
INSIGHT

MARCH 2O23
VOLUME 26 / ISSUE 1

A PUBLICATION OF THE INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING ®

This Issue’s Feature:
Model-Based Test and Evaluation

“ I often say that when you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you cannot
measure it, when you cannot express it in numbers, your knowledge is of a
meagre and unsatisfactory kind. ”

—William Thomson, Lord Kelvin

0 1 2 2.45 3 4 5 6

Stress σ

–3σ

–3σ curve

+3σ
curve

+3σ–1σ +1σ

Number of
components

Average predicted
safe cyclic life

Number of cycles, N

Tested part most likely to
come from this range

68.3% of all components

Best component likely
to be selected for test

5% of components

Life scatter factor

Mean curve

Illustration credit:  from the article
You Don’t Save Money by Doing Less Testing – You Save
Money by Doing More of the Right Testing!
by Andrew C Pickard, Richard Beasley, and Andy J Nolan  (page 70)

Systems Engineering: The Journal of The International Council on Systems Engineering

Call for Papers
he Systems Engineering journal is intend ed to be a primary
source of multidisciplinary information for the systems engineer-
ing and management of products and services, and processes of
all types. Systems engi neering activities involve the technologies

and system management approaches needed for
• definition of systems, including identi fication of user

requirements and technological specifications;
• development of systems, including concep tual architectures,

tradeoff of design concepts, configuration management during
system development, integration of new systems with legacy
systems, inte grated product and process development; and

• deployment of systems, including opera tional test and
evaluation, maintenance over an extended life-cycle, and
re-engineering.

Systems Engineering is the archival journal of, and exists to serve the
following objectives of, the International Council on Systems Engineer-
ing (INCOSE):

• To provide a focal point for dissemination of systems
engineering knowledge

• To promote collaboration in systems engineering education
and research

• To encourage and assure establishment of professional
standards for integrity in the practice of systems engineering

• To improve the professional status of all those engaged in the
practice of systems engineering

• To encourage governmental and industrial support for research
and educational programs that will improve the systems
engineering process and its practice

The journal supports these goals by provi ding a continuing, respected
publication of peer-reviewed results from research and development in
the area of systems engineering. Systems engineering is defined broadly
in this context as an interdisciplinary approach and means to enable the
realization of succes s ful systems that are of high quality, cost-effective,
and trust worthy in meeting customer requirements.

The Systems Engineering journal is dedi cated to all aspects of the
engineering of systems: technical, management, economic, and social.
It focuses on the life-cycle processes needed to create trustworthy and
high-quality systems. It will also emphasize the systems management
efforts needed to define, develop, and deploy trustworthy and high
quality processes for the production of systems. Within this, Systems
Engineer ing is especially con cerned with evaluation of the efficiency and
effectiveness of systems management, technical direction, and integra-
tion of systems. Systems Engi neering is also very concerned with the
engineering of systems that support sustainable development. Modern
systems, including both products and services, are often very knowl-
edge-intensive, and are found in both the public and private sectors.
The journal emphasizes strate gic and program management of these,
and the infor mation and knowledge base for knowledge princi ples,
knowledge practices, and knowledge perspectives for the engineering of

systems. Definitive case studies involving systems engineering practice
are especially welcome.

The journal is a primary source of infor mation for the systems engineer-
ing of products and services that are generally large in scale, scope,
and complexity. Systems Engineering will be especially concerned with
process- or product-line–related efforts needed to produce products that
are trustworthy and of high quality, and that are cost effective in meeting
user needs. A major component of this is system cost and operational
effectiveness determination, and the development of processes that
ensure that products are cost effective. This requires the integration of a
number of engi neering disciplines necessary for the definition, devel-
opment, and deployment of complex systems. It also requires attention
to the life cycle process used to produce systems, and the integration
of systems, including legacy systems, at various architectural levels.
In addition, appropriate systems management of information and
knowledge across technologies, organi zations, and environments is also
needed to insure a sustainable world.

The journal will accept and review sub missions in English from any
author, in any global locality, whether or not the author is an INCOSE
member. A body of international peers will review all submissions, and
the reviewers will suggest potential revisions to the author, with the intent
to achieve published papers that

• relate to the field of systems engineering;
• represent new, previously unpublished work;
• advance the state of knowledge of the field; and
• conform to a high standard of scholarly presentation.

Editorial selection of works for publication will be made based on con-
tent, without regard to the stature of the authors. Selections will include
a wide variety of international works, recognizing and supporting the
essential breadth and universality of the field. Final selection of papers
for publication, and the form of publication, shall rest with the editor.

Submission of quality papers for review is strongly encouraged. The
review process is estimated to take three months, occasionally longer for
hard-copy manuscript.

Systems Engineering operates an online submission and peer review
system that allows authors to submit articles online and track their
progress, throughout the peer-review process, via a web interface.
All papers submitted to Systems Engineering, including revisions or
resubmissions of prior manuscripts, must be made through the online
system. Contributions sent through regular mail on paper or emails with
attachments will not be reviewed or acknowledged.

All manuscripts must be submitted online to Systems Engineering at
ScholarOne Manuscripts, located at:
 https://mc.manuscriptcentral.com/SYS
Full instructions and support are available on the site, and a user ID and
password can be obtained on the first visit.

T

https://mc.manuscriptcentral.com/SYS

M
A

R
CH

 2O
23

VOLUM
E 26/ ISSUE 1

3

W
H

A
T

’S IN
SID

E
TH

IS ISSU
E

Inside this issue

INSIGHT
MARCH 2O23  VOLUME 26 / ISSUE 1

A PUBLICATION OF THE INTERNATIONAL COUNCIL
ON SYSTEMS ENGINEERING

®

FROM THE EDITOR-IN-CHIEF	 6

FEATURE ARTICLES	 8

The Challenge of Enabling Dynamic Innovation with Rigor	 8

Determining Reliability Requirements and Testing Costs in the Early Stages of
Single Use Medical Product Design	 14

A Concept for Set-based Design of Verification Strategies	 19

Formalizing the Representativeness of Verification Models using Morphisms	 27

Verification and Validation of SysML Models	 33

From Model-based to Model and Simulation-based Systems Architectures — 
Achieving Quality Engineering through Descriptive and Analytical Models	 40

System Verification and Validation Approach Using the MagicGrid Framework	 51

Configuration Management for Model Based Systems Engineering — 
An Example from the Aerospace Industry	 60

You Don’t Save Money by Doing Less Testing – You Save Money by Doing More of the Right Testing!	 67

Inconsistent and Incomplete Datasheet: The Case for Systematic Use of Requirement Engineering	 75

Exploring the Test and Evaluation Space using Model Based Conceptual Design (MBCD) Techniques	 85

Framework for Formal Verification of Machine Learning Based Complex System-of-Systems	 91

M
A

R
CH

 2O
23

VOLUM
E 26/ ISSUE 1

4

A
B

O
U

T TH
IS

P
U

B
LIC

A
TIO

N

About This Publication

INFORMATION ABOUT INCOSE OVERVIEW

Editor-In-Chief	 William Miller
insight@incose.net	 +1 908-759-7110

Assistant Editor	 Lisa Hoverman
lisa.hoverman@incose.net

Theme Editors	

Layout and Design	 Chuck Eng
chuck.eng@comcast.net

Member Services	 INCOSE Administrative Office
info@incose.net	 +1 858 541-1725

ARTICLE SUBMISSION
insight@incose.net

Publication Schedule.  INSIGHT is published four times per year.
Issue and article submission deadlines are as follows:

  March 2023 issue  –  2 January 2023
  June 2023 issue  –  1 April 20023
  September 2023 issue  –  1 July 2023
  January 2023 issue  –  1 October 2023

For further information on submissions and issue themes, visit the
INCOSE website:  www.incose.org

© 2023 Copyright Notice.
Unless otherwise noted, the entire contents are
copyrighted by INCOSE and may not be reproduced in
whole or in part without written permission by INCOSE.
Permission is given for use of up to three paragraphs as
long as full credit is provided. The opinions expressed in

INSIGHT are those of the authors and advertisers and do
not necessarily reflect the positions of the editorial staff
or the International Council on Systems Engineering.
ISSN 2156-485X; (print) ISSN 2156-4868 (online)

INCOSE’s membership extends to over 20, 000 individual
members and more than 200 corporations, government
entities, and academic institutions. Its mission is to share,
promote, and advance the best of systems engineering from
across the globe for the benefit of humanity and the planet.
INCOSE charters chapters worldwide, includes a corporate
advisory board, and is led by elected officers and directors.

For more information, click here:
The International Council on Systems Engineering
(www.incose.org)
INSIGHT is the magazine of the International Council on
Systems Engineering. It is published four times per year and

features informative articles dedicated to advancing the state
of practice in systems engineering and to close the gap with
the state of the art. INSIGHT delivers practical information
on current hot topics, implementations, and best practices,
written in applications-driven style. There is an emphasis on
practical applications, tutorials, guides, and case studies that
result in successful outcomes. Explicitly identified opinion
pieces, book reviews, and technology roadmapping comple-
ment articles to stimulate advancing the state of practice.
INSIGHT is dedicated to advancing the INCOSE objectives
of impactful products and accelerating the transformation of
systems engineering to a model-based discipline.
Topics to be covered include resilient systems, model-based

systems engineering, commercial-driven transformational
systems engineering, natural systems, agile security, systems
of systems, and cyber-physical systems across disciplines
and domains of interest to the constituent groups in the
systems engineering community: industry, government,
and academia. Advances in practice often come from lateral
connections of information dissemination across disciplines
and domains. INSIGHT will track advances in the state of the
art with follow-up, practically written articles to more rapidly
disseminate knowledge to stimulate practice throughout the
community.

* PLEASE NOTE:  If the links highlighted here do not take you to
those web sites, please copy and paste address in your browser.

Permission to reproduce Wiley journal Content:
Requests to reproduce material from John Wiley & Sons publications
are being handled through the RightsLink® automated permissions
service.

Simply follow the steps below to obtain permission via the Right-
slink® system:

•	 Locate the article you wish to reproduce on Wiley Online Library
(http://onlinelibrary.wiley.com)

•	 Click on the ‘Request Permissions’ link, under the ‹ ARTICLE
TOOLS › menu on the abstract page (also available from Table of
Contents or Search Results)

•	 Follow the online instructions and select your requirements from
the drop down options and click on ‘quick price’ to get a quote

•	 Create a RightsLink® account to complete your transaction (and
pay, where applicable)

•	 Read and accept our Terms and Conditions and download your
license

•	 For any technical queries please contact 
customercare@copyright.com

•	 For further information and to view a Rightslink® demo please visit
www.wiley.com and select Rights and Permissions.

AUTHORS – If you wish to reuse your own article (or an amended
version of it) in a new publication of which you are the author, editor
or co-editor, prior permission is not required (with the usual acknowl-
edgements). However, a formal grant of license can be downloaded free
of charge from RightsLink if required.

Photocopying
Teaching institutions with a current paid subscription to the journal
may make multiple copies for teaching purposes without charge, pro-
vided such copies are not resold or copied. In all other cases, permission
should be obtained from a reproduction rights organisation (see below)
or directly from RightsLink®.

Copyright Licensing Agency (CLA)
Institutions based in the UK with a valid photocopying and/or digital
license with the Copyright Licensing Agency may copy excerpts from
Wiley books and journals under the terms of their license. For further
information go to CLA.

Copyright Clearance Center (CCC)
Institutions based in the US with a valid photocopying and/or digital
license with the Copyright Clearance Center may copy excerpts from
Wiley books and journals under the terms of their license, please go
to CCC.

Other Territories:  Please contact your local reproduction rights
organisation. For further information please visit www.wiley.com and
select Rights and Permissions.
If you have any questions about the permitted uses of a specific article,
please contact us.

Permissions Department – UK
John Wiley & Sons Ltd.
The Atrium,
Southern Gate,
Chichester
West Sussex, PO19 8SQ
UK
Email:  Permissions@wiley.com
Fax:  44 (0) 1243 770620
or

Permissions Department – US
John Wiley & Sons Inc.
111 River Street MS 4-02
Hoboken, NJ 07030-5774
USA
Email:  Permissions@wiley.com
Fax:  (201) 748-6008

PERMISSIONS

Officers
President:  Marilee Wheaton, INCOSE Fellow,

The Aerospace Corporation
President-Elect:  Ralf Hartmann, INCOSE Fellow, proSys

Secretary:  Don York, ESEP, SAIC
Treasurer:  Michael Vinarcik, ESEP, SAIC

Directors
Director for Academic Matters:  Alejandro Salado, University

of Arizona
Direector for Marketing and Communications:  Honor Lind,

Hart Initiative, Inc.
Director for Outreach:  Kirk Michealson, Tackle Solutions,

LLC
Director for Americas Sector:  Renee Steinwand, ESEP, Booz

Allen Hamilton
Director for EMEA Sector:  Sven-Olaf Schulze, CSEP,

Huennemeyer Consulting GmbH
Director for Asia-Oceania Sector:  Serge Landry, ESEP,

Equilibrant Force
Chief Information Officer (CIO):  Barclay Brown, ESEP,

Raytheon
Technical Director:  Olivier Dessoude, Naval Group

Deputy Technical Director:  Erika Palmer, Cornell University
Services Director: Richard Beasley, ESEP,

Rolls-Royce plc, retired
Deputy Services Director: Heidi Davidz, CSEP, ManTech

International Corporation
Director for Strategic Integration: David Long, INCOSE

Fellow, ESEP, Blue Holon
Corporate Advisory Board Chair: Ronald Giachetti, Naval

Postgraduate School
Corporate Advisory Board Co-Chair: Michael Dahhlberg,

ESEP, KBR
CAB Co-chair:  Ron Giachetti, Naval Postgraduate School
Chief of Staff:  Andy Pickard, Rolls Royce Corporation, retired

Executive Director:  Steve Records, INCOSE

M
A

R
CH

 2O
23

VOLUM
E 26/ ISSUE 1

5

A
B

O
U

T TH
IS

P
U

B
LIC

A
TIO

N

CONTACT

CORPORATE ADVISORY BOARD — MEMBER COMPANIES

Aerospace Corporation, The
Airbus
AM General LLC
Analog Devices, Inc.
ARAS Corp
Arcfield
Australian National University
AVIAGE SYSTEMS
Aviation Industry Corporation of China
BAE Systems
Ball Aerospace
Bechtel
Becton Dickinson
Belcan Engineering Group LLC
Boeing Company, The
Bombardier Transportation
Booz Allen Hamilton Inc.
C.S. Draper Laboratory, Inc.
CACI, Inc - Federal
California State University Dominguez Hills
Carnegie Mellon University Software

Engineering Institute
Change Vision, Inc.
Colorado State University Systems Engineering

Programs
Cornell University
Cranfield University
Cubic
Cummins Inc.
Cybernet MBSE Co, Ltd
Dassault Systèmes
Defense Acquisition University
Deloitte Consulting, LLC
Denso Create Inc
Drexel University
Eindhoven University of Technology
EMBRAER
Federal Aviation Administration (U.S.)
Ford Motor Company
Fundacao Ezute
General Dynamics
General Electric Aviation
General Motors
George Mason University
Georgia Institute of Technology

IBM
Idaho National Laboratory
ISAE - Supaero
ISDEFE
ITID, Ltd
IVECO SPA
Jacobs
Jama Software
Jet Propulsion Laboratory
John Deere
Johns Hopkins University
KBR
KEIO University
L3Harris Technologies
Lawrence Livermore National Laboratory
Leidos
Lockheed Martin Corporation
Los Alamos National Laboratory
Loyola Marymount University
Mahindra University
ManTech International Corporation
Maplesoft
Marquette University
Massachusetts Institute of Technology
MBDA (UK) Ltd
MetaTech Consulting Inc.
Missouri University of Science & Technology
MITRE Corporation, The
Mitsubishi Heavy Industries, Ltd
Modern Technology Solutions, Inc.
National Aeronautics and Space Administration

(NASA)
National Reconnaissance Office (NRO)
National Security Agency Enterprise Systems
Naval Postgraduate School
Nissan Motor Co, Ltd
Northrop Grumman Corporation
Pacific Northwest National Laboratory
Pennsylvania State University
Peraton
Petronas Nasional Berhad
Prime Solutions Group, Inc
Project Performance International (PPI)
Purdue University
QRA Corp

Raytheon Corporation
Rolls-Royce
Saab AB
SAIC
Sandia National Laboratories
Saudi Railway Company
Siemens
Sierra Nevada Corporation
Singapore Institute of Technology
SPEC Innovations
Stevens Institute of Technology
Strategic Technical Services LLC
Swedish Defence Materiel Administration

(FMV)
Systems Planning and Analysis
Tata Consultancy Services
Thales
The University of Arizona
Torch Technologies
TOSHIBA Corporation
Trane Technologies
Tsinghua University
UC San Diego
UK MoD
University of Alabama in Huntsville
University of Arkansas
University of Connecticut
University of Maryland
University of Maryland, Baltimore County
University of Michigan, Ann Arbor
University of New South Wales, The, Canberra
University of Southern California
University of Texas at El Paso (UTEP)
US Department of Defense
Veoneer
VG2PLAY
Virginia Tech
Vitech
Volvo Cars Corporation
Volvo Construction Equipment
Wabtec Corporation
Woodward Inc
Worcester Polytechnic Institute- WPI
Zuken Inc

Readership
INSIGHT reaches over 20, 000 individual members and uncounted
employees and students of more than 100 CAB organizations
worldwide. Readership includes engineers, manufacturers/purchasers,
scientists, research and development professionals, presidents and
chief executive officers, students, and other professionals in systems
engineering.

Issuance	 Circulation
2022, Vol 25, 4 Issues	 100% Paid

Contact us for Advertising and Corporate Sales Services
We have a complete range of advertising and publishing solutions
professionally managed within our global team. From traditional print-
based solutions to cutting-edge online technology the Wiley-Blackwell
corporate sales service is your connection to minds that matter. For
an overview of all our services please browse our site which is located
under the Resources section. Contact our corporate sales team today to
discuss the range of services available:

•	 Print advertising for non-US journals
•	 Email Table of Contents Sponsorship
•	 Reprints

•	 Supplement and sponsorship opportunities
•	 Books
•	 Custom Projects
•	 Online advertising

Click on the option below to email your enquiry to your nearest
office:

•	 Asia and Australia  corporatesalesaustralia@wiley.com
•	 Europe, Middle East and Africa (EMEA)

corporatesaleseurope@wiley.com
•	 Japan  corporatesalesjapan@wiley.com
•	 Korea  corporatesaleskorea@wiley.com

USA (also Canada, and South/Central America):
•	 Healthcare Advertising  corporatesalesusa@wiley.com
•	 Science Advertising  Ads_sciences@wiley.com
•	 Reprints  Commercialreprints@wiley.com
•	 Supplements, Sponsorship, Books and Custom Projects

busdev@wiley.com

Or please contact:
Marcom@incose.net

Questions or comments concerning:

Submissions, Editorial Policy, or Publication Management
Please contact:  William Miller, Editor-in-Chief
insight@incose.net

Advertising — please contact: 
Marcom@incose.net

Member Services – please contact:  info@incose.org

ADVERTISER INDEX� March  Volume 26-1
Systems Engineering – Call for Papers	 inside front cover
CalTech Center for Technology & Management Education	 13
FuSE – Future of Systems Engineering	 back inside cover
33rd Annual INCOSE International Symposium	 back cover

ADVERTISE

M
A

R
CH

 2O
23

VOLUM
E 26/ ISSUE 1

6

e are pleased to announce
the March 2023 INSIGHT

issue published cooperative-
ly with John Wiley & Sons

as the systems engineering practitioners’
magazine. The INSIGHT mission is to
provide informative articles on advancing
the practice of systems engineering and to
close the gap between practice and the state
of the art as advanced by Systems Engineer-
ing, the Journal of INCOSE also published
by Wiley.

The issue theme is model-based test
and evaluation and is a follow-up to the
March 2017 INSIGHT that was published
in collaboration with the March 2017 issue
of the International Test and Evaluation
Association (ITEA) Journal on the common
theme of the engagement of systems
engineering with test and evaluation.

The recent December 2022 INSIGHT
on the Archimedes initiative has several
articles on model-based test and evalu-
ation and verification and validation. In
particular, the overview article “TNO-ESI
– Systems Engineering Methodologies for
Managing Complexity in the High-Tech
Equipment Industry: Our Roadmap” by
Wouter Leibbrandt, Jacco Wesselius, and
Frans Beenker references the TorXakis
modeling language and tool for mod-
el-based testing (https://torxakis.org/ and
https://torxakis.org/userdocs/stable/ ). The
reference cites “Model-Based Testing with
TorXakis” by Jan Tretmans and Piërre van
de Laar, both with TNO-ESI, presented
at the 2019 Central European Conference
on Information and Intelligent Systems,
Varaždin, Croatia (http://archive.ceciis.foi.
hr/app/public/conferences/2019/Proceedings/
QSS/QSS3.pdf ).

William Miller, insight@incose.net

FROM THE
EDITOR-IN-CHIEF

FR
O

M
 TH

E
ED

ITO
R

-IN
-CH

IEF

W This issue of INSIGHT features relevant
articles selected from past INCOSE
symposia papers by authors representing all
three INCOSE sectors: Americas; Europe,
Middle East, and Africa (EMEA); and
Asia-Oceania. Our intent is to encourage
and stimulate our systems engineering
community to focus more energy on test
and evaluation. We thank the authors and
their sponsoring organizations for their
contributions. Articles referencing research
and commercial systems engineering tools
and products does not represent INSIGHT
and INCOSE endorsement of referenced
tools and products.

The March 2023 INSIGHT leads off
with “The Challenge of Enabling Dynamic
Innovation with Rigor” by John Frederick,
Columb Higgins, and Angela Moore.
This article examines lessons learned
from recent verification and validation
(V&V) summits and technical interchange
meetings (TIMs) held by the US Federal
Aviation Administration (FAA) V&V
Strategies and Practices Branch, exploring
the challenges of being agile and dynamic
(in step with the pace of technology) while
being effectively systematic and rigorous.

“Determining Reliability Requirements
and Testing Costs in the Early Stages of
Single Use Medical Product Design” by
Fritz Eubanks examines methods for
determining reliability requirements, the
cost of reliability testing for single use
medical devices in the design input phase
of product development, and how the
costs of testing and potential errors can be
used to perform trade-off analysis between
reliability tolerance and confidence level.

“A Concept for Set-based Design of
Verification Strategies” by Pen Xu and

Alejandro Salado presents an approach
to apply set-based design to the design
of verification activities to enable the
execution of dynamic contracts for
verification strategies, ultimately resulting
in more valuable verification strategies than
current practice.

“Formalizing the Representativeness of
Verification Models using Morphisms” by
Paul Wach, Peter Beling, and Alejandro
Salado explores the use of system theoretic
morphisms to mathematically characterize
the validity of representativeness between
verification models and corresponding
system design.

“Verification and Validation of SysML
Models” by Myron Hecht and Jaron
Chen describes a methodology for
performing verification and validation on
models written in SysML. Both manual
and automated methods are used to
verify and validate these requirements.
Manual methods are necessary where
knowledge of the domain and other
extrinsic characteristics are necessary.
Automated methods can be used where
the requirements cover the use of SysML.
Examples from a public domain SysML
model of a satellite are presented to
demonstrate application of automated
requirements verification.

“From Model-based to Model and
Simulation-based Systems Architectures
– Achieving Quality Engineering through
Descriptive and Analytical Models” by
Pierre Nowodzienski and Juan Navas
leverages model-based systems engineering
(MBSE) approaches and complement them
with simulation techniques to improve the
quality of system architecture definition to
come up with innovative solutions.

M
A

R
CH

 2O
23

VOLUM
E 26/ ISSUE 1

7

FR
O

M
 TH

E
ED

ITO
R

-IN
-CH

IEF

“System Verification and Validation Ap-
proach Using the MagicGrid Framework”
by Aurelijus Morkevicius, Aiste Aleksan-
draviciene, and Zilvinas Strolia proposes
an approach to perform verification and
validation of a system using system models
developed with the Systems Modeling
Language (SysML) and in accordance with
the MagicGrid (formerly known as MBSE
Grid) framework. The approach covers
system testing activities beginning with
verification of the lowest modeled system
elements against system requirements and
finishing with validation of the system as a
whole, against stakeholder needs.

“Configuration Management for Model
Based Systems Engineering —An Example
from the Aerospace Industry” by Adriana
D‘Souza and Phanikrishna Thota explores
the use of configuration management for
modeling and simulation in an aerospace
setting, with a specific example involving
landing gear and its surrounding systems.

“You Don’t Save Money by Doing Less
Testing —You Save Money by Doing More
of the Right Testing!” by Andrew Pickard,
Richard Beasley, and Andy Nolan examine
the prediction of the fatigue lives of critical
parts in gas turbine engines, to illustrate
the more general case of performing tests
to calibrate models that then have general
applicability across multiple projects, rather
than focusing testing on the needs of a
specific project. In some circumstances,
testing may not even be the best approach
to take; if some level of error escape
into service is acceptable (unlike the life
prediction example given in this paper)
then more focus on requirements validation

and design review may provide a more cost-
effective approach. This is where the linkage
in a systems engineering model between
requirements, functions, failure modes and
effects analysis, verification test cases, and
available calibrated models can help with
identifying opportunities and risks.

“Inconsistent and Incomplete
Datasheet: The Case for Systematic
Use of Requirement Engineering” by
Lorraine Brisacier-Porchon and Omar
Hammami explores the public user
datasheet relevance compared to the
system engineering requirements that are
the artifacts of system design architecture.
The use of connecting components off-
the-shelf (COTS) user manual to system
requirements is discussed, even more if
the systems are to be re-used in a system
production line. For example, the rising
complexity of unmanned ground vehicle
(UGV) systems imposes engineering steps
that would ensure both capabilities of the
system and resilience to its future inclusion
in a system-of system context. During its
operational usage, the UGV is supposed
to be maneuvered for specifically designed
purposes following user manual datasheet
of the COTS that are integrated.

“Exploring the Test and Evaluation Space
using Model Based Conceptual Design
(MBCD) Techniques” by David Flanigan
and Kevin Robinson offers an approach to
extend the MBCD methodology addressing
the system concept in the early stages in the
lifecycle as published in the December 2014
INSIGHT (Volume 17 Issue 4) to better
consider the T&E space.

“Framework for Formal Verification of

Machine Learning Based Complex Sys-
tem-of-Systems” by Ramakrishnan Raman,
Nikhil Gupta, and Yogananda Jeppu de-
scribes a novel approach applying machine
learning based classifiers and formal meth-
ods for analyzing and evaluating emergent
behavior of complex system-of-systems that
comprise a hybrid of constituent systems
governed by conventional models and
machine learning models. The approach
develops a machine learning classifier
model that learns on potential negative
and positive emergent behaviors, and
predicts the behavior exhibited. A formal
verification model is developed to assert
negative emergent behavior. The approach
is illustrated through the case of a swarm
of autonomous UAVs flying in a formation,
and dynamically changing the shape of the
formation, to support varying mission sce-
narios. The effectiveness and performance
of the approach are quantified.

We hope you find INSIGHT, the prac-
titioners’ magazine for systems engineers,
informative and relevant. Feedback from
readers is critical to INSIGHT’s quali-
ty. We encourage letters to the editor at
insight@incose.net . Please include “letter to
the editor” in the subject line. INSIGHT
also continues to solicit special features,
standalone articles, book reviews, and
op-eds. For information about INSIGHT,
including upcoming issues, see https://
www.incose.org/products-and-publications/
periodicals#INSIGHT . For information about
sponsoring INSIGHT, please contact the
INCOSE marketing and communications
director at marcom@incose.net  .  ¡

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

8

The Challenge of
Enabling Dynamic
Innovation with Rigor

  ABSTRACT
How do we incubate and accelerate innovation? This article examines lessons learned from recent Verification and Validation
(V&V) summits and Technical Interchange Meetings (TIMs) held by the Federal Aviation Administration (FAA) V&V Strategies
and Practices Branch, which explored the challenges of being agile and dynamic (in step with the pace of technology) while being
effectively systematic and rigorous.

John Frederick, Manager, FAA V&V Strategies and Practices Branch, john.frederick@faa.gov; Columb Higgins,
columb.g-ctr.higgins@faa.gov; and Angela Moore, angela.ctr.moore@faa.gov
Copyright ©2023 by John Frederick, Columb Higgins, and Angela Moore. Published by INCOSE with permission

  KEYWORDS:  innovation, knowledge convergence, agile, test and evaluation, verification and validation

Figure 1. The 2022 V&V Summit theme—‘Enabling Dynamic Innovation with Rigor’

Innovation is critical in this transfor-
mational period where technological
advancement and subsequent obsoles-
cence are moving at a rapid pace. Intel®

claims that by 2030, there will be circuits
with transistor counts of a trillion, roughly
10 times the number of transistors current-
ly available on modern CPUs. If this is any
indication of the pace of change, planners,
designers, and developers cannot say with
confidence what conditions will be or what
users may need years from now. With this
extreme pace of technology, the challenge
for innovators in this dynamic environment
is how to explore new opportunities and re-
main open to new concepts. All stakehold-
ers have to be open to innovate, not just
analyze, and that requires accepting uncer-
tainty, embracing knowledge convergence,
allowing space for various stakeholders to
contribute, and not fearing change.

How do we create the space—physically
and mentally—for innovation to take place?
This article includes lessons learned con-
cerning accelerating innovation through
knowledge convergence and agile principles
presented during the 17th Annual Veri-
fication and Validation (V&V) Summit.
The summit is hosted by the V&V Strat-
egies and Practices Branch of the Federal
Aviation Administration’s (FAA’s) William
J. Hughes Technical Center (WJHTC) in

Atlantic City, New Jersey, US. V&V Strat-
egies and Practices Branch manager John
Frederick started the summit to provide a
collaborative environment for convergence:
the assembling of different ideas from
different groups to contribute knowledge
and context to a complex idea so that com-
monalities and similarities become visible,
and synthesis of understanding may occur.
This year’s summit, held September 21–22
in a hybrid attendance format, featured
presenters and attendees at the National

Aerospace Research and Technology Park
(NARTP) adjacent to the WJHTC and
others participating remotely via Zoom.
Speakers and presentations delved into the
theme: “Enabling Dynamic Innovation with
Rigor.”

In addition to the V&V Summit, a
companion Technical Interchange Meeting
(TIM) was conducted (in a smaller break-
out group) with a specific focus to address
the challenges and complexities inherent
within agile principles and practices. There

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

9

were four presentations and a roundtable
discussion in which moderators led brief
discussions seeking discovery and clarifica-
tion on the topic.

Approximately 260 people attended the
summit and TIM, with 17 speakers from
the FAA, United States Space Force (USSF),
United States Air Force (USAF), Depart-
ment of Defense (DOD), National Aero-
nautics and Space Administration (NASA),
Carnegie Mellon University (CMU) Soft-
ware Engineering Institute (SEI), Stevens
Institute of Technology, Verizon, Science
Applications International Corporation
(SAIC), and the Volpe National Transpor-
tation Systems Center. The post-summit
reporting captures ideas and values from
these speakers to help enterprises innovate
and adapt.

CONVERGENCE: A SYNTHESIS OF IDEAS,
CONCEPTS, AND PERSPECTIVES

Summits, conferences, and conventions
can be powerful fora for knowledge conver-
gence. Convergence is a natural synthesis
that occurs when individual contributions,
like strands of a web, are brought in context
to converge and intertwine knowledge
into a comprehensive innovative solu-
tion. Imagine solving a complex problem
where each contributor has a segment of
the solution. Separately, each solution
element is only understood by its origina-
tor. By creating spaces where convergence
can occur, one or many big pictures and
their possibilities take shape. Placement,
orientation, and the value of each element
may inspire and spawn new associations
to other segments of the solution and con-
cepts previously overlooked, disassociated,
or misunderstood.

Innovation cannot occur until the con-
vergence among different kinds of knowl-
edge are synthesized to spawn innovative
solutions. For instance, the first operational
computer did not appear until 1946, even
though all the necessary knowledge was
available in 1918 (Drucker 2002). Some-

times a spark or catalyst (some may call
it luck) is needed to create the innovative
combustion. To accelerate the synthesis
of ideas, we must be intentional about
seeking and fostering knowledge gathering
and exchange, challenging old concepts,
and improving perceptions about poten-
tials. The V&V Summit aims to establish a
network and community of V&V and Test
and Evaluation (T&E) experts to exchange
ideas, explore new concepts for future
needs, promote continuous learning, and
foster innovative collaboration.

Recent summit themes focused on nur-
turing innovation, creativity, and collabora-
tion. The 2021 summit theme, “The Fusion
of Art and Science,” addressed how V&V
professionals will have to be more than
scientists and engineers as they develop
innovative and creative solutions for the
future of aviation. The summit sought to
foster new perspectives, increase aware-
ness, and inspire notions of curiosity and
discovery for projects and organizations.
The immediate past summit theme was
“Enabling Dynamic Innovation with Rigor,”
which examined the challenges of innovat-
ing with agility at the pace of technology
while ensuring that mission-critical systems
and services are safe, effective, and secure.

Innovation requires mental space as well;
it must be both conceptual and perceptual,
requiring not only cognition but imagina-
tion. Speakers at the 2021 V&V Summit
highlighted the value of integrated arts and
sciences to the advancement of innovation,
focusing on new concepts and improved
perceptions; learning through interacting,
observing, and listening; challenging the
status quo; and creating environments
where good scientists (who are cognizant
of their ignorance) can gain knowledge.
Innovation requires a fine balancing act
between rapid change and known stability.
People resist change, doubt the new, and
abhor complexity. They will often settle
for a known deficiency rather than accept
products that require a mental stretch. But

while simplicity and certainty foster com-
fort and confidence, they can also lead to
stagnation. Innovation requires being open
to uncertainty and the unexpected.

The poet John Keats coined the term
“Negative Capability,” by which he meant
the ability of someone to hold opposing
ideas in their mind simultaneously — “of
being in uncertainties, mysteries, doubts,
without any irritable reaching after fact and
reason.” Negative capability is a powerful
tool in literature because it leaves a key ele-
ment of the story unexplained, a tension or
strategic opacity that invites the reader to
fill in a backstory using their own imagina-
tion, or reconcile seemingly contradictory
motivations and rationales. This technique
releases “an enormous energy that had been
at least partially blocked or contained by fa-
miliar, reassuring explanations” (Greenblatt
2004). In science, analysts seek to explain.
But in innovating they need to be open to
uncertainty. Uncertainty is uncomfortable,
but it is often where the “magic” occurs—at
the intersection of art and science; the what
if and what is.

Mental and Physical Modeling for
Convergence and Innovation

Digital twins, simulators, sandboxes, and
virtual reality can also be powerful tools
for convergence. A digital twin is a virtual
representation of an object or system with
real-time, bidirectional data flow enabled
by Artificial Intelligence (AI) and/or Ma-
chine Learning (ML). It can model cities or
whole ecosystems. Users have the ability to
simulate decisions and outcomes, allowing
them to work together to create scenarios
and model systems, integrate data from
many different sources, and experiment
without risk. Digital twin models and sim-
ulators provide environments where it is
encouraged (and safe) to innovate through
creation, building, play, trial, prototyping,
and even destruction. Having facilities, lab-
oratories, skunkworks, and environments
where ideas can be grown is critical to
learning, training, and eventually imple-
menting those new ideas. A digital twin can
accelerate contextual understanding, buy
down risks for operational changes, and en-
able proactive and prescriptive adaptation
instead of reactive management.

A digital twin can also serve as a virtual
space for convergence between human
users and AI. As AI develops, using explan-
atory models and reinforcement learning,
relationships between human users and
AI will be increasingly based on perfor-
mance and trust. Effective digital twins and
simulators must also engage the user in an
immersive experience. Numbers, statistical
analysis, etc., are only a small part of the
story told by digital twins and simulators. Figure 2.  Innovation requires convergence among different kinds of knowledge

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

10

What matters most is the story told about
the real-life applications of these numbers.

Creating a space for knowledge conver-
gence—physically or mentally—means
accepting that there may not be one right
answer. Indeed, there may be no imme-
diate answer at all. Instead, convergence
welcomes many different perspectives with
the aim of stimulating responsible discus-
sion. Leadership plays an important role
in creating a space for knowledge conver-
gence. At the WJHTC, FAA leadership has
fostered internship programs; employee
engagement teams and mentoring; Aviation
Science, Technology, Engineering, and
Mathematics (AvSTEM) outreach ef-
forts; and the Innovation and Technology
Advisory Council (ITAC) to allow for the
constant cross-pollination of ideas. Coop-
erative research agreements between the
FAA, Department of Defense (DOD), and
Department of Homeland Security (DHS),
and events like the Cyber Rodeo and Tech
Center Showcase, are also valuable avenues
for knowledge convergence.

AGILE: CONTINUAL MANAGEMENT OF THE
TRAJECTORY TO STAY ON TARGET

Successful agile principles and practices
will be critical to innovating at the pace of
technology and obsolescence. Participants
at the TIM on agile principles and practices
did not arrive at one single definition for
“Agile,” but they did describe consistent
characteristics by offering their thoughts,
lessons learned, and challenges. Discussion
focused on three major areas: 1) defining
agile, 2) culture change, and 3) developing
the right metrics.

Defining Agile
Defining agile can be difficult, as

different people have different ideas of
what it means. However, there were some
consistent characteristics of agile principles
and practices raised throughout the TIM.
During a breakout session, TIM partic-
ipants used interactive polling software
to define what agile meant to them. The
following terms were most commonly
identified:

■■ Iterative
■■ Adaptive
■■ Discipline
■■ Flexible
■■ Collaborative
■■ Communication
■■ Multidisciplinary.
There are many myths and notions about

what agile is, how it is applied, whether a
framework is needed, and, if so, which one.
One myth is that agile is always faster. Us-
ing an iterative process, teams can hone in
on customer requirements more efficiently
but this may not necessarily shorten the

overall project timeline. Another myth is
that agile reduces documentation. Actually,
scope, content, and frequency of documen-
tation may be different from conventional
large documentation efforts at the end of a
milestone.

Agile is a set of values and principles.
Agile practitioners value: 1) individuals
and interactions over processes and tools,
2) working software over comprehensive
documentation, 3) customer collaboration
over contract negotiation, and 4) respond-
ing to change over following a plan. Agile is
about thinking big and acting small, failing
fast and learning rapidly.

Agile is iterative. It is a responsive and
constant process; more than just resched-
uling testing earlier in time. Through
iterations, agile teams narrow the cone
of uncertainty from the starting point of
maximum ignorance, to a Minimum Viable
Product (MVP), and then completion. They
learn along the way and are smarter when
they are ready to deploy.

Agile embraces the idea that there is a
lot of uncertainty about the solution at the
beginning of a project, so that is not the
time to lock in scope and requirements.
Instead, as knowledge converges and con-
cepts synthesize, refined requirements are
developed, thereby increasing the probabil-
ity of success to build the intended product.
Agile practitioners incrementally assure
viability, which requires knowledge of the
system, how it will be used, and the domain
in which it will be used. We learn “what we
don’t want” is just as valuable as “what we
think we want.” This allows development

efforts to adjust trajectory early and fosters
an adaptive approach. Agile narrows the
cone of uncertainty and facilitates staying
on target and on time. Ultimately, success-
ful agile acquisition delivers what is really
needed instead of what was thought to be
needed.

