training (75%), testing (15%), and valida-
tion (15%) sets. The learning is stopped at 
epoch of 1000. The R value in this case has 
reached only about 0.4 after completion of 
1000 epochs (a robust learning would imply 
an R value very close to 1). This learning 
is stopped to serve the purpose of dealing 
with a system that can exhibit negative 
emergent behavior at times. Figure 19 illus-
trates the scenario of the formation flying 
with the NN controller managing UAV #3 
included in the formation. As indicated, 
UAV#3 misbehaves (that is, exhibits an 
oscillating behavior). This misbehavior is 
predicted by the ML classifier, indicating a 
negative emergence for the SoS.

Formal Methods 
We have used formal methods for model 

checking in the earlier work (Raman 
and Jeppu 2020). We could optimize 
for time by changing the sampling time 
and abstracting the behavior of collision 
in the collision avoidance problem. We 
tried the same approach of using the 
Simulink design verifier on the 6 UAVs 
maneuvering together. The assertion was 
that once the maneuver occurs the UAVs 
will not collide while they maneuver. 
During the maneuver, a wind gust can 
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is satisfied but to really ensure that the 
behavior is correct we have changed the 
threshold for minimum distance to a larger 
value to ensure that it fails and provides a 
counter example. CBMC can provide us 
this solution with a failure. It takes about 
700 seconds to solve the problem. We pro-
vide the complexity of the problem as the 
number of variable and clauses the CBMC 
generates from the UAV SoS C code. The 
number of variables and clauses define the 
complexity of the problem. CBMC converts 
the C code into a conjunctive normal 
form (CNF). The CNF is a conjunction 
of one or more clauses, where each clause 
is a disjunction of variables. The C code 
gets translated to approximately 2,350,198 
variables which are combined into around 
9,416,265 clauses. The approximation is 
because these number change with the 
change in the range looked for the time of 
disturbance td. In view of the complexity of 
the neural network problem and the large 
time taken by the formal methods tool, we 
have explored another way of looking at the 
neural network performance in terms of 
the PCA explained above. The PCA defines 
the plot of the principal components of the 
slope or angle between each UAV and the 
distance measures the range between the 
UAVs. It is possible to define a region in 
the plot of PCA that defines a safe behavior 

shift location of the UAVs. The individual 
controller behavior was approximated to a 
proportional control. The sample time was 
increased, and the direction cosine matrix 
eliminated by considering the maneuver 
in a plane of operation. These assumptions 
were made based on our earlier experience 
of using formal methods.

The Simulink design verifier took about 
eight hours to indicate that there could 
be a collision if there was a gust. We had 
to look at a small zone around the gust 
region for the model checking. Bringing 
in a variable in the gust time could not 
provide a result as it hit the limits of the 
computing resources used. We explored a 
C bounded model checker CBMC on the 
C language implementation of the neural 
network. The 6 UAV engagement scenario 
was coded in C and the minimum distance 
computed between the various UAV as 
a measure of asserting the behavior that 
collision could not happen. CBMC is a 
bounded model checker, and we can look 
at the zone where the maneuver occurs for 
proving the correctness. CBMC unwinds 
the “while loop” for the time of execution 
and “for loops” for the 6 UAV. The ML 
classifier in loop in CBMC hit the limits 
of the computing resources used. Other 
features of CBMC like array bound checks 
and divide by zero checks worked well with 
the neural network code. Subsequently, C 
program simulation of UAVs was tried – 
the simulation of the 6 UAV in the C code 
is shown in Figure 20. The 6 UAVs move 
in a 2-dimensional space and carry of a 
maneuver to invert the V shape. A wind 
gust disturbance is applied that shifts the 
position of all UAVs during the maneuver. 

The UAV realign to the new shape as seen 
in the plot. The simulation works well as 
seen. We now need to prove that it is always 
the case. We define the problem statement 
for the formal correctness as Definition 1 
(see below).

CBMC can prove that the condition 

Definition 1: The distance between UAVi and UAVj at time t is given by

where  (xi – xj) and (yi – yj) represent the

coordinates of UAVi and UAVj respectively.

d t(i, j) =  (xi – xj)2 + (yi – yj)22

∆ is maximum unsafe distance, holds. We look at this property in CBMC using 
the assert statement and assume the time of disturbance as a variable. We look 
at 20 seconds after maneuver as tc

Given start time maneuver tm, end time for maneuver tc and a disturbance at time 
td  where  tm ≤ td ≤ tc  then property ϕ =   min   d t (i, j) ≥ ∆ ,  ∀ t : tm ≤ t ≤ tc where

1≤  i, j ≤  6 ∧ i ≠ j

Figure 20. SoS – trajectories simulation in C programming language

Figure 19. SoS behavior with machine learning based UAV #3
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for the swarm of 6 UAV. The region can be 
defined in this case a polynomial in X (the 
PCA slope) providing a Y (PCA distance) 
as shown in Figure 21. If the PCA values 
are in the safe zone and the neural network 
indicates so then we can say that neural 
network is correctly predicting the MOE 
of collision or unsafe swarm behavior. In 
the initial study on this given a small zone 
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