A video by actor and comedian John
Cleese on “The Importance of Mistakes,”
shown during the 2022 V&V Summit,
helps explain parts of an agile process.
In the video, Cleese presents Gordon the
Guided Missile. There can be two different
approaches to sending Gordon to hit its
target: either plan everything out and set
its target before firing, or ask Gordon along
the way how it is doing. The launch has a
fixed direction and a setting. In a tradition-
al waterfall program, we are expected to
have perfect aim. However, by asking along
the way and correcting course, it may ap-
pear we are “making mistakes,” but we are
actually learning by doing while adjusting
so we hit the bullseye.

Agile requires management of uncertain-
ty. Agile practitioners must assess outcomes
that may not necessarily be part of the plan.
They need permission from leadership and
stakeholders to change their minds later
on. One key to agile development is asking
illuminating questions early, which allows
a team to build viability into the system.
Agile practices should involve and integrate
stakeholders into development. Data and
test results should be available before dead-
lines so that examination can occur earlier
when corrective actions are less expensive
to make and options are more varied. V&V

Monitor

Shift Right

Shift Left

Think Big, Act Small

Fail Fast, Learn Rapidly
Plan

Deploy

Code

Build

Load Test

Code
and

Infrastructure

Development
Test Early
Test Often

Deploy
Live

Continual Testing

Operate

Figure 3. The agile process (Blomberg 2018)

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

11

should be involved in testing and validating
the system as it is being developed, working
with the product owner and team in writ-
ing acceptance criteria and validating the
definition of “done.” Stakeholder feedback
has to be a continual process and not just a
gate that you pass through at the end.

Agile done poorly can circumvent con-
trols that are in place. Agile done well uses
interdisciplinary teams that leverage their
expertise early and often to build a system.
Organizations cannot just focus on adopt-
ing some terminology and agile ceremonies
without changing the way they perform
the detailed technical work. Instantiating
the methods as if they are templates to be
filled out can lead organizations to miss the
intended benefits.

Culture Change
Implementing and integrating all these

values and ideas requires an organizational
culture prepared to adopt agile princi-
ples and practices. Speakers at the TIM
identified culture as the biggest barrier
to adoption of agile practices. Tradition-
al waterfall development methods and
organizational silos are comfortable and
culturally accepted, but they may prevent
an environment where ideas and people are
free to fail, learn, adjust, and repeat without
fear from punishment or other negative
outcomes. To counteract this, agile teams
need to be smaller, with natural lines of
communication; self-empowered; and built
for change.

Software engineer Scott Ambler offers
the following definition of agile in regards

to software development, which captures
the organizational culture and mindset
conducive to agile:

Agile (adj.): An iterative and incremen-
tal (evolutionary) approach to software
development which is performed in a
highly collaborative manner by self-or-
ganizing teams within an effective gov-
ernance framework with “just enough”
ceremony that produces high-quality
software in a cost-effective and timely
manner which meets the changing needs
of its stakeholders (Ambler 2013).

Agile organizational cultures welcome
change requirements, deliver working
products frequently, and consist of teams
with high motivation and empowerment
to get work done. By contrast, waterfall de-
velopment is a serial process with multiple
handoffs between different groups. Compo-
nents are developed separately and integrat-
ed later with testing deferred until the end.
Agile organizations produce fully tested,
production-ready code at each iteration
with MVPs serving as part of the assurance
process. Put another way, traditional wa-
terfall development finds bugs, while agile
organizations seek to prevent bugs.

Agile teams should consist of equal
stakeholders at the table. If only one entity
has all the power, then the scope, require-
ments, metrics, and verification will be
slanted in their favor. Many times, who-
ever has the money controls the direction
of a project. But what is best for the end
user? To this end, communication within

and between teams is crucial. Teams and
stakeholder groups need to be comfort-
able communicating with each other, and
organizations shouldn’t prevent groups
from talking to each other for the sake of
perceived independence.

One of the main features of a traditional
waterfall approach is nothing is visible until
everything is done. Enterprises tend to
wait until integration tests to understand
the individual contributors to the capabil-
ity of the system because they don’t have
another way of doing it. Often, this comes
about because of the nature of the organi-
zational structure. Dependencies exist on
either side of boundaries, and capabilities
are similarly sequestered by this boundary.
Organizations that are successful view that
both sides of a dependency have to operate
together in a system where they succeed or
fail together. Dependency encourages col-
laboration. Otherwise, the whole enterprise
will be let down.

Enterprises should look to communicate
and be transparent with sponsoring organi-
zations. Speakers at the TIM discussed the
benefits of an institutionalized stakeholder
engagement plan, which will be important
moving into an agile world where stake-
holders, including testers, have to work
together to make incremental success
stories. In a stakeholder engagement plan,
teams would have a specific cadence with
associated schedules for each stakeholder.
Everyone has to understand when to lead
or follow, depending on the lifecycle phase.

There also have to be escalation rules for
disagreements, where parties understand
that nothing bad will happen to those who
don’t get their way.

Meaningful Metrics
It is important that agile practices de-

velop and use the right metrics to control
trajectory. Who owns the metrics? What
supports them? If something changes along
the way, can metrics change?

First, metrics have to be meaningful to
everyone relative to target or goal. Ap-
propriate metrics should measure and be
motivated by the benefit of the public or
end user. Metrics cannot be viewed from a
defensive posture—i.e., once a stakehold-
er is happy with a picture, the team can
go back to the real work. Institution- or
enterprise-wide metrics can be somewhat
antagonistic to the agile process. Some-
times institutional metrics “silo” you into
reporting a given metric; it is common
that problems persist far down the chain
because teams force processes to fit institu-
tionalized metrics. At the TIM, an example
was given related to military readiness
reporting where every model development
is smashed into metrics spoken at the con-

Cone of uncertainty
Po

in
t o

f m
ax

im
um

 ig
no

ra
nc

e

What they really needed.

time

What they thought
they needed.

MVP

Elaboration

Construction
Done

Inception

Figure 4. Narrowing the cone of uncertainty (Montemurro 2021)

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

12

gressional level. Such practices can inhibit
an organization’s ability to transition to
agile types of processes.

Successful agile organizations consume
data closer to the point where work is per-
formed rather than building a large data set
entirely intended for an external audience.
The agile user story considers what the
system needs to do in order to achieve a
desired outcome, and then specifies metrics
to reach that outcome. If the need is prop-
erly decomposed at each level, measurable
characteristics will emerge. In this way, we
give assurance to the overall system that
we’ve contributed the right values and right
measurements for each of the components.
As someone drills down, they can look and
see what the inputs are for each metric.

To make sure they are meaningful, teams
must also V&V their metrics. If the metrics
are invalid, you can hit every mark and still
fail. Like measuring a patient’s vital signs,
body temperature could come back within
an acceptable threshold, but the patient
could still have high blood pressure. Suc-
cessful projects establish and validate what
must be measured early and then march to
those measurements. The sooner and more
frequently the measures can be performed,
the sooner adjustments and corrective
actions can be performed. As any good
project manager will attest, leading metrics
allow one to “go on the offensive” rather
than rely on lagging metrics that require
defensive action and often generate waste.

Attendees discussed the level of orga-
nizational metrics versus developmental
metrics. Astute filtering of metrics and
measurement data must be tiered, and to a
level of granularity appropriate for various
reporting levels. For example, if airport
noise (metric) is measured in decibels
(measurement) and durations (measure-
ment) over a given location (measure-
ment), what are the acceptable ranges and
tolerances for each individual measurement
to prevent the metric from being out of
bounds? If the public cares about airport
noise, then the top levels in the agency will
track that metric. However, at the gemba*
where the work gets done, the separate
design specifications that contribute to the
individual measurements may be inade-
quate (when combined) to perform under
the allowable noise threshold. Organiza-
tions must understand the allocation of

metrics and their construction at each tier
so that meaningful and relative information
on each can be managed and monitored.

Agile teams must not be afraid to
approach leadership when requirements
or metrics need to be changed. This goes
back to the importance of organizational
culture and leadership. Stakeholders have
to presume good faith and have a common
perspective. As soon as we lose those, met-
rics become counterproductive.

LEADERSHIP
It is critical for innovators to act in a cul-

ture of leadership with peers who are agile,
flexible, and poised for change. Leadership
is key to creating spaces for knowledge con-
vergence and developing an organizational
culture primed for innovation.

There are distinct differences between
a leader and a “boss.” A leader communi-
cates the vision and shapes perceptions so
people are able to see the future landscape.
A leader helps to motivate people to want
to innovate and sources training on how to
implement change and empower indi-
viduals and teams to experiment without
negative consequences. In contrast, a boss
simply moves pawns on the chessboard,
ignoring the ideas and perceptions of the
staff. A boss hinders innovation by frown-
ing on new philosophies and methods, pre-
venting action on concepts she or he does
not comprehend, and creates a punitive cul-
ture if an idea does not bring success based
on financial metrics or personal glory.

In cultures of innovation, leadership
combines the people, tools, training, and
environments where freedom of thought is
encouraged and rewarded. A servant-leader
approach is valuable, providing the psycho-
logical safety needed in an organization to
nurture self-empowered teams. Leaders are
careful to “move out of the way” in the best
interest of future success, even if it requires
them to hand off power or lose organiza-
tional headship. Institutions that under-
stand this operating model make provisions
for such behavior by providing lateral
opportunities, new project assignments,
financial incentives, or promotion.

Leadership needs to emphasize soft-
side skills too. Effective leaders celebrate
internal milestones with the whole team,
making public recognitions so that team
members understand the desired behavior.

Training should be regular and focus on
how the enterprise wants to implement
action, as well as equip the user with the
right-sized tool set. But just training people
on tools is counterproductive. If you give
people a hammer, they are going to want
to hit things. Valuable training doesn’t just
provide information, it provides perspec-
tive. Leadership needs to ensure people
understand the “why” so they are equipped
to address new issues with appropriate re-
sponses. To impact culture, you want to im-
pact behavior. Perspective feeds behavior.

CONCLUSION
Defining a single way (a silver bullet)

that addresses all needs while adopting ag-
ile practices with the rigor needed for safety
and efficiency critical systems and services
may not be 100% possible, especially in
government acquisitions. On the other
hand, even partial adoption of these princi-
ples and best practices would reap benefits
for innovation and the implementation
of complex systems and services. A key
takeaway from the V&V Summit and the
TIM is that these concepts will be hard to
institute, but federal agencies, industry, and
academia will need to increasingly adopt
these principles and practices as more com-
plex systems of systems and indeterminate
systems are developed.

Institutions and enterprises, in whole
or in part, must adapt and change their
organizational culture to innovate. They
must embrace increased communication
and stakeholder engagement; smaller, more
empowered teams; and iterative product
deliveries/releases. They need to be dynam-
ic, flexible, and agile while maintaining a
rigorous and disciplined approach to inno-
vation, and they should expect disruption
and the need to continually alter perspec-
tives and methods. Healthy organizations
are open to change and are adept at trans-
forming business and technical strategies
to be successful in a world with warp-speed
technology.  ¡

*Gemba () is the Japanese term for
“actual place,” often used for the shop floor
or any place where value-creating work
actually occurs.

REFERENCES
■■ Drucker, P. 2002. “The Discipline of Innovation.” Harvard

Business Review https://hbr.org/2002/08/the-discipline-of-inno-
vation.

■■ Greenblatt, S. 2004. Will in the World: How Shakespeare
Became Shakespeare. New York, US-NY: W. W. Norton &
Company. Kindle edition.

■■ Blomberg, B. 2018. “Why Your Performance Testing Strategy
Needs to Shift Left.” dotcom-monitor, 27 November. https://
www.dotcom-monitor.com/blog/2018/11/27/why-your-perfor-
mance-testing-strategy-needs-to-shift-left/.

■■ Montemurro, M. 2021. “Agile, meet adaptive: How global
development assistance and software engineering both thrive

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

13

on an iterative approach.” catalpa, 8 September. https://catalpa.
io/blog/agile-meet-adaptive-how-global-development-and-soft-
ware-engineering-programs-both-thrive-on-an-iterative-ap-
proach/.

■■ Ambler, S. 2013. “Disciplined Agile Software Development:
Definition.” The Agile Modeling Method. http://agilemodeling.
com/essays/agileSoftwareDevelopment.htm

ABOUT THE AUTHORS
John Frederick is the manager of the Verification and Val-

idation Strategies and Practices Branch at the Federal Aviation Ad-
ministration’s (FAA) William J. Hughes Technical Center, where
he is responsible for establishing quality verification and validation
methods and standards in the FAA. He has more than 36 years
of Test and Evaluation (T&E) experience with Federal Aviation
Administration systems. Since starting the annual Verification and
Validation (V&V) Summit in 2006, Mr. Frederick has gathered
speakers and participants from across the FAA, other govern-
ment organizations, industry, and academia to address innovative
methods for complex problems and to promote a quality V&V
culture. Mr. Frederick serves as the Test Standards Board Chair-
man to establish test standards in the FAA and provide quality
T&E oversight for the agency. He is also the International Test and
Evaluation Association (ITEA) South Jersey Chapter President
and serves as the T&E representative for the FAA on the Acqui-
sition System Advisory Group and Joint Resources Council. Mr.
Frederick is a graduate of Drexel University (Philadelphia) with a
Bachelor of Science in Computer Systems Management. He is also
a graduate of the Federal Executives Institute with a Certificate of
Mastery in Leadership for a Democratic Society.

Columb Higgins is a technical writer/editor and Document
Control Administrator for the Federal Aviation Administration’s
(FAA) Verification and Validation Strategies and Practices Branch
at the William J. Hughes Technical Center. He has worked as a
documentation specialist for the FAA for the past 6 years. Prior
to that he was a reporter and editor for The Cape May County
Gazettes and The Press of Atlantic City, where he helped develop
award-winning series on opioid addiction and affordable housing.
He is a graduate of Villanova University and lives in southern New
Jersey with his wife and two children.

Angela Harris-Moore is a process quality engineer with a
30-year career supporting the Federal Aviation Administration
(FAA). Starting as an editor, she sought training in Digital Systems
Acquisition/Development; quality standards (TQM, ISO, CMM™);
and disciplines such as Systems Engineering, Cybersecurity, and
Safety. She holds certifications from Villanova University (inter-
national Lean/Six Sigma Master Black Belt), USDA (Government
Auditing Professional), and CMTF (Configuration Management
Professional). Ms. Moore’s current work includes lifecycle analysis
and reengineering of processes and policies affecting the National
Airspace System (NAS). She supports the V&V Strategies and
Practices Branch’s mission to strategically promote and implement
robust V&V and Test and Evaluation practices that protect engi-
neering integrity and agency investments. She trained artificial
intelligence on genre recognition as an analyst for the Music
Genome Project — the technology that enables today’s music
streaming. A native of southern New Jersey, she is a proud Duke
University alumna who volunteers as an admissions interviewer
and a youth advisor. However, she is most proud of her teen twins,
Alexander and Jacqueline.

Get started: ctme.caltech.edu

Connect with us: execed@caltech.edu

Embracing Digital Engineering?
We Have the Science for That.

Customizable Programs for Organizations

Advanced Systems Engineering

Advanced Model-Based Systems Engineering (MBSE)

Technical Leadership Development Forums

Agile Project Management / Enterprise Agility

Software-Defined Futures Transformation

Machine Learning / Software Engineering

Industrial Dev*Ops for Systems Engineering

Leaders pursuing the technical frontier team with
Caltech for transformational executive and profes-
sional education. We customize unique learning
experiences for organizations and their people,
working one-on-one with leadership to design

and deliver practical learning programs and work-
shops that create impact and energize teams.

mailto:execed@caltech.edu

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

14

INTRODUCTION

  ABSTRACT
The production of single use medical devices, particularly for home use by patients, continues to grow, and the reliability of these
devices is a primary concern for manufacturers and end-users. The systems engineer tasked with the device development needs
methods and tools to establish reliability requirements and provide cost estimates for the testing necessary to show compliance
with those requirements. This paper examines methods for determining reliability requirements, the cost of reliability testing for
single use medical devices in the design input phase of product development, and how the costs of testing and potential errors can
be used to perform trade-off analysis between reliability tolerance and confidence level.

Fritz Eubanks
Copyright © 2010 Battelle Memorial Institute. Published and used by INCOSE with permission.

Determining Reliability
Requirements and Testing
Costs in the Early Stages
of Single Use Medical
Product Design

Reliability is a product performance
parameter, and consequently
shares in the three-way balance
between product performance,

cost, and time to market. Design for high
reliability requires varying combinations
of high reliability components, functional
redundancy, and periodic overhaul/
maintenance, all of which make the
product more expensive to design, build,
and test. On the other hand, disregard for
reliability makes products more expensive
to operate and maintain and leads to
customer dissatisfaction and loss of sales.

Medical products can range from simple,
single use devices, like tongue depressors
and syringes, to large, complex systems like
MRI systems and multi-assay in vitro di-
agnostic devices. Likewise, the complexity
of the establishing and meeting the device
reliability requirements will vary with
device complexity.

Product requirements for medical
devices are established during the design
inputs phase of product development. (QSR

2009). The product requirements define
the performance characteristics, safety
and reliability requirements, regulatory
requirements, applicable product standards,
physical characteristics, and packaging and
labeling requirements, among other things.
(Trautman 1997). At the same time, project
managers and systems engineers begin
establishing the design and development
plan, including major schedule milestones
and overall program costs. Chief among
design and development costs is product
testing to verify compliance with product
requirements. In the case of reliability
testing, these costs can be substantial
due to the large number of items and/
or amount of time required to obtain
statistically sound data that serve to verify
product reliability requirements. Methods
to estimate testing lot sizes during the
design inputs phase can prove valuable for
both cost and schedule planning, as well as
performing trade-off analyses for refining
reliability requirements.

ASSESSING THE RELIABILITY REQUIREMENTS
The Structure of Reliability Requirements

Reliability is defined as “the probabili-
ty that an item will perform its intended
function under stated conditions over a
specified interval.” Therefore, the reliability
goal must include specifications for the
following items:

■■ Measure of success/failure
•	 A probability between 0 and 1, or a

percentage between 0% and 100%
•	 A mean time to failure (MTTF) or

mean time between failure (MTBF)
•	 A system availability between 0 and

1, or a percentage between 0% and
100%

■■ Definition of success/failure
•	 Success: No downtime, performance

parameters within specification, no
lost data

•	 Failure: no test result, false positive,
insufficient output, complete system
failure

■■ Range of normal operating conditions
•	 Temperature, humidity, pressure,

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

15

vibration, dust/pollution, liquid,
power levels

■■ Interval over which probability of suc-
cess/failure will be measured
•	 Time, cycles, miles
•	 Note: this interval is not the same as

product life

Examples of good reliability requirements
are as follows:

The system shall have mean time before
failure of 1000 hours over a one-year
period when operating under laboratory
conditions where failure is defined as a
false positive indication.

The power subsystem shall have a 95%
probability of performing in accordance
with specifications over 1000 hours in
arctic conditions.

The vessel shall remain pressurized at
100±5 psig without operator interven-
tion for 150 hours at 120°F with 99.5%
reliability.

Collecting Basic Information
The key reliability issues for any product

or system are (RiAC 1996):
•	 What measures of reliability are import-

ant to the end-user?
•	 What levels of reliability are necessary to

meet the end-user’s needs?
•	 How will the manufacturer determine if

the required levels of reliability have been
achieved?

To answer these questions, it may be
necessary to engage in a fact-finding effort
that may involve a voice of the customer
(VOC) study, benchmarking, and/or mar-
ket surveys. Through these activities, the
manufacturer should to come to alignment
with the end user’s needs on the following
key reliability questions:
•	 How often will the product be used?
•	 How many failures per 1000 attempted

uses can be tolerated?
•	 How much operating time per use is

expected?
•	 Who will be the regular user of the

product?
•	 Where and under what conditions will

the product be used?
•	 How is success/failure of the product

defined?
•	 What is the expected life of the product?

•	 For single use products, how long
will the product be stored before use
and under what conditions?

•	 Will users be compensated for failed
items and, if so, how much?

For repairable systems, additional reli-
ability issues must be considered:
•	 How many product failures can be

tolerated over a 3-, 6-, or 12-month
period?

•	 How much product downtime for ser-
vice/repair of failures can be tolerated?

•	 Who will be tasked with performing
service/repair?

•	 Will there be a warranty period and for
how long?

•	 How much product downtime for routine
maintenance can be tolerated?

•	 Who will be tasked with performing
routine maintenance?

•	 How much will routine maintenance
parts cost and who will pay for it?

Some of the answers to these questions
may not be available in the concept/feasibil-
ity stage, but need to be considered and, if
possible, estimated for the manufacturer to
decide on how to position the product from
reliability and cost perspectives.

Reliability Requirement Testing Costs
The end user needs to know that reli-

ability goes hand in hand with product
cost. “Four nines” reliability is great but
may increase the cost of the product to an
unacceptable level. Suppose that the end
user of the single use syringe demanded 1
failure for every 1000 attempts. Achieving
this reliability will likely increase the cost of
the device substantially.

The manufacturer needs to define
the importance that reliability will have
as a performance parameter relative to
product cost and time to market. The
importance aids in establishing the level of
confidence required by the manufacturer
when assessing how well the product has
met the reliability requirements. This, in
turn, allows the systems engineer to make
a rough order of magnitude estimate of
testing costs, because sample size and test
time are driven by the combination of
reliability and confidence interval. While
testing approaches for more complex
reparable and non-reparable system are
well studied, simpler single use devices
have not received a lot of attention.
O’Connor (2002, 357) recommends that
statistical acceptance sampling methods
can be used for such devices. The success/
failure nature of single use devices suggests
that statistics of population proportions can
be applied. (Devore 2008, 306)

Establishing and testing requirements for
large reparable systems is well studied and
documented. The remainder of this paper
will focus on requirements and testing for
single-use devices.

Notation
It is important to note that the reliability

values expressed in the following devel-
opment are not the same as are used for

SINGLE USE DEVICE RELIABILITY
VERIFICATION
Verification Testing Requirements

Verification testing provides the
objective evidence that the product meets
performance requirements, and that the
product is ready for release to production.
Devices used for product verification
testing need to be equivalent to the
device that will be produced for sale and
distribution.

In the language of statistical hypothesis
testing, the null hypothesis is that the prod-
uct performance meets the requirement
being tested, while the alternative hypoth-
esis is that the performance falls outside
the limits of the requirement. Reliability
requirements are generally stated as a
minimum, for example, at least 95% with
95% confidence. Therefore, requirement
verification will take the form of a one-
tailed hypothesis test with a null hypothesis
that the reliability is greater than or equal to
95%. The concern early in the design phase
is to plan for enough tests to provide the
required confidence in the validity of the
verification test results.

Testing Errors and Sample Size
The two hypothesis test errors are de-

fined as follows (Devore 2008, 288):
A type I error consists of rejecting the
null hypothesis when it is true.

A type II error consists of not rejecting
the null hypothesis when it is false.

In terms of requirements verification test-
ing, these definitions can be re-written as:

A type I error consists of concluding that
the requirement has not be met when it
has.

Symbol Definition

R Required reliability as a
population proportion

n Test sample size

α Level of significance;
probability of type I error

β Probability of type II error

R′ Potential reliability due to
type II error

β ( R′) Probability of type II error
when R = R′

time-based reliability calculations. For this
work, the device reliability is the ratio of
the number of successes to the number
of trials, commonly expressed as R = x/n,
where x and n are discrete integer values.
The notation is as follows:

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

16

A type II error consists of concluding
that the requirement has been met when
it hasn’t.

While a type I error could result in
schedule delays and additional testing cost,
a type II error could result in the release of
a product that does not meet the reliability
requirement. In the context of verification
testing, a type II error means that the level
of reliability realized in production will
be below the level of reliability measured
during verification testing.

Statistical confidence is (1 - α), where
α is the probability of a type I error.
When nR ≥ 10 and n(1 - R) ≥ 10, p has
approximately a normal distribution, and
the lower confidence limit (LCL) for a
one-sided, lower bound test of a population
proportion can be computed. Therefore,
the minimum sample size needed to
establish the confidence interval for 95%
reliability using the normal

approximation is n =
10

1 - 0.95 = 200. Under
the presumption that the reliability of the
device will be 95%, and that the desired
confidence is 95%, the LCL can be comput-
ed (Devore 2008, 266). See equation 1.

Increasing the sample size to 400 would
make the LCL around 93.2%. Here is the
first point where the manufacturer must
define the importance of reliability:

Q1: What lower confidence limit of
reliability is acceptable at the desired level
of statistical confidence?

If the manufacturer desires 95% reli-
ability with 95% confidence and LCL of
93%, then the necessary sample size can
be estimated as (Devore 2008, 267). See
equation 2.

Statistical power is (1 – β), where beta is
the probability of a type II error. Unlike α,
there is not a single value for β. There will
be a different β for each value of p con-

tained within the bounds of the alternative
hypothesis. For example, if a test of 400
units shows that the reliability is 95% with
95% confidence, there is a 19% probability
that the actual population reliability is 92%.
In other words, there is an almost 1 in 5
chance that the actual device reliability in
production will be below the 95% one-sid-
ed lower confidence limit. Here is the
second point where the manufacturer must
define the importance of reliability:

Q2: What tolerance for type II error
(combination of actual reliability in pro-
duction and probability of realizing that
reliability) is acceptable at the desired
level of statistical confidence?

The calculation of sample size necessary
to properly control both type I and type
II errors in reliability verification testing
contains 4 variables: the required reliability
(R 0), the confidence level (1 - α), the prob-
ability of a type II error (β), and the lower
bound at which β applies (R′). Continuing
our example, the manufacturer desires at
least 95% reliability with 95% one-sided
confidence (α = 0.05). In addition, the man-
ufacturer feels they can only tolerate a 10%
chance (β = 0.10) that the actual reliability
in production is as low as 93%. The sample
size can be estimated using (Devore 2008
308). See equation 3.

Note that the increased sample size also
reduces the confidence interval, resulting
in a LCL of 94%. In this case, the desire for
a low probability of type II error has driven
the sample size to a level that provides 95%
confidence that the LCL will be within 1%
of the required reliability.

Sample Size Tradeoff Analysis
Considering that pre-production samples

for testing can cost anywhere from $50 to
$500 each, the cost of parts alone for a sam-
ple size of 1176 starts at $58,800 and goes

up from there, not to mention the time and
effort required to manufacture the prepro-
duction parts for testing. The manufacturer
may want to examine options for possibly
reducing the lot size for testing. Using the
previous development, sample size can be
calculated for combinations of acceptable
limits of type I and type II errors. However,
working with probabilities and sample sizes
alone can be a little too abstract for making
tradeoff decisions. What the manufacturer
really wants at this stage is a rough order of
magnitude estimate of the total cost of the
reliability testing.

Using experience from previous
programs and judicious estimation, the
systems engineer can collect some basic
parameters used to estimate the costs of
conducting verification testing. These
values can be used to calculate a simple
estimate of testing costs for various sample
sizes. See equation 4.

Testing costs are driven by sample size,
and in this context, lower is better. How-
ever, lower sample size results in a higher
probability of type II error, and thus a
better chance that the production reliability
will be lower than anticipated. The impact
of lower reliability in production will be felt
as a loss to the manufacturer due to war-
ranty returns, customer dissatisfaction, and
potential claims for property damage or
personal injury. If the losses can be roughly
estimated for each incremental shortfall
in reliability, it can provide the basis for a
tradeoff against testing costs.

In some cases, the cost of device failures
may have been computed as part of the
business case used to justify the decision to
proceed with design. Otherwise, a rough
estimate can be obtained by summing up
the estimated probability and severity of
each potential outcome of a device failure.
Potential outcomes and estimates of sever-
ity and probability can be generated from

LCL = R – z α
R(1–R)

n
0.95(1–0.95)
200

= 0.95 – 1.645 = 0.925 (1)

n = R (1–R) z α
(R–LCL)
󶀣 󶀳

2
= 0.95 (0.05) = 3221.645

󶀣 󶀳
2

0.02
(2)

= 1176n = =
z α R 0(1–R 0) R′(1–R′)+z β

R′–R 0
󶁧 󶁷

2󵀄󵀄

0.93 – 0.95
1.645 0.95(1–0.95) 0.93(1–0.93)+1.282󶁧 󶁷

2󵀄󵀄
(3)

Testing Cost = [(Sample Size) ∗ (Part Cost)] + 󶁧(Sample Size)
(Testing Rate)

∗ (Labor Rate + Facility Rate) + (Fixture Cost)󶁷 (4)

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

17

previous experience with similar devices,
or from high level risk assessments. For
outcomes involving injury or property
loss, Ayyub (2003) and Wilson and Crouch
(2001) can be used to estimate costs. Ex-
pressing the severity in terms of cost to the
manufacturer, the general expression would
be equation 5.

where:
C(failure) = cost of a device failure
P(outcome)i = probability of potential
outcome i occurring
C(outcome)i = cost of potential out-
come i to manufacturer
m = number of potential outcomes
identified.

Recall that there will be a different
probability of type II error for each value
of R′ < R. For one-sided hypotheses, the
probability is calculated as equation 6.

Therefore, the cost of potential type II
errors can be expressed as the sum over
potential values of R′ of the probability
of type II error multiplied by the cost
associated with products having reliability
R′ instead of R 0. This calculation is not as
intractable as it seems. For moderate values
of sample size (n ≥ 400) with R = 95%,
β (90%) is less than 1%.

The cost estimation and trade-off process
is best illustrated through the following
example.

SINGLE USE MEDICAL DEVICE EXAMPLE
A pharmaceutical manufacturer devel-

oped a drug for treating a chronic pain
condition. The drug requires intramuscu-
lar injection daily, and the manufacturer
wanted to develop a one-button, home use
solution for making the injection. Answers
to the salient questions are as follows:

■■ How often will the product be used?
Once

■■ How many failures per 1000 attempted
uses can be tolerated? 50

■■ How much operating time per use is
expected? No more than 5 seconds

■■ Who will be the regular user of the
product? Adults, 25-80 years old, no
physical disabilities

■■ Where and under what conditions will
the product be used? Home use, weekly
or monthly, US, Canada, EU

■■ How is success/failure of the product
defined? Success = proper dose

delivered to patient’s thigh muscle
within 5 seconds of activation

■■ For single use products, how long will
the product be stored before use and
under what conditions? 2 years at 5°C

■■ Will users be compensated for failed
items and, if so, how much? The cost of
the device plus shipping.

Using the information above, the systems
engineer can establish the following
product reliability requirement:

The product shall deliver the proper
dose to the patient within 5 seconds of
actuation with a probability of at least
95% when used in an environmentally
controlled interior space with tempera-
ture of 15-35°C, humidity of 10-95% RH,
and atmospheric pressure of 14.7-10.3
psia following storage at 5°C for no more
than 2 years.

The manufacturer
believes that a single
use device with 95%
reliability provides a
good balance between
performance and
cost. Production
volumes are estimat-
ed at 50,000 devices
per year. The trade-
off process starts by
determining required
sample size based
on lower confidence
limit and the level
of confidence in
achieving that limit
in accordance with
Equation (2). Table 1
provides the trade-offs
between confidence,
LCL, and sample size
for R=95%.

Note that using
sample sizes below
200 will require dif-
ferent treatment due
to the restriction that
n(1–R) ≥ 10 for the
normal distribution
assumption of R to
apply. The estimated
costs for reliability

testing as a function of sample size calculat-
ed using Equation 4 are shown in Table 2.

Assume a preliminary selection of
the 90% confidence level. Based on the
confidence level, the additional cost of
development must be weighed against the
possible additional cost of operation due
to a higher-than-expected failure rate, as
measured by the probability of a Type II
error. Calculated probabilities for Type II
error for each level of combination of R′
and LCL in accordance with Equation 6 are
shown in Table 3.

Assume that the manufacturer has
performed a rough cost assessment of
potential failure outcomes as follows:

C (failure) = P (outcome)i  ×  C (outcome)i ∑ m
i=1 (5)

β (R′) = 1– Φ
R – R′ – z α

R(1–R)
n

R′(1–R′)
n

(6)

LCL

Confidence 94% 93% 92% 91% 90%

95% 1286 322 143 81 52

90% 781 196 87 49 32

85% 511 128 57 32 21

80% 337 85 38 22 14

Table 1. Lot Size for Testing, R 0 = 95%

Part Cost = 	 $200 each

Testing Rate = 	 $6/hour

Labor Rate = 	 $100/hour

Fixture Cost = 	 $5,000

Facility Rate = 	 $75/hour

LCL

Confidence 94% 93% 92% 91% 90%

95% $299,708 $78,792 $37,771 $23,563 $16,917

90% $183,979 $49,917 $24,938 $16,229 $12,333

85% $122,104 $34,333 $18,063 $12,333 $9,813

80% $82,229 $24,479 $13,708 $10,042 $8,208

Table 2. Estimated Cost of Reliability Testing

Potential
outcome

Proba-
bility

Cost

Serious
injury

0.0001 $500,000

Moderate
injury

0.005 $45,000

Minor injury 0.05 $6000

No injury
– returned
item

0.94 $500

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

18

Using Equation 5, the cost per device
failure is estimated to be $1,045. For a
population of 500,000 devices, an addition-
al failure rate of 1% represent 5000 devices,
for a potential annual loss of $5,225,000.
Calculated potential losses for each level of
combination of probability and magnitude
of Type II error and their totals are shown
in Table 4.

Our rough calculations indicate that a
reliability test program that exhibits 90%
confidence in a lower reliability bound of
93% is a reasonable trade-off of testing
cost versus potential loss due to reliability
uncertainty. A sample size for verification
testing of 1176 is calculated using Equa-

R = 	 95%

Confidence =	 90%

LCL

R′ 94% 93% 92% 91% 90%

0.94 0.18 0.55 0.69 0.74 0.78

0.93 0.00 0.20 0.42 0.55 0.63

0.92 0.00 0.04 0.21 0.37 0.47

0.91 0.00 0.01 0.09 0.23 0.34

0.90 0.00 0.00 0.03 0.13 0.24

Table 3. Probability of Type II Error

R = 	 95%

Confidence =	 90%

LCL

R′ 94% 93% 92% 91% 90%

0.94 $9,593 $28,971 $35,813 $38,866 $40,554

0.93 $290 $20,956 $44,143 $57,452 $65,315

0.92 $1 $6,995 $33,625 $57,618 $74,303

0.91 $0 $1,399 $19,352 $47,183 $71,426

0.90 $0 $191 $9,129 $33,734 $61,682

Table 4. Potential Loss due to Type II Error

tion 3. Note that the increased sample size
brings the total estimated testing costs to
around $94,000, but still represents a good
trade when compared to the potential cost
of lowering the acceptable LCL to 92%.

CONCLUSIONS AND FUTURE WORK
The production of single use medical

devices, particularly for home use by
patients, continues to grow, and reliability
of these devices is a primary concern.
The systems engineer tasked with the
device development needs methods and
tools to establish reliability requirements
and provide cost estimates for the testing
necessary to show compliance with those

requirements. This paper presented a
set of basic questions for determining
reliability requirements during the design
input stage. We also demonstrated that
the cost of reliability testing for single use
medical devices can be estimated during
the design input stage, and the results used
to perform trade-off analysis of between
required tolerance, confidence level, and
cost. We will continue to develop and
refine the questions we ask to determine
the proper reliability requirements, and the
cost models for providing rough order of
magnitude cost estimates as we apply them
to future product development projects.  ¡

REFERENCES
■■ Ayyub, B. 2003. Risk Analysis in Engineering and Economics.

Boca Raton, US-FL: Chapman & Hall/CRC Press LLC.
■■ Devore, J. 2008. Probability and Statistics for Engineers and

Scientists, 7th Edition. Belmont, US-CA: Duxbury.
■■ ISO 2007. ANSI/AAMI/ISO 14971:2007 – Medical devices

– Application of risk management to medical devices.
Arlington, VA: Association for the Advancement of Medical
Instrumentation.

■■ O’Connor, P. 2002. Practical Reliability Engineering, Fourth
Edition. West Sussex, UK: John Wiley and Sons, Ltd.

■■ QSR 2009. Code of Federal Regulations Title 21 – Food
and Drugs, Chapter I – Food and Drug Administration,
Department of Health and Human Services, Subchapter
H – Medical Devices, Part 820 – Quality System Regulation.
Revised April 1, 2009.

■■ RiAC. 1996. Blueprints for Product Reliability Part
1 – Defining Reliability Programs. Reliability Information
Analysis Center. Published May 15. http://theriac.org/
DeskReference/viewDocument.php?id=280&Scope=reg.

■■ Trautman, K. 1997. The FDA and Worldwide Quality System
Requirements Guidebook for Medical Devices. Milwaukee, US-
WI: ASQ.

■■ Wilson, R., and E. Crouch. 2001. Risk Benefit Analysis.
Cambridge, US-MA: Harvard University Press.

ABOUT THE AUTHOR
Fritz Eubanks has served as a systems engineer with Battelle’s

Health and Life Science’s Medical Device Solutions group, where
he has performed system-level design and analysis of both
medical and commercial products and safety risk management
lead engineer. His experience includes civil service in quality
engineering with the Air Force Logistics Command, and medical
and commercial product development at Battelle. He received a
BS in mechanical engineering from Kansas State University in
1982, and MS and PhD from Ohio State University in 1992 and
1996, respectively. He has been a member of INCOSE and an ASQ
certified reliability engineer.

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

19

INTRODUCTION

  ABSTRACT
In current practice, a verification strategy is defined at the beginning of an acquisition program and is agreed upon by customer
and contractor at contract signature. Hence, the resources necessary to execute verification activities at various stages of the sys-
tem development are allocated and committed at the beginning, when a small amount of knowledge about the system is available.
However, contractually committing to a fixed verification strategy at the beginning of an acquisition program fundamentally leads
to suboptimal acquisition performance. Essentially, the uncertain nature of system development will make verification activities
that were not previously planned necessary and will make some of the planned ones unnecessary. To cope with these challenges,
this paper presents an approach to apply set-based design to the design of verification activities to enable the execution of dynamic
contracts for verification strategies, ultimately resulting in more valuable verification strategies than current practice.

A Concept for Set-based
Design of Verification
Strategies

Pen Xu, xupeng@vt.edu; and Alejandro Salado, alejandrosalado@arizona.edu
Copyright © 2019 by Pen Xu and Alejandro Salado. Permission granted to INCOSE to publish and use.

Verification activities, which usu-
ally take the form of a combina-
tion of analyses, inspections, and
tests, consume a significant part,

if not the biggest part, of the development
costs of large-scale engineered systems
(Engel 2010). Verification occurs at various
levels of a system’s decomposition and at
different times during its life cycle (Engel
2010). Under a common master plan, low
level verification activities are executed
as risk mitigation activities, such as early
identification of problems, or because some
of them are not possible at higher levels
of integration (Engel 2010). Therefore, a
verification strategy is defined “aiming at
maximizing confidence on verification
coverage, which facilitates convincing a
customer that contractual obligations have
been met; minimizing risk of undetected
problems, which is important for a manu-
facturer’s reputation and to ensure custom-
er satisfaction once the system is operation-
al; and minimizing invested effort, which
is related to manufacturer’s profit” (Salado
2015). Essentially, verification activities are
the vehicle by which contractors can collect
evidence of contractual fulfillment in acqui-
sition programs.

In current practice, a verification strategy

is defined at the beginning of an acquisition
program and is agreed upon by customer
and contractor at contract signature.
Hence, the resources necessary to execute
verification activities at various stages
of the system development are allocated
and committed at the beginning, when
a small amount of knowledge about the
system is available (Engel 2010). However,
the necessity and value of a verification
activity cannot be measured independently
of the overall verification strategy (Salado
and Kannan 2018b, Salado et al. 2018).
Instead, the necessity to perform a given
verification activity depends on the results
of all verification activities that have been
previously performed. For example, testing
the mass of a component is considered
more necessary if a previous analysis has
shown low margin with respect to the
success criterion than if the analysis has
shown ample margin. Thus, contractually
committing to a fixed verification strategy
at the beginning of an acquisition program
fundamentally leads to suboptimal
acquisition performance. Essentially, the
uncertain nature of system development
will make verification activities that
were not previously planned necessary
and will make some of the planned ones

unnecessary. The former can be handled
through change requests (CR), but they
require unplanned financial investments.
The latter can be recovered in a few
cases through negative change requests,
but, in general, they imply a financial
waste because the investment has been
committed to the contractor. Hence,
we contend that dynamic contracting
of verification activities is necessary
to guarantee optimality of acquisition
programs in this area.

Informed by the benefits of set-based
design in conceptual design (Singer et
al. 2009), this paper presents a concept
to apply set-based design to design
verification strategies. Like its application
in the conceptual design phase, an initial
set of possible verification strategies
is reduced as the system development
progresses by evaluating the knowledge
built by the results of verification activities
and the available investment opportunities.
In this way, verification activities can be
contracted on each epoch in which the set
is reduced by leveraging the knowledge
generated while executing the verification
strategy dynamically.

This paper is organized as follows.
First, background material is provided on

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

20

set-based design and its use in systems
engineering, as well as on the basic verifica-
tion definitions used in this paper. Second,
the concept proposed in this paper for
set-based designing verification activities is
presented. Third, an application example of
the proposed approach is shown. Finally, a
summary of the conclusions is given.

BACKGROUND
Set-Based Design (SBD)

As previously described, verification
strategies are defined in current practice at
the beginning of an acquisition program
and are agreed upon by customer and con-
tractor at contract signature, when a small
amount of knowledge about the system is
available (Engel 2010). Such lack of knowl-
edge in early design activities motivated the
emergence of set-based design (Bernstein,
1998). Set-based design is built on the
principle of working simultaneously with
a plethora of design alternatives, instead of
converging quickly to a single option (Ber-
nstein 1998). As the knowledge about the
system increases, suboptimal alternatives
are discarded until a preferred one remains
(Bernstein 1998). A key aspect is that
discarding is not an activity at a given point
of time, like a traditional trade-off, but a
time-continuous activity that occurs as new
knowledge is available (Bernstein 1998). A
formal formulation of set-based design and
how it makes product development resilient
against changes in external factors is given
in (Rapp et al. 2018).

Set-based design has been success-
fully applied in the conceptual stages of
naval systems (Singer et al. 2009), graphic
industry products (Raudberget 2010),
automotive products (Raudberget 2010),
and aeronautic systems (Bernstein 1998),
among others. Historical analysis of the
use of set-based design has shown that it
inherently eliminates root causes of rework
in system development (Kennedy et al.
2014). Researchers have integrated set-
based design with tradespace exploration
to further strengthen its value by leveraging
the numerous solutions that tradespace
exploration provides to generate the initial
set (Small et al. 2018). However, empiri-
cal research about the implementation of
set-based design in an industrial setting
showed that there are some discrepancies
as to how to operationalize the approach
(Hansen and Muller 2012). It remains to
explore if this was an anecdotal episode or
if it happens in general.

Verification
In this paper, a verification strategy

is understood to be a set of verification
activities organized as an acyclic directed
graph where the verification activities are

modeled as nodes and the edges represent
their information influence (Salado and
Kannan 2018a). A verification activity is
understood to be the collection of in-
formation about a specific aspect of the
system under development and verification
evidence refers to such information (Salado
and Kannan 2019).

A verification strategy can be modeled
as a Bayesian network to capture the way
engineers build confidence on the state of
the system as verification evidence becomes
available (Salado and Kannan 2019). The
basic structure of such Bayesian model
is given by three subgraphs (Salado and
Kannan 2019):

1.	 A graph that captures the temporal
sequence and information dependen-
cies between the different verification
activities within the verification
strategy.

2.	 A graph that captures the properties
of the system architecture, that is,
how the different parameters of the
system and its building components
relate to each other.

3.	 A graph that captures the ability of
the verification activities to provide
information about one or more sys-
tem parameters.

This modeling approach forms the basis
for the mathematical model underlying
the application of set-based design to the
design of verification strategies presented in
this paper. The basic notation is represented
in Figure 1. System parameters are denoted
by 𝜃i and verification activities by Vi . Ar-
rows represent information dependencies.

tivities in Figure 2. In the current paradigm
(top part of the figure), a contract for a ver-
ification strategy is fixed at the beginning of
the system development program. The strat-
egy is defined by the black dots connected
by the orange line, which represent the
verification activities that will be executed
throughout the system development.

Without loss of generality, it is possible to
assume that such verification strategy was
determined optimal at the beginning of the
program, that is, with the knowledge avail-
able at that point in time. Consider now
that the verification activity V1 at t1 shows
a tight margin with respect to the expected
result of the activity. This may lead to a low-
er-than-expected confidence on the system
being absent of errors that triggers the need
for an additional, unplanned verification
activity V2 at t1. Because the contract was
fixed, such an activity needs to be contrac-
tually introduced through a change request.

Consider on the contrary, that the verifi-
cation activity V1 at t3 showed much better
results than previously expected. This may
yield a higher-than-expected confidence on
the system being absent of errors, poten-
tially making verification activity V2 at t3
unnecessary or of little value, because of
how confidence builds up on prior infor-
mation (Salado and Kannan 2018b, Salado
et al. 2018).

Consider now the proposed set-based
design approach, depicted on the bottom
side of Figure 2. In this case, an optimal
strategy is also determined at t1. However,
because the value of verification activities
may change as results become available
(Salado and Kannan 2018b), a set (rep-
resented by the dotted lines connecting
the dots) is considered instead of just one
strategy, and only the first verification
activity V1 at t1 is contracted at this point.
This set is the set of all possible verification
strategies that are consistent with the opti-
mal verification strategy (that is, formed by
all verification strategies that have the first
activity in common).

Assume then that verification activity
V1 at t1 provides low margin with respect
to the expected results, as was the case
before. With the updated confidence level,
a new optimal strategy is selected within
the remaining set. Then, the set is reduced
to include only those verification activities
that are consistent with the new optimal
strategy. In this way, verification activity
V2 at t1 is contracted as well. The process
of identifying new optimal strategies based
on updated confidence and reducing the set
of remaining verification activities to those
consistent with the new optimal strategy,
continues at each t.

Assume later in the system development
that, as was the case when describing the

V1 V2 V3 V4

Figure 1. Example of modeling notation

In the example in Figure 1, 𝜃i could
represent, for example, the performance
of a prototype, which is verified through
an analysis V1 and a test V2 (such that the
result of the analysis shapes the confidence
on the expected result of the test). Such
prototype performance shapes the con-
fidence on the performance of the actual
system 𝜃2 , which is verified through verifi-
cation activities V3 and V4.

CONCEPT: SET-BASED DESIGN OF
VERIFICATION STRATEGIES

The approach presented in this paper is
graphically compared against the current
paradigm for contracting verification ac-

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

21

current paradigm, verification activity V1
at t3 shows ample margin with respect to
the expected result. The next assessment
of the remaining optimal path yields a
set of verification strategies that do not
include verification activity V2 at t3 . Based
on this result, V2 is not contracted at t3 .
Consequently, this approach does not
waste resources in activities that become
no longer needed as verification evidence
becomes available.

APPLICATION EXAMPLE
In this section, we provide a notional

example of how the proposed set-based
design approach to design verification
strategies operates and compares against
the current static paradigm.

Case Description
The notional verification strategy in

Figure 1 is used for this example. All nodes
are assigned binary values for computa-
tional simplicity. This simplification does
not affect the purpose of this paper. System
parameter nodes may take the values of
no error or error, which will be denoted by

¬e and e, respectively. Verification activity
nodes may take the values of pass or fail. A
time vector (T1,...,Tn) is defined, where the
element Ti precedes temporally the element
Ti+1 for each i = 0 , ...,  n−1. No specific time
unit is employed, because only temporal
order is relevant to the example. Each
element in the vector will be referred to as
time event.

It is assumed that at most one

verification activity is performed at each
time event and that any given verification
activity is performed at most once
during the entire verification strategy.
Furthermore, restrictions on the feasibility
to perform a given verification activity at
a given time event have been defined and
are listed in Table 1. The restrictions are
intended to capture realistic constraints
that may exist on the feasibility to perform
a given verification activity at some point in
the system development. For example, it is
likely that tests on prototypes can happen
since an earlier time event than tests on the
final product.

The goodness or preference of a ver-
ification strategy will be determined by
three main factors: (1) its cost of execution,
which is given by the fixed cost to execute
each of its verification activities; (2) the
expected cost to repair/rework the system
when deemed necessary to do so as a func-
tion of the available verification evidence;
and (3) the expected impact cost of the
system exhibiting an error once deployed.
Mathematically, the expected cost of a veri-
fication strategy S has modeled as:

t1 t2 t3 t4 t1 t2 t3 t4t1 t2 t3 t4 t1’ t2 t3 t4

t1 t2 t3 t4 t1 t2 t3 t4t1 t2 t3 t4 t1’ t2 t3 t4

This is the optimal
strategy, agreed upon
contractual signature.

This is the initial set of
96 strategies, resulting
from optimal.

Circled activity showed
low margin. Unplanned
purple activity needs to
be added through CR.

Circled activity showed
low margin. Do purple
activity; reduce space to
48 strategies.

Circled activity showed
nominal margin. No
change to strategy.

Circled activity showed
nominal margin. Follow
optimmal path; reduce
space to 24 strategies.

Circled activity showed
ample margin. Yellow
activity provides no
value, but it is executed.

Circled activity showed
ample margin. Strategies
with yellow activity are
suboptimal; reduce space
to 3 strategies. Choose one.

Coriginal = ∑ Cblack dots Cfinal = Coriginal + p urple Cfinal = Coriginal + p urple Cfinal = Coriginal + p urple

V1

V2

V

V1

V2

V

Cu
rre

nt
 p

ar
ad

ig
m

Se
t-b

as
ed

 v
er

ifi
ca

tio
n

C final = ∑ Cblack dots
Cinitial = [a, b]; Set bounds depending on
strategy. Invest only what it is performed.

Figure 2. Current versus set-based approaches for designing verification strategies  (C: cost of executing verification; ti :
verification events; /V: no verification; Vi : verification activity)

Table 1. Activity contraint table

Time
event

Feasible verification
activities

T1 L(T1) = {V3, V5}

T2 L(T1) = {V3, V4, V5}

T3 L(T1) = {V3, V4, V5}

T4 L(T1) = {V5, V6}

T5 L(T1) = {V5, V6}

T6 L(T1) = {V5, V6}

*L(Ti )={all feasible verification activities at Ti }

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

22

The treatment of rework costs deserves
additional discussion. A failed verification
activity does not necessarily lead to rework;
since rework is only necessary if worth do-
ing. An automated rework decision process,
caricaturized in Figure 3, is used in this
paper. Two confidence thresholds {Hl, Hu}
= {0.4, 0.95} distinguished between three
decision zones, which are defined such that:

1.	 Zone 1 reflects a confidence state
that is considered not acceptable.
Therefore, if the confidence on the
system being absent of errors drops
to Zone 1, then a rework activity is
executed. The rework activity results
in the confidence increasing to the
level it would be, had the verification
activity yielded pass results. This is
meaningful because the purpose of
the verification activity that failed was
to achieve certain confidence level.

2.	 Zone 2 reflects a confidence state
that is in line with the confidence
expected as the execution of the
verification strategy progresses.
Therefore, if (i) the confidence on the
system being absent of errors falls
in Zone 2 and (ii) the confidence
level expected at completion of the

verification strategy — assuming all
remaining activities pass — falls in
Zone 3, then the execution of the
verification strategy continues as
planned. If this condition is not met,
then a rework activity is planned
until such an objective is reached.

3.	 Zone 3 reflects a confidence state that
does not require the collection of
additional knowledge; the engineer is
convinced about the correct function
of the system. Therefore, if the con-
fidence on the system being absent
of errors falls in Zone 3, rework ac-
tivities are not executed. In addition,
reaching Zone 3 implies for the set-
based approach presented in this pa-
per (with the corresponding dynamic
contracting structure) that no other
verification activity will be execut-
ed, and the system can be deployed.
However, for the benchmark (with
static contracting), it is assumed that
remaining pre-contracted verification
activities will still be executed.

Probability assignments use synthetic
data and are given in the Appendix.
Following the modeling approach presented
in (Salado and Kannan 2019), prior beliefs
are assigned to system parameter nodes,
which capture the initial belief on the
state of the system (that is, being absent of
errors), and conditional probability tables
are created for the verification activity
nodes. Posterior beliefs are calculated
for system parameters through Bayesian
update of the outcomes of the verification
activity nodes. Probability update was
conducted in this study using the Bayesian
network toolbox for MATLAB®, which
estimates the posterior probabilities of all
nodes by the variable elimination method.

Cost values employed in this example,
given in Table 2, are also synthetic, but
reasonable. The following assumptions
have been made: (1) rework cost increases
with time, (2) the impact cost during
deployment is much larger than the rework
cost and the verification cost; (3) rework
cost is in general higher than verification
execution cost; and (4) verification
execution cost is positively related to the
information it yields.

Generation of Strategies
The verification strategy employed to

model the benchmark design/contracting
approach is set to be the optimal strategy
before executing any verification activity;
that is, before the first-time event. Then, the
strategy may evolve to include additional
verification activities in line with the
description given in the previous section.

The verification strategy employed
to model the proposed set-based and
dynamic contracting approach is adaptively
defined at each time interval. Adaptation
is performed by choosing the optimal
path of remaining activities right after
each verification result is obtained,
following also the guidelines described in

Verification strategy S

 ∑
V∈V

 ∑
V∈V*

 ∑
V∈ L(Tj)

 ∑
k=1

o
 ∑
k=1

o
 ∑
j=1

n
E󶁢CT (S)󶁲 = CV (V) +  P(v) P(𝜃jk | v) δ (𝜃jk |v) CR (𝜃jk ) + P (v) P (𝜃k = e | v) CI (𝜃k = e) (1)

where:
CV (V ) is the fixed cost to execute verification activity V,

V Is the set of verification activities included in the verification
strategy S,

v is a specific vector of verification results,

P(𝜃jk |v) is the confidence level of the kth system parameter
node at Tj given the verification results v,

б(𝜃jk |v) is the indicator function that equals 1 if P(𝜃jk |v) ≤ Hl ,
where Hl is a decision threshold, as will be explained in the
next paragraph; otherwise its value is 0,

CR (𝜃jk) is the rework cost necessary to recover a failure detect-
ed during verification at Tj ,

V* is the set of verification results and rework efforts possible
as per the previous rework decisions given the set of verifica-
tion activities V,

P(𝜃 = e | v) is the probability that the system exhibits an error,
given the specific verification results v, and

CI (𝜃 = e) is the financial impact of the system exhibiting an
error once it is operational.

Stop Verification

Need More
Observation

Rework

Activity Vi

Zone 1

Zone 2

Zone 3

>Hu

Hu

<H1

H1

[H1, Hu]Compare
P() & {H1, Hu}

Figure 3. Zones for deciding next
verification activity and need for rework

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

23

Table 2. Cost values

Vi CV(Vi)($k) Tj CR at Tj($k) System error Ci(𝜃k)($k)

V1 50 1 100 𝜃2 60,000

V2 100 2 200

V3 75 3 300

V4 200 4 400

5 500

6 600

the previous section. Hence, at each time
interval, a set of potential future verification
strategies is kept. The corresponding
algorithm is shown in Table 3.

The goodness of the proposed set-based
approach to design verification strategies
with respect to the benchmark approach
is assessed based on the expected cost of
using each approach. This cost is calculated
by considering the expected cost resulting
from every possible verification strategy
that could be executed when using the
benchmark and the proposed set-based
approach. As has been described, the
resulting verification strategy at completion
of all time intervals may differ in both
approaches from the optimal one selected
before the first-time interval. In the case
of the proposed set-based approach, this
difference is inherent to the approach. In
the case of the benchmark, the difference
may only result from the need to
incorporate additional activities that were
not previously planned.

Results
Given the constraints in Table 1, an

initial set of 198 verification strategies
could be enumerated before the first-time
interval. Among them, the optimal one
is S1 = (V1, V2, NoV, V3, V4, NoV), where
NoV indicates that no verification activity is
executed at that time interval. This strategy
has an expected total cost of $3,226k and
an initial confidence on the system being
absent of errors of 0.76. As discussed, S1 is
used as the baseline verification strategy for
the benchmark.

As an example, the evolution of one
of the paths for the proposed set-based
approach is described here. V1 is executed
in the first-time interval because it is part
of the optimal strategy identified before
initiating the execution of the verification
strategy. If the verification activity pass-
es, the number of verification strategies
remaining in the set reduces to 55 (all
strategies that begin with V1) and the con-
fidence on the system being absent of error
increases to 0.84 (as determined through
Bayesian update of Figure 1). The optimal
verification strategy out of the remaining
set becomes S2= {V1, V2 V3, V4, NoV, NoV },
with a lower expected cost of $2,994k. On
the other hand, if the activity fails, the set
of remaining verification activities would
contain 115 elements and the confidence
on the system being absent of error would
drop to 0.57. Since this level is still larger
than 0.40, the rework activity would not
be entertained yet. The process repeats
again by identifying a new optimal strategy
and reducing the set accordingly until the
verification activity on the last time interval
is executed.

Table 3. Algorithm to generate verification strategies

Dynamic Contracting Strategy  (N, ACT, C)

ACT —— Activity Constraint TableInput:

Output: Sopt = {Vopt(T1), Vopt(T2), … Vopt(Tn)}

N —— Bayesian Net;
C —— Cost Table

1: For t in T1 : Tn

2:	 Generate all feasible paths VS ti = {S1, S 2, … S m} at time point t;

3:	 Evaluate the expected cost of all verification paths;

4:	 Select the minimum one S = {Vopt(T1), Vopt(T2), … Vopt(Tt) V(Tt+1) …
	 V(Tn)} and update the optimal path Sopt = {Vopt(T1), Vopt(T2), …Vopt(Tt)};

5:	 Collect the results of V(Tt) and set the evidence adaptively;

6:	 Update the Bayesian network and ACT

7: End

8: Return the optimal path Sopt = {Vopt(T1), Vopt(T2), …Vopt(Tn)}

Table 4. Table of all cost items at T7

Path
Number

Path
Probability

(PP)
P(𝜃2 =

¬ error) E[C I] CR CV
Path Cost

(CP=E[CI]+ CR+ CV)

1 0.0295 0.9077 5538 700 425 6663

2 0.0116 0.9077 5538 200 425 6163

3 0.1169 0.9657 2058 200 350 2608

4 0.0265 0.9077 5538 500 425 6463

5 0.0104 0.9077 5538 0 425 5963

6 0.1051 0.9657 2058 0 350 2408

7 0.0446 0.9364 3816 300 225 4341

8 0.0554 0.9364 3816 0 225 4041

9 0.0936 0.9316 4104 500 425 5029

10 0.0449 0.9316 4104 0 425 4529

11 0.4615 0.9750 1500 0 350 1850

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

24

The possible set reductions lead to 11
feasible paths for the proposed set-based
approach. As illustrated in Figure 4, the set
of all possible paths could be represented
as a tree plot. The expected cost of each
approach to design verification strategies
is calculated as the sum of the cost of each
path weighted by its resulting probability of
occurrence. The probability of occurrence
for each path is computed as the product
of all the probabilities of all activities along
the branch. Similarly, the benchmark
could yield 16 possible paths. All paths

are shown in Figure 5 (dotted, red lines
represent benchmark paths; solid, blue lines
represent set-based paths). The vertical axis
represents the total expected cost of the
verification strategy on each time interval.
The resulting cost is given therefore after
completion of the last time interval (to
the right extreme in the plot). The total
expected cost of the set-based approach is

PPi × PCi = $3,004k , ∑
11

i=1

which is smaller than that of the bench-
mark, $3,214k. This result provides an in-
dication that the proposed approach yields
indeed more valuable verification strategies
than the benchmark, although additional
cases need to be run to confirm this result.

Figure 5 provides in addition an interest
insight about the properties of the proposed
set-based approach to design verification
strategies and contract verification activ-
ities. As can be seen, the amplitude of the
tree corresponding to the benchmark ap-
proach (red dotted line) is larger than that
of the set-based design method (blue solid
line). This indicates that the benchmark ap-
proach responds more slowly to adjusting
its parameters than the set-based design
approach when receiving information from
verification evidence. In cost control terms,
this indicates that the benchmark approach
is inefficient when compared against the
proposed set-based approach.

CONCLUSIONS
This paper has presented and demon-

strated the capability to use a set-based
approach to design verification strategies
and contract dynamically verification activ-
ities. The study employs Bayesian networks
to model, through Bayesian inference,
how the evidence provided by verification
activities is used to shape the confidence on
the system being absent of errors. The value
of a verification strategy is determined as
a function of its expected total cost, given
by the fixed cost to execute its verification
strategies, the expected cost of rework in
case it is necessary, and the financial impact
generated by the system exhibiting an error
while operational. A notional example with
synthetic data has been used to assess the
performance of the proposed approach
against a benchmark that represents current
approaches in industrial and government
settings to design and contract verification
strategies; based on point design methods
and static contracts that only vary if gaining
additional confidence is needed.

The study presents certain limitations
that need to be addressed in future
research. Primarily, additional scenarios, as
well as sensitivity analyses, are needed to
increase the robustness of and confidence
on the findings indicated in this paper.
In fact, it is not evident at this point how
the source data, both in terms of prior
probabilities, resulting Bayesian networks,
and cost values influence the behavior
of the benchmark and of the proposed
approach. Furthermore, some aspects
from real-life applications have been
abstracted out in this study and may need
to be incorporated into future studies.
For example, verification activities may
be executed at the same time intervals. In

11

10

9

8

7

6

5

4

3

2

11

V4

V4

V4

V3

V3

V3

V2

V2

V1

V3

Pass

Fail

Pass

Fail
Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Fail

Fail

Fail

Pass

Fail

Fail

Fail

Fail

Rework

No Rework

Path Number

T1 T2 T3 T4 T5 T6 T7

System
 N

ode C
on�dence

Figure 4. Verification path tree

1 2 3 4 5 6 7

18000

16000

14000

12000

8000

6000

2000

4000

10000

0

Benchmark

Time Interval

Set-based Design

Ve
rifi

ca
tio

n
Co

st

Figure 5. Comparison between set-based design and traditional strategy

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

25

addition, there may be certain contractual
and pragmatic restrictions associated to
activate or plan for potential activities,
as well as from a contractor’s perspective

REFERENCES
■■ Bernstein, J. I. 1998. Design methods in the aerospace industry:

looking for evidence of set-based practices. MSc, Massachusetts
Institute of Technology.

■■ Engel, A. 2010. Verification, Validation, and Testing of
Engineered Systems, Hoboken, US-NJ: John Wiley & Sons, Inc.

■■ Hansen, E. and G. Muller. 2012. 11.3.1 “Set-based design – the
lean tool that eludes us; Pitfalls in implementing set-based

to commit to an open contract and risks
to the customer from the contractor
not necessarily committing to future
activities that need to be accounted for

when implementing the resulting dynamic
contracting. Finally, the effects of scale on
the feasibility of the proposed approach
need to be studied.  ¡

design in Kongsberg Automotive.” INCOSE International
Symposium, 22: 1603-1618.

■■ Kennedy, B. M., D. K. Sobek and M. N. Kennedy. 2014.
“Reducing Rework by Applying Set-Based Practices Early in
the Systems Engineering Process.” Systems Engineering 17:
278-296.

θ1 θ2 Probability assignment

Error Error 0.8

Error No Error 0.2

No Error Error 0.1

No Error No Error 0.9

Conditional Probability Table – b. P(θ2 | θ1)

θ1 V1 Probability assignment

Error Fail 0.7

Error Pass 0.3

No Error Fail 0.2

No Error Pass 0.8

Conditional Probability Table – c. P(V1 | θ 1)

θ1 Probability assignment

Error 0.8

No Error 0.2

Conditional Probability Table – a. P(θ1)

Conditional Probability Table – d. P (V2 | V1 , θ 1 )

θ1 V1 V2 Probability assignment

Error Fail Fail 0.9

Error Fail Pass 0.1

Error Pass Fail 0.6

Error Pass Pass 0.4

No Error Fail Fail 0.2

No Error Fail Pass 0.8

No Error Pass Fail 0.1

No Error Pass Pass 0.9

Conditional Probability Table – e. P(V3 | θ 2)

θ2 V3 Probability assignment

Error Fail 0.9

Error Pass 0.1

No Error Fail 0.4

No Error Pass 0.6

Conditional Probability Table – f. P (V4 | V3 , θ 2 )

θ1 V1 V2 Probability assignment

Error Fail Fail 0.9

Error Fail Pass 0.1

Error Pass Fail 0.4

Error Pass Pass 0.6

No Error Fail Fail 0.3

No Error Fail Pass 0.7

No Error Pass Fail 0.1

No Error Pass Pass 0.9

APPENDIX  Conditional Probability Tables:

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

26

■■ Rapp, S., R. Chinnam, N. Doerry, A. Murat, and G. Witus.
2018. “Product development resilience through set-based
design.” Systems Engineering, 21: 490-500.

■■ Raudberget, D. 2010. “Practical Applications of Set-Based
Concurrent Engineering in Industry.” Journal of Mechanical
Engineering, 56: 685.

■■ Salado, A. 2015. “Defining Better Test Strategies with
Tradespace Exploration Techniques and Pareto Fronts:
Application in an Industrial Project.” Systems Engineering, 18:
639-658.

■■ Salado, A., and H. Kannan. 2018a. “A mathematical model of
verification strategies.” Systems Engineering, 21: 583-608.

■■ Salado, A., and H. Kannan. 2018b. “Properties of the Utility
of Verification.” IEEE International Symposium in Systems
Engineering. Rome, IT, 1-3 October.

■■ Salado, A., and H. Kannan. 2019. “Elemental Patterns of
Verification Strategies.” Systems Engineering, 22:370–388.

■■ Salado, A., H. Kannan, and F. Farkhondehmaal. 2018.
“Capturing the Information Dependencies of Verification
Activities with Bayesian Networks.” Conference on Systems
Engineering Research (CSER). Charlottesville, US-VA, 8-9
May.

■■ Singer, D. J., N. Doerry, and M. E. Buckley. 2009. “What Is Set-
Based Design?” Naval Engineers Journal, 121: 31-43.

■■ Small, C., R. Buchanan, E. Pohl, G. S. Parnell, M. Cilli, S.
Goerger, and Z. Wade. 2018. “A UAV Case Study with Set-
based Design.” INCOSE International Symposium, 28: 1578-
1591.

ABOUT THE AUTHORS
Peng Xu has a PhD from the Grado Department of Industrial

and Systems Engineering at Virginia Tech. He received his MS in
mechanical engineering from National Cheng Kung University
in 2015 and his BS in mechanical engineering from Shandong
University in 2013. His research interests include complex system
diagnosis, dynamic decision making, and knowledge elicitation.

Dr. Alejandro Salado has over 15 years of experience as a
systems engineer, consultant, researcher, and instructor. He is
currently an associate professor of systems engineering with
the Department of Systems and Industrial Engineering at
the University of Arizona. In addition, he provides part-time
consulting in areas related to enterprise transformation, cultural
change of technical teams, systems engineering, and engineering
strategy. Alejandro conducts research in problem formulation,
design of verification and validation strategies, model-based
systems engineering, and engineering education. Before joining
academia, he held positions as systems engineer, chief architect,
and chief systems engineer in manned and unmanned space
systems of up to $1B in development cost. He has published
over 100 technical papers, and his research has received federal
funding from the National Science Foundation (NSF), the Naval
Surface Warfare Command (NSWC), the Naval Air System
Command (NAVAIR), and the Office of Naval Research (ONR),
among others. He is a recipient of the NSF CAREER Award,
the International Fulbright Science and Technology Award, the
Omega Alpha Association’s Exemplary Dissertation Award, and
several best paper awards. Dr. Salado holds a BS/MS in electrical
and computer engineering from the Polytechnic University of
Valencia, a MS in project management and a MS in electronics
engineering from the Polytechnic University of Catalonia, the
SpaceTech MEng in space systems engineering from the Technical
University of Delft, and a PhD in systems engineering from
the Stevens Institute of Technology. Alejandro is a member of
INCOSE and a senior member of IEEE and AIAA.

®

Are you ready to advance your career in systems engineering? Then look into
INCOSE certi�cation and set yourself apart. We offer three levels of certi�cation
for professionals who are ready to take charge of their career success.

Apply for INCOSE Certi�cation Today!

INCOSE Certi�cation
See why the top companies are
seeking out INCOSE Certi�ed

Systems Engineering Professionals.

https://www.incose.org/systems-engineering-certification/certification

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

27

INTRODUCTION

  ABSTRACT
With the increasing complexity that is being introduced to engineered systems, the literature suggests that verification may ben-
efit from theoretical foundations. In practice and in teaching of system engineering (SE), we typically define a verification model
(simulation, test article, etc.) under the assumption that the model is a valid representation of the system design. Is this assumption
always true? In this article, we explore the use of system theoretic morphisms to mathematically characterize the validity of repre-
sentativeness between verification models and corresponding system design.

Formalizing the
Representativeness of
Verification Models using
Morphisms
Paul Wach, paulw86@vt.edu; Peter Beling, beling@vt.edu; and Alejandro Salado, alejandrosalado@arizona.edu
Copyright © 2022 by Paul Wach, Peter Beling, and Alejandro Salado. Permission granted to INCOSE to publish and use.

The last decade has seen an increase
in calls for theoretical foundations
of systems enginering (Triantis
and Collopy 2014; Collopy 2015b;

Collopy 2015a; INCOSE ; Rousseau and
Calvo-Amodio 2019; Rousseau 2020, 2019;
Hammami and Edmonson 2015; Schindel
2019). One major perspective is that a
“unifying” theory of systems engineering
may not be feasible; however, a need for
theoretical foundations remains unresolved
(Collopy 2015b). The International Council
on Systems Engineering (INCOSE) has
defined a desire for systems enginering to
be grounded in rigorous mathematics (IN-
COSE 2014). These rigorous foundations
are being explored by various INCOSE
sponsored initiatives and groups such as
the future of systems engineering (FuSE)
initiative (INCOSE 2020). In other re-
search, while some have called for renewed
interest in general systems theory (Schindel
2019; Rousseau 2020), others have suggest-
ed that mathematical approaches can be
used to “disambiguate systems engineer-
ing” (Hammami and Edmonson 2015). In
this context, verification has been deemed
fundamentally broken for addressing the
increasing complexity of modern systems
(Collopy 2015a). In the article, the author

described several areas of systems engineer-
ing in need of theoretical foundations, such
as the need for systems engineering theory
to characterize abstraction and elaboration,
which is an aspect of the proposed path
related to verification that we present in
this article.

To account for resource constraints
and reduction of technical risks, systems
engineering relies on verification models
that are perceived as representative of the
design. Examples of these verification
models include mass mock-ups, develop-
ment models, breadboards, integration
models, structural models, thermal models,
engineering models, qualification or cer-
tification models, and operational models,
among others (Larson et al. 2009). A com-
mon belief in systems engineering is that
the verification models do not need to fully
represent the design; and instead, only need
to represent the design “as far as required
for test purposes” (Larson et al. 2009). For
example, a breadboard may only account
for selected functions of the design.

From experience of the authors in
practice, a subject matter expert determines
the validity of a model used for verification
regarding the system design. As an exam-
ple, we generally assume that a verification

model in the form of a mass mock-up may
be a valid representation of a system design
with respect to its mass. On the other end
of the spectrum, we generally assume
that a fully functional verification model
physically produced on a precise basis of a
system design to be a valid representation
of the system design. While the assumption
of validity of representation of a verification
model at these two levels of abstraction is
likely to hold, the assumption may not hold
for every verification model. This becomes
a particular concern when considering that
the validity (that is, representativity) of
verification models that partially represent
the system design is left to the qualitative
assessment of one or more engineers.

To establish the characterization of
the validity of a verification model to its
corresponding system design, we propose
the use of systems theoretic morphisms.
In exploration of this research thrust, we
have found many morphisms that may have
applicability within the context of verifica-
tion. This article serves to provide insight
into those morphisms and how they may be
used to provide theoretical underpinning
to SE.

The remainder of this article is as follows.
We provide a literature review on research

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

28

that may provide some comparison to our
method. This is followed by background
to the system theoretic context to which
we will provide in detail later in the article.
Then we provide a characterization of the
morphisms and the inference that the mor-
phisms are expected to enable toward en-
hancement of verification. This is followed
by a discussion and conclusion.

LITERATURE REVIEW
The use of morphisms in the context

of systems engineering tasks is scarce; in
fact, many of the references to morphisms
in the literature provide only vague sense
of meaning. For example, references to
“self-morphing systems” (Ring 2007) and
“morphable architecture” (Ring 2001) are
discussed with minimal insights into mean-
ing. The concept of homomorphism seems
to have been applied to categorically map
processes of requirements definition used
throughout the literature (White, Lacy, and
O’Hair 1996). In another article, there are
brief and abstract mentions of homomor-
phism to transform observation to possible
representations of nature (Ferris 2009).

In Martin (2004), there is reference to
“graph morphisms”, “concept morphisms”,
homomorphisms, and “infomorphism”
within a figure of the article; however, there
is minimal elaboration as to the meaning of
the morphisms and no use within the con-
text of representativeness of a verification
models to corresponding system design
such as we present in this article.

The term homeomorphism has been
used in reference to topological mapping
(Carl and Hofmeister 2004); and although
we do not expressly use homeomorphism,
there is indication of its relevance to our
research. Specifically, George Friedman, the
creator of constraint theory, has referred
to homomorphism, seemingly in the same
context as the use of homeomorphism, as a
means to map the topologies of math mod-
els to their corresponding computer aids
(Friedman 2007). Indeed, we view the re-
lation to constraint theory and topology to
be a complementary factor to our research
and evidence that morphisms provide a
means to characterizing representativeness
of verification models to corresponding
system design.

Some articles reference to or build upon
the research of A. Wayne Wymore, whose
research leverages morphisms as a core
concept. In one article, the word “homo-
morphic” is used in reference to under-
stand categories of systems (Ring 2007).
The article is an output from an INCOSE
Intelligent Enterprises Working Group to
which Wymore was a contributor. Another
article contains a reference to Wymore’s
research and the use of homomorphism

to characterize the relationship between a
functional architecture and a correspond-
ing physical architecture (Lykins 1997).
Indeed, in Shell (1999 and 2001), the article
makes the case for leveraging Wymore’s re-
search to enable a science-based approach
to engineer complex systems, a statement
which our research agrees with.

Furthermore, Wymore used homomor-
phism to mathematically characterize the
preservation of equivalence between a
software system design, its corresponding
hardware system design, and correspond-
ing functional system design (Wymore
1993). Each elaboration and abstraction of
the overall system design are mathemati-
cally characterized relative to one-another.
To expand on the art of the possible, the
implication here is that homomorphism is
applicable to aiding in our understanding
of modern complex cyber-physical systems
(CPS). Although we do not address CPS in
this article, our research agenda is slated for
study of CPS with the means provided in
this article.

Our research is based on Wymore’s theo-
retical contributions; however, it should not
be considered one-and-the-same. Wymore
largely limited his research to homomor-
phism between the functional and build-
able/physical designs/architectures. Based
on the homomorphic mapping between the
two, an implementable design is formed
and verified. An assumption here is that
testing (verification) is only conducted on a
complete design, whereas in actual practice,
models that may not be a complete system
design are used for verification. Rather,
a verification model may be created to
partially represent the system design. Our
research builds on Wymore’s use of homo-
morphism and suggests that all verifica-
tion models (for example, mass mock-up,
partial-functional, full functional, simula-
tion, physical, etc.) should be characterized

based on a morphic relationship to the
corresponding system design for which
confidence as to adherence to requirements
is intended to be inferred.

We aim to leverage the concept of a
homomorphism and add other morphisms
to the toolbox from which systems
engineering can draw upon. The use
of homomorphism has been recently
applied in a verification context from the
literature to define a theory for capturing
verification strategies (Salado and Kannan
2018). As an example, the authors suggest
that a simulation [verification] model is
homomorphic to the system design and
can thus be used to establish confidence
that the system design adheres to its system
requirements. We agree that a simulation
[verification] model should be morphically
characterized as to representativeness to
the system design. However, the morphic
characterization may not be limited
to homomorphism and should not be
heuristically assumed.

THEORETICAL FRAMEWORK
At the core for the research presented

in this article is General Systems Theory
(GST) (von Bertalanffy 1969). The concepts
of GST were characterized in the context
of systems engineering by A. Wayne
Wymore originally in his Mathematical
Theory of Systems Engineering (Wymore
1967). Wymore refined his systems
theory of systems engineering to define a
mathematical approach to (and coining
of the term (Bjorkman, Sarkani, and
Mazzuchi 2013)) MBSE, which Wymore
referred to as the Tricotyledon Theory of
System Design (T3SD) (Wymore 1993).
Despite its existence for several decades,
the T3SD remains largely unexplored by
the systems engineering community with
some referring to Wymore’s research as
mathematically dense such that only a

Problem

Technology
bounds

results in

bounds

Component
& Coupling

Functional
Design

Buildable
Design

Implementation
& Testing

Figure 1. Abstract representation of Wymore’s T3SD and use of a morphism (red)
to mathematically characterize the preservation of equivalence between the more
abstract functional system design and more elaborate buildable system design

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

29

mathematician may comprehend (Mabrok
and Ryan 2017). Our research thrust has
extracted elements of Wymorian systems
theory that we believe to be relevant to
modern systems engineering.

The concept of homomorphism is a key
to establishing understanding of Wymore’s
mathematically dense T3SD. To abstract
the importance of homomorphism in the
context of T3SD and the research body
presented in this article, refer to Figure 1.
The figure can be read as follows. There are
three spaces of system designs. The first
one, the space of functional system designs
results from establishing a problem space
(that is, system requirements). The second
one, the space of buildable system designs,
results from setting constraints on the
available technology to build the system.
Given that the buildable system design is
established such that the functional system
design is a homomorphic image of the
buildable system design, the system is said
to be an implementable system design and
is then used as a basis for verification.

We adopt the definition of morphism
from systems theory as defined in (Zeigler,
Muzy, and Kofman 2019), which defines a
morphism as a claim relating the equiv-
alence of a pair of artifacts. In the case of
this article, the pair of artifacts are a system
design and a verification model. Essentially,
the morphism mathematically characterizes
the preservation of equivalence between a
system design and a verification model.

Note, we intentionally do not provide the
mathematical notation as to not distract
from the concepts. Our future articles will
include mathematical context, to include
metrics as to the validity of the represen-
tativeness of the verification models to a
corresponding system design.

CONCEPTUAL POWER OF MORPHIC
VERIFICATION MODELS

In this section, we have selected mor-
phisms that we have discovered from the
literature and provide insights into our
conceptual understanding of use toward
inference for verification.

Homomorphism. The concept of a
homomorphism is used to characterize
the preservation of structure and behavior
between a potentially more abstract model
and a potentially more elaborate model.
A typical homomorphism may character-
ize a many-to-one relationship; however,
given a relationship that is one-to-one, the
characterization is said to be a special kind
of homomorphism, referred to as isomor-
phism. We use Figure 2 to demonstrate the
concepts of homomorphism.

We use Figure 2, from which we
characterize a homomorphism between Z1,
Z2, and Z3. First, we must clarify that Z2 is

the resultant of the coupling of Z4 with Z4
and that Z3 is the resultant of the coupling
of Z5 and Z6. In this case, imagine that Z1
is the high-level functional representation
to which detailed architecture and system
design must adhere to. Z2 and Z3 present
alternative functional system designs that are
equivalent to Z1. We can prove this by using
a homomorphism to map Z2 to Z1 and
another homomorphism to map Z3 to Z1.

An alternative perspective is to view
Z2 and Z3 as detailed designs and Z1 as
an abstract verification model. Similar
to discussion in the previous paragraph,
in Z2, two of the same components (Z4)
are coupled to form the resultant system.
We compare Z2 to Z1 to determine proof
that, at the system-level, each has equiva-
lent structure and behavior. This proof is
provided by homomorphism, which, when
established, suggests that we have quanti-
tively determined the existence of a valid
abstraction from Z2 to Z1, and understand
the limitations to use of the abstract verifi-
cation model represented in Z1.

We now shift to the practical example of
the flashlight represented in Figure 3. Like
our discussion in the previous paragraphs,
the two components Z9 and Z10 are cou-
pled to form the resultant system model Z8.
Homomorphism can be used to character-

ize the relationship of Z8 to the more ab-
stract system Z7. The indication here may
be in that Z8 is a verification model that is
more elaborate than the current design to
which we wish to test our assumptions for
potential future design. As discussed previ-
ously, we could also view Z7 as the abstract
verification model representing the more
elaborate system design of Z8.

Isomorphism. While a typical homo-
morphism may characterize a many-to-one
relationship, given a relationship that is one-
to-one, the characterization is said to be a
special kind of homomorphism, referred to
as isomorphism. We use Figure 4 to demon-
strate the concepts of isomorphism.

In the example above, the two func-
tions have the same structure and behav-
ior. Therefore, we can say that they are
mathematically equivalent even though the
variables may have changed. In the higher
complexity of engineering practice, we can
leverage well known isomorphisms such as
the one between a mechanical mass-spring
compared to an electrical circuit (Takahashi
2021), which behave proportionally. In this
way, one can use a certain mass-spring sys-
tem to verify properties of an isomorphic
electrical circuit and vice versa.

Coupling Morphisms. There are many
aspects of systems engineering to which

4x

(A) (B) (C)

2x
Z4

Z1 Z2 Z3

2x
Z4

8x
Z6

x
Z51

2

Figure 2. Functional examples used to discuss the concepts of homomorphism

On Off

{on, off}
Z7 Z8

Z9

Z10

{light, no-light}

(A) (B)

Figure 3. Practical examples used to discuss the concepts of homomorphism

4x 4y

(A) (B)Z1 Z11

Figure 4. Functional examples used to discuss the concepts isomorphism

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

30

an understanding of system coupling is
important. We can leverage coupling mor-
phisms to determine abstraction of cou-
pling structure and its impact on resulting
behavior. To provide insights into coupling
morphisms, we show Figure 5.

Consider that Z12 provides a black-box
system model showing that the system
transforms on/off inputs into the presence
of light or no light, as well as a transforma-
tion of mechanical forces. Consider that
Z13 captures the system design, which con-
sists of three components: the on/off switch
(Z9), a lightbulb (Z10), and case (Z15)
through which all mechanical forces are
transferred. The connections indicate the

exchanges between the different compo-
nents and between some components and
the exterior of the system. All functionality
is captured in Z13.

Now consider system models Z8 and
Z15, which are simplifications of Z13.
Particularly, Z8 uses a coupling morphism
to remove detail from Z13 (i.e., abstract
Z13) to only account for the on/off to light
functionality. System model Z15 also uses a
coupling morphism, but in this case to cap-
ture only the transformation of mechanical
forces of the system without considering
the on/off to light functionality.

Parameter Morphisms. Here we discuss
the use of parameter morphism, which

is an approximate homomorphism. The
concept of parameter morphism enables
explicit accounting for and bounding of
acceptable error while maintaining a degree
of preservation of equivalence. We use the
examples of a simple mathematical func-
tion and flashlight provided in Figure 6 and
Figure 7 to discuss parameter morphisms.

We first consider the functional example
provided by Figure 6. In this case, we
assume Z1 to be the system design and
Z4 to be the verification model. We show
Z1 in Figure 6A with inputs of {1, 2, 4},
which the system function transforms
into outputs of {4, 8, 16}. We show Z4 in
Figure 6A with inputs of {1, 2, 4}, which the
system function transforms into outputs of
{2, 4, 8}. Using the parameter morphism,
we enable explicit mapping between the
inputs of Z1, inputs of Z4, and the resulting
distinctions in behavior. Furthermore, we
can explicitly note that the system function
of the verification model Z4 produces
an error (deviation) associated with the
behavior in comparison to that which is
expected by the system function of the
system design Z1.

For practical context of parameter
morphism, we use the flashlight example in
Figure 7. Here we assume Z8 to be the sys-
tem design, which has component Z9 that
accepts on/off input in the form of a toggle
switch mechanism and component Z10
that provides an output of yellow light. We
assume Z21 to be the verification model,
which has component Z19 that accepts on/
off input in the form of a rotation mech-
anism and component Z20 that provides
an output of blue light. Using parameter
morphism, we can explicitly characterize
the preservation of equivalence between the
toggle on/off input of Z8 and the rotation
on/off input of Z21 as well as between the
yellow light of Z8 and the blue light of Z21.
In other words, the parameter morphism
allows to define equivalence on part of
the behavior of the system. In practice,
such surrogate verification models may be
necessary to reduce risk from the lack of
access to the system design. By explicitly
characterizing the differences in parameters
between the verification model Z21 and the
system design Z8, we account for potential
deviations in behavior and, therefore, we
should adjust our confidence, in the system
design adherence to system requirements,
accordingly.

DISCUSSION
Our search of the literature suggests that

minimal use of morphisms exist within
systems engioneeirng nor do the software
tools exist for implementation, especially
within the context we presented here of
characterization of verification models. This

On Off

Z9
Z13

Z14

Z17

Z18

Z16

Z12

Z15Z8

Z10

On Off

Z9

Z10

{on, off}

{mechanical force}

{mechanical force}

{light, no-light}

(A)

(C)

(B)

(D)

Figure 5. Practical examples used to discuss the concepts of coupling morphism

4x 2x

(A) (B)Z1

{1, 2, 4} {4, 8, 16} {1, 2, 4} {2, 4, 8}

Z4

Figure 6. Functional example used to discuss the concepts of parameter morphism

On Off On Off

Z9
Z8

Z10 Z20
Z19

Z21(A) (B)

Figure 7. Practical example used to discuss the concepts of parameter morphism

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

31

suggests a research gap and novelty to the
approach that we present in this article.

The basic idea of a morphism within the
context of systems theory, and therefore
systems engineering, is a mathematical
characterization of the preservations of
equivalence of structural and behavioral
similarities (or dissimilarities) (Zeigler,
Muzy, and Kofman 2019). The use of the
word structure is important to the future
implementation of morphisms in practice.
Essentially, a morphism is heavily depen-
dent on the mathematical construct used to
model the system being engineered. In the
case of Wymore’s T3SD (Wymore 1993),
he used a mathematical construct based on
the Moore state machine. This enabled ho-
momorphic comparison between the more
abstract functional system design and the
more elaborate buildable system design.

We used morphisms in a different article
to create a metamodel of verification
artifacts (Wach, Beling, and Salado 2022).
Specifically, morphisms were leveraged to
characterize the preservation of equivalence
between system requirements and verifi-
cation requirements as well as between a
system design and a verification model. In
doing so, we provide a frame in which we
characterize the argument for confidence of
system design adherence to system require-
ments through the morphic preservation
provided in the verification model and as
observed through the morphic preserva-
tion as provided through the verification
requirements.

Our research thrust is to bridge the
gap between theory and practice. Based

on personal experience, we believe that
the detailed mathematical descriptions
inherent in the theory of morphisms may
distract from the necessary conversation we
facilitate through our abstract representa-
tions provided in this article. As such, both
in this article and in Wach, Beling, and
Salado (2022), we have intentionally not
provided the mathematical descriptions of
the morphisms. Future research articles are
expected to provide depth on the mathe-
matical descriptions necessary to provide a
rigorous basis for morphisms.

Model-based systems engineering
(MBSE) has emerged over the last decade
as a paradigm to the modern study and
practice of systems engineering. From
review of the literature and experience
of the authors, MBSE is serving as a core
mechanism to enable the digital trans-
formation. Among the desired outcomes
of the digital transformation is improved
verification (Zimmerman, Gilbert, and
Salvatore 2019), which MBSE may be able
to enable. However, MBSE currently lacks
theoretical foundations, which may hinder
its ability to deliver the desired outcomes
of the digital transformation. The lack of
theoretical foundations of MBSE comes
despite the INCOSE stated desire to have
systems engineering “grounded in a more
rigorous foundation of mathematics”
(INCOSE 2014) and “based on [codified
and] accepted theoretical foundations”
(INCOSE 2022). In engineering domains
outside of systems engineering, theoretical
definition of the practice came first after
which software was defined to implement

the theoretical algorithms for practical
modeling. MBSE currently remains largely
qualitatively descriptive, rather than quan-
titively analytical such as is seen with finite
element analysis and computational fluid
dynamics. Therefore, the lack of theoretical
foundations puts the ability of MBSE to
deliver improved verification for the digital
transformation into question, which we
believe will be resolved in part due to con-
tributions from our research thrust.

CONCLUSION
We have presented an approach to math-

ematically characterize verification models
(for example, simulation, physical articles,
etc.) relative to the system design to which
models correspond. In the practice of
systems engineering, the characterization
of a verification model relative to design is
something we may take for granted under
an assumption of heuristic validity. In
doing so, we are creating a level of confi-
dence in adherence of the system design to
system requirements, which may not hold
given agreement based on the mathemat-
ical characterization that we suggest for
employment in systems engineering prac-
tice. This research advances the theoretical
foundations of systems engineering, and
subsequently the theoretical foundations of
our modeling practice (that is, MBSE). Fur-
thermore, the research we present in this
article suggests that systems theoretic mor-
phisms can be leveraged to mathematically
characterize verification model relative to
the system design, which we believe will
correspond to enhanced verification.  ¡

REFERENCES
■■ Bjorkman, Eileen A., Shahram Sarkani, and Thomas A.

Mazzuchi. 2013. ‘Using model-based systems engineering
as a framework for improving test and evaluation activities’,
Systems Engineering, 16: 346-62.

■■ Carl, Joseph, and Janet Hofmeister. 2004. “7.6. 2 Object‐
Oriented and Structured Analyses Are Homeomorphic.” In
INCOSE International Symposium, 1581-90. Wiley Online
Library.

■■ Collopy, P. D. 2015a. “Systems engineering theory: What
needs to be done.” In 2015 Annual IEEE Systems Conference
(SysCon) Proceedings, 536-41.

■■ Collopy, Paul D. 2015b. “Report on the science of systems
engineering workshop.” In 53rd AIAA aerospace sciences
meeting, 1865.

■■ Ferris, Timothy LJ. 2009. “9.1. 3 development of a framework
of research topics in systems engineering.” In INCOSE
International Symposium, 1378-90. Wiley Online Library.

■■ Friedman, George. 2007. “Biologically Inspired Systems
Concepts–A personal history.” In INCOSE International
Symposium, 1909-15. Wiley Online Library.

■■ Hammami, O., and W. Edmonson. 2015. “THEFOSE –
Theoretical Foundations of System Engineering: A first
feedback.” In 2015 IEEE International Symposium on Systems
Engineering (ISSE), 370-74.

■■ INCOSE. ‘Future of Systems Engineering (FuSE)’, Accessed 	
June 9. https://www.incose.org/about-systems-engineering/fuse .

■■ ——— . 2014. ‘INCOSE System Egineering Vision 2025 July,
2014’, Accessed November 12. https://www.incose.org/docs/
default-source/aboutse/se-vision2025.pdf?sfvrsn=4&sfvrsn=4 .

■■ ——— . 2020. ‘Systems Processes & Pathologies’, Accessed 7
July.

■■ ——— . 2022. ‘Systems Engineering Vision 2035’, Accessed
Mar 16. https://www.incose.org/about-systems-engineering/se-
vision-2035 .

■■ Larson, W J, D. Kirkpatrick, J. J. Sellers, D Thomas, and
D. Verma. 2009. Applied Space Systems Engineering (The
McGraw-Hill Companies, Inc.).

■■ Lykins, Howard. 1997. “A Framework for Research Into Model‐
Driven System Design.” In INCOSE International Symposium,
220-27. Wiley Online Library.

■■ Mabrok, M, and M Ryan. 2017. ‘Category Theory as a
Formal Mathematical Foundation for Model-Based Systems
Engineering’, Appl. Math. Inf. Sci., 11: 43-51.

■■ Martin, Richard A. 2004. ‘Enabling Intelligence with
Ontology,’ INSIGHT, 6: 12-15.

■■ Ring, J. 2007. ‘About Intelligent Enterprises: A Collection of
Knowledge Claims’, INCOSE International Symposium, 17:
1964-2079.

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

32

■■ Ring, Jack. 2001. “2.6. 3 The Next Venue for Systems
Engineering.” In INCOSE International Symposium, 900-07.
Wiley Online Library.

■■ Rousseau, David. 2019. ‘A vision for advancing systems science
as a foundation for the systems engineering and systems
practice of the future,’ Systems Research and Behavioral
Science, 36: 621-34.

■■ ——— . 2020. ‘The Theoretical Foundation(s) for Systems
Engineering? Response to Yearworth,’ Systems Research and
Behavioral Science, 37: 188-91.

■■ Rousseau, David, and Javier Calvo-Amodio. 2019. ‘Systems
Principles, Systems Science, and the Future of Systems
Engineering’, INSIGHT, 22: 13-15.

■■ Salado, Alejandro, and Hanumanthrao Kannan. 2018. ‘A
mathematical model of verification strategies’, Systems
Engineering, 21: 593-608.

■■ Schindel, William D. 2019. ‘Identifying phenomenological
foundations of systems engineering and systems science’,
Systems Research and Behavioral Science, 36: 635-47.

■■ Shell, AD. 1999. “1 Function Based Design Of Complex,
Complicated Systems.” In INCOSE International Symposium,
224-31. Wiley Online Library.

■■ Shell, T. 2001. ‘System function implementation and
behavioral modeling: A systems theoretic approach,’ Systems
Engineering, 4: 58-75.

■■ Takahashi, Shingo. 2021. ‘Systems Modeling.’ in Gary
S. Metcalf, Kyoichi Kijima and Hiroshi Deguchi (eds.),
Handbook of Systems Sciences (Springer Singapore:
Singapore).

■■ Triantis, Konstantinos P, and Paul D Collopy. 2014. “A
comprehensive basis for systems engineering theory.” In 2014
IEEE International Systems Conference Proceedings, 97102.
IEEE.

■■ von Bertalanffy, L. 1969. General Systems Theory—
Foundations, Development, Applications (George Braziller,
Inc.: New York, NY, USA).

■■ Wach, P, P Beling, and A Salado. 2022. “Systems Theoretic
Metamodel of Verification Artifacts.” In CSER. Norwegian
Univeristy of Science and Technology, Norway.

■■ White, Michelle M, James A Lacy, and Edgar A O’Hair. 1996.
“Refinement of the Requirements Definition (RD) Concept
in System Development: Development of the RD Areas.” In
INCOSE International Symposium, 762-70. Wiley Online
Library.

■■ Wymore, A. Wayne. 1967. A Mathematical Theory of Systems
Engineering - the Elements (John Wiley and Sons Inc.: New
York, NY, USA).

■■ ——— . 1993. Model-Based Systems Engineering (CRC Press
LLC: 2000 NW Corporate Blvd., Boca Raton, FL, USA 33431).

■■ Zeigler, Bernard P., A Muzy, and E Kofman. 2019. Theory of
Modeling and Simulation: Discrete Event & Interative System
Computational Foundations (Elsevier Inc: London Wall,
London, UK).

■■ Zimmerman, Phil, Tracee Gilbert, and Frank Salvatore. 2019.
‘Digital engineering transformation across the Department of
Defense’, The Journal of Defense Modeling and Simulation, 16:
325-38.

ABOUT THE AUTHORS
Paul Wach received a BS in biomedical engineering from

Georgia Tech, MS in mechanical engineering from the
University of South Carolina, and PhD in systems engineering
at Virginia Tech. His research interests include theoretical
foundations of systems engineering, digital transformation,
and artificial intelligence. Paul is a member of the Intelligent
Systems Laboratory with the Virginia Tech National Security
Institute. He is the president and founder of the Virginia Tech
student division of INCOSE. Paul has part-time association with
The Aerospace Corporation and is leading enterprise digital
engineering transformation. His prior work experience is with
the Department of Energy, two National Laboratories, and the
medical industry.

Peter Beling is a professor in the Grado Department of
Industrial and Systems Engineering and associate director of
the Intelligent Systems Laboratory at the Virginia Tech National
Security Institute. Dr. Beling’s research interests lie at the
intersections of systems engineering and artificial intelligence
(AI) and include AI adoption, reinforcement learning, transfer
learning, and digital engineering. His research has found
application in a variety of domains, including mission engineering,
cyber resilience of cyber-physical systems, prognostics and health
management, and smart manufacturing. He received his PhD in
operations research from the University of California at Berkeley.

Alejandro Salado has over 15 years of experience as a systems
engineer, consultant, researcher, and instructor. He is currently an
associate professor of systems engineering with the Department
of Systems and Industrial Engineering at the University of
Arizona. In addition, he provides part-time consulting in areas
related to enterprise transformation, cultural change of technical
teams, systems engineering, and engineering strategy. Alejandro
conducts research in problem formulation, design of verification
and validation strategies, model-based systems engineering,
and engineering education. Before joining academia, he held
positions as systems engineer, chief architect, and chief systems
engineer in manned and unmanned space systems of up to $1B
in development cost. He has published over 100 technical papers,
and his research has received federal funding from the National
Science Foundation (NSF), the Naval Surface Warfare Command
(NSWC), the Naval Air System Command (NAVAIR), and the
Office of Naval Research (ONR), among others. He is a recipient
of the NSF CAREER Award, the International Fulbright Science
and Technology Award, the Omega Alpha Association’s Exemplary
Dissertation Award, and several best paper awards. Dr. Salado
holds a BS/MS in electrical and computer engineering from the
Polytechnic University of Valencia, a MS in project management
and a MS in electronics engineering from the Polytechnic
University of Catalonia, the SpaceTech MEng in space systems
engineering from the Technical University of Delft, and a PhD
in systems engineering from the Stevens Institute of Technology.
Alejandro is a member of INCOSE and a senior member of IEEE
and AIAA.

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

33

INTRODUCTION

  ABSTRACT
Model-based systems engineering depends on correct models. However, thus far, relatively little attention has been paid to en-
suring their correctness. This paper describes a methodology for performing verification and validation on models written in
SysML. The methodology relies on a catalog of candidate requirements that can be tailored for a specific project. Both manual
and automated methods are used to verify and validate these requirements. Manual methods are necessary where knowledge of
the domain and other extrinsic characteristics are necessary. Automated methods can be used where the requirements cover the
use of SysML. Examples from a public domain SysML model of a satellite are presented to demonstrate application of automated
requirements verification.

Verification and
Validation of SysML
Models

Myron Hecht, myron.hecht@aero.org; and Jaron Chen, jaron.chen@aero.org
Copyright © 2021 by Myron Hecht and Jaron Chen. Permission granted to INCOSE to publish and use.

Model-based systems engineer-
ing (MBSE) will not succeed
without correct and complete
system engineering models.

Incorrect models can cause wrong design
decisions or integration failures because of
errors in representation of the architecture,
design, or behavior; and many other rea-
sons. Therefore, verification and validation
(V&V) of models is essential to successful
MBSE projects. However, system engineer-
ing model V&V is not widely practiced. In
a survey conducted by the System Engi-
neering Research Consortium (SERC),
more than 60% of government respondents
disagreed with the statement “Our organi-
zation has defined processes and tools for
V&V of models at appropriate levels and
program phases” (McDermott, et al. 2020).
Less than 3% strongly agreed with it. The
difficulties of verifying and validating sys-
tem engineering models include:

1.	 No definition of what a “correct” model
is: Without a set of requirements that
define correctness, it is impossible to
verify a model.

2.	 Failure to define model user needs:
Without a definition of user needs, it
is not possible to validate a model.

3.	 Difficulty of finding syntax errors:
Most syntactic, value property, and

data typing errors are difficult to find
through manual inspection.

4.	 Inadequate documentation: Internal
and external documentation of mod-
els is necessary to define the intent of
the model and to minimize spurious
assessments of model validity.

This paper describes an approach that
addresses these difficulties. The next two
subsections de- scribe previous work and
the conceptual framework of our approach.
The next section describes model require-
ments formulation, and the final section
describes of verification and validation
methods for SysML models.

There are many definitions of “verifi–
cation” and “validation.” IEC/ISO/
IEEE 24765 “Software and System
Engineering Vocabulary” lists six
definitions for verification and five
for validation. There is a separate
vocabulary entry for “verification and
validation” which combines them.
The meaning of both terms, either
separately or collectively, is a set of
activities intended to assess a model
for correctness and suitability for
the user. In this paper, “verification”
means assessment of conformance to

requirements and “validation” means
assessment of suitability to user needs.
For the methodology described in
this paper, user needs are stated as
requirements.

PREVIOUS WORK
A recent literature survey of 579 SysML

publications between 2005 and 2017
identified few that addressed verification
and validation of SysML models (Wolny,
et al. 2020). What has been published can
be placed in two major categories: model
transformation and model inspection.

Model transformation: Model transfor-
mation involves converting SysML models
into other formalisms that could then
subsequently be analyzed for conformance
to specialized properties that could be
analyzed with those formalisms. Ahmad,
Dragomir, et al. proved invariant properties
by transforming an XMI export of a SysML
to an executable UML/SysML profile model
(OMEGA2) of a diabetes patient and her
refrigerator (Ahmad, et al. Jul 2013). The
model consisted of two internal block
diagrams and a state machine diagram con-
sisting of two 2 states. Jarraya and Debbabi
demonstrated a method of probabilistic
verification of SysML activity diagrams
by transforming them into the PRISM

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

34

(probabilistic symbolic model checker)
on a banking operation consisting of 10
actions (Jarraya and Debbabi 2012). Rahim,
Hammad, and Boukala-Ioualalen described
an approach to verification by transforming
activity diagrams into the Petri net markup
language (PNML) and demonstrated it on a
vending machine activity diagram consist-
ing of 9 actions (Rahim, et al. 2015). Our
work does not use model transformations
because they have not been successfully
applied to large system models.

Model inspection:  Model inspection
uses checklists or rules to assess confor-
mance. The inspections can be manual,
automated, or both. Inspection cannot
formally prove correctness but provides a
“good enough” basis for acceptance. Pettit
formulated a list of rules for inspection
of UML models (Pettit 2003). Douglas
(2017) defined a rule set for use with UML
and SysML specifically tailored for the
Rhapsody tool set. Baduel, Chami, Burel,
and Ober described a corporate-specific
approaching combining the use of domain
experts to check compliance with exter-
nal “real-world” attributes against a set of
criteria and of OCL to verify conformance
with syntax rules and for a product line of
train control systems (Baduel, et al. 2018).
Vinarcik and Jukovic have developed a digi-
tal engineering profile containing hundreds
of specific automated verification rules that
check for violations of their own standards
and have placed them in the public domain
(Vinarcik and Jugovich 2020). The automat-
ed verification rules described in this paper
adapted approximately 60 of these rules.
SysML modeling tools such as the one used
in this work (3DS/Nomagic 2021) have val-
idation rules based on the SysML language
specification that check for basic viola-
tions (for example, connections made to
incompatible ports). The limitation of these
inspection-based approaches is that they
are generic. Thus, application of these rule
sets will not ensure that a model meets the
needs and objectives of a specific project.
To verify and validate a particular model, it
is necessary to evaluate against the specific
objectives and requirements of a particular
modeling project including its sponsors,
users, and developing organizations.

Conceptual Framework
Figure 1 shows a metamodel that defines

the context and our approach to SysML
model verification and validation. A pro-
gram sponsor is responsible for a project has
needs for a model. As a result, it sponsors
funds a SysML Model. The model represents
a system, which is specified by its own
system requirements. The sponsor needs
are translated into model requirements. It is
important to note that system requirements

and model requirements are different and
are satisfied by different items, that is, the
model and the system respectively.

Model requirements are either generic
(that is, project independent) or project
specific. Examples of generic requirements
include specification of modeling language,
tools, and profiles; sponsoring organization
unique requirements (for example, security
and protection of intellectual property);
and organizational modeling conventions
and rules. Project specific requirements in-
clude the scope and level of detail of what is
to be modeled, specific artifacts to support
program management and design reviews,
naming conventions, and rules related to
use of model elements that are specific to
the project. Both manual and automated
methods can be used for V&V of both
generic and system specific requirements.

MODEL REQUIREMENTS
Formulation of SysML model require-

ments is a difficult task, but a catalog of
sample requirements, or checklist can
simplify the work and facilitate a more
complete set of requirements. This section
describes such a catalog whose organization
is shown in Figure 2 (Hecht, et al. 2021).
The major categories are overarching gen-
eral requirements, requirements, structure
(including parametric diagrams), behavior,
model data, and non-functional attributes
(that cut across the other categories). More
than 300 sample requirements have been
defined within this framework. These mod-
el requirements represent lessons learned
from a substantial amount of modeling
and model review experience, but a metric
of completeness is not yet possible. This
section provides an overview. A full listing
is available from the authors.

Figure 1. Verification and validation (V&V) metamodel

Model
Requirements

Catalog

User Needs
and System

Requirements

Structural
Content

Structural
Views

General
Behavior

Performance
Modeling

Reliability
Modeling

System Safety
Modeling

Cybersecurity
Modeling

Maintainability
and Sustainability

Modeling

Activity
Diagrams

Sequence
Diagrams

State Machine
Diagrams

Interfaces

Blocks

Relationships
and Associations

Internal Block
Diagrams

Parametric
Diagrams

Development
Requirements

Requirements

Tables

Use Cases

Model
Organization

Views and
Exports

Interface and
Data Consistency

Behavioral
Content

Non-functional
attributesModel DataGeneral

Figure 2. Requirements
catalog organization

Sponsor

SysML Model

«satisfy»

«Affects»

«Responsible for»«Sponsored by»

«requirement»

«requirement»

«testCase» «testCase»

«refine»

«verify» «verify» «verify» «verify»

Needs for a Model System

Model Requirements

«requirement»
Project Specific RequirementsGeneric Requirements

Automated MethodsManual Methods

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

35

General:  General Requirements cover
the general user and model sponsor’s
needs rather than a specific project model.
Lower-level headings include:

■■ Development Requirements:  related to
model language, stereotypes, tool selec-
tion, documentation of model elements,
conformance to style guidelines, and
use of prescribed modeling patterns.

■■ Model Organization:  requirements on
consistent and logical model structure
and organization, use of model naviga-
tion aids, and labeling of all packages.

■■ Interface and Data Consistency: require-
ments for interfacing and provision or
ingesting of data to at specified inter-
faces to other components of the digital
engineering ecosystem and consistency
with model libraries of the sponsoring
organization.

■■ Views and Exports:  requirements spec-
ifying the information that the model
provides to non-modeling users and in-
clude views into the model and exports.
Such exports can include tables, “dash-
boards”, and even complete documents
such as system and subsystem design
documents, verification and validation
plans, test procedures, test reports, and
technical orders.

User needs and system requirements:
These requirements concern modeling the
needs of the organization and users of the
system under development (not the model)
as would be stated in the Concept Defini-
tion Document and the System Require-
ments Document. Topics covered include:

■■ Use Cases:  SysML model requirements
that Use Cases capture mission objec-
tives and system operations, trace use
cases to requirements and to verifica-
tion methods, standards for descrip-
tion and documentation for use cases
and actors, and coverage of exception
conditions.

■■ System Requirements:  requirements on
system requirements, for example that
the model shall include of all system
requirements in the technical baseline,
that all requirements shall include a
rationale, and that all requirements be
related either to other requirements
through contain, derive or define
relationships or must themselves have
satisfy and verify relationships.

■■ System Requirements Diagrams and
Tables:  requirements on the model to
show requirements relationships – es-
pecially satisfy and verify relationships.

Structural content requirements: These
requirements affect SysML blocks, block
definition, internal block, and parametric
diagrams. Subheadings include:

■■ Structural Views: Requirements to
capture context, logical architecture,
functional architecture, and physical
architecture, and to allocate model
elements among all three architectures
to enable traceability.

■■ Interfaces: Requirements that all block
connections must be made through de-
fined interfaces, that interfaces on each
side of connection must be compatible,
that conventional interface control doc-
uments (ICDs) be linked to interface
blocks that represent them, that all con-
nections have defined flows, and that
operations and receptions be used when
behaviors are part of the interface.

■■ Blocks: Requirements on traceability
between SysML blocks and system re-
quirements, block naming conventions,
documentation including description of
pre- and post-conditions on operations
and receptions, allocation of activi-
ties or actions to blocks, depiction of
allocation of software to hardware, data
typing, and others.

■■ Relationships and associations: Require-
ments for roles and multiplicity on part
ends of composition relationships, pro-
hibition against both composition and
inheritance to a single block, prohibi-
tion against cyclic inheritance, justifica-
tion for any block with no relationship
to other elements, and others.

■■ Internal block diagrams: Requirements
for all blocks to be connected through
ports, flows to be shown on all
connections, multiplicities on both
ends of the connectors, typing of flow
properties, and others.

■■ Parametric diagrams: Requirements
for limits on the number of blocks
and connections to retain readability,
verification of numerical constraint
blocks, visibility of binding connectors,
and populated constraint specifications,
and others.

Behavioral Content: Requirements in
this area cover activity, sequence, and state
machine diagrams. Topics covered include:

■■ General behavior: Requirements
to model all dynamic behavior in
the scope of the model and that all
diagrams document the assumptions,
design decisions, preconditions, and
postconditions (all requiring manual
verification).

■■ Activity diagrams: Requirements on the
correctness of allocation of actions to
blocks (swim lanes), and the inclu-
sion of error handling. Automatically
verifiable requirements include: Input
pins must have an incoming object
flow, output pins must have an outgoing
object flow, all control and object flows

exiting a decision node must have de-
fined guards, forks and decisions having
at least two outgoing flows, joins and
merges having at least two incoming
flows, and others.

■■ Sequence diagrams: Requirements that
sequence diagrams capture behaviors
on connections, model operations and
receptions between diagrams, and that
they capture error handling and recov-
ery; messages on sequence diagrams
have signatures assigned (signal or
operation); and others.

■■ State machine diagrams: Requirements
for state machine such as that that
all blocks that change state shall be
modeled using state machine diagrams,
naming conventions on states and
transitions, capturing of signals, events,
message flows as transition triggers,
representation of error handling and
recovery, and others.

Model Data: Requirements for model
data including documentation, data types
for all attributes and properties, consistent
naming in accordance with naming con-
ventions, and a glossary.

Non-functional Requirements:
Requirements covering performance,
reliability/availability, safety, cybersecurity,
and maintainability and sustainment
modeling. Architectural design decisions
can have a large impact these attributes
(particularly if they are overlooked). This
section is responsive to IEEE 15288 (ISO/
IEC/IEEE, 2015), Appendix F “Architecture
modeling”, par. F.3.8 “Other model
considerations”.

■■ Performance Modeling: Requirements
for data necessary to analyze and
calculate response time and capacity at
any architectural level; data necessary
to analyze and calculate response time,
capacity, ability to simulate at any
architectural level; and others.

■■ Reliability Modeling: Requirements for
data necessary to analyze and calculate
quantitative reliability attributes using
analytical techniques such as reliability
block diagrams, fault tree analysis, and
Markov modeling; data necessary to
analyze and reliability and availability at
any architectural level; and others.

■■ System Safety Modeling: Requirements
that the model allow for the input,
storage, and export of data necessary
to support all deliverables required
under the program contract, data
for all safety review and certification
authorities whose approval is required,
data input, storage, and export for
all tasks related to explosive safety
standards, production of reports

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

36

Table 1. Manual acceptance criteria for model requirements

Category Acceptance Criteria Examples

Inspection

General

• Reasonableness of model structure
• Effectiveness and correctness of model navigation and dashboards
• Correctness of access control assignment to packages and marking of elements
• Logical and reasonable naming conventions
• Correctness in the application of profiles and modeling patterns
• Correctness, completeness, organization, and appearance of model generated documents

Modeling of
User Needs
and System
Requirements

• Clarity, specificity, feasibility, verifiability, and correctness of requirements in the model
• Correctness of links between use cases and requirements
• Correctness of derive and refine links between requirements and satisfy, refine, and trace links

from requirements to other model elements
•	 Correctness of requirements documentation
•	 Completeness and feasibility of use case exception handling use cases, preconditions,

postconditions, and assumptions
•	 Correctness and completeness of requirements rationale explanations

Structural
Content

•	 Correctness of requirements documentation
•	 Completeness of the structural models
•	 Adequate level of detail in the structural model
•	 Correctness and completeness of block documentation
•	 Correctness and completeness of allocations between logical, functional, and physical model

elements
•	 Correctness and completeness of translation of manually written ICDs into interface blocks

Behavioral
Content

•	 Completeness of behavior modeling
•	 Completeness and correctness of documentation of assumptions, design decisions,

pre-conditions, and post-conditions
•	 Correctness of the allocation of activities and actions to blocks
•	 Correctness and completeness of message sequences

Model Data •	 All value properties are defined and typed

Non-functional
Requirements
Modeling

•	 Correctness and completeness of internal parametric diagrams for quantitative modeling of
non-functional requirements

•	 Correctness in the selection of model elements exported to external quantitative modeling
tools of non-functional attributes

•	 Correctness and completeness of documents created for approval and certification authorities

Analysis

Structural
Content

•	 Calculation using an alternative tool of the content of constraint blocks within parametric
diagrams. Acceptance criteria are the matching of results within allowed tolerances.

Behavioral
Content

•	 Simulation (“animation”) of activity diagrams, sequence diagrams, and state machines.
Acceptance criteria are the matching of model results with expected results determined by
another method

Non-functional
requirements

•	 For internal models, comparing results of parametric model constraints against alternative
calculations. Acceptance criteria are the matching of results within allowed tolerances

Demonstration

General

•	 Generation of required model reports that meet requirements (reports themselves would be
validated by inspection as indicated in Table 1)

•	 Application of model profiles to provide expected results (for example, reports, tables, views)
•	 Demonstration of model views and navigation aids (model views and navigation aid

correctness would be validated by inspection as indicated in Table 1)
•	 Demonstration of acceptable response times

Behavioral
Content

•	 Simulation (“animation”) of activity diagrams, sequence diagrams, and state machines and
observing that execution occurs and that the model is capable of continuing operation.
Acceptance criteria are the matching of model results with expected results validated by
analysis

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

37

acceptably formatted, and display
the status of activities required for
safety certification approval at any
architectural level.

■■ Cybersecurity Modeling: Requirements
for the input, storage, and export of
data necessary for deliverables for all
cybersecurity standards or instructions
required under the program contract,
all cybersecurity accreditation and
certification authorities, reports
acceptably formatted for all tasks in all
cybersecurity standards or instructions.

■■ Maintainability and Sustainability
Modeling: Requirements for the input,
storage, and export of data necessary
to support all deliverables for all
maintainability, sustainability, storage,
repair, packaging, shipping, and
handling and other activities required
for all maintainability, sustainability,
storage, repair, packaging, shipping,
and handling standards.

■■ Cybersecurity Modeling: Requirements
for the input, storage, and export of
data necessary for deliverables for all
cybersecurity standards or instructions
required under the program contract,
all cybersecurity accreditation and
certification authorities, reports
acceptably formatted for all tasks in all
cybersecurity standards or instructions.

■■ Maintainability and Sustainability
Modeling: Requirements for the input,
storage, and export of data necessary
to support all deliverables for all
maintainability, sustainability, storage,
repair, packaging, shipping, and
handling and other activities required
for all maintainability, sustainability,
storage, repair, packaging, shipping,
and handling standards.

VERIFICATION AND VALIDATION
This section describes the verification

and validation of SysML model require-
ments. The first subsection summarizes
manual verification methods and the
second covers automated methods.

Manual Methods
Table 1 summarizes manually evaluated

model requirement acceptance criteria
grouped by standard verification method
(inspection, analysis, demonstration, and
test) and the model requirement topic areas
shown in Figure 2.

Our experience using manual inspec-
tion in SysML models of multiple large
projects is that use of checklists derived
from the requirements catalog has resulted
in significantly faster and more thorough
evaluations than with ad hoc inspection.
Manual inspections also detect program
specific issues (as expressed in the content
of the model elements) that are not detect-
able using automated methods (discussed
in the next section). However, there are two
disadvantages: (1) manual methods only
inspect what is visible in the model, and (2)
manual inspection coverage of large models
is difficult to assess.

Automated Methods
Automated methods rely on the capabili-

ties of SysML modeling tools to run scripts
that query models to check SysML models
for conformance with model element,
relation, and connection requirements
(sometimes called “validation rules”). A to-
tal of 127 requirements in the requirements
catalog described earlier can be automati-
cally validated. Benefits of automated rules
are that (1) they can identify subtle syntax
errors far more rapidly and thoroughly than
manual inspection, (2) while they cover a

minority of the requirements, these scripts
cover many more elements and diagrams
than manually verified requirements, and
(3) verification can be repeated at low cost.

Implementation of automated verifica-
tion differs across SysML modeling tools.
In Cameo Systems Modeler (3DS/Nomagic
2021), the tool used in this work, every
rule violation needs to be associated with
a model element. The output of the script
associated with the rule must be Boolean. If
the output is false, the error message will be
displayed with the element that violates the
associated. An output of true would mean
that there is no violation. The scripts are
written using the application programming
interface in that tool to access model prop-
erties and navigate to other elements.

Figure 3 shows a script to check con-
formance a requirement that in a state
machine diagram, there should be only
one transition between any two states. As
shown in the figure, the scripting language
is Jython (Python implemented in the Java
Runtime Environment).

The following examples show the
results of application of these automated
verification rules for use case, requirements,
block definition, internal block, and
activity diagrams. The SysML model
used to demonstrate their application is
a hypothetical satellite (Friedenthal and
Oster 2017). The model authors created it
as public domain example for identifying
and evaluating alternative spacecraft
architectures, and not as a full industrial

Table 1. Manual acceptance criteria for model requirements  (continued)

Category Acceptance Criteria Examples

Demonstration

Non-functional
requirements

•	 Demonstration that model data can be exported and executed by external tools and that
results of external tools can be imported into the model.

•	 Acceptance criteria are that data interchange results are expected by analysis
•	 Demonstration that internal tools are capable of execution. Acceptance criteria are the

matching of model results with expected results validated by analysis

Test

General •	 Constraint blocks in reliability and availability, or performance models provide the same results
as independent calculations

On Off

{on, off}
Z7 Z8

Z9

Z10

{light, no-light}

(A) (B)

Figure 3. Script for automated verification of a state machine diagram requirement

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

38

grade model for representing a system. The model was not
intended to be comprehensive, complete, or rigorous. However, it
is model is representative of medium sized projects. Because the
authors have contributed it to the public domain under a BSD-2
license, it is also a valuable test and demonstration article. We
gratefully acknowledge the effort and expertise that were invested
in its creation.

Use case diagram. Figure 4 shows how the automated verifica-
tion found a nonconformance with the requirement actors must
have documentation” (actors outlined in red). The other red-out-
lined use cases violate requirements on use case documentation.

System requirements diagram. Figure 5 shows automated
verification detecting non-conformances in a SysML requirements
diagram. The model requirement being violated is “Requirements
model elements must have one of (a) satisfied by relationship
with another model element, or (b) a derived or refined relation-
ship with another requirement that is satisfied by another model
element.” None of these requirements in this diagram had these
relationships as shown by the red outline.

Internal block diagram: Figure 6 shows the result of running
the validation rules against on an Internal Block Diagram. Among
the requirements non-conformances that were found by the
automated scripts are: (1) attributes and properties were not
typed, (2) absence of signals on connectors, (3) not all blocks were
connected with ports, and (4) absence of flows on connectors.

S

S S

uc [Mission Use Cases]

Detect and Monitor
Forest Fires in US

and CanadaForest Service
«stakeholder»

«stakeholder»

«include»

«stakeholder»
Operator

Provide Forest
Firw Data in Near

Real Time

Monitor and
Maintain Health &
Safety of FireSat II

Archive Data

Fire Department

Reference:
NEW SMAD
pg 52

Figure 4. Output of automated verification rule checking for
actor documentation

Figure 5. Output of automated verification rules on block
definition diagrams

Figure 6. Output of automated verification rules on Internal
Block Diagrams

Figure 7. Automated verification rules output in parametric
diagrams

Parametric diagrams: Figure 7 shows a parametric diagram of
a mass analysis. The automated verification rules detected (1) lack
of value property typing and (2) a parameter without a binding
connector.

Activity diagrams: Figure 8 shows an activity in which the
output pin outlined in red does not have an outgoing object flow
detected by an automated validation script. Figure 9 shows a similar
requirements violation for a pin that does not have an output flow,
but also has another violation: Decision nodes must have a name.

CONCLUSION
For projects using model-based systems engineering (MBSE),

verification and validation of the models on which they depend
is essential. This paper has described a method for SysML model
verification and validation using both manual and automated
methods. The overall approach is based on model requirements,
which state both general user needs and specific model functions
or characteristics. Requirements addressing the extrinsic proper-
ties of the model, its purpose, and interaction with other software
are verified manually. Other requirements addressing model ele-
ment use, syntax, and consistency can be verified using automated
methods based on the scripting capabilities of SysML modeling
tools. Together, the use of manually and automatically performed
verification can lead to more correct and higher quality models. ¡

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

39

:Generate
System

Commands

:Generate
Power

«valueType»
:Solar Radiation

{stream}

«allocate»
Avionics Subsystem

act [Provide Electrical Power-p]

«allocate»
Solar Array

«allocate»
Battery

«allocate»
Power Mgmt SW

«allocate»
Power Subsystem

«allocate»
Power Harness

«allocate»
Subsystem

«allocate»
Power Conditioner

«allocate»
Power Distribution

«valueType»
:Electrical Power

{stream}

:Manage
Power

:Condition
Power

:Distribute
Power

:Connect
Power

:Consume
Power:Store Energyv

v

Figure 8. Activity diagram requirements violations detected by automated verification rules

:Generate
System

Commands

:Generate
Thruster

Command

:Generate
Reaction Wheel
SpinCommand

:Generate
Thrust

«valueType»
3 axis : Torque

{stream}

«valueType»
3 axis : Thrust

{stream}

ManeuverCMD

«allocate»
Avionics Subsystem

act [Control Attitude-p]

«allocate»
Horizon Tracker

«allocate»
Sun Tracker

«allocate»
Inertial Measurement Unit

«allocate»
GN&C Subsystem

«allocate»
Propulsion Subsystem

«allocate»
GN&C SW

«allocate»
Reaction Wheel

:Sense
Reaction Wheel

Spin Rate

:Spin Up

:Spin Down

:Sense Sun
Angle

:Sense Earth
Horizon Angle

:Solar Radiation
{stream}

:Reflected Light
{stream}

:Sense
Spacecraft

Angular Rate

Figure 9. Requirements violations detected by automated verification rules displayed in the control attitude activity

REFERENCES
■■ 3DS/Nomagic. 2021. Cameo Systems Modeler. https://www.

nomagic.com/products/cameo-systems-modeler .
■■ Ahmad, M. et al. 2013. Early Analysis of Ambient Systems

SysML Properties using OMEGA2IFx. Reykjavik, IS. https://hal.
archives-ouvertes.fr/hal-01085410. [Accessed 9 July 2020.]

■■ Baduel, R., M. Chami, I. Bruel, and I. Ober. 2018. SysML
Models Verification and Validation in an Industrial Context:
Challenges and Experimentation. Lecture Notes in Computer
Science, 10890(ECMFA 2018: Modeling Foundation and
applications), pp. 132-146.

■■ Douglas, B. 2017. Harmony MBSE Modeling Guidelines. http://
merlinscave.info/Merlins_Cave/Tutorials/Entries/2017/5/26_
Harmony_Modeling_ Guidelines_files/harmony%20mbse%20
modeling%20guidelines%202.0.pdf: IBM Rational.

■■ Friedenthal, S. and C. Oster. 2017. Architecting Spacecraft with
SysML Web Site github site with BSD-2 clause simplified license
(permissions for commercial use, modification, distribution,
and private use). http://sysmlmodels.com/spacecraft/models.html
[Accessed 20 September 2020].

■■ Friedenthal, S. and C. Oster. 2017. Architecting Spacecraft with
SysML. s.l.:CreateSpace Independent Publishing Platform.

■■ Friedenthal, S., A. Moore, and R. Steiner. 2015. A Practical
Guide to SysML, 3rd Edition.

■■ Hecht, M., J. Chen, and G. Pugliese-Rosillo. 2021. Verification
and Validation of SysML Models, El Segundo: Aerospace
Corporation.

■■ ISO/IEC/IEEE, 2015. Systems and Software Engineering
– System Life Cycle Processes. Geneva: International
Organization for Standardization (ISO)/International
Electrotechnical Commission (IEC), Institute of Electrical and
Electronics Engineers. ISO/IEC/IEEE 15288:2015.

■■ Jarraya, Y. and M. Debbabi. 2012. “Formal Specification and
Probabilistic Verification of SysML Activity Diagrams.” IEEE
Sixth International Symposium on Theoretical Aspects of
Software Engineering, Beijing, CN, 4-6 July.

■■ McDermott, T. et al. 2020. Benchmarking the Benefits and
Current Maturity of Digital Engineering/Model-Based SE.
https://sercuarc.org/wpcontent/uploads/2020/03/Briefing_
Benchmarking-the-Benefits-and-Current-Maturity-ofMBSE-3-2020.
pdf . Systems Engineering Research Center.

■■ Object Management Group. 2017. OMG SysML Version 1.5
Specification. http://www.omg.org/spec/SysML/1.5/ .: s.n.

■■ Pettit, R. 2003. UML Inspection Criteria, s.l.: The Aerospace
Corporation, TOR 2003(1465)2412e.

■■ Rahim, M., A. Hammad, and M. Boukala-Iuoaleln. 2015.
Towards the Formal Verification of SysML Specifications:
Translation of Activity Diagrams into Modular Petri Nets. s.l.,
s.n.

■■ Selic, B. 2012. “What will it take? A view on adoption of
model-based methods in practice.” Software and Systems
Modeling 11: 513-526.

■■ Vinarcik, M. and H. Jugovich. 2020. Digital Engineering
Validation Tool Enables Efficiency Gains. https://www.saic.com/
blogs/digital-engineering-validation-tool-enables-efficiency-gains :
SAIC Corporation.

■■ Wolny, S., A. Mazak, C. Carpella, et al. 2020. Thirteen years
of SysML: a systematic mapping study. Software and Systems
Modeling 19: 111–169. https://doi.org/10.1007/s10270-01900735-y .

>  continued on page 50

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

40

INTRODUCTION

  ABSTRACT
Systems architecture design is a key activity that affects the overall systems engineering cost. Hence it is fundamental to ensure that
the system architecture reaches a proper quality. In this paper, we leverage model-based systems engineering (MBSE) approaches
and complement them with simulation techniques, as a promising way to improve the quality of the system architecture definition,
and to come up with innovative solutions while securing the systems engineering process.

From Model-based to Model
and Simulation-based Systems
Architectures — Achieving Quality
Engineering through Descriptive
and Analytical Models
Pierre Nowodzienski, pierre.nowodzienski@thalesgroup.com; and Juan Navas, juan.navas@thalesgroup.com
Copyright © 2022 by Pierre Nowodzienski and Juan Navas. Permission granted to INCOSE to publish and use.

System architecture is a key engineer-
ing artefact in systems engineering.
It permits engineers to reach a com-
mon comprehension of the expecta-

tions of their customers, to orchestrate the
design of the subsystems and components
to reach the system purpose, to compare
alternative orchestrations, to propose solu-
tions that are fitted to stakeholders’ expec-
tations, and to ensure that the engineering
outcomes are compliant to these solutions.

The information contained in system
architecture deliverables directly impacts
(that is, an input for) a large part of other
engineering activities and their related out-
comes; and in complex systems engineering
practice the system architecture is often
considered as the backbone of a large part
of the engineering process and beyond,
covering the whole system life cycle. Hence,
ensuring a good architecture quality is
strongly contributes to securing the further
engineering activities.

Model-based systems engineering
(MBSE) approaches have proven their
value on improving the quality of system
architectures. When properly set up, MBSE

practices and tools can support the archi-
tects and guide them through systematic
workflows that reduce the risk of inaccu-
racy, inconsistency, and incompleteness of
the design. However, our experience shows
that in some contexts the current MBSE
capabilities do not suffice to reduce these
risks as required. This is due to both the
increasing complexity of the systems under
design, and to the increasing complexity of
the engineering workflows and organiza-
tions put in place to develop our systems.

As systems engineering practitioners, we
acknowledge the existence of extensions of
MBSE approaches that make use of simu-
lation to address these issues. However, we
have identified a lack of formal, concrete,
and effective proposals regarding the exten-
sion of MBSE methodologies to embrace
analytical models.

In this paper, we present how, and under
which conditions, simulation techniques
can be articulated with MBSE methodol-
ogies so to fill the gaps of current MBSE
approaches in ensuring proper quality
architecture designs. We start by providing
a necessary background on architecture

design, MBSE for architecture design, and
simulation of architecture design. Then we
describe the objectives and the limitations
of current MBSE approaches for architec-
ture design, and present how simulation
can contribute to overcome these limita-
tions. A set of good practices for simulation
is presented, along with an analysis of a
case study that illustrates the proposals of
this paper.

BACKGROUND
Systems architecture design

A system architecture is defined as the
fundamental concepts or properties of a
system in its environment embodied in its
elements, relationships, and in the princi-
ples of its design and evolution (ISO/IEC/
IEEE 42010). The standard specifies the
way system architectures are organized and
expressed.

An architecture is defined with regards to
a set of stakeholders, which are individuals,
teams, organizations. or any other kind of
entities having an interest in the system, for
example. if the system of interest is a resi-
dential building, examples of stakeholders

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

41

are the promoter, the future homeowners,
the future administrator, and the architect
herself. A concern is a matter of relevance or
importance regarding the system of interest
to a stakeholder; for example, one of the
architect’s concerns would be to design the
best possible atmosphere in which to live.

A (stakeholder) perspective is a way of
thinking about an entity, especially as it
relates to concerns, for example, how future
homeowners may circulate across the resi-
dential building. An architecture aspect is a
unit of modularization of concerns within
an architecture description, capturing
characteristics or features of the entity of
interest, for example, the organization of
common areas in the building and in its
green zones. An architecture view is an
information item comprising part of the ar-
chitecture description, for example, a plan
of the green zones and its circulation paths.

Model-based systems architecture design
Model-based systems engineering

(MBSE) is the formalized application of
modelling to support system requirements,
design, analysis, verification, and valida-
tion activities beginning in the conceptual
design phase and continuing throughout
development and later life cycle phases
(INCOSE 2014). In addition to providing
an increased rigor in these engineering
activities, one essential objective of a mod-
el-centric approach is to provide authorita-
tive sources of truth that can be shared with
all stakeholders.

Overview of the Arcadia method. Ar-
cadia is a model-based method devoted to
systems, software, and hardware architec-
ture design (Voirin 2017). It describes the
detailed reasoning to understand and cap-
ture the customer need, define, and share
the product architecture among all engi-
neering stakeholders, and validate early and
justify the design. Arcadia can be applied
to complex systems, equipment, software,
or hardware architecture design, especially
those dealing with strong constraints to be
reconciled such as cost, performance, safe-
ty, security, reuse, consumption of resourc-
es, mass, and so forth. It is intended to be
embraced by most stakeholders in system/

product/software/hardware definition as
their common engineering reference. It has
been applied in a large variety of engineer-
ing contexts for more than 10 years.

Inspired on ISO/IEC/IEEE 42010, the
Arcadia method defines a set of perspec-
tives that the system architect can adopt
when designing the architecture. The four
main perspectives are summarized in
Figure 1. Arcadia enforces a clear separa-
tion between the capture and analysis of the
system context and needs (the operational
analysis and system need analysis perspec-
tives), also called here need perspectives,
and the design of the solution (the concep-
tual and physical architectures) also called
here solution perspectives.

When following the Arcadia method, the
system architect is led to consider five main
aspects during the process of defining the
system architecture:

■■ The purpose – the reason to exist of
the entities, including the system: the
services it provides in different contexts
of usage, so to fulfill stakeholders’
expectations and provide them with
valuable solutions.

■■ The form – the entities that are consid-
ered during the different contexts of use
of the system, including the constitu-

ents of the system; here two sub-aspects
may be considered: the structure of the
architecture and the interfaces between
its constituents.

■■ The behavior – the expected behavior
of the entities in the context of usage,
including the expected behavior of the
system and of its constituents; here
two sub-aspects can be considered: the
functions that emerge from a functional
analysis, and the modes & states of the
constituents.

These aspects shall be considered for
every perspective stated before. In addition
to these aspects, Arcadia can be extended
through viewpoints that address other
aspects such as safety or cybersecurity, by
defining new concepts, views and practices,
and how those depend on or impact the Ar-
cadia standard concepts, views and practices.

The maturity of a system architecture, or
of a reference architecture (Cloutier 2010),
especially in a product line context (Oster
2016), can be evaluated by considering the
aspects that have been addressed in the ar-
chitecture design matrix shown in Figure 2.

As the lack of properly tailored tools
has proven to be a major obstacle to the
implementation of MBSE in industrial
organizations (Bonnet 2015), Arcadia is
recommended to be implemented using the
open-source modelling workbench Capella,
whose diagrams are inspired from SysML
and that has proven suitable for systems
engineers with diverse backgrounds and
skills (Capella 2021a).

Overview of Arcadia concepts. In this
paper we will use a subset of the concepts
defined by Arcadia. For a sake of clarity,
this section provides a brief definition of
them. A capability is an entity’s ability to

Perspective Objective
NE

ED
 &

CO
NT

EX
T

PE
RS

PE
CT

IV
ES

SO
LU

TIO
N

PE
RS

PE
CT

IV
ES

Finalized Architecture

Conceptual Architecture

System Needs Analysis

Operational Analysis What the stakeholders need to accomplish

What the system has to accomplish for the stakeholders

How the system will work to fulfill expectations

How the system will be developed and built

Figure 1. Arcadia engineering perspectives

Perspective

Operational Analysis
What the stakeholders
need to accomplish

System Needs Analysis
What the system has to
accomplish for the
stakeholders

Conceptual Architecture
How the system will work
to fulfill expectations

Finalized Architecture
How the system will be
developed and built

Function Modes &
States Structure Interfaces

NE
ED

 P
ER

SP
EC

TIV
ES

ASPECTS

SO
LU

TIO
N

PE
RS

PE
CT

IV
ES

Figure 2. Arcadia architecture design matrix

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

42

supply a service. A system capability rep-
resents a usage context and is characterized
by a set of functional chains and scenarios
that describe the system behavior in a
particular usage.

Both functional chains and scenarios
reference functions, which are actions,
operations or services performed by entities
– the system, one of its components, or
also by any other entity interacting with
the system. They also reference functional
exchanges, that express possible interactions
between source and target functions, and
which are further characterized by exchange
items, which reference the elements routed
together during an interaction.

Entity’s behavior can also be represented
by modes, which are behaviors expected
under chosen conditions; states, which
are behaviors undergone by entities in
conditions imposed by the environment;
and transitions, which are changes from one
mode/state to another.

Simulation of an architecture design
Wippler (2018) provides a broad defini-

tion of simulation as a cognition process
that predicts effects, including any form
of deliberation based on a model, and
not only the use of a model executable
by computer means. This permits us to
consider simulation as a component of a
control mechanism and hence as a valuable
means for reaching a system architecture
design that satisfies the system objectives
and the stakeholders’ expectations. Figure
3 illustrates the role of the simulation in the
architecture process in the control loop.

By considering simulation as part of the
engineering control loop, we can identi-
fy the contribution of simulation in the
architecture design process, both in terms
of reaching the objective quality of the sys-
tem, and of the time required to reach this
objective quality.

Regarding reaching the objective quality
of design, experience shows that 50% to
70% of the total of design errors made
during system development lifecycle are
introduced before implementation phase,

mainly during the orientation and design
phase. It means that we expect at least half
of all the design errors already exists at the
preliminary design review (PDR). We can
expect the quantity of errors to increase
with the increase of system complexity the
industry is facing, according to the metrics
the aerospace domain provides regarding
the growth of embedded software complex-
ity correlated with the number of source
lines of code (SLOC) (Filho 2018).

Regarding the time required to reach the
objective quality, simulation contributes to
reach it sooner, reducing the design error
costs. As presented in Stecklein (2004),
design error fixing costs increase exponen-
tially with project phase: if the cost of fixing
a requirements error discovered during the
requirements phase is defined to be 1 unit,
the cost to fix that error if found during the
design phase increases to 3 – 8 units; at the
manufacturing/build phase, the cost to fix
the error is 7 – 16 units; at the integration
and test phase, the cost to fix the error
becomes 21 – 78 units; and at the operations
phase, the cost to fix the requirements error
ranged from 29 to more than 1500 units.

Whereas the control loop is a useful pat-
tern for identifying the role of simulation
in architecture design, not all simulation
mechanisms have the same effectiveness,
and each mechanism requires different
resources to be mobilized to ensure their ef-
fectiveness. Three existing mechanisms are:

■■ Workshops in which experts deliber-
ate about the expected behavior of the
system are relatively easy to perform,
but its effectiveness strongly depend on
factors that are difficult to assess, such
as the skills of the experts and their
ability to work together.

■■ Automatic validation rules, such as the
ones provided by MBSE tools like Ca-
pella, are more reliable as they are based
on the know-how of many experts and
the return of experience of past proj-
ects. However, they only cover some
quality aspects of the design, often its
correctness and consistency.

■■ Computer-assisted simulation, in which

executable models are created or gener-
ated from design models, is a powerful
mechanism that may cover a large
scope of quality aspects. However, the
cost of putting in place and maintain
simulation mechanisms is also higher
than the previous ones.

In the rest of this paper, we will focus on
this third mechanism. From now on, the
term “simulation” alone refers to computer-
assisted simulation.

ARCHITECTING OBJECTIVES, CURRENT STATE,
AND LIMITATIONS
Architecture design objectives

As the architecture design strongly af-
fects a large set of the engineering activities,
both the quality of the system architecture
artefact and the efficiency of the architec-
ture design activity are key optimization
levers for engineering organizations.

The usages of the architecture are
manifold and depend heavily on endoge-
nous parameters such as the engineering
organization, the engineering process and
practices, the engineering teams, the indus-
trial domain constraints and regulations,
the expectations of the customers in terms
of engineering activities, among many
others. However, our experience shows that
the objectives of engineering organizations
with regards to the architecture design
activities can be categorized in:

■■ Share – improve communication,
reduce ambiguities and reach, as fast as
possible, a common understanding of
the system’s purpose, form and behav-
ior, for example, use model-based archi-
tecture views to support discussions
with customers.

■■ Secure – guarantee the quality of the
engineering data, hopefully at any
moment of the engineering process and
beyond, for example, use architecture
models as the backbone for textual
requirements elicitation, analysis, and
documentation (Bonnet 2019).

■■ Automate – automate the execution of
the engineering processes to improve
its efficiency, through (i) automatically
generating engineering artefacts from
architecture models, and (ii) automate
architecture tasks, for example, generate
document deliverables from mod-
els, generate software modules from
architecture models, and automate the
exploration of solution spaces.

The Share objective of architecture
design deserves a few more words. This one
is often despised and reduced to “having
good-looking diagrams”, ignoring that:

■■ Improving communications requires a
common (architecture) language and to

Develop and describe
system architecture

Simulate system
architecture

Project and organization
architecting objectives

System
objective

System architecture
model-based description

Predicted system
objective

δ

Figure 3. Regulation role of simulation in the architecture design process

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

43

use a common vocabulary, which is not
a trivial task.

■■ Fluency in (technical) communication
drastically reduces the time required to
understand what the other says, enables
active listening attitudes, and ultimately
improves the efficiency of collaboration
in engineering.

■■ Clear, concise, properly organized and
well documented architecture design
models and views, can have a positive
impact on the perceived quality of the
information contained in them, and on
the perception of quality of the system
itself (Iandoli 2018 and Bateman 2010).

■■ Experience shows that the share objec-
tive is often the first one that is set by
engineering teams with few or no prior
knowledge on MBSE practices and
tools. This often means that the share
objective is their first action of a wider
change management initiative in their
organization (for example, a digital en-
gineering transformation). The results of
these first change management actions
often determine what happens next.

Current state and limitations
Architecture design descriptions, such

as the ones that can be obtained using the
Arcadia method and its associated MBSE
tool Capella, allow engineers to address the
objectives presented above. Indeed:

■■ The systematic use of Arcadia per-
spectives in Capella (cf. Fig. 2), from
operational analysis to physical architec-
tures and product breakdown structure
definitions, permit engineers to build a
complete and consistent digital thread
from the expectations of their stakehold-
ers to the detailed definition of system
components and expected behavior.
This is particularly important both for
business; to ensure that the expectations
of future customers are properly ad-
dressed, and for certification concerns in
mission-critical systems; to ensure that
high-level safety and security concerns
are properly addressed by lower-level
components and their implementation,
and that they can be validated.

■■ The systematic use of Arcadia aspects
(cf. Fig. 2) permit engineers to ensure
that each perspective is analyzed consis-
tently and exhaustively. Arcadia aspects
complement each other, for example, by
performing an analysis of components’
modes and states, a previously devel-
oped functional analysis is completed
through the addition of new functions
or the clarification of the textual re-
quirements attached to them.

■■ The kinds of model views proposed by
Arcadia were defined in close collabora-
tion with systems engineering practi-

tioners. Several of them are based on or
are the same as SysML ones — such as
modes and states machines or sequence
diagrams – while others correspond
to diagrams that have been drawn by
systems engineers for many years –
such as views presenting multiple layers
of functional decompositions, or views
presenting the structure, functional
and interfaces aspects together (Capella
2021b).

Nevertheless, experience on implement-
ing MBSE in the field has identified a set
of limitations of the current tooled-up
practices:

Describing the expected behavior. One
of the main goals of architecture design
is to reach correct, complete, and error-
free descriptions of the system behavior
that is agreed with the customer, and of
components behaviors as designed by
architects and agreed by components’
engineering teams.

Arcadia concepts and methods, the fact
that these methods are embedded in tools,
and tool-specific features such as validation
rules, all contribute to reaching correct-
ness and completeness to a certain extent.
However:

■■ Ensuring a full consistency between
Arcadia aspects, and particularly
between the functional analysis and the
modes and states analysis, require the
execution of cross-checks that in many
cases (i) are specific to the project’s
needs, and (ii) cannot be specified and
automated easily.

■■ In contexts such as Systems of Systems
(SoS), or systems made mainly of
subsystems, architecture models alone
do not suffice to understand and master
the behaviors that emerge from the
composition.

■■ In contexts on which the system inte-
grates components that are capable of
learning and of adjusting their behavior
to improve their efficiency (for example,
artificial intelligence (AI) powered
components), current means for de-
scribing the system behavior need to be
extended to consider different ranges of
operation derived from the integration
of these components.

Ensuring the quality of the integra-
tion, verification, and validation (IVV)
strategy. In many of our engineering
contexts, IVV strategies shall be defined as
soon as possible, to secure the testability of
the design, anticipate the means that will
be required for IVV tests, and secure the
execution of IVV campaigns. Therefore,
architecture design is a major input of the
definition of IVV strategies.

Ensuring the quality of the integra-
tion, verification, and validation (IVV)
strategy. In many of our engineering
contexts, IVV strategies shall be defined as
soon as possible, to secure the testability of
the design, anticipate the means that will
be required for IVV tests, and secure the
execution of IVV campaigns. Therefore,
architecture design is a major input of the
definition of IVV strategies.

FILLING THE GAPS WITH SIMULATION
One major root cause of the limitations

identified above is the fact that architecture
models today are mostly descriptive, and
that prediction capabilities are limited.
Descriptive models are different in nature
from predictive ones, as they retain “gray
areas” of ambiguity, and do not need to per-
form as accurately as the predictive models.
Although allowing designers to define their
architecture while keeping some gray areas
has proven useful at introducing mod-
el-based engineering approaches in large
organizations, these gray areas may induce
negative consequences in the engineering
contexts presented above.

To overcome all these limitations, simu-
lation offers capabilities to enable engineers
to access the behaviors of the solution being
designed. Simulation provides to an engi-
neer an executable virtual object that can be
exploited to enhance communication be-
tween all stakeholders, to further evaluate
and analyze the solution definition as well
as to expand and automate the exploration
of the solution space.

Improved communication through
simulation

Descriptive models are often used to
illustrate how the system behaves, either
with modes & states machines or scenarios
and functional chains. The overall behav-
ior of a system is then captured through a
collection of such views, each one focusing
on describing the behavior in a unique situ-
ation. Additionally for these types of views
there is a compromise between complete-
ness of the behavior description (complete-
ness = unambiguous + full coverage of the
scenario) and the easiness of readability.

The spreading of the information across
views and the lack of readability or unambi-
guity (due to the above compromise) makes
it hard to ensure a common understanding
of the system behavior among stakeholders.
Furthermore, the reader performs a model
execution mentally to figure out what is
the behavior described. In this case, the
execution engine (that is, the human brain)
is different from one reader to another and
thus leads to a variety of simulation results
(that is, interpretation) and not repeatable
that dramatically increases the risk of inter-

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

44

pretation divergence among stakeholders.
Simulation provides unambiguous

means to figure out the system behavior
such as time dependent curves, 2D and 3D
rendering, and quantitative results based
on post-processing of simulation outputs.
The use of one or another depends on the
purpose of the communication, the type of
information to be shared, and the profile of
the persons the information is shared with.

In addition to the simulation results
themselves, the use of interactive simulations
let the stakeholders (engineers, end-users,
customers, managers ...) experience the
future system for themselves, confirm or
refine the expected behavior, or to get a
better understanding of the system behavior
for detailed design. The use of simulation to
improve communication is mainly facilitated
by “simulation as a service” capabilities as
it provides easy access to simulation means
(execution and visualization) while comply-
ing with security constraints.

For engineers in charge of the detailed
design, an executable specification provides
extra-benefits by securing the understand-
ing of the expected behavior. The simula-
tion environment provides similar capabil-
ities to the one provided by software IDE
such as breakpoints with pause conditions,
step forward and backward, model anima-
tion with highlighting or coloring, toggling
data and much more. This set of debugging
features clarifies the internal mechanisms
and interactions between functions from
which the system behavior emerges.

Another observed benefit is the rein-
forcement of concurrent engineering and
collaboration. For system engineers, being
able to share very early an executable
specification that reflects certain aspects of
the system with other engineering special-
ties is a powerful mean to enable the other
specialties to start activities earlier and
concurrently, to quickly iterate on the sys-
tem definition as early as possible. Without
the use of simulation these activities would
have been performed far later or in a less
complete and detailed way. For instance,
an IVVQ engineer can start experiment-
ing test cases with a virtual test bench and
virtual object that mimics the system to
test. This way the test campaign gets more
mature and is verified before the execution
of the test campaign on the real system.
Actually, the test campaign elaboration and
verification activity performed early in a
virtual environment also offers opportunity
to not only verify the test cases but also to
provide feedback to systems engineers on
defects detected during the test’s execu-
tion. In this case we can see the simulation
as a concrete enabler for co-engineering.
Another example is for safety engineering.
Although the use of descriptive models

is already a proven way to perform safety
analysis (R. de Ferluc 2018) early in the
design process based on the architectural
descriptive model produced by the system
engineering team and to feed the architec-
tural model back with the analysis results,
the use of simulation offers more advanced
analysis capabilities for reliability, availabil-
ity, maintainability, testability, and safety
analysis (A. Garro 2012) that can be inte-
grated in a feedback loop process on system
architecture design activity (cf. Fig. 3). This
feedback loop can occur at any stage of the
system architecture design.

Secure the design through simulation
Leveraging simulation in the engineering

process enables engineering project teams
to early and continuously integrate, verify,
and validate (IVV) the solution under de-
sign (that is, through execution of a subset
of the system definition, called “item under
design”). Having the capability to simulate
the item under design at any time enables
engineers to perform unit-test and inte-
gration-test to verify and validate the item
under design after each small design step.

This brings two major benefits. The first
benefit is that it drastically reduces the
overall solution cost reducing the time
between the introduction of a design error
and the fix, as (i) the earlier an error hap-
pens the more the error might cost; (ii) the
majority of errors occur before starting the
implementation, which is relatively early
in the development process; and (iii) the
situation gets worse as the complexity of
the systems increases.

Given this situation, it is critical for
engineers to have means to test their design
before the implementation, hence before
it is physically accessible. Having access to
virtual test means including a virtual item
under test and virtual test bench at any
time through the development process is an
answer to minimize the cost of errors.

A concrete example is a system engi-
neering team who captured the logical
architecture of the system (structural and
functional aspect) by following Arcadia
methodology and language. The systems
engineers wanted to be more precise and
unambiguous regarding the dynamics of
exchanges between functions, as there were
many intricate feedback loops and parallel
branches. One system engineer started to
build this simulation and it appeared the
intellectual process required to build the
simulation raised a lot of questions chal-
lenging the content of the logical architec-
ture. He found ambiguities in the behavior
description and missing data in interfaces.
These errors have been fixed very early,
avoiding later discovery by other engineer-
ing teams who would have spent a lot more

time dealing with these errors before reach-
ing out to the systems engineering team.

The second benefit is that it enables wid-
er solution space exploration and alterna-
tives comparison. Due to project planning
pressure, systems engineering teams rarely
invest the time required to fully explore
the solution and design space as well as
comparing alternatives. These are activities
that lead to producing designs that will
not be retained, and simulation reduces
the time required to evaluate designs and
determine which one is better than others,
hence making the design space exploration
and alternatives exploration more efficient.
To further speed up the exploration, the
simulation model can be parametrized and
integrated into an optimization loop to
automate this exploration and to converge
towards the best solution.

As described in the previous section
(“Improve communication with simula-
tion”), leveraging simulation not only helps
to secure the design with early and continu-
ous IVV but also permits IVVQ engineering
teams to secure the test campaign concur-
rently with the design activity. This opens
new methodologies that can be applied to
complex systems engineering such as test or
behavioral driven development, provided
the IVVQ team can provide comprehensive
virtual test means for the foreseen solution
to the system engineering team.

Automate tasks with simulation models
Working with models, be they descrip-

tive or executable, means working on
digital data. Hence, access to and trans-
formation of this data can be automated
with programming languages. MBSE tools
often provide tasks automation such as
document generation, code generation (for
software component interfaces mainly) or
descriptive models generation – for system
to sub-system transition or to initialize
dysfunctional models for instance. We can
extend the range of tasks and enrich them
based on simulation models. Maybe the
more valuable capabilities are the design
space exploration automation, design opti-
mization automation, early test execution
automation and model coverage analysis
automation (Camus 2016) to achieve high
quality system definition.

Based on simulation models we can
also enrich the document generation with
parts of simulation models that would be
non-ambiguous or with simulation results
to better express a desired behavior. And
finally, as simulation models are executable
by nature, we can generate both the de-
tailed software component interfaces along
with the internal behavior of the compo-
nent (Fleischer 2009).

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

45

GOOD PRACTICES PROPOSALS
As discussed above, there are many rea-

sons why we would want to rely on simu-
lation. Hence, adopting a simulation-based
engineering process, that is, the use of sim-
ulation to support all engineering activities
throughout the product lifecycle, leads to
the creation of a multitude of simulations.
As for any engineering activities, keeping
consistency and coherency across all engi-
neering artefacts including simulations is a
challenge. To overcome this challenge there
are good practices to apply.

Separation of concerns. An all-in-one
model merging descriptive architectural
models and simulation may be considered
as a response to the need of coherency and
consistency. We encourage separation of
concerns to keep architecture definition
and simulations as distinct, differentiable
but still coherent objects. This is to avoid
the overload of architectural models that
support specific modeling objectives owned
and defined by system architects. The sys-
tem architect often requires a simple model
to support the design thinking process.
At some point, the overload of informa-
tion in a single representation becomes
counter-productive to achieve system archi-
tecture goals. This choice is like the one ex-
isting in hardware engineering where there
is a clear separation between modeling and
simulation respectively named comput-
er-aided design (CAD) and computer-aided
engineering (CAE).

Frame simulation design in your MBSE
methodology. To help organize simulations
and to ease the coherency and consistency
of them with other engineering artefacts,
simulation models should contribute to
meet objectives defined in the applied
MBSE methodology. For instance, if a
simulation is built in the context of the
system analysis, then this simulation must
contribute to the system analysis objective,
.that is, to define what the system must
accomplish for the stakeholders. Further-
more, the simulation model should respect
the same representation point of view as
the one adopted in the Arcadia perspective.
Again, if we consider a simulation built at
the system analysis perspective, the way the
system behavior is captured must be con-
sidered as a “black box” specification and
not an implementation specification for the
subsystem engineering teams.

One simulation per type of concern.
Considering a single simulation to answer
all the questions the engineers would have
throughout the product lifecycle would
mean this simulation is a perfect virtu-
al representation of the system in all its
aspects throughout all its history. This is
neither realistic nor achievable. Hence, we
must consider the worst case that we would

have one simulation for each engineer’s
questions that will occur during the prod-
uct lifecycle. To reduce the number of sim-
ulations one proposal is to define typology
of concerns and to build one simulation per
type of concern or at least reusable simula-
tion components for each type of concern.
To ease the management of these simula-
tions a proper governance is needed.

Maximize reuse of simulation assets.
There are several ways to reuse simula-
tion assets: (i) reuse existing simulation
components to build a new simulation,
(ii) reuse an existing simulation to answer
different questions from similar concerns,
and (iii) reuse test harnesses and test cases
throughout the development lifecycle. For
the first type of reuse, we need to define
simulation modeling rules that ensure
reusability of components (for example, in-
teroperability formats such as FMU, HLA...,
shared interfaces repository, ...), we must
also minimize the number of simulation
tools to keep the co-simulation constraints
as low as possible, and define a standard
component-based simulation architecture.
For the last type of reuse, we need to ensure
that the simulation facilities offer seamless
support for software-in-the-loop (SIL),
processor-in-the-loop (PIL) and hard-
ware-in-the-loop (HIL) to progressively
transition from a full virtual testing to real
system testing.

Automate the transformation of ar-
chitectural model element to simulation
model element. To avoid human mistakes
in the design of a simulation model based
on existing architectural model, we strongly
encourage automating this model trans-
formation. This provides confidence in the
coherency and consistency between archi-
tectural models and simulation models. The
automation can also integrate the traceabil-
ity links to ease the impact analysis and jus-
tification activity. A subsequent advantage
of such automation is the standardization of
the approach to building simulation models
in the engineering organization.

CASE STUDY, ANALYSIS, AND DISCUSSION
To test the proposed approach, we used a

hypothetical, still realistic, drone-based sys-
tem capable of fulfilling multiple missions
including the evaluation of the health of
crops. Its architecture has been formalized
in Capella following the Arcadia method,
exploiting the Arcadia perspectives. The
following paragraph is an excerpt show-
ing how an expectation of a stakeholder
(evaluating crops in very large fields) drives
to key capabilities (navigation) and key
system and subsystem requirements (mass,
integrity).

■■ Operational analysis – by identify-
ing operational entities (OE) and the

analysis of their perceived value (for
example, pains & gains), operational
activities and processes. For instance,
farmers (an OE) are interested on eval-
uating crops in very large fields.

■■ System needs analysis – by defining (i)
the system capabilities and related func-
tional chains and scenarios, and how
they provide value to the stakeholders
(the OE); and (ii) the non-functional key
system requirements. For instance, the
drone-based system shall provide func-
tional capabilities such as navigation,
acquisition of data, or mission planning;
key system requirements include integri-
ty– related to the capability of navigating
while avoiding obstacles.

■■ Logical architecture – by allocating
functions to the conceptual logical
components (LC) of the solution.
For instance, both the drone and the
ground station LC contribute to the
navigation capability, including the ob-
stacle avoidance integrity feature. Key
requirement for the drone subsystem is
mass – as an enabler to navigate across
large fields during the time required to
do an evaluation.

■■ Physical architecture – by perform-
ing a detailed functional analysis and
allocation of functions to the concrete
components of the architecture. For in-
stance, detailed requirements regarding
integrity (including those related to ob-
stacle avoidance) would be allocated to
the navigation processors, and mass re-
quirements resulting from mass versus
fuel capacity tradeoffs may be allocated
to drone physical components.

In the case study we built simulation
models to support architecture objectives
of operational analysis, system analysis
and physical architecture perspectives. On
the operational analysis, simulations are
used to verify and validate the operational
processes and to optimize them. We have
used a modeling language inspired from
eFFBD to represent in a simulation tool
the operational processes. The execution
of the simulation is based on discrete
event simulation which is a convenient
type of simulation engine for processes
that requires not much behavioral details
to get ready to run. Hence it appears to
be very well suited for early simulation of
processes. Systems architecture design is a
key activity that affects the overall systems
engineering cost. Hence it is fundamen-
tal to ensure that the system architecture
reaches a proper quality. In this paper, we
leverage model-based systems engineering
(MBSE) approaches and complement them
with simulation techniques, as a promising
way to improve the quality of the system ar-

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

46

chitecture definition, and to come up with
innovative solutions while securing the
systems engineering process. Systems archi-
tecture design is a key activity that affects
the overall systems engineering cost. Hence
it is fundamental to ensure that the system
architecture reaches a proper quality.

On the physical architecture, we per-
formed simulation to verify the correct-
ness of the functional analysis especially
regarding the definition of the functional
exchanges and to identify potential ambi-

guities in the architecture definition. We
also performed architecture optimization
leveraging a parametrized simulation
model. The purpose was to optimize several
characteristics of the system to reduce the
overall mass of the drone given a collection
of operational missions to accomplish.

Focusing in the system needs analysis,
we leveraged simulation to (i) verify and
validate the modes machine supervising the
system, (ii) specify the expected behavior of
a subset of functions in a functional chain

context, (iii) integrate these functions to
build the functional chain and verify and
validate this functional chain, (iv) ensure
a full consistency between the functional
chain and the system modes as they
interact each other, and finally (v) validate
the emerging behavior coming from these
interactions.

Figure 4 shows the modes machine used
for the case-study, which is the one super-
vising navigation modes of the drone. Figure
4 (bottom) shows the functional chain

Figure 4. Drone-based system case study’s mode machine (top) and functional chain (bottom)

TakeOffLanding

ManualMode

[region]

[region]

[ground distance == 0]
[ground distance == 0]

[propellers are ON]

[region][region_2]

TakeOff

AutomaticMode

Idle

Init

Flying Flying

Landing

[region]

[region]

[region]

[region]

[region_1]

[ground distance >= 0]
[ground distance < 1]

[ground distance >= 1]

[vertical distance > 0]

[autoLanding == true]

[autoTakeOff == true]

manual motion orders

manual motion orders

Choice

Join

manual motion orders

[vertical distance > 0]
manual motion orders

vertical control
negative for 3 sec

manual motion orders

[autoFlight == true]
manual motion orders

SF
Implement

obstacle avoidance

Process manual
motion orders

Manually control
the drone
trajectory

Move and orient
drone

motion limits

manual motion orders

motion instructions

presence

PythaDrone Product

Manually control drone motion and orientation with obstacle avoidance

Drone operator SF

SF

Constitute
obstacles

SF

SF

Environment

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

47

used for the case-study, which involves the
functions in charge of manually pilot the
drone with an obstacle avoidance feature
to preserve the integrity of the system. The
transitions of the modes machine are trig-
gered by functional exchanges involved in
the functional chain and the modes update
function parameters to adapt the overall be-
havior of the system given the active mode.

It shall be noted that for all perspectives,
simulation results were injected back into
the architecture descriptive model, ensur-
ing the regulation role of simulation depict-
ed in Figure 3. Two cases were identified,
they are illustrated below with examples of
a simulation of the physical architecture:

■■ The simulation results modified the
value of a property of an existing archi-
tecture element – for instance, the mass
ranges of the concrete physical compo-
nents of the architecture, which are key
requirements of the subsystems directly
impacting the customer satisfaction
(been able to evaluate large fields).

■■ The simulation results induced stronger
modifications of the architecture, such
as new functions, different allocations
or new operating modes, that often
require specific co-engineering actions
– for instance, the early simulation
of the obstacle avoidance feature
led to these kinds of modifications,
done under the responsibility of the
system architect and involving several
subsystems’ architects.

Limitations of the descriptive architecture
model

On this scope, the architecture model
has limitations to completely capture
the desired behavior and to ensure full
consistency between modes analysis and
functional analysis.

First, it is nearly impossible to specify
with a descriptive model only the desired
dynamic of the drone, that is, how the
drone reacts on an operator order. Similar-
ly, it is hard to explain how aggressive the
response to an upcoming obstacle should
be, or how the drone should behave when
concurrent orders come from the operator
and the obstacle avoidance functions.

Second, the content of modes and states
machines must deal with a compromise
between readability on one hand and
formal expression and completeness on the
other hand. By experience, the architecture
model often favors the first aspect. Further-
more, even if the tool offers state machine
simulation capability it is often at the price
of detailed implementation effort. Hence,
we must often deal with ambiguities and
uncomplete specification.

Third, if the modes machine is growing
in complexity, it becomes hard to verify it

by mental simulation covering all the pos-
sible paths. Hence the potential is rapidly
growing. Finally, it is hard to really capture
the emerging behavior coming from the
interactions between the functions, the
supervising modes and the system states. It
is also challenging to ensure full coherency
across these three aspects of the system.

Simulation design workflow and benefits
In the context of the case-study, we use

Simulink as the main simulation tool as
this tool supports the simulation of discrete
event systems, state charts, data flow (dis-
crete or continuous time) and acausal sys-
tems (suited for multi-physics simulation).
To support the simulation design, we have
tooled-up the transition from Capella to
Simulink. This tool (called Cap2SL) ensures
the coherency, consistency, and traceability
of shared elements. To maximize reuse
across simulation models, Cap2SL imple-
ments modeling rules favoring componen-
tization and modularity.

In this workflow we consider two roles:
the system architect is responsible for the
architecture definition and generates a
simulation request; the simulation engineer
is in charge of building and running the
simulation and providing data required by
the request.

Case 1: Verify and validate modes
machines. To build the simulation model
from the modes machine defined in
Capella, first we get an initialized version
generated with Cap2SL. This simulation
model captures the information stored in

the Capella model. A substantial amount
of data can be transformed applying a se-
mantic mapping rule with no ambiguities.
However other mapping rules might be
applicable depending on the modeling rules
a company wants to apply and the meaning
a company confers to modeling patterns.
In case of potential ambiguities to map the
semantics of the two tools, the information
is transformed as textual information for
the simulation engineer to have all existing
information to build the simulation model.
In our case, we must deal with:

■■ Transition trigger expressed in natural
language such as “propellers are ON”.
For such trigger, additional data
manipulated in the system needs to be
defined.

■■ Ambiguous guard expression: the data
used to express the condition is part
of several exchange items and these
exchange items are carried by multiple
functional exchanges. Hence, we don’t
know if the data has a unique or several
instance and if so, then which instance is
to be tested in the condition expression.

For these two problems we already see
value of simulation just in the process of
building a simulation. It permits us to chal-
lenge the system definition in front of a sort
of a reality. Thus, to identify incomplete or
too ambiguous specifications very early in
the development lifecycle. Indeed, these
issues would have been raised either by
the subsystem engineering team or by the
software team and some of these issues are
tightly connected with hardware because

Figure 5. Drone-based system case study’s mode machine executable model

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

48

of the required data to capture by a sensor.
Hence some of these errors would have led
to costly rework and planning shift.

After some collaborative work sessions
with system architect and simulation
engineer the simulation engineer comes
up with an executable model shown in
Figure 5. Concurrently, the IVVQ engineer
develops a test harness shown in Figure 6,
reusing the interface definition generated
by Cap2SL, and a test scenario based on the
scenarios captured in Capella.

From this point, the early-testing activity
can start. In the specific context of this case
study, a lot more effort has been spent on fix-
ing and improving the test scenario than on
designing and fixing the item under test. We
also used model coverage features offered by
Simulink to identify missing scenarios. The
early test raised a design error in the modes
machine that was introduced in the Capella
model and impacted the functional exchang-
es and exchange items definitions.

 Case 2: Specify functions’ behavior
and verify functional chain. As for case

1, we first started by leveraging Cap2SL
to initialize the functions models, the
functional chain (FC) model and all the
required data and interfaces. The FC model
is made by aggregation of function models
individually created and with their own
lifecycle. At this point the FC model is
compilation-ready. It means that the model
does not contain design error that prevents
to generate an executable software from the
model. This already verifies the correctness
of the Capella model on this scope.

From here we start work sessions with
the system architect and simulation engi-
neer to define the desired behavior of each
function individually as the design model is
not well suited to capturing this. As we are
at the system analysis perspective, we can
keep things with a high level of abstraction
leading to interactive and collaborative
work session iterating quickly on the
simulation model. The main challenge is to
get a robust set of test scenarios to ensure
we don’t miss corner cases. Concretely, it is
easier to specify expected behavior and cor-

responding scenarios at the FC boundaries
than specifying the details of each function
individually. Hence, we started by defin-
ing the test scenario for the FC and then
working function by function in the same
order than the sequence defined in the FC.
For a given function involved in the FC, the
system architect defines at a coarse grain
level the expected behavior of the function.
The test scenario is generated by executing
the FC scenario and recording the outputs
of the upstream functions. The key point is
to quickly get a first executable FC model
to leverage the better-defined FC expected
behavior to identify errors in the individual
functions’ definition.

In our case we decided to develop an
interactive control dashboard to let the
system architect and other stakeholders
somehow related to this functional chain to
experience by themselves the system within
the FC scope to provide feedback.

Case 3: Integrate modes machine with
functional chain. Once we get both the
modes machine and the FC models veri-
fied, it becomes very easy to integrate them
together, thanks to the componentization
modeling rules we implemented in Cap2SL.
The main concern we had was regarding
how we should model the interactions
between the modes machine and the func-
tions since they do not concretely appear
as interfaces in the design model. Either we
decide to keep the Capella layout to make
the system architect more comfortable to
dig into the simulation model, or we make
these interfaces visible in the diagram but
by doing so we modify the interface defini-
tion of the functions. Since the beginning
we favored keeping the layout of Capella for
modeling in the simulation tool, so we con-
tinued with this approach for the last stage.
However, this choice can be discussed. The

SA_Product_Navigation_Modes

Test Sequence and Assesment

Safety check

manual_motion_orders_FE
manual_motion_orders

ground_distance
ground_distance

ground_distance

<ActiveMode>
ActiveMode

ActiveMode

ground_distance_A

ActiveMode_A

Distance

Signal spec.
and routing

Signal spec.
and routing

1
2
3

Figure 6. Test configuration

Project 1
(Year 0 = Y0)

Project 2
(Y0 + 6y)

Project 3
(Y0 + 8y)

Project 4
(Y0 + 9y)

Legend
Requirements coverage by Model-in-the-Loop (MIL) simulation

Requirements coverage by Hardware-in-thhe-Loop (HIL) simulation

M
IL

/H
IL

 re
qu

ire
m

en
ts

co
ve

ra
ge

 (%
)

In
te

gr
at

io
n

tim
e

7 months

5 months

3 months

2 months

Works on the
first flight

Works on the
first day

Figure 7. Evolution of integration and flight test qualification time over 4 projects in 9 years

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

49

simulation of this model did not raise any
error; thus it contributes to increase our
confidence in our system definition.

Feedback from the frontline
While this paper focuses on specific

use-cases to illustrate the approach through
concrete examples, the overall intention
is to incorporate simulation activities in
the daily system engineering work and
to make it the new normal. According to
return of experience from some company
businesses already mature in this field,
there is a measured project performance
improvement when adopting simulation
as the foundations for any design decision.
Figure 7 shows the correlation between the
amount of system requirements covered by
analytical models and the integration and
flight tests qualification effort.

Figure 7 also highlights an increase in the
system quality with a drastically reduced
technical debt. But this comes at the price
of a multi-year journey transforming the
organization, the culture, the skills, the
processes, and the tools. Finally, it is worth
to note higher benefits happen when the
engineering process is transformed instead
of optimizing locally. In this project exam-
ple, a large part of the benefits come from
the continuous reuse of test cases built at
the early stage of the development lifecycle
down to the ground field tests.

CONCLUSION AND PERSPECTIVES
The use of simulation to support archi-

tecture and detailed design activities is an
efficient means to improve quality, cost and
planning while reducing risks. It is rare
enough to be noticed as most of the time
these three key project objectives cannot be

improved together. This often comes at the
price of an increase of the project expense
on the upstream engineering activities,
which is often perceived as a gamble from
the project management perspective. How-
ever, this is not always true and some other
experiments on other projects have demon-
strated that the effort spent to specify the
system with a simulation model is lower
than doing it with textual requirements as
a lot of effort is spent trying to identify all
the missing cases, all the incoherencies and
to make the textual requirements traced,
coherent and consistent with the design
model. This case-study has demonstrated
clear benefits using simulation on top of
design model. However, to be efficient, an
automation tool is highly recommended
as well as clear modeling rules that favor
modularity and reusability.

One point of attention is when sim-
ulation is used as specification as the
simulation can lead to over constrained
specifications. Indeed, it is common to see
an executable specification describing one
nominal or ideal operating point. If the
specification model is used as a scoreboard
for equivalence testing, the probability of
having the real system exactly match the
behavior specified that way tends to zero.
Hence it is critical as a system engineer to
define margins in the expected behavior
and to identify parameters’ tolerance. The
same way, as a simulation engineer it is as
important to quantify the uncertainty of
simulation parameters and the credibility
level granted to simulation results.

Regarding the case study we intend to
extend it to demonstrate other use cases.
Among others, the most prevalent are:

■■ To handle the round-tripping. As

simulation is used, in the context of this
study, as a supporting activity of the
architecture definition there is a need to
go back and forth between the archi-
tecture definition and the simulation.
This round-trip can be either simple and
straightforward or more complex. The
simple case is when simulation is lever-
aged for architecture verification or for
sizing and optimization. In these cases,
the simulation request can clearly define
what are the model elements of the ar-
chitecture model to update (verification
status, architecture parameters’ value
for instance). Hence, the update of these
elements does not raise any issue. The
complex case is when the simulation
process raises some evolution requests
on the architecture (ambiguities to
resolve, missing data, incomplete defini-
tion...). This situation must be handled
via a dedicated process to guarantee
the integrity of the overall architecture
definition. This process, when defined,
can then be tooled-up to make easier
the concrete update of the architecture
model from simulation models.

■■ To perform simulation-based depend-
ability analysis in accordance with both
the architecture model and the Arcadia
method.

Finally, this work shall be continued
to confirm applicability and define good
practices for use of simulation in different
contexts, such as simulation for architecture
optimization from the orientation phase
down to the detailed design, simulation in
product line engineering (PLE) contexts,
and simulation in agile contexts.  ¡

REFERENCES
■■ Bateman, S., R. L. Mandryk, C. Gutwin, A. Genest, D. McDine,

and C. Brooks. 2010. “Useful Junk? The Effects of Visual
Embellishment on Comprehension and Memorability of
Charts.” In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI 2010), Atlanta, US-GA,
10-15 April.

■■ Bonnet S, J.-L. Voirin, V. Normand, and D. Exertier. 2015.
“Implementing the MBSE Cultural Change: Organization,
Coaching and Lessons Learned.” Paper presented at the 25th
Annual International Symposium of INCOSE, Seattle, US-WA,
13-161 July.

■■ Bonnet S., J.-L. Voirin, and J. Navas. 2019. “Augmenting Re-
quirements with Models to Improve the Articulation Between
System Engineering Levels and Optimize V&V Practices.”
Paper presented at the 29th Annual International Symposium
of INCOSE, Orlando, US-FL, 20-25 July.

■■ Camus, J.L., C. Haudebourg, M. Schlickling, and J. Barrho.
2016. “Data Flow Model Coverage Analysis: Principles and
Practice.” Paper presented at the 8th European Congress on
Embedded Real Time Software and Systems (ERTS), Toulouse,
FR, 27-29 January. hal-01262411f.

■■ Capella. 2021b. Equivalences and Differences between SysML
and Arcadia/Capella. https://www.eclipse.org/capella/arcadia_
capella_sysml_tool.html .

■■ Capella. 2022a. https://www.eclipse.org/capella/ .
■■ Cloutier R., G. Muller, D. Verma, R. Nilchiani, E. Hole, and M.

Bone. 2010. “The Concept of Reference Architectures.” Systems
Engineering 13 (1): 14-27.

■■ de Ferluc, R., F. Capogna, G. Garcia, O. Rigaud, D. Demar-
quilly, and L. Bitetti. 2018. “Model Based Safety Assessment
(MBSA) in the Space Domain with Capella Open-Source
Tool.” Paper presented at Congrès Lambda Mu 21, “ Maîtrise
des risques et transformation numérique : opportunités et
menaces,” Reims, FR. 16-18 October. hal-02064930.

■■ Filho, P. S. O. 2018. “The growing level of aircraft systems
complexity and software investigation.” Embraer Air Safety
Department.

■■ Fleischer, D., M. Beine, and U. Eisemann. 2009. “Applying
Model-Based Design and Automatic Production Code
Generation to Safety-Critical System Development, ” SAE
International Journal of Passenger Cars – Electronic and
Electrical Systems 2 (1): 240-248.

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

50

ABOUT THE AUTHORS
Myron Hecht is a senior project leader at The Aerospace

Corporation where he specializes in model-based systems
engineering (MBSE) and in reliability, for complex weapons
systems. He also is a consultant to the Nuclear Regulatory
Commission and a lecturer at the UCLA School of Engineering
and Applied Sciences. His current research is on application of
MBSE to reliability, availability, and safety analysis. He has served
on standards committees for reliability (IEEE 1332 and GEIA STD
009), computers in nuclear power plants (IEEE 7-4.3.2), software
in avionics systems (RTCA DO 178C and 278A), and model-
based safety and reliability for the Object Management Group
(OMG). He is an author of more than 100 refereed publications
in reliability, safety, products liability, and systems engineering.
Myron holds BS (chemistry), MS (nuclear engineering), MBA, and
JD degrees all from UCLA.

Jaron Chen is a member of the technical staff at The
Aerospace Corporation. He works in in the areas of model-
based systems engineering (MBSE), machine learning, software
tools development, discrete event simulation, and integration
of modeling techniques in support of space and ground
communications systems. He holds an MS from Carnegie Mellon
University and a BS from the University of California Irvine.

Hecht and Chen  continued from page 39

■■ Garro, A. S., and A. Tundis. 2012. “Modeling and Simulation
for System Reliability Analysis: The RAMSAS Method.” Paper
presented at the IEEE 7th International Conference on System
of Systems Engineering (SoSE), Genova, IT, 16-19 July.

■■ Iandoli, L., L. Piantedosi, A. Salado, and G. Zollo. 2018.
“Elegance as Complexity Reduction in Systems Design.”
Complexity 2018: 5987249:1-5987249, 10 pages.

■■ INCOSE. 2014. “A World in Motion – Systems Engineering
Vision 2025.”

■■ ISO/IEC/IEEE 42010. 2011. “Systems and software engineering
— Architecture description.”

■■ ISO/IEC/IEEE 42010. 2011. “Systems and software engineering
— Architecture description.”

■■ Langlois B., and J. Barata. 2017. “Extensibility of Capella with
Capella Studio.” Eclipse Newsletter. https://www.eclipse.org/
community/eclipse_newsletter/2017/december/article4.php .

■■ Lorenzo, B., R. Ferluc, D. Mailland, G. Gregoris, and F.
Capogna. 2019. “Model Based Approach for RAMS Analyses
in the Space Domain with Capella Open-Source Tool.” Paper
presented at the International Symposium on Model-Based
Safety and Assessment, Thessaloniki, Greece, GR, 16-18
October. 10.1007/978-3-030-32872-6_2.

■■ Navas J., S. Bonnet, J.-L. Voirin, and G. Journaux. 2020.
“Models as Enablers of Agility in Complex Systems
Engineering.” Paper presented at the 30th Annual
International Symposium of INCOSE, Virtual, 20-22 July.

■■ Navas, J., S. Paul, and S. Bonnet. 2019. “Towards a Model-
Based Approach to Systems and Cybersecurity Co-
engineering.” Paper presented at the 29th Annual International
Symposium of INCOSE, Orlando, US-FL, 20-25 July.

■■ Oster, C., M. Kaiser, J. Kruse, J. Wade, and R. Cloutier. 2016.
“Applying Composable Architectures to the Design and
Development of a Product Line of Complex Systems.” Systems
Engineering 19 (6): 522-534.

■■ Pineda, C. S., and X. Wang. 2011. “A Study of the
Characteristics of Behaviour Driven Development.” Paper
presented at the 37th EUROMICRO Conference on Software
Engineering and Advanced Applications, Oulu, FI, 30 August
– 2 September, pp. 383-387, doi: 10.1109/SEAA.2011.76.

■■ Stecklein, J. M., J. B. Dabney, B. N. Dick, B. R. Haskins, R.
Lovell, and G. Moroney. 2004. “Error Cost Escalation Through
the Project Life Cycle.” Paper presented at the 14th Annual
International Symposium of INCOSE, Toulouse, FR, 20-24
June.

■■ Voirin J.-L. 2017. “Model-based System and Architecture
Engineering with the Arcadia Method. ” UK-London &
Elsevier, Oxford: ISTE Press.

■■ Voirin J.-L., S. Bonnet, V. Normand, and D. Exertier. 2015.
“From Initial Investigations up to Large-Scale Rollout of an
MBSE Method and its Supporting Workbench: the Thales
Experience.” Paper presented at the 25th Annual International
Symposium of INCOSE, Seattle, US-WA, 13-161 July.

■■ Wippler J. L. 2018. “Une approche paradigmatique de la
conception architecturale des systèmes artificiels complexes.”
Université Paris-Saclay, FR-Paris.

ABOUT THE AUTHORS
Juan Navas is a systems architect with +12-years’ experience

on performing and implementing systems engineering practices
in multiple organizations. He oversees the Thales corporate
modelling, and simulation coaching team and dedicates most of
his time to training and other consulting activities worldwide,
for Thales and other organizations. He accompanies systems
engineering managers and systems architects implement MBSE
approaches on agile operational projects, helping them define
their engineering schemes, objectives, and guidelines. He holds
a PhD on embedded software engineering (Brest, France), a MSc
degree on control and computer science from MINES ParisTech
(Paris, France), and electronics and electrical engineering degrees
from Universidad de Los Andes (Bogota, Colombia).

Pierre Nowodzienski is a systems architect with 10-years
experience on performing and implementing systems engineering
practices in multiple organizations. He is a Thales corporate
MBSE coach and dedicates most of his time to training and
other consulting activities worldwide, for Thales and other
organizations. He accompanies systems engineering managers
and systems architects implement MBSE and simulation-based
engineering approaches on agile operational projects, helping
them define their engineering schemes, objectives, and guidelines.
He holds a MSc degree in mechatronics and complex systems
from ENSEA (Paris, France).

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

51

INTRODUCTION

  ABSTRACT
The ongoing transformation in the industry from a document-based systems engineering to a model-based systems engineering
approach reveals a need for new methods of verifying and validating systems. Traditional methods of testing the actual system
are getting more and more expensive. A model-based environment could significantly reduce testing and, most importantly, ver-
ification and validation processes costs. It allows testing on the system model by applying various techniques, such as simulation,
analysis, review, mock-ups, etc. There are, however, very few approaches today detailing how verification and validation of the en-
tire system (taking into count its components and subsystems) could be performed. This paper proposes an approach to perform
verification and validation of a system using system models developed with Systems Modeling Language (SysML) and in accor-
dance with the MagicGrid (formerly known as MBSE Grid) framework. The approach covers system testing activities beginning
with verification of the lowest modeled system elements against system requirements and finishing with validation of the system
as a whole, against stakeholder needs.

System Verification and
Validation Approach
Using the MagicGrid
Framework
Aurelijus Morkevicius, aurelijus.morkevicius@3ds.com; Aiste Aleksandraviciene, aiste.aleksandraviciene@3ds.com; and
Zilvinas Strolia, zilvinas.strolia@3ds.com
Copyright © 2022 by Aurelijus Morkevicius, Aiste Aleksandraviciene, and Zilvinas Strolia. Permission granted to INCOSE to publish
and use.

Verification and validation (V&V)
are independent processes. The
purpose of verification is to
provide objective evidence that

a system or system element fulfills its spec-
ified requirements and characteristics. The
purpose of validation is to provide objective
evidence that the system, when in use, ful-
fills its business or mission and stakeholder
requirements, achieving its intended use in
its intended operating environment. Both
are used together and are critical compo-
nents of system testing (ISO, 2015).

Testing the actual system is expensive,
not only where testing to realistic condi-
tions cannot be achieved, but also when it
is not cost-effective. Model-based systems
engineering (MBSE) promises a more
effective way to show theoretical compli-
ance. It allows testing to be performed
using simulation on models or mock-ups
(instead of actual/physical system elements)
under defined conditions (INCOSE, 2015).

Although it may sound promising, having
a system architecture in the model-based
environment does not automatically test a
system. It is a common misunderstanding
in systems engineering, that Systems Mod-
eling Language (SysML) is enough to fulfill
the promise of MBSE. Silingas et al. (2009)
states that the modeling language is just
the language and must be combined with
a methodology to be useful. In the MBSE
environment, testing activities such as ver-
ification and validation depend heavily on
the methodology used to develop system
architecture. For this reason, finding the
right approach for the specific environment
is very difficult, or in the best case requires
tailoring and customization.

In this paper, a new approach for model-
based V&V is proposed. The approach
covers system testing activities starting with
verification of the lowest modeled system
elements against system requirements
and going up to the system as a whole

validation against stakeholder needs.
The approach is aligned with the SysML
language and MagicGrid (formerly known
as MBSE Grid) framework. The approach
extends the framework by introducing
the V&V pillar to existing ones and
demonstrating interrelationships between
them. A thorough case study on the vehicle
model is presented to prove the usefulness
of the proposed approach in the overall
lifecycle of the system engineering.

This paper is structured as follows: in
Section 2, related works are analyzed;
in Section 3, the proposed approach is
presented; in Section 4, application of the
proposed approach is described; and in
Section 5, the achieved results, conclusions,
and future work directions are indicated.

RELATED WORKS
Hazle et al. (2020) analyze the literature

on verification and validation for systems,
software and requirements engineering.

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

52

The paper examines their relevance to Sys-
ML models as used in MBSE. The authors,
using the findings of their literature review,
their experience, and the comments of
the MBSE Working Group (INCOSE UK
MBSE WG, 2019), have compiled a list of
the techniques and principles they believe
should be employed for an effective and
robust approach to model V&V. One of
the core principles is the importance of
simulation and parametric solving. It is
often easier to validate the model behavior
via simulation than through the inspection
of descriptive views (Debbabie et al., 2010).
While applying simulation, the advantage
of using an MBSE approach rather than
a separate specification and simulation is
that since all the engineering artefacts are
within the same model, it allows trace-
ability from the stakeholder requirements,
through to the elements being simulated
(Stevenson et al. 2018), thus improving
both verification and impact analysis.

Though the V&V methods and MBSE
methodologies can be analyzed separately,
the closest comparison to our work would
be utilizing the combination of both the
V&V approach and the MBSE method-
ology. This way equivalent works can be
compared directly and not overcomplicate
the research. The following MBSE meth-
odologies that support V&V activities have
been analyzed: object-oriented systems-en-
gineering method (OOSEM), IBM Rational
Harmony for systems engineering, and the
UML testing profile.

OOSEM. In this methodology, the
validate and verify system activity verifies
that the system design satisfies the system

requirements and then validates that those
requirements meet the stakeholder needs.
For this, verification plans, procedures,
and methods are developed. The primary
inputs to the development of the test cases
and associated verification procedures
are system-level use cases, scenarios, and
associated requirements. The verification
system can be modeled using the same
activities and artifacts described earlier
for modeling the operational system. The
requirements management database is
updated during this activity to trace the
system requirements and design informa-
tion to the system verification methods, test
cases, and results (INCOSE, 2015).

OOSEM provides a clear process of
which steps need to be carried out in per-
forming V&V; however, it defines no means
of achieving it in practice.

IBM Rational Harmony for systems
engineering. The IBM methodology covers
a verification part related to real-time
embedded systems and software. In a mod-
el-driven system development environ-
ment, the key artifact of the hand-off from
systems engineering to subsystem develop-
ment is executable models. The Harmony/
SE Deskbook recommends an interactive
verification using model execution, includ-
ing model animation, and a visual compar-
ison of the “as-is” behavior regarding the
expected behavior. Integration test scenari-
os will be part of each composed subsystem
hand-off package. These test scenarios can
be used to verify a developed subsystem
against the requirements (Hoffman, 2015).

The Harmony approach turns out to
be very much tool-oriented and the exact
modeling language constructs used to
perform V&V are not clearly described.
Moreover, the approach is embedded sys-
tems-oriented and does not describe how

testing could be carried out in the higher
levels of system hierarchy and with differ-
ent types of systems.

UML testing profile (UTP). UTP is a
part of the UML ecosystem and as such, it
can be combined with other profiles of that
ecosystem to associate test-related artifacts
with other relevant system artifacts, for
example, requirements, risks, use cases,
business processes, system specifications,
etc. This enables requirements engineers,
system engineers and test engineers to
bridge the communication gap among
different engineering disciplines (OMG,
2019b). UTP provides a set of concepts to
describe test planning, test architecture,
test behavior, and data. In contrast, SysML
has the only concept used for testing called
‘test case.’ In SysML, a test case is defined
as “a method for verifying a requirement
is satisfied” (OMG, 2019a). It has a single
return parameter named verdict which is
typed by the enumeration ‘verdict kind.’ It
is important to note this is consistent with
the UML testing profile.

Though UTP is a well-defined language
for capturing testing concepts, it is not a
methodology, nor a method. Application of
UTP depends on the methodology used for
systems engineering in the context of the
specific project or organization.

Analysis of related works helps us to
understand how V&V is addressed today
in the model-based engineering envi-
ronments. It also helps to identify core
principles used in the context of MBSE, the
importance of the model execution, and the
gaps existing today that could be solved by
our suggested approach.

SUGGESTED APPROACH
This section introduces an approach

for performing system verification and

Figure 1. MagicGrid framework

Stakeholder
Needs

System Requirements

Conceptual and
Functional Failure Mode

& Effects Analysis
(FMEA)

Conceptual Subsystems
(FMEA)

Subsystem S&RSubsystem Parameters

MoEs for Subsystems

 Measures of
Effectiveness (MoEs)

Subsystem Behavior

System Behavior System Parameters

Component ParametersComponent Behavior

Subsystem Structure

Conceptual Subsystems

System Structure

System Context Use Cases

Functional Analysis

Component Structure

Subsystem
Requirements

Component
Requirements

Implementation
Requirements

Im
pl

em
en

-
ta

tio
n

So
lu

tio
nDo

m
ai

n
Pr

ob
le

m

W
hi

te
 B

ox
Bl

ac
k

Bo
x

System Safety &
Reliability (S&R)

Component S&R

Requirements Structure Behavior

Pillar
Parameters Safety & Reliability

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

53

validation activities using SysML models
developed following the modeling work-
flow defined by the MagicGrid framework.
Relevant extensions to the framework for
supporting V&V are proposed.

Introduction to MagicGrid
MagicGrid is a pure SysML-based frame-

work for MBSE (Mazeika et al., 2016). The
structure of the framework can be depicted
as a 2-D grid, displayed in Figure 1.

The rows of the grid represent different
layers of abstraction, also referred to as
domains: Problem, Solution, and Imple-
mentation. Every organization must deal
with them, unless the system they develop
is very small and simple, for example,
some mechanical component without any
embedded software. In the case of complex
systems development, they are inevitable
(Morkevicius et al., 2017).

The columns of the grid stand for
different aspects of the SysML model. Also
referred to as four pillars SysML (Frieden-
thal et al., 2008), these are Requirements,
Structure, Behavior, and Parametrics, and
the recently added Safety & Reliability pillar.

A cell at the intersection of a particular
row and column represents the view, which
determines what SysML diagrams and
elements should be utilized to capture in-
formation when visiting that particular cell.
The order of visiting the cells is defined by
the modeling workflow of the MagicGrid
framework. It is based on the best practices
of systems enginering and technical pro-
cesses defined in ISO 15288 (Morkevicius
et al., 2020).

MagicGrid Extensions for V&V
So far, the MagicGrid framework has

been applicable to the systems engineering
activities that belong to the left side of the
V model, to support the system develop-
ment all the way from stakeholder needs
elicitation to the high-level (logical) design
of system components. However, it does
not provide much information on how to
perform V&V activities.

Figure 2 illustrates how the framework
can be extended to support early V&V of
the system. This kind of V&V is carried out
before starting the implementation of the
system and can be very useful for detecting
issues that normally are not discovered un-
til the testing of the physical system begins.
The early V&V is applicable not only when
testing the system in realistic conditions
cannot be achieved (for example, space-
craft, satellite), but also when it is not
cost-effective.

Since the physical system does not exist
during the early V&V, its solution domain
model built by following the MagicGrid
framework serves as input to both activi-
ties. The solution domain model specifies a
precise logical architecture and high-level
(logical) design of the selected system
configuration, including user interface (UI)
mock-ups. Therefore, if it passes the V&V
against the system requirements and stake-
holder needs, the system can be considered
verified and validated as well.

Verification. The verification approach is
bottom-up: it is performed gradually from
the components’ level to the system level
(in this paper, the components’ level is con-
sidered the lowest level of detail containing
atomic elements of system structure).

The first iteration of verification can be
performed as soon as component models
are completed. Once these models pass the

verification against the component level
requirements, they can be integrated at the
subsystem level. It is important to note that
various design solutions can be proposed
for each component; more than one con-
figuration (or candidate solution) model
at the subsystem level can be produced.
The subsystem models can then be verified
against the subsystem level requirements.
After these models pass the verification,
they can be integrated at the system level.
As with the subsystem level, more than
one configuration of the whole system can
be built, which are subsequently verified
against the system level requirements. To
assess the alternative configurations and
choose the preferred architecture for the
physical implementation at each level of
detail, a trade-off analysis is performed
(Morkevicius at al., 2021).

The first iteration of verification can be
performed as soon as at least one of the
component models is completed. Once
these models pass the verification against
the component level requirements, they can
be integrated at the subsystem level. It is
important to note that various design solu-
tions can be proposed for each component;
more than one configuration (or candidate
solution) model at the subsystem level can
be produced. The subsystem models can
then be verified against the subsystem level
requirements. After these models pass the
verification, they can be integrated at the
system level. As with the subsystem level,
more than one configuration of the whole
system can be built, which are subsequently
verified against the system level require-
ments. To assess the alternative configura-
tions and choose the preferred architecture
for the physical implementation at each lev-

Validate

Verify

Verify

Verify

Stakeholder
Needs

MagicGrid for MBSE

V model for SE

Problem
Domain

Solution
Domain

Implementation
Domain

System Reqs

Subsystem Reqs

Component Reqs

System
UI Mock-Ups

System Test Cases

Subsystem Test Cases

Component Test Cases

Implementation

Subsystems
Arch. & Design

Systems
Architecture

Systems
Validation

System
Verification

Subsystems
Verification

Components
Verification

OpsCon &
Stakeholder

Requirements

Components
Design

Figure 2. MagicGrid extensions for V&V activities

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

54

Level N Model][State Machine] Level N Model [

Level N Model
«block»

stm

State 1

State 2

Signal 1

represents

represents

represents

Signal 1

Signal 2

Signal 2

Stakeholder Need

Main Dashboard

Id = “SN-N”

«requirement»

«refine»

Figure 5. Typical model for validation
using MagicGrid

el of detail, a tradeoff analysis is performed
(Morkevicius et al., 2021).

As defined by MagicGrid, the models
at different levels of system hierarchy are
usually created by different engineering
teams or even organizations. Therefore, the
verification of components and subsystems
may be performed in isolation from each
other.

The verification at each level of detail is
performed by utilizing test cases, as a single
test case enables users to check whether the
related model or its fragment satisfies the
relevant requirement. This information is
captured as the verdict of the test case.

A test case can be captured in the model
as SysML sequence, activity, or state ma-
chine. Each test case must be related to the
relevant system, subsystem, or component
level requirement by utilizing the «verify»
relationship. Early verification of the system
can be performed automatically by execut-
ing its models.

To perform early verification of the
system, the same verification approach can
be applied at each level of system hierar-
chy within the solution domain model. As
Figure 3 depicts, a typical SysML model for
performing early verification includes:

■■ Model of the system/subsystem/com-
ponent to verify. It is represented here
as the Level N Model block with the
state machine as its classifier behavior.
In the block name here and elsewhere
in the Figure 3, Level N can be replaced
with system, subsystem, or component.

■■ Requirement against which the
system/subsystem/component must
be verified. It is represented here as the
Level N Requirement with testing speci-
fied as its verification method.

■■ Analysis context. It is represented here
as the Level N Model Analysis block. The
analysis context block is responsible for
orchestrating the execution of the test
case and the behavioral model at the
particular level of system hierarchy. It
includes: (i) the model to verify/and (ii)
the Tester block which represents the

person who performs the verification
by sending external trigger(s) to the
appropriate model element. As shown
in Figure 3, that external trigger can be
a signal provided by a message as part
of the executable test case.

■■ Test Case to capture the steps for
verification. It is represented here as
the Level N Model Test Case test case
captured in the model as interaction
and displayed using the infrastructure
of the SysML sequence diagram. As
the test case is owned by the analysis
context block, the lifelines of the related
sequence diagram represent both blocks
that take part in this analysis block: (i)
the model to verify; and (ii) the Tester
block. The test case has a parameter
named verdict (it appears in the follow-
ing figure, within the related analysis
block), which is set to pass if the model
passes the steps of the test case, or to
fail if it does not. When the verdict is
pass, the model can be considered as
satisfying the related requirement.

Validation. Once the system configura-
tion model is verified, it is time to validate
it against stakeholder needs. As part of sys-
tem architecture, UI mock-ups can be used
for this. As Figure 4 shows, the UI mock-
ups (or UI prototype) can be produced by
utilizing the UI prototyping profile which

(in addition to the SysML profile) extends
the UML 2 metamodel to support stereo-
types for UI prototype modeling (Silingas
et al., 2010). Moreover, the UI prototyping
profile enables users to integrate the UI
mock-ups into the system architecture
model, that is, relate them to the SysML
model elements capturing relevant concepts
of system architecture. Standard SysML /
UML relationships, such as realization or
“trace,” can be used for this.

The UI prototyping profile is imple-
mentation-independent and includes a
minimal set of UI elements, along with
their properties for the most common UI
prototyping needs. These elements extend
certain UML meta classes, such as compo-
nent or class, and are grouped into separate
packages by type, as shown in Figure 4
(Silingas et al., 2010). Just like UML or
SysML elements, UI mock-up elements
can be semantically related to each other.
Element representations are taken from the
Java Swing external library. A user interface
modeling diagram to display them, is based
on the UI prototyping profile and created
using a typical workflow for creating the
domain-specific modeling environment as
presented in Silingas et al. (2009).

UI prototyping can be applied at various
stages of an engineering project. For
example, it can be used to facilitate the
problem domain analysis to communicate
with stakeholders. When applying the
MagicGrid, UI mock-ups can be used to
validate the system architecture. UI mock-
ups related to the elements of logical system
architecture within the solution domain
model must be related to the relevant stake-
holder needs, as well. As shown in Figure 5,
the «refine» relationship can be utilized
for this. UI elements are related to the

Level N Model Analysis Level N Model Test Case

Level N Model]

level N Model

Level N Model

Level N Requirement

Level N Model : Level N Model tester : Tester

Tester

«block»«block»

«block»

«testCase»

«satisfy»

tester

testResult : VerdictKind

Id = “SR-N”
Text = “The system /
subsystem / component
shall do smth.”

«verify»

«requirement»

«block»

values

«block»

stm

State 1
Signal 1

1: Signal 1

Signal 2

2: Signal 2

State 2

State 1

State 2

sd

[

Level N Model Test Case]

Figure 3. Typical model to perform early verification using MagicGrid

M2 (Metamodel)

M1 (User Model)

System Architecture UI Prototype

UI Prototyping ProfileUML «use»

«use» «use»

0..*

Figure 4. UI prototype modeling

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

55

architecture elements using the ‘represents’
metaproperty.

CASE STUDY
This part of the paper presents a case

study example that illustrates the proposed
approach. The modern car is a sophisticat-
ed system that holds many internal system
elements that intricately interact with each
other. The integration of different parts is
a vital activity; hence this system can be
recognized as a suitable example to demon-
strate the proposed system V&V method.

In the case study example, the car model
is developed using SysML language and
MagicGrid method and most of the model
creation activities are not disclosed. How-
ever, it is still important to understand the
structure of presented system of interest
(SoI) and its internal components. For this
reason, Figure 6 is used to display the car
structure.

Figure 6 shows an SoI structure that is
divided into five composition levels, begin-
ning from level zero that represents the car
as one unit, and ending at level four, that
characterizes the components of SoI. Due
to the extent of the modern car systems
and scope associated with them, it is not
possible to disclose all required systems
verification activities. For this reason, this
case study example analyzes a small subset
of internal car systems.

System Verification at Lowest Composition
Level

The application of the presented ap-
proach is started from the second level of
decomposition, depicted in Figure 6. At
this level, the drivetrain system is chosen
to be the target for system verification. This
vehicle system is an elaborate system on its
own and is composed of multiple internal
systems that could require undergoing
their own verification processes. In this

paper, the assumption is made that internal
subsystems of the drivetrain passed their
system verification activities on the third
and fourth levels of composition. For this
reason, our main attention is directed to the
verification of the drivetrain system.

For the drivetrain system, the transmis-
sion controller is one of the most import-
ant elements. Nowadays, the drivetrain
component is implemented with integrated
circuits, where software code is responsible
for the correct application of this part of the
vehicle. As reading and understanding soft-
ware requires specialized skills and knowl-
edge, it is a good idea to abstract it for a
wider audience and retention of knowledge.
The case study model accomplishes this by
analyzing transmission controller behavior
in the form of a SysML state machine dia-
gram, displayed in Figure 7 part A. Figure 7

part B shows a SysML state machine dia-
gram that describes how another drivetrain
component, clutch, behaves. Each of the
drivetrain system elements (Figure 6)
potentially could have a similar behavior
description but this case study example
overlooks that due to the extent related to
their analysis. Verification concentrates
on the clutch and transmission controller
systems.

For our purposes, the vehicle drivetrain
is identified as an automated manual type.
This system is a mix of automatic and
manual transmission types and has the
characteristics of both. For example, like
a manual transmission, the automated
manual transmission has a clutch compo-
nent that needs to be engaged during the
change of gears. However, in this type of
transmission, clutch engagement is done

0 Level
1st Level
2nd Level
3rd Level
4th Level

Composition Levels
«block»

Vehicle

«block»
Vehicle Speed Sensor

«block»
Electronic Lever Module

«block»
Engine Control Module

«block»
Engine Speed Sensor

«block»
Throttle Position Sensor

«block»
Wheel

«block»
Differential

«block»
Shift Fork

«block»
Clutch

«block»
Clutch Plate

«block»
Clutch Motor

«block»
Half Shaft

«block»
Selector Drum

«block»
Transmission Motor

«block»
Suspension

«block»
Interior

«block»
Drivetrain

«block»
Engine

«block»
Gearbox

«block»
Transmission Controler

«block»
PowerTrain

«block»
Power Source

«block»
Steering Wheel

«block»
Instrument Cluster

DTS SUS IS

DTS VSS WHS STWS GSS ICS4PSS

ECU MS GBS TCU DFS SDS TMS SFS CS

TPSESS CMPCS

AXS 24

bdd [Package] Structure [Structure_HightLevel]

Figure 6. Car structure displayed within a SysML block definition diagram

Figure 7 A. Transmission controller behavior description within a SysML state
machine diagram; B. Clutch behavior description within a SysML state machine
diagram

A

B

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

56

not by the driver but by the electrical motor
component of the drivetrain system. For
this reason, a verified system is required to
ensure that the control logic of the trans-
mission controller adheres to the correct
clutch operation in a timed manner.

To verify system behavior integration,
the proposed approach suggests creating
executable test cases. The test case should
define a priori system behavior. Failure of
the test case could potentially imply incom-
plete system behavior definition and at the
same time improper system verification at
this composition level. Figure 8 part A dis-
plays one the possible test case used for the
verification. Here, the test case checks that
driving mode changes on the transmission
controller system result in correct clutch
system behavior. To achieve this, the tester
sends an external stimulus “reverse” in a
message to the transmission controller ele-
ment. Upon acceptance of the message, the
transmission controller element changes
its states from “parking” to “reversing.” The
state change on the transmission controller
system needs to be propagated to the clutch
system in order to connect it mechanically
to the gearbox system and allow a drive
mode change for the drivetrain system. As
consequence, the clutch should also change
its state from “off ” to “connected.” Failure of
the lifeline represented element to be in the
required state denotes the failure of the test
case. This is verified with a state invariant
element in the case study system model.
Note that sequence diagram usage for the

test case definition is not the only available
possibility. Other model elements could be
used as well, although this would require
different test case checking techniques.

One potential limitation of this approach
is the need to manually define test cases.
Due to the many available driving mode
change permutations in the system model,
the presented test case is reduced to a lim-
ited set of driving mode changes (Figure 8
part A). However, for complete verification
of the drivetrain system, the model should
pursue all of them. Though we consider
this to be out of scope of our proposed
approach and we do not explore available
automatic test case generation methods
from SysML models.

Figure 8 part B introduces a verify relation
between a requirement and a test to show
a logical and traceable link, in accordance
to the proposed approach. As the proposed
method is of executable type, a block is re-
quired for orchestrating model execution. In

Figure 8 part B, the block “lowest level test
case conductor” achieves this by associating
the verified level SoI (drivetrain) and exter-
nal stimulus (tester) blocks.

The verdict of the test case verification
should be retained. This is achieved by
using a value property element (testResult)
in the presented system model. If it is
necessary to run multiple test cases for the
same SoI, several value properties should
be used for storing each test case verifica-
tion outcome. Lastly, multiple test case ver-
ification results could have different verdict
values and there could be a need for their
arbitration, hence the satisfy relationship
between the value property and require-
ment is presented as an option.

Figure 9 shows the usage of the instance
table to display multiple test case execution
attempts in the form of an instance ele-
ment. The “fail” value of the value property
“testResult” specifies a test case violation
and “pass” marks a successful run of it. In
our approach, “pass” signifies correct sys-
tem verification at this composition level.

System Verification at Intermediate
Composition Level

At the intermediate level of an SoI
structure, the case study example targets
the powertrain system, composed of two
subsystems: power source and drivetrain
(Figure 8). Here, the proposed verification
approach is repeated in the same way as in
the lowest system composition level. First
of all, a test case is defined using a SysML
sequence diagram (Figure 10 part A). This
test case checks that the drivetrain system
changes driving mode when the parameters
change on the engine system. Specifically,
the drivetrain system part transmission
controller should monitor the engine
throttle position and engine speed sensors
values. If monitored values comply with
the predefined drive mode change patterns
specified within the system requirements
(Figure 10 part B), then the drive mode
change should occur for the transmission
controller system. In the test case, the cor-
rect driving mode selection is achieved with
the state invariant element. Failure of the
state invariant results in the failure of the

Tester

Tester

Parking

Reversing

Idling

Automatic Driving

Off

Connected

Off

Connected

Off

Connected

tester : dT.TCU :
Transmission

Controler

dT.CS : Clutch

«block»

tester dT

Drivetrain
«block»

1: setRPM()

{100 ms}

{500 ms}

{100 ms}

{500 ms}

{100 ms}

{500 ms}

2: Reverse(pr=”R”)

3: Neutral(pr=”null”)

4: Automatic(pr=”N”)

sd [Test Case] Lowest Level Test Case [Lowest Level Test Case]

bdd [Package] Low Level Test Case

Lowest Composition Level
Test Case Conductor

testResult : VerdictKind
values

«block»

Lowest Level Test Case
«testCase»

«satisfy»

«verify»

Driving Mode Changes for
Clutch

Id = “1.2”
Text = “Clutch shall be
connected when drive
mode is changed ”

«requirement»

Figure 8. A. Second composition level test case description with SysML sequence
diagram; B. Test case linkage to requirement

A

B

Figure 9. Multiple test case execution results displayed in instance table

Name testResult#

lowest Level Test Case at 2021.10.14 16.30 fail1

lowest Level Test Case at 2021.10.15 11.19 fail2

lowest Level Test Case at 2021.10.21 13.03 fail3

pass4 lowest Level Test Cases at 2021.10.21 13.23

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

57

test case. Engine parameter changes are in-
voked by the external tester that sends syn-
chronous messages to the verified system
elements. Upon acceptance of the message,
the receiver calls a designated operation that
has a method description, which invokes
the required variable change in the model
and with operations we can reuse repeating
system variable change patterns.

In accordance with the presented
approach, requirements are connected
to the test case element for traceability
purposes and a block (intermediate level
test case conductor) is introduced for the
test case and SoI behavior orchestration.
For the execution results storage, a variable
is required, thus in a SysML model, a value
property (Figure 10 Part B) is used. As in
the lowest system composition level, the
pass of the test case execution denotes
successful system behavior verification
(Figure 9).

System Verification at the Highest
Composition Level

In the last part of the case study exam-
ple, the highest SoI composition level is
explored. At this level, a car is recognized as
a single unit and system verification should
be concerned with all vehicle systems and
their incorporation into one working entity.
The system verification procedure is repeat-
ed in the same way as before: definition of
the test case, connection of the test case to
requirements, executable model prepara-
tion and execution of it.

At the highest composition level, this
case study example explores how a driv-
er-invoked driving mode changes with the
electronic lever module result into a gear
change for the drivetrain system (Figure
11 Part A). As these two systems are on
different vehicle structures, it is important
to ensure their behavior synchronization
for proper system verification.

For the test case definition, a SysML
sequence diagram is used. Here, the state
invariant is an element that confirms the
test case correctness, because the system
incapacity to be in the required state
should result in test case failure. As before,
related requirements are connected to
the test case for traceability purposes and
a block responsible for the test case and
SoI behavior coordination is introduced
(Figure 11 Part B).

Due to the large number of systems asso-
ciated with modern cars, in this paper it is
impossible to display all test cases that are
required for complete car system verifica-
tion. For this reason, the case study sample
limits system verification to the successful
pass of the test case, displayed in Figure
11 Part A. However, a car system model
should cover all required test cases for the
proper system verification.

Additionally, UI elements could be

Figure 10. A. Intermediate composition level test case description within SysML sequence diagram; B. Intermediate composition
level test case linkage to requirement

125

75

50

25

0
0 20 40 60 80 100

100

THROTTLE POSITION, %

VE
HI

CL
E S

PE
ED

, K
M

/H

1–2

3–4

2–1

4–3

2–3

4–5

3–2

5–4

Tester
tester : pT.DTS.TCU :

Transmission
Controler

pT.PSS.ECU.TPS
: Throttle position

Sensor

pT.PSS.ECU.ESS :
Engine Speed

Sensor

Parking

Reversing

Idling

Automatic Driving

FirstA

SecondA

ThirdA

FourthA

FifthA

Automatic Gear Upshift change
depending on Engine Speed

Id = “4.1.1.2”
Text = “Automatic gear upshift
shall be completed when
engine speed is higher than
2500 revolutions per minute ”

«requirement»

Intermediate Level Test Case
Conductor

testResult : VerdictKind
values

«block»

«block»
tester pT

Tester Drivetrain
«block»

bdd [Package] Intermediate Level Test Casesd [Test Case] Intermediate Level Test Case [Intermediate Level Test Case]

Lowest Level Test Case
«testCase»

Automatic Gear Change
Id = ‘4.1.1.1”
Text = Automatic gear change shall be completed according to the gear
change pattern displayed in the image below:

«requirement»

«satisfy»

«satisfy»

«verify»

«verify»

{500 ms}

{500 ms}

{500 ms}

{500 ms}

{500 ms}

{500 ms}

{500 ms}

1: Reverse(pr=”P”)

2: Neutral(pr=”null”)

3: Automatic(pr=”N”)

4: setRPM1()
5: setTh1()

8: setTh2()

11: setTh3()

14: setTh4()

7: setRPM2()

10: setRPM3()

13: setRPM4()

6: setSpeed1()

9: setSpeed2()

12: setSpeed3()

14: setSpeed4()

A B

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

58

Tester
driver : vehicle.DTS.DTS

TCU : Transmission
Controler

vehicle.DTS.PSS.
ECU.ESS : Engine

Speed Sensor

vehicle.SUS.VSS.
 : Vehicle Speed

Sensor

vehicle.IS.GSS
: Electronic

Lever Module

Parking

Reversing

P

R

N

N

Idling

Idling

Automatic Driving

Driving Auto Mode

Manual DrivingManual Driving

Driving Manual Mode

FirstA

FirstM

Tester
«block»

Vehicle
«block»

driver vehicle

bdd [Package] Highest Level Test Casesd [Test Case] Highest Level Test Case [Highest Level Test Case]

testResult : VerdictKind
values

«block»

Highest Level Test Case
«testCase»

«satisfy»

«verify»

Drive Mode Selection
Id = “6”
Text = “Driving mode
change with the lever
module shall result in the
same change for the
drivetrain system”

«requirement»

{500 ms}

{500 ms}

{500 ms}

{500 ms}

{500 ms}

3: Reverse(pr=”null”)

4: Neutral(pr=”null”)

5: Automatic(pr=”null”)

6: Neutral(pr=”null”)

7: Manual(pr=”null”)

1: setRPM1()
2: setParkSpeed()

Highest Composition Level Test
Case Conductor

A B

Figure 11. A. Highest composition level test case description with SysML sequence
diagram; B. Highest composition level test case linkage to requirement

utilized for coordinating different systems
behaviors and as a tool for validating a sys-
tem model. Figure 12 Parts A and B denote
UI usage in the case study example. Figure
12 Part C shows the necessity for displaying
the correct gear in the instrument cluster
when a driver changes the driving mode
with the help of an electronic lever module
in the form of a SysML requirement.
The presented UIs are used to abstract
and visualize car instrument cluster and
electronic lever module systems. A “refine”

relationship is employed to link them to
the requirement. Since UIs are interactive
windows during real-time model execution,
they can display system model variables,
states, or other element values. Therefore,
a model user can employ them as a means
for the system model validation. In the
case study sample, the failure of displaying
the correct drive mode during the model
execution signifies denoted stakeholder
requirement validation failure.

Lastly, UIs use for systems validation

can be deployed in conjunction with the
test case verification or as an alternative.
However, it should be noted that this is a
less rigorous approach compared to the test
case verification method and is dependent
on the experience of the modeler.

CONCLUSIONS AND FUTURE WORKS
Analysis of related works revealed that

there are only a few scientific researchers
in the area of V&V in the MBSE environ-
ment. There are some MBSE methodologies
addressing V&V, such as OOSEM and
IBM Harmony; however, none of them
clearly, step-by-step, define V&V element
relationships to the system architecture and
requirements in the different layers of the
hierarchy of system elements.

The proposed approach clearly defines
the application of SysML to model-based

A B C
Figure 12. A. GUI for instrument cluster; B. GUI for electronic lever module; C.
Requirement stating the need of displaying drive mode in instrument cluster

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

59

REFERENCES
■■ Bankauskaite, J, A. Morkevicius and R. Butleris. 2021. “Model-

Based Evaluation of the System of Systems Architectures Used
to Perform Trade Studies and Sensitivity Analyses.” IEEE
Access 9: 114609-114621.

■■ Debbabi, M, F. Hassaïne, Y. Jarraya, A. Soeanu, and L.
Alawneh. 2010. “Verification and Validation in Systems
Engineering: Assessing UML/SysML Design Models.”
Heidelberg, DE: Springer.

■■ Friedenthal, S, A. Moore, and R. Steiner. 2014. A Practical
Guide to SysML (3rd Edition). Amsterdam, NL: Morgan
Kaufmann OMG Press.

■■ Hazle, A., and J.Towers. 2020. “Good Practice in MBSE Model
Verification and Validation.” INCOSE UK Annual Systems
Engineering Conference (ASEC), Virtual.

■■ Hoffman, H. P. 2011. “Systems Engineering Best Practices with
the Rational Solution for Systems and Sofware Engineering.”
Deskbook, IBM Software Group, viewed 8 November 2021.
https://jazz.net/library-content/wp-content/uploads/2020/11/
ibm_rational_harmony_deskbook_rel_4.1.pdf .

■■ INCOSE. 2015. Systems Engineering Handbook: A Guide for
System Life Cycle Processes and Activities, San Diego, US-CA.

■■ INCOSE UK Model-Based Systems Engineering Working
Group. 2019. Model Verification & Validation, viewed 1
September 2021. https://www.incosewiki.info/Model_Based_
Systems_Engineering/index.php?title=Model_Verification_and_
Validation .

■■ ISO. 2015. Systems and software engineering — System life cycle
processes, (ISO/IEC/IEEE 15288:2015), Geneva, CH.

■■ Mazeika, D., A. Morkevicius, and A. Aleksandraviciene. 2016.
“MBSE Driven Approach for Defining Problem Domain.”
11th Systems of Systems Engineering Conference (SoSE),
Kongsberg, NO, 12-16 June.

■■ Morkevicius, A., A. Aleksandraviciene, A. Armonas, and G.
Fanmuy. 2020. “Towards a Common Systems Engineering
Methodology to Cover a Complete System Development
Process.” Paper presented at the 31st International Symposium
of INCOSE, Virtual, 20-23 July.

■■ Morkeicius, A., A. Aleksandraviciene, D. Mazeika, L.
Bisikirskiene, and Z. Strolia. 2017. “MBSE Grid: A Simplified
SysML-Based Approach for Modeling Complex Systems.”
Paper presented at the 27th Annual International Symposium
of INCOSE, Adelaide, AU, 15-20 July.

■■ OMG 2019a. Systems Modeling Language (OMG SysML)
Version 1.6, Needham, MA, viewed September 2021. https://
www.omg.org/spec/SysML/About-SysML/ .

■■ OMG 2019b. UML Testing Profile 2 Version 2.1, Needham, MA,
viewed November 2021. https://www.omg.org/spec/UTP2/2.1/
About-UTP2/ .

■■ Silingas, D., and R. Butleris. 2009. “Towards Customizing
UML Tools for Enterprise Architecture Modeling.” IADIS
International Conference Information Systems, Barcelona, ES,
25-27 February.

■■ Silingas, D., S. Pavalkis, R. Vitiutinas, and L. Nemurate. 2010.
“Integrating GUI Prototyping into UML Toolkit.”

■■ Silingas, D., R. Vitiutinas, A. Armonas, and L. Nemuraite.
2009. “Domain-Specific Modeling Environment Based on
UML Profiles.” Conference proceedings of the 15th Interna-
tional Conference on Information and Software Technologies,
Kaunas, LT, 23-24 April, pp. 167-177.

■■ Stevenson, D., K. Vine, and J. Towers. 2018. “Verification and
Validation of a New Type of Railway Signal using MBSE and
Simulation.” INCOSE UK Annual Systems Engineering Con-
ference, Bedfordshire, UK, 20-21 November.

ABOUT THE AUTHORS
Aurelijus Morkevicius. Aurelijus has 17 years of experience

in systems and software engineering. Currently, he is a senior
manager of industry business consultants for cyber systems
engineering in Dassault Systems, CATIA brand. His areas of
expertise are model-based systems and software engineering,
as well as defense architectures (DoDAF, NAF, UAF). Aurelijus
works with companies such as Airbus, BAE Systems, Boeing,
Deutsche Bahn, Ford, MITRE, ZF and others. Aurelijus is
INCOSE ASEP and OMG Certified UML, Systems Modeling and
BPM professional. He is also the co-chairman and the leading
architect for the current OMG UAF standard development group.
Aurelijus is also the main author of MBSE Grid framework. He
is representative of Dassault Systemes in INCOSE and NATO
Architecture Capability Team (ACaT). Aurelijus has delivered
multiple presentations and tutorials in INCOSE events worldwide,
including international workshop and international symposium.
Aurelijus received his PhD in information systems engineering
from Kaunas University of Technology in 2013. Aurelijus is a
professor of practice in the same university where he teaches a
course on enterprise architectures, author of multiple articles, and
a speaker in multiple conferences.

Aiste Aleksandraviciene. Aiste holds the position of industry
business consultant for cyber systems engineering at Dassault
Systèmes, CATIA brand. Aiste takes responsibility for educating
Dassault Systèmes clients on the three pillars of MBSE: language
(SysML), method (MagicGrid), and tool (CATIA Magic
software and integrations). She provides trainings, gives tool
demonstrations, and participates in providing custom solutions.
Aiste also works on training material and writes papers. She is a
speaker at multiple MBSE conferences and other public events.
Aiste holds a master’s degree in information systems engineering
from Kaunas University of Technology (Lithuania). Also, she is
an OMG® Certified Systems Modeling Professional (OCSMP) and
INCOSE Associate Systems Engineering Professional (ASEP).

Zilvinas Strolia. Zilvinas is an industry business consultant
with Dassault Systemes and has been in this role since 2015.
He is responsible for delivering various modeling solutions and
consultancy to CATIA Magic clients. Zilvinas specializes in
model-based systems engineering (MBSE) with a unique focus on
executable models. Zilvinas holds a Master’s degree in economics
and Bachelor’s degree in electronics engineering from Kaunas
University of Technology. He is an OMG Certified Systems
Modeling (OCSMP) and INCOSE Associate Systems Engineering
Professional (ASEP).

V&V in the context of the MagicGrid
methodology. The applicability of the
approach is demonstrated on the real-life
vehicle model at every level of the hierarchy
of system elements. Moreover, the
approach uses pure SysML, without adding
additional complexity by extending the

standard language. Should it be necessary,
organizations applying the approach can
extend the proposed approach to support
their required terminology.

A modern car (or any other current
system) has a substantial complexity
associated with it. Manual test case creation

could be a laborious task that could
potentially lead to inadvertent mistakes in
the definition of the test case. Therefore,
it is important to address it beforehand
when verifying systems using the proposed
approach.  ¡

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

60

INTRODUCTION

  ABSTRACT
Model-based systems engineering approach is increasingly used to manage the complexity of modern systems and to reduce
costs of their development. In the aerospace industry, modelling and simulation is not only a cost-effective verification and
validation strategy where test rigs and flight tests are far more expensive but also is increasingly used in the certification process.
Nevertheless, as with any digital artefact, if the models aren’t configured and traceability isn’t assured, then the models are not of
much use. Configuration management comes into play as a key discipline to enable the use and maintenance of the models. This
paper explores the use of configuration management for modelling and simulation in an aerospace setting, with a specific example
involving landing gear and its surrounding systems.

Configuration Management
for Model Based Systems
Engineering — An Example
from the Aerospace
Industry

Adriana D‘Souza, adriana.dsouza@airbus.com; and Phanikrishna Thota, phanikrishna.thota@airbus.com
Copyright © 2022 by Ariana D‘Souza and Phanikrishna Thota. Permission granted to INCOSE to publish and use.

The main purpose of this paper is
to emphasize the rigorous use of
configuration management (CM)
in all aspects of models and the

resulting analyses that will form the basis
for future “digital twins” (virtual represen-
tations of the physical product that repli-
cate not only the architecture but also the
behavior of the real aircraft to the required
degree and can be interchanged seamlessly
in part or whole of the real aircraft). We do
this by presenting two real-world examples
where we summarize the lessons learnt.
This paper is organized as follows: a brief
overview of configuration management and
its principles are discussed in the intro-
duction section followed by two real-world
examples where configuration management
principles have been applied to modelling
processes with varying impact on product
certification. The paper concludes on the
usage of CM in the future where modelling

and simulation will be used more exten-
sively to perform verification & validation
(V&V) and certification.

Mathematical models have been used in
engineering, especially for V&V through
simulation and proof of concepts for quite
some time now but model-based systems
engineering (MBSE) is a relatively new
subject to the aerospace industry.

So, what do we mean by the word model?
There are many definitions out there but
here are some definitions in the context of
systems engineering (SEBoK, 2020):

■■ A simplified representation of a system
at some particular point in time or
space intended to promote understand-
ing of the real system. (Bellinger 2004)

■■ A physical, mathematical, or otherwise
logical representation of a system, entity,
phenomenon, or process. (DoD 1998)

■■ An abstraction of a system, aimed
at understanding, communicating,

explaining, or designing aspects of
interest of that system (Dori 2002).

We prefer the first and last definitions
because they stress the fact that a model
is a simplification/abstraction of reality as
we more often than not can’t replicate the
system of interest to the nth detail. So, the
process of modeling is to see which fea-
tures/characteristics are key to be described
and in the words of Brian Greene (2011)
“It’s the art of knowing what to ignore.”

Another part of modelling and simulation
is the concept of model-based engineering
(MBE) where models are used to investigate
the behavior of system-specific (for example,
landing gear, fuel, flight controls, etc.)
components and their integrations into the
larger context of the aircraft. Typically, MBE
uses specific solvers provided by a variety of
commercial and business-owned tools that
simulate a particular type of physics using

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

61

variable step integration methods. Especially
in the development phases of a product such
as an aircraft or system, MBE suggests the
use of models (where needed on an ad hoc
basis) to assist the development process, but
not as a master.

On the other hand, model-based systems
engineering (MBSE) is defined as “the
formalized application of modelling to
support systems requirements, design,
analysis, verification, and validation
activities beginning in the conceptual
design phase and continuing throughout
development and later life cycle phases” by
the INCOSE Systems Engineering Vision
2020 (INCOSE, 2007).

The idea of MBSE is that we not only use
models, but we use them in a consistent
way in conjunction with requirements,
V&V data, etc. throughout the lifecycle
of the system/product/service. The
fundamental objective is to ensure that
different stakeholders of the system view
the basic functionality, interfaces, and
requirements to be correct and consistent.
In order to use these views legitimately
within the aircraft development and to
ensure that the resulting artefacts can be
used in the certification process, a robust
traceability platform is needed, and this
requires configuration management.

Configuration management. CM
origins have roots in a widely spread story
about a missile project (Gonzalez 2012):

When a successful demonstration was
finally made and the projectile hit its target,
the buyer said: ‘build me 100 more’, the
industry found themselves in the following
dilemma:

■■ Their prototype was expended…
■■ They did not have adequate records of
part number identification, chronology
of changes, nor change accomplish-
ment. Technical publications did not
reflect all the various changes...

■■ ... it was obvious that a second success
could not be guaranteed, nor an identi-
cal article produced.

Therefore, CM as a formal management
approach was developed by the US Air
Force for the US Department of Defense in
the 1950s as a technical management disci-
pline for hardware material items – and it is
now a standard practice in virtually every
industry (Gonzalez 2012).

So, according to EIA 649 Configuration
Management (CM) is defined as a technical
and management process applying appro-
priate processes, resources, and controls, to
establish and maintain consistency between
product configuration information, and the
product. (SAE, 2019).

CM today identifies five main activities
(ISO 2003) and (SAE, 2019):

■■ Configuration management plan-
ning – over the life cycle of a product is
essential to achieving effective, predict-
able, and repeatable CM processes.

■■ Configuration identification – addresses
the composition of configuration infor-
mation, how each document, product,
and unit or group of units of a product
are uniquely identified (identifiers);
how relationships are maintained in
product structures; how elements of the
configuration are verified and released;
how the product configuration and
components of it is/are baselined for
change management; how interfaces
are defined and managed; and how
Configuration Items (CIs) are assigned/
designated.

■■ Change control – includes managing
both changes to and variances from the
approved product configuration infor-
mation, using a systematic, measurable
process. The configuration change man-
agement function applies to all types of
products and all program phases.

■■ Configuration status accounting – con-
sists of the recording and reporting
of information needed to trace and
manage a configuration effectively by
providing information and process
status, as well as CM process perfor-
mance data. The purpose of CSA is to
capture, record, retrieve and report
status and performance information
about the product under configuration
management and make the information
accessible to support program/project
activities as needed.

■■ Configuration audit – establishes that:
•	 Appropriate CM processes are in

place and that they are effectively
operating to maintain consistency

between the product and its product
configuration information through-
out the product life cycle.

•	 The approved product configuration
information is complete, accurate
and current to produce the product,
and applicable operation and main-
tenance instructions, training, and
spare and repair parts.

•	 The physical, functional, and inter-
face requirements, defined in the
approved product definition infor-
mation, are achieved by the product.

Some of today’s standards that describe
the requirements for CM are the ISO
10007, EIA 649 C, EN 9100 and, in the do-
main of the civil aerospace industry, EASA
and FAA regulation, as well as recommend-
ed practice such as specified in ARP4754.

CM FOR MBSE
Systems engineering addresses complex-

ity of systems by decomposing them into
several subsystems etc. In the version 3.2 of
the INCOSE Handbook (INCOSE 2012) we
have an example of such a decomposition,
see Figure 1.

The product breakdown structure (PBS)
is a key part of the development as it
identifies “how” a particular functionality is
implemented within the final product. The
PBS along with its links to the functional
decomposition give the impact assessment
in case of failures. In the example shown
above the breakdown is shown with some
configuration items (CI).

A CI is defined as:
■■ any portion of hardware, software or
composite item at any level in the sys-
tem hierarchy designated for CM. A CI
has defined functionality, is replaceable

HWCI
CSCI

Hardware Configuration Item
Computer Software Configuration Item

IS Interface Specification

System

Element

HWCIISCSCI

ISCSCI HWCI HWCI HWCI

HWCI

HWCI

ElementElement

ISCSCI

Figure 1. Example project specification tree (INCOSE. 2012)

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

62

as an item, has unique specification,
and its form, fit and function is under
formal control (Wiley 2015).

■■ an entity within a configuration that
satisfies an end use function. Configu-
ration: interrelated functional and phys-
ical characteristics of a product defined
in product configuration information
(ISO 2003).

■■ a product, allocated components of a
product, or both, that satisfies an end
use function, has distinct requirements,
functionality and/or product relation-
ships, and is designated for distinct
control. (SAE 2019).

Now, what we define as a configuration
item is an interesting debate and Steve Eas-
terbrook from CMPIC wrote a white paper
(Easterbrook 2016) that reflects the debates
around this topic. According to him a
document can’t be a CI, but what about a
model? Some of the definitions above are
clear that the CI must be a portion of the
product; others are happy for it to be a
characteristic linked to the product.

The models that are referred to in this
paper are associated with a specific product,
the landing gear of an aircraft and corre-
spond to a real-world example. The aircraft
decomposition in the aerospace industry
has been standardized for the benefit of
easier maintenance by the ATA standard
starting with ATA 100 then the ATA Spec
2200 and most recently the S1000D.

The landing gear is defined as ATA
chapter 32 and then it further decomposes
in the following sub-chapters:

➞	 00 General
➞	 10 Main Gear and Doors
➞	 20 Nose Gear and Doors
➞	 30 Extension and Retraction
➞	 40 Wheels and Brakes
➞	 50 Steering
➞	 60 Position Indication and Warning
➞	 70 Supplementary Gear.

So, we start having the first level of de-
composition of an aircraft (A/C) already by
the standards, then we further decompose
the A/C in equipment and software and
link them back to the ATA section/subsec-
tion they belong to.

Modelling for the A/C and subsequently
landing gear links to the systems that are
put on the A/C. Some models are even
being used to simulate the behavior of A/C
components for the training of pilots so they
need to be an accurate representation of the
equipment/system they are modelling.

In the next section we will look at two
different real-world examples of modelling
within the landing gear domain and how
configuration management was performed
(or lacked) and draw lessons learned and

potential steps for the future. In the two ex-
amples below, an industry standard MBSE
process covering a seamless integration
of operational, functional, logical, and
physical elements is not followed. In these
examples, the use of the term MBSE is
limited to the management and integration
of domain-specific models into a unified
aircraft model and a manual traceability
to requirement management systems, for
example, DOORS. The models, however,
are built and change-managed using an
internal model management process that
becomes part of the company’s business
process and is certified by the authorities.
Further details about this model man-
agement process where a single platform
is used to specify, build, verify, validate,
change and store models with complete
traceability to the aircraft and system re-
quirements is defined in the next section.

VIRTUAL IRON BIRD FOR CERTIFICATION OF
THE AIRCRAFT HYDRAULIC SYSTEM

Long before an Airbus jetliner takes
to the skies, the flawless operation of its
electrics, hydraulics, and flight controls is
meticulously confirmed with the help of
a giant test rig nicknamed the “Iron Bird.”
(IB) shown in Figure 2 (Airbus 2017).
Building, operating, and maintaining an
Iron Bird is expensive and amounts to
millions of Euros during the development
of the aircraft and beyond.

The sheer cost of operating the physical
iron bird combined with the push towards
a more digital future triggered an oppor-
tunity to build a virtual iron bird. A virtual
iron bird would not only optimize the costs
but also maintain the same rigor in testing.
The virtual iron bird would be a digital
equivalent of the physical iron bird in all
sense and purposes. It will therefore be a
representative of the actual A/C within the
margins identified at the beginning of the
project and which are also agreed with the

aviation authority. In the past NASA looked
at similar concepts for spacecraft repairs
and maintenance (NASA 2004).

The Airbus A350 model version –900
aircraft (A/C) has a physical iron bird to
achieve the integration tests of its hydraulic,
electric, flight control system, and other
transverse systems. These are necessary to
cover verification and validation objectives
in the frame of the A/C development life
cycle.

The longer version of this A/C, the
–1000 version, was considered a challenge
in terms of the upgrade of the physical
iron bird from the previous version A/C,
–900 version. Therefore, it was decided to
cover the verification and validation of the
systems requirements mentioned above by
several alternative test means including a
virtual iron bird (VIB).

Test means for the -1000 A/C version
included:

■■ Physical modifications of the actual
iron bird

■■ The real-time virtual iron bird -1000
■■ The co-simulation platform related to
the non-real time modelling

■■ Flight tests.

For developing a virtual iron bird that is
a true image and functionality as the physi-
cal one it made sense to develop the virtual
iron bird corresponding to the existing
physical iron bird from the original model,
the –900. This allowed us to test the virtual
iron bird against the physical one.

Once the virtual iron bird for the -900
was developed and tested the work on the
–1000 virtual iron bird could start. As there
was no physical iron bird for this version
the development of the virtual one followed
the traditional method of injecting small
changes to the validated –900 virtual iron
bird to bring it to the desired configuration
(mainly piping modifications).

Figure 2. A full-scaled test rig nicknamed the “Iron Bird.” (Airbus 2017)

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

63

The –1000 virtual iron bird was integrat-
ed onto the flight simulators of the aircraft
which have real avionics inputs but virtual
engines and landing gears.

Even if the virtual iron bird results were
used for the certification process along-
side the flight test campaign its objective
is extended to support safety of flight and
development campaigns. even outside the
type certification. It will also be used to
perform integration tests and validate the
sizing of the A350 –1000 hydraulic circuit.

As shown in Figure 3, the virtual iron
bird was made up of several models that
represented the shared resource of the hy-
draulic architecture and its corresponding
consumers, such as landing gear systems,
flight controls, and high lift systems. Here,
the current aircraft refers to the aircraft
for which a real iron bird is built to the
full scale and the data from which is used
to validate the models. The extended
aircraft refers to the variant of the current
aircraft with a higher payload capacity
and extended range. Figure 4 shows an
illustration of the actual versus virtual iron
birds. Specifically, the virtual iron bird is a
combination of detailed (Amesim model)
and real-time (Simulink model) hydraulic
models built to investigate both the dy-
namic and steady-state nature of the system
under consideration. While the Amesim
models are integrated using the tools spe-
cific functionalities, the real-time models
for various systems are integrated as a C
code and business-owned platforms. The
combination of models can also be referred
to as a “digital twin” or “virtual twin” of the
physical and real iron bird.

One important aspect of building, ana-
lyzing, and comparing the virtual iron bird
was to ensure a rigorous traceability exists
between the equipment on the aircraft,
equipment on the physical test rigs, and
the corresponding equipment models in
the virtual iron bird model. This means a
comprehensive configuration management
of both the equipment, and the models had
to be in place to demonstrate that the repre-
sentativity is fully achieved in all aspects of
the systems under test.

In this paper we focus on the configura-
tion management of the models but not the
physical equipment, as the latter is part of
the traditional aircraft development process
that is mandatory for certification, oper-
ation, and maintenance. Specifically, the
configuration management of the models
was achieved using a “library approach,”
where the system under test is an assem-
bly of subsystem models. These subsys-
tem models form a library that is version
controlled with a one-to-one relationship
with the real equipment. The configuration
management was extended to the analyses

that were carried out on the virtual iron
bird to ensure a seamless comparison with
the flight test campaign.

In the sections below we will look at how
configuration management was established
for the models in this example.

Configuration management planning
Configuration management processes

are standardized inside the company for the
development of the aircraft as the system
of interest. However, when it comes to the
development of the associated models, etc.,
this management is less strict and more
heterogeneous. For the models which will
go on the flight simulators, the specifying,
building, compiling, sharing, integrating,
and changing is performed through a com-
pany internal standard. This standard en-
sures that the models have clear traceability
to the software and hardware items and link
to a particular airline and each A/C.

In the case of the models used for the
virtual iron bird, the configuration man-
agement planning performed for the virtual
iron bird was firstly a development from

Landing Gear model validated by physical test rig

High-lift model validated by physical test rig

Flight control model validated by Iron Bird

Extended Landing Gear model validated by physical test rig

Extended High-lift model validated by physical test rig

Extended Flight Control model validated by Iron Bird

The full virtual rig is validated against extended aircraft

The full virtual rig is validated against current aircraft

Hydraulic
Model

Validated by
Iron Bird

Hydraulic
Model

Ex
te

nd
ed

 Ai
rcr

af
t

Cu
rre

nt
 Ai

rcr
af

t

N
ew

 E
qu

ip
m

en
t

Ex
tra

po
lat

ed
 m

od
el

s
To

 re
pr

es
en

t t
he

ex
te

nd
ed

 ai
rcr

aft

Figure 3. Systems overview of the iron bird

Figure 4. Actual iron bird versus virtual iron bird

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

64

scratch of the models for the –900 version
and then incremental development/changes
of the –1000. However, no formal CM Plan
was issued for this model development just
the CM strategy was outlined in various
other deliverables.

Configuration identification
The formal identification of configu-

ration items (CIs) is key. In this case the
CIs were the models that represented the
decomposed logical/physical system/equip-
ment of the aircraft and are drawn from
the PLM corresponding to the full aircraft.
The CIs in the modelling world correspond
to the system that is being modelled and
its elementary equipment also form CIs
in their own nature. A software-specific
approach of versioning the CIs was imple-
mented that generated a unique identifier
that was linked to the actual software or
physical item they were simulating.

As part of the standard model develop-
ment process a whole series of modelling
artefacts are created that include, documen-
tation, model libraries, executable code,
test scripts, analyses, and change requests.
Therefore, each CI is allocated its associated
set of artefacts and linked to the unique
identifier that was generated earlier as
part of the CI identification. Starting from
the modelling requirements that include
requirements of both functional and
performance nature, the process follows to
specifying the model to satisfy the require-
ments and its interfaces to other systems.

The model is given an ”ID” (Pro-
gramme_AirbusStandard_System_subsys-
tem_ver_X_Y_Z) which is a concatenation
of the program, Airbus standard, system
details, and version that is consistent with
the official Airbus aircraft simulation mod-
els data bank. The version in the naming
convention is made up of three separate
parts representing the type and severity of
change (documentation versus correction
versus evolution of the model).

Change control
As iterated above, the key to successful-

ly creating the virtual iron bird (VIB) for
the –1000 version from the –900 one was
heavily reliant on successfully embodying
the required changes to the system in a
robust manner. For this, a manage model
change process was used. The users (VIB,
other test platforms, design office, integra-
tors, etc.) of the delivered models raised
change requests either as a correction or an
evolution for the model but the change had
to be approved by internal modelling man-
agement authority along with the relevant
design office and model developers. It was
then analyzed and planned for implemen-
tation. The model is then executed, tested,

and released and finally integrated into the
platform.

Create model change request: Model
change request is created to identify any
new need, evolution, or problem during
plan simulation model(s) development task.
The model coordinator creates a change
request for any system evolution possibly
impacting the model. A recording of

model inputs and outputs is attached
to the request identifying a functional
problem.

Approve model change request: The
model coordinator obtains approval and
commitment of the model developer to
take into account the change request for
the next version during plan simulation
model(s) development task. New user’s
needs are identified in this process.

Analyse and plan model change: The
model developer describes and plans a
technical answer to the problem/need
during plan simulation model development
and updates model delivery

schedule according to the planned devel-
opment.

Execute, test and release model change:
The model developer modifies model items,
following a change request indication,
and implements associated verification
(non-regression tests, dedicated verification
tests). The model developer releases model
change(s) identified in model delivery. This
task is performed during develop shared
simulation model.

Validate model change: Change request
initiator provides the validation status of
the change.

Configuration Status Accounting
As iterated in the previous section, links

between the model evolution/correction to
the product configuration items were es-
tablished to record, approve, or disapprove,
and coordinate changes to configuration
items after formal establishment of their
configuration identification. Configuration
status accounting monitors the embodi-
ment of changes and link with the physical
product thus supporting the verification
and validation of the models and subse-
quently of the two virtual iron birds.

The model verification plan is created
before developing the model. This plan
contains a detailed list of tests that need
to be carried out on the model to ensure
that it satisfies the requirements listed from
the stakeholders. A matrix of compli-
ance is produced with status “compliant,”
“non-compliant” and “partially compli-
ant,” against the requirements. A model
verification report is created along with
the model delivery file that includes the
summary of all the changes made and the
applicable sections. The model delivery file

is also the model description along with
the parameters used in order for the end
user to trace the modelling artefacts to its
origins In addition to these documents, a
whole array of change-related documenta-
tion exists that is applicable to the feedback
on the model. For example, a model change
request is raised against a model during its
usage. This change request is then reviewed,
approved, or declined, and the version
controlled for traceability. If approved, the
model is changed accordingly for the next
delivery. All of these documents, along with
the model are signed off by the relevant
internal authorities, especially in light of
the configuration management.

Configuration audit
The process was deployed to all impact-

ed parties and internal audits must have
been performed but none were performed
during the time on this example.

NEW EXTENSION & RETRACTION SYSTEM
In this section we present a case where

system certification could not be achieved
due to the lack of rigorous CM implemen-
tation. Specifically, we highlight the defi-
ciencies in the five main activities that are
necessary to ensure a robust CM process.

The extension & retraction system is
part of the landing gear (LGERS), which
functions to reduce the overall drag on the
aircraft by retracting the gear into the bay
after take-off. To perform the V&V and
certification activities related to this system,
a physical test rig is built along with the
accompanying hydraulic architecture of the
shared resources. Typically, detailed models
of the system are built and validated with
the data from the physical rig and with the
bench test data from the equipment suppli-
ers. These validated models are then used
for performance analysis and risk mitiga-
tion for first flight.

The type certification standard of the
system design is replicated in the physical
test rig and used to qualify the system with a
standard set of tests. This, however, becomes
quite expensive to replicate for every major
modification of the system or its equipment.
Modelling and simulation is seen as an
alternative to physical tests from financial
and time-to-market perspectives. As the
representative models already exist that
represent both steady-state and transient
dynamics of the system, this was deemed as
a viable alternative to physical tests.

However, during the V&V and qual-
ification planning a major hurdle was
identified to this approach. Specifically,
lack of rigorous configuration management
in place for the existing models, however
detailed and representative they were, was
a blocker. This was mainly because the

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

65

initial intention of building and validating
these models was to use them for design
analysis rather than to claim credit in the
V&V and certification process. This put the
whole plan into question although there
was enough confidence that the models are
a true and sufficient representation of the
existing architecture.

Configuration Management Planning
The models that formed part of the de-

velopment and performance analysis of the
new LGERS were always used on an ad hoc
basis and only stored as results rather than
a planned version controlled platform that
had a unique relationship to the product
being modelled. Therefore, no planning
was done to ensure a rigorous configuration
management. Moreover, the performance
models created during this program were
not initially intended to be shared and
hence the standard Airbus procedure for
shared simulation models has not been
followed. This shows that identifying the
purpose of the models before creating them
is crucial to make the best use of them in
the future.

Configuration Identification
The models themselves were identified

as configuration items but not the corre-
sponding sub-models that represent the
equipment. Therefore, no rigorous config-
uration identification has been performed.
For example, the naming convention used
was just to identify a change in the model
but no details as to what the change specifi-
cally is and its severity.

Change Control
A clear one-to-one relationship between

the changes in the models representing
the components of the system and the
real-world components was not truly estab-
lished. Moreover, no change control record
was managed with the rigor mentioned in
the earlier section with the change request,
approval, and validation as part of the
process. Some of the change control was
done through emails rather than a traceable
platform that can be fully audited.

Configuration Status Accounting
The models are version controlled

through a standard version control
platform. Each version is given a number
that would be traced for the changes
made to the model. However, the details
of each equipment and the relationship
to the physical part numbers doesn’t
exist. Furthermore, the versions are only
managed on an ad hoc basis to “save” the
results and the corresponding model rather
than the direct association with the real
system and equipment.

Configuration Management Audit
The models were not subject to internal

or external audit processes to ensure con-
figuration management was in place.

CONCLUSION
In this paper we looked at current trends

for configuration management in the
field of model-based systems engineering
looking at two examples from the landing
gear domain. It is our hope that the paper
highlighted the need to further strengthen
the need for configuration management
application in MBSE and overall modelling
and simulation. Especially, with benefits be-
ing ripen in many ways and thus outweigh-
ing the efforts needed for an appropriate
configuration management process.

One of the biggest challenges in deploy-
ing a robust modelling and simulation
strategy with the necessary tools and
frameworks is expensive. Although there
is truth in that challenge, the return on
investment (ROI) on such deployment can
yield long term benefits and mitigate risks
corresponding to complex system devel-
opment. For example, the use of modelling
and simulation to build a virtual iron bird
needed several thousand hours of expertise
and still resulted in more than a million
dollars of overall development costs. This
model will keep yielding the benefits in the
future further increasing the ROI.

The use of modelling and simulation as
a replacement for physical testing is not
without its own risks. The representativity
of a model can only be assessed in relation
to an existing real-world system, which
implies that a version of the system is
already built, and similar tests have been

performed on both the model and the
physical system for validation. Therefore,
soon, modelling and simulation can only
be used to completely represent variants
of a physical system rather than a brand-
new entity. Even in such a situation, the
physical representativity of the surrounding
environment (systems and environment)
is critical to build confidence in the model.
Therefore, a thorough assessment of the
ROI, both near and long-term, should be
evaluated on an individual basis.

In the context of tomorrow’s world of
digital twins, configuration management
plays a pivotal role in ensuring the success
of the digitization program. If any A/C
manufacturer intends to use a digital
version of any given aircraft to analyze
in-service issues or performance upgrades,
then a digital version that is part-to-part
identical needs to be built and that is only
possible if all the models that are integrated
are identified as configuration items, with
change control in place with appropriate
accounting for updates.

In fact, in the digital world each
configuration item would probably have
multiple fidelities of models which require a
second layer of configuration management.
This poses an additional challenge but is
mandatory to do so as one model cannot
satisfy the diverse and ever evolving needs
of requests coming from the operational
field of the aircraft.

As there are many digital twin versions
of the same aircraft, configuration manage-
ment of the modelling artifacts is manda-
tory to deliver a safe and efficient aircraft.
This principle applies to other industries
attempting the digital twin approach.  ¡

Acronym Meaning

A/C Aircraft

ATA Air Transport Association of America

CI Configuration Item

CM Configuration Management

CSA Configuration Status Accounting

CSCI Computer Software Configuration Item

HWCI Hardware Configuration Item

ID Identification

INCOSE International Council on Systems Engineering

IS Interface Specification

LGERS Landing Gears Extension and Retraction System

MBE Model-Based Engineering

MBSE Model-Based Systems Engineering

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

66

REFERENCES
■■ Airbus. 2010. “Airbus opens A350 XWB Landing Gear Systems

Test Facility in the UK.” https://www.airbus.com/newsroom/
press-releases/en/2010/10/airbus-opens-a350-xwb-landi ng-
gear-systems-test-facility-in-the-uk.html .

■■ Airbus. 2017. “Taking flight with the Airbus “Iron Bird.”
https://www.airbus.com/newsroom/news/en/2017/05/taking-
flight-with-the-airbus-iron-bird. html .

■■ ATA. 1999. Specification 100 - “Specification for
Manufacturers’ Technical Data, Revision No. 37.” Air
Transport Association of America.

■■ ATA. 2000. iSpec2200 Specification. “Information Standards
for Aviation Maintenance.”

■■ ATA. 2020. S100D Specification. “International Specification
for Technical Publications.” https://s1000d.org/ last accessed
Oct 2020.

■■ Bellinger, G. 2004. “Modeling & Simulation: An Introduction.”
in Mental Model Musings. Available at: http://www.systems-
thinking.org/modsim/modsim.htm .

■■ Greene, B. 2011. The Hidden Reality. New York, US-NY.
Vintage Press, November, p 17.

■■ DoD. 1998. “’DoD modeling and simulation (M&S)
glossary,” in DoD Manual 5000.59-M. Arlington, US-VA: US
Department of Defense. January. P2.13.22. Available at

■■ http://www.dtic.mil/whs/directives/corres/pdf/500059m.pdf .
■■ Dori, D. 2002. Object-Process Methodology: A Holistic System

Paradigm. New York, US-NY: Springer. ISBN: 978-3-642-
56209-9.

■■ Easterbrook, S. 2016. 2016 “Can a Document Be a
Configuration Item (CI)?” CMPIC LLC. https://cmpic.com/
whitepapers/configuration-management-configuration-item.htm .

■■ Gonzalez, P. J. 2012. “A Guide to Configuration Management
for Intelligent Transportation Systems”. By Mitretek Systems,
Inc. US Department of Transportation. https://rosap.ntl.bts.
gov/view/dot/37371 .

■■ INCOSE Technical Operations. 2007. “Systems Engineering
Vision 2020” version 2.03. Seattle, WA: International
Council on Systems Engineering, Seattle, WA, INCOSE-
TP-2004-004-02.

■■ INCOSE. 2012. “Systems Engineering Handbook: A Guide
for System Life Cycle Processes and Activities”, version 3.2.2.
San Diego, CA, USA: International Council on Systems
Engineering (INCOSE), INCOSE-TP-2003-002-03.2.2.

■■ INCOSE. 2015. Systems Engineering Handbook: A Guide for
System Life Cycle Processes and Activities version 4.0. Hoboken,
US-NJ : John Wiley and Sons, Inc, ISBN: 978-1-118-99940-0.

■■ ISO (International Organization for Standardization). 2003.
ISO 10007:2003, “Quality management systems – Guidelines
for configuration management”. CH: ISO

■■ Maier, M. W. 1996. “Architecting Principles for Systems-of-
Systems.” INCOSE International Symposium 6:565–573. doi:
10.1002/j.2334-5837.1996.tb02054.x

■■ NASA. 2004. “NASA Working on Early Version of ‘Star-Trek’-
like Main Ship Computer.” https://www.nasa.gov/vision/earth/
technologies/Virtual_Iron_Bird_jb.html .

■■ NDIA. 2011. “Final Report of the Model Based Engineering
(MBE) Subcommittee”. Arlington, US-VA : National Defense
Industrial Association (NDIA).

■■ https://www.ndia.org/-/media/sites/ndia/meetings-and-events/
divisions/systems-engineering /modeling-and-simulation/
reports/model-based-engineering.ashx .

■■ Friedenthal, S. “What is a Model?” in SEBoK Editorial
Board. 2020. The Guide to the Systems Engineering Body
of Knowledge (SEBoK), v. 2.2 R.J. Cloutier (Editor in
Chief). Hoboken, NJ: The Trustees of the Stevens Institute
of Technology. Accessed 23/09/2020. www.sebokwiki.org.
BKCASE is managed and maintained by the Stevens Institute
of Technology Systems Engineering Research Center, the
International Council on Systems Engineering, and the
Institute of Electrical and Electronics Engineers Computer
Society.

■■ SAE. 2019, ANSI/EIA-649C “Configuration Management
Standard.”

■■ Wiley, pub. 2015. “Systems Engineering Handbook: A Guide
for System Life Cycle Processes and Activities”. 4th edition.
Prepared by INCOSE. Compiled and Edited by D. Walden,
G. Roedler, K. Forsberg, R. D. Hamelin and T. Shortell. ISBN:
978-1-118-99940-0.

ABOUT THE AUTHORS
Adriana D’Souza (CSEP) is a configuration management

process architect for Systems for Airbus, having previously worked
as a systems architect and as a design and development engineer
on challenging and complex projects like large border security
projects and air traffic management projects both at the subsys-
tem, system and system of systems level in the Airbus Group.
She was awarded an Honours MSc in computational science and
engineering from the Technical University of Munich (Germany)
and a BSc in mathematics and computer science from the Ovidius
University of Constanta (Romania). Adriana is also a certified
systems engineering professional (CSEP) with INCOSE.

Phanikrishna Thota is an expert in the landing gear technical
domain at Airbus focusing on modelling and simulation activities
across all phases of development. He worked previously at Eaton
as a manager in engineering as well as Airbus, before that working
in modelling and simulation and innovation. He has a strong
academic background with a PhD in engineering mechanics from
Virginia Tech (USA) an MSc in mechanical engineering from the
University of Kentucky (USA) and a BSc. in mechanical engineer-
ing from the Jawaharlal Nehru Technological University College of
Engineering (India).

Acronym Meaning

NASA National Aeronautics and Space Administration

PBS Product Breakdown Structure

ROI Return On Investment

V&V Verification and Validation

VIB Virtual Iron Bird

VS Versus (compared to)

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

67

INTRODUCTION

  ABSTRACT
Like so many aspects of life, we are looking for value-for-money. But we need to consider the value in terms of both short and
long-term gains. Although certification standards require verification that requirements have been met, we need to recognize that
verification is also there to bring value to a project and to the business as a whole. However, prioritizing the value to the project
over the value to the business can result in sub-optimization and an overall higher cost to the business. This paper examines
a specific case, the prediction of the fatigue lives of critical parts in gas turbine engines, to illustrate the more general case of
performing tests to calibrate models that then have general applicability across multiple projects, rather than focusing testing
on the needs of a specific project. In some circumstances, testing may not even be the best approach to take; if some level of
error escape into service is acceptable (unlike the life prediction example given in this paper) then more focus on requirements
validation and design review may provide a more cost-effective approach. This is where the linkage in a systems engineering model
between requirements, functions, failure modes and effects analysis, verification test cases, and available calibrated models can
help with identifying opportunities and risks.

You Don’t Save Money by
Doing Less Testing – You
Save Money by Doing
More of the Right Testing!

Andrew C Pickard, Andy.Pickard@incose.net; Richard Beasley, Richard.Beasley@rolls-royce.com; and Andy J Nolan, Andrew.
Nolan@rolls-royce.com
Copyright © 2021 by Rolls-Royce. Permission granted to INCOSE to publish and use.

A project to develop a product
or system has requirements of
its own beyond the technical
systems requirements, most

commonly including cost and timescale.
These can often be seen as in competition
with the work needed to develop and verify
a solution that meets the technical require-
ments of the end-user system stakeholders.

When a program of work is proposed to
develop and verify a product it can often
appear too long and expensive to meet the
business needs. The project cost/timescale
requirements cannot be ignored. Unfortu-
nately, there is a risk of there not being a
balanced decision, and the “wrong cuts” are
made. For example:

•	 Cutting what is seen as “unneces-
sary” pre-work to understand the
problem, as this causes what is seen
to be “delay” – in fact proper problem

understanding can be shown to be
differentiator between successful and
unsuccessful projects (Honour 2014).

•	 Removing activities to find and
mitigate risk – without understand-
ing that risks emerge as the solution
develops (Pickard et al. 2010).

•	 Removing expensive testing – without
realizing the purpose of the test.

These issues can be summarized in the
heuristic “you don’t make a project cheaper
by not doing things; you make it cheaper by
doing more of the right things” (Beasley et
al. 2014), adapted for the title of this paper.

A product that produces a system “on
time and on cost” that doesn’t meet all the
technical requirements, such as product
safety, is not complete. A chief engineer
accountable for safety would not allow its
release, and expensive rework would be

needed before the project can be described
as complete. However, a product that is
developed late and over cost would equally
be seen as a failure.

There should be an understanding of
both the technical requirements and what
is needed to produce solutions to them –
needing the capability to develop a product
that can meet the technical issues and the
program constraints (Beasley and Pickard
2020). So, with a capability that ensures that
we know what the right things to do are,
the “right tests” are properly understood.

The remainder of this paper looks at
one specific example, approaches to life
prediction of critical parts in aircraft gas
turbine engines, to illustrate the importance
of performing “the right tests” to reduce
testing costs. It starts with a discussion of
regulatory requirements for the engine’s
structural integrity, including a set of

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

68

definitions that lead to the identification of
“critical parts.” Then there is a discussion
of failure mechanisms, leading to
requirements for reliable life prediction.
The example focuses on fatigue life
prediction for critical parts, comparing the
“traditional” method for clearing fatigue
lives for critical parts with a model-based
approach. The findings are discussed, and
some general principles are presented in
the conclusions section of the paper.

AN EXAMPLE
The primary function of an aircraft

engine is to provide thrust. The engine
must meet stringent weight and fuel burn
(efficiency) targets if this task is to be
performed economically. This results in
materials being used at high stresses and
temperatures; under these circumstances
there is a potential risk of failure of individ-
ual components.

The consequences of failure can be
classified into various levels. A small loss of
thrust, particularly if this is gradual, does not
carry a high-risk factor. An abrupt change
in, or total loss of thrust during take-off can
be hazardous, although it may not be so at
altitude. Failure that involves the release of
high energy debris which could damage the
aircraft, either structurally or functionally,
form the highest risk category.

Figure 1 shows a sectional view of
a typical gas turbine. The first step in
establishing and minimizing the risk of
failure for aircraft engines is to perform
failure modes and effects analyses (FMEA)
to assess the consequence of a failure of
systems, subsystems and components.
These product elements are classified as
“critical” or “non-critical” depending on the
consequences of their failure as identified
by the FMEA. The various airworthiness
regulators (Federal Aviation Authority –
FAA, European Aviation Safety Agency –
EASA, etc.) (FAA 2020; EASA 2018) have

definitions and rules that are applied to this
categorization, for multi-engine aircraft:

a)	 “Safe” engine failure: A “safe” engine
failure is one in which the only con-
sequence on the aircraft is partial or
complete loss of thrust or power (and
associated engine services) from one
engine and should be regarded as a
minor effect.

b)	 Minor effects: Minor effects will not
occur at a rate more than that defined
as reasonably probable.

c)	 Reasonably probable: This is unlikely
to occur often during the operation
of each aircraft of the type but may
occur several times during the total
operational life of each aircraft of the
types in which the engine may be
installed.

d)	 Non-critical component: Compo-
nents whose failure would result in
a “safe” engine failure are normally
classified as non-critical.

e)	 Critical part: Where the failure anal-
ysis shows that a part must achieve
and maintain a particularly high level
of integrity if hazardous effects are
not to occur at a rate in excess of ex-
tremely remote, then such a part shall
be identified as a critical part.

f)	 Hazardous effects: The following
effects should be regarded as
hazardous:
i)	 Significant non-containment of

high energy debris.
ii)	 An unacceptable concentration

of toxic products being generat-
ed in air supplied to the airplane
passenger or crew compart-
ments.

iii)	 Significant thrust in the opposite
direction to that intended by the
pilot, or complete inability to
shut the engine down.

g)	 Extremely remote: This is unlikely
to occur when considering the total

operational life of many aircraft of the
type in which the engine is installed
but has to be regarded as possible.

Component Failure Mechanisms
During the assessment of both critical

and non-critical component lives, all poten-
tial failure mechanisms must be considered.
These failure mechanisms can be divided
into three major classes:

a)	 Low life failures, usually associated
with the incorrect application of De-
sign Codes or unexpected overload-
ing of the component.

b)	 Macroscopically non-localized
damage accumulation failure mech-
anisms; uniform creep, corrosion or
erosion are good examples here.

c)	 Macroscopically localized damage
accumulation failure mechanisms,
usually associated with the nucleation
and growth of cracks.

For gas turbine components, stress
margin requirements (relative to the yield
and/or failure strength of the material)
are normally arranged to ensure that low
life failure mechanisms are not present. It
is normal practice to back up analytical
estimates of stress capability with testing of
representative components.

Macroscopically non-localized fail-
ure mechanisms are usually avoided by
applying time limits to the service use of a
component. These life limits are normally
calculated by evaluating the deformation
and failure response of the entire com-
ponent, for instance, predicting a turbine
blade’s life by full-scale creep analysis of
the blade. An alternative is to perform a
statistical analysis of experience, such as
examining the scatter in creep growth of
turbine blades in engines and applying sta-
tistical models to predict the minimum life
for a given, acceptable level of growth.

Macroscopically localized failures are as-
sociated with the nucleation and growth of
cracks, usually resulting from fatigue (cyclic
loading), creep, environmental mecha-
nisms, or their interaction. Occasionally,
localized damage accumulation occurs
from the start of service; a typical exam-
ple is the fatigue failure of a component
containing a material inhomogeneity or
surface damage that is sufficiently severe to
behave as a crack from the start of cycling.
Alternatively, localized damage accumula-
tion follows from a non-localized mecha-
nism, for instance, in the fatigue of smooth
specimens. Cracking results eventually
from the accumulation of macroscopically
non-localized slip damage.

Traditionally, fatigue life prediction has
been accomplished by statistical analysis of
past experience, including specimen and

Figure 1. Typical two-shaft gas turbine engine

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

69

full-scale rig test results. Fracture mechan-
ics methods for fatigue life prediction have
increased in importance and application,
since it was realized that most, if not all
structural materials contain inhomogene-
ities which can act as fatigue crack nuclea-
tors. The statistical nature of the distribu-
tion of inhomogeneities and the relative
stressed volumes of components and spec-
imens usually result in the risk of cracking
from a large inhomogeneity or from surface
damage being considerably higher for a
component than for a specimen, highlight-
ing the importance of performing full-scale
component fatigue tests and incorporating
the results into life calculations.

In the case of macroscopically localized
damage mechanisms, the fundamental
criterion for safety of operation of compo-
nents in service can be stated quite simply:

“A crack in a component must not be
allowed to grow to a size that can lead to
the onset of rapid fracture under any en-
gine condition”, that is, commonly, a crack
growth under low cycle fatigue (LCF, typi-
cally one or a few major cycles per mission)
must not be allowed to reach the length at
which either vibration or maximum load
can promote rapid fracture (Asquith and
Pickard 1988).

This emphasizes the importance of the
need for reliable LCF life prediction mod-
els, which depend on understanding the
fracture mechanisms and quantification of
the controlling parameters.

Requirements for Reliable Life Prediction
 Avoidance of in-service failure requires

a sound knowledge of:
a)	 The environment and loads to which

the component is subjected. This is
fundamental to the design process.

b)	 The macroscopic response of the
component to the applied loads and
environment - temperatures, stresses,
strains, corrosive/erosive conditions,
etc. Accurate techniques for predict-
ing local temperatures and stresses
are essential here.

c)	 The microscopic response of the
material from which the component

is fabricated to the local temperature,
stress, and environmental conditions.
This requires a thorough understand-
ing of material behavior and applica-
ble life prediction techniques.

d)	 Consistency of component
manufacturing — so that parts
subjected to testing represent all
the parts in service. Table 1 shows
the main issues that need to be
considered from a component
manufacturing viewpoint.

Fatigue Life Prediction Methods for Critical
Parts

This illustrative example is based on
fatigue life prediction methods for critical
parts in engines. Typically, all of the disks
(also called discs or wheels) in an engine
are critical parts, because their failure
results in high energy debris that generally
cannot be contained by the engine struc-
ture. Figure 2 shows a typical high-pres-
sure turbine disk from a large commercial
engine. The high-pressure turbine blades
are located around the rim of the disk
using features known as “firtrees”. The disk
locates the blades axially and radially in the
engine; in the case of a turbine, the blades
extract energy from the hot gases from
the combustor, where compressed air is
mixed with fuel and ignited, and converts
this into rotational energy that is used to

drive the high-pressure compressor. This
in turn includes disks with blades that
as they rotate increase the pressure (and
temperature) of the air entering the engine.
The high-pressure compressor delivers this
compressed air to the combustion chamber.
The engine illustrated in figure 1 is a typical
two-shaft engine; the fan is driven by the
low-pressure turbine and the high-pressure
compressor by the high-pressure turbine.

In this paper, we will compare two dif-
ferent approaches to predicting the fatigue
lives of these types of critical parts:

e)	 The “traditional” safe predicted total
life method.

f)	 The “databank” fracture-mechan-
ics (model) based life prediction
approach.

Traditional Fatigue Life Analysis Methods

All “traditional” safe predicted total
life analysis methods for aircraft engine
components rely on specimen or full-scale
component tests to define, statistically, a
minimum life for the set of parts in service.
All parts are then withdrawn from service
before, or in the limit when they achieve
this life. The statistical definition of min-
imum life is usually based on identifying
the -3σ (1 in 739) or 1 in 1000 point in the
distribution of component lives.

Although this approach sounds simple,
and has been very successful in preventing
in-service failures, there have been several
areas of debate. The first of these relates to
the choice of specimen or representative
component tests to define the minimum
life. Testing of a representative component
guarantees that the life obtained is relevant
to that part, with the correct standard
of surface finish (machining, handling
damage, etc.) and residual stress distri-
bution. Full-scale component tests are
expensive and time consuming, however,
and it is rare for sufficient test results to
be available on any individual part to
allow the full definition of the statistical
distribution of component lives to be
obtained. Specimen tests can normally be
performed in sufficient numbers to allow
a full statistical definition of the specimen
life distribution, but the volume (or surface
area) of material subjected to representa-
tive stresses is considerably smaller than
for full-scale components, which implies
that the component minimum life may be
lower than that of the specimens, requiring
additional statistical interpretation of the
specimen results. Figure 3 illustrates this by
comparing several Titanium alloy (Ti-6-4)
disks bore test results with plain 0 – max
load control specimen results; one of the
disk results falls below the statistically de-
rived minimum life plain specimen results

Material Surface Residual
Stresses

Inspection
Technique

Microstructure Machining and Damage Quenching Repeatability

Homogenity Scoring and Burning Welds Reproducibility

Defect Content Dents and Bruises Machining Dectection Capability

Defect Type Fretting Level of Automation

Processing

Table 1. Component consistency – variables to consider

Figure 2. High-pressure turbine disk for
a large commercial engine

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

70

(Asquith and Pickard 1988). In this case,
laboratory investigation revealed handling
damage marks in the disks from which
the early cracking had originated; fracture
surface striation counting indicated that
most, if not all the disk life was in the crack
propagation phase, with very little if any life
consumed in crack nucleation.

In general, fatigue life predictions based
solely on laboratory specimen test results
need to be treated with caution because of

surface finish and stressed volume consid-
erations. Representative component testing
is the “traditional” life prediction approach
preferred by the civil engine certification
authorities. Figure 4 identifies the factors
normally applied to an individual com-
ponent result to define the predicted safe
cyclic life (PSCL) (Pickard et al. 1987).

In this approach, the component cyclic
life is considered to follow a log-normal
Gaussian distribution, with a ratio of 6 to 1

between +3σ and -3σ lives for most mate-
rials. The component tested is assumed to
be in the top 5% of the distribution, and a
ratio of 4 to 1 is applied to the tested life to
obtain the minimum (-3σ) life. This gives
95% confidence that the PSCL is truly the
-3σ life. Typically (68.3% of the time) the
component tested will lie between +1σ
and -1σ area of the distribution, giving
some additional life margin. Performing
additional component tests can be used to
reduce this factor and extend the PSCL.

The second area of debate, with represen-
tative component testing, is the choice be-
tween running the test at the engine stress
level or with an overstress factor. Testing at
engine stress level is time consuming (for
example, 80,000 cycles can take 30 to 60
days of continuous cycling based on typical
cycling rates for full scale components) and
typically will not result in cracking or fail-
ure of the component. This “life clearance”
approach results in suspended (no life end-
point) results in the statistical distribution,
which limits their use when creating fatigue
life prediction models.

Typically, the relationship between life
and overstress factor is that a factor of 4 to
1 in life corresponds to a factor of 1 to 1.3
in stress–so that a given life can be cleared
by testing to this life with an overstress fac-
tor of 1.3. From a life clearance approach,
testing with an overstress factor of greater
that 1.3 does not offer benefit because the

Figure 3. Titanium alloy (Ti-6-4) plain specimen and disk bore test results

Plain Specimens – Typical (mean) Test Results

Plain Specimens – Minimum (–3σ) Test Results

Life (Cycles)

6 4

2

3

5

1

Uncracked
Cracked
Burst or Very Large Crack

St
re

ss

0 1 2 2.45 3 4 5 6

Stress σ

–3σ

–3σ curve

+3σ
curve

+3σ–1σ +1σ

Number of
components

Average predicted
safe cyclic life

Number of cycles, N

Tested part most likely to
come from this range

68.3% of all components

Best component likely
to be selected for test

5% of components

Life scatter factor

Mean curve

Figure 4. Log-normal Gaussian life distribution – traditional
fatigue life prediction method

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

71

regulators require that the test must run
for at least the cleared cyclic life of the part.
Testing with an overstress factor occasion-
ally results in cracking of the component,
which gives a finite life. This also gives a
cost-effective opportunity for a research
project to fund continued running of the
test to cracking or failure. However, proj-
ects often perceive that testing with a low or
no overstress factor as “less risky”. This per-
ception drives “life clearance” as the project
objective, rather than testing to cracking or
failure to support model creation.

The “Databank” Model Based Life
Prediction Approach

One solution to the problem of lack of
statistically relevant samples of tests on
individual components is to find a means
of correlating fatigue test results on various
full-scale components and laboratory
specimens such that all available results on
parts with microstructure and surface fin-
ish representative of parts in service can be
included in the statistical assessment of the
life distribution and hence of minimum life.

The Rolls-Royce “databank” approach
uses linear elastic fracture mechanics
(LEFM) models and fatigue crack growth
information to analyze each individual
test result to determine an “effective initial
flaw size” (EIFS) that would have had to
be present, from the start of cycling, to
result in failure or the size of crack seen in
each test result. Several studies have been
performed to validate the use of LEFM to
predict crack growth in components (Pick-
ard et al. 1983; Jenkins and Pickard 1988).
Statistical analyses of the distribution of
effective initial flaw sizes may then be used

to identify maximum size, on a +3σ or 1 in
1000 basis, that will be consistent with min-
imum component lives. The LEFM models
can then address variations in component
geometry, stress level, stress gradient and
residual stress fields when predicting min-
imum fatigue life for crack growth from
the maximum EIFS (Pickard et al. 1987;
Asquith and Pickard 1988).

Figure 5 shows the results of an analysis
of the inverse of EIFS (inverse to explore
the largest EIFS) for the Titanium alloy
Ti-6-4. The distribution is bimodal, with
mostly specimen results in the upper

branch and a mix of component and
specimen results in the lower branch.

Figure 6 shows an analysis of the lower
branch of the distribution. A three-param-
eter Weibull distribution has been fitted to
the distribution, resulting in the identifica-
tion of the maximum EIFS for the family of
parts and specimens.

Figure 7 shows a comparison of the
Titanium alloy disk bore test results from
Figure 3 with the linear elastic fracture
mechanics model-based prediction, for ini-
tial cracks equal to the maximum effective
initial flaw size, and to half the maximum
EIFS. The model-based approach now pre-
dicts a lower minimum life for test 5 than
was achieved in the test.

An analysis was performed for all of the
representative component tests, including
suspended points. Figure 8 shows the ratio
of actual to predicted life for each test. A
three-parameter Weibull distribution is
fitted to the results and the asymptote is
equal to 1.

DISCUSSION
This fracture mechanics – based fatigue

life prediction “databank” model was
developed in the mid 1980’s. Many of the
specimen and component test results that
supported the development resulted from a
research project called the life and methods
program (LAMP) that was conducted
during the mid–1970’s to early 1980’s time
period. Databanks were developed at that
time for the Titanium alloy shown in this
presentation, a high-temperature Titanium
disk alloy and a Nickel based superalloy
disk material. Subsequently databanks have

99%

90%

70%

50%

30%

10%

3%

0.3%

0.1%

1%

1/(Effective Initial Flaw Size)

Ex
tre

m
e V

alu
e P

ro
ba

bi
lit

y (
%)

Bores
Diaphragm Holes
Diaphragm Fillet Radii
Kt � 1.5 Specimens
Kt ˜ Specimens
Kt ˜ 4 Specimens
Strain Cycling Specimens

Figure 5. All results – effective initial flaw size

Bores
Diaphragm Holes
Diaphragm Fillet Radii
Kt � 1.5 Specimens
Kt ˜ Specimens
Kt ˜ 4 Specimens
Strain Cycling Specimens
[1/(EIFS) – 1/(EIFSMAX)]

99%

90%

70%

50%

30%

10%

3%

0.3%

0.1%

1%

1/(Effective Initial Flaw Size)

Three-Parameter Weibull Fit

Ex
tre

m
e V

alu
e P

ro
ba

bi
lit

y (
%)

Figure 6. Lower branch – effective initial flaw size

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

72

been developed for additional materials. The
regulatory bodies (at the time the British
Civil Aviation Authority and the United
States Federal Aviation Administration)
approved these databanks in the mid 1980’s
as an alternative means of compliance for
predicting the fatigue lives of critical parts,
following over two years of review and
discussion They have been used following
this regulatory approval by Rolls-Royce for
prediction of the lives of critical parts in a
variety of gas turbine designs, and have been
extended to cover other component features.

The regulatory approval is that the da-
tabank critical part life prediction models
could be used for components that have fea-
tures (bores, diaphragms, holes, etc.) that are
included in the databank model and are of
similar geometry and consistent method of
manufacture without performing substantive
additional full scale component tests, but
further testing would be required to extend
the databank to be used for a new feature or
broader temperature range.

Performing representative component
tests to cracking or failure as part of the
LAMP program was a key factor in being
able to develop this model-based approach.
This illustrated to programs the benefit
of testing at higher overstress factors for
materials still using the traditional safe life
approach, to allow these to be run on to
achieve finite lives that can then be used to
support databank model development.

There are a number of advantages to this
model-based approach:

■■ Reduction in the number of repre-
sentative component tests required to
establish and approve the lives of critical
parts.
•	 Prior to the introduction of the data-

bank life prediction approach, over 40
tests were performed on three engine
types to clear the lives of the features
covered in the databank. Following
the introduction of the approach, life
clearance testing was only required
for one new feature type incorporated
in the next engine design. This new
feature has subsequently been incor-
porated into the databank.

■■ Use of the databank methodology to
establish maximum stress levels during
design of new components to ensure
that they meet predicted safe cyclic life
requirements.

■■ Use of the databank methodology to
predict the minimum and typical stress
– life curves for new features, to allow
component test stress levels to be set
with reasonable probability of a finite
end point (cracking or failure) when test-
ing to extend the databank to cover these
new features.

Crack growth from EIFSMAX/2 to Failure

Crack growth from EIFSMAX to Failure

Life (Cycles)

6
4

2

3

Uncracked
Cracked
Burst or Very Large Crack

St
re

ss

5
1

Figure 7. Titanium alloy (Ti-6-4) disk bore test results and model – based prediction

Temperature °C
Bores

99

90
80
70
60
50
40
30

20

10

10

0.5

0.5

0.3

0.2

0.1

5

5

3

2

1

1

20 150 300

Spacer holes

(22 suspended points included)

Actual/predicted life

Ex
tre

m
e v

alu
e p

ro
ba

bi
lit

y (
%)

Diaphragms
Diaph holes

Figure 8. Actual versus predicted life, all full-scale component tests

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

73

The databank has a scope, so when
planning activities, there are some issues
that have to be considered:

■■ Will the new design have features that
are out of scope of the databank? If so,
you may need to plan to extend the
databank or perform traditional life
clearance testing of the new features.
This can be a constraint on design style
evolution.

■■ Will a new design extend to tempera-
ture ranges outside the scope of the
current databank? If so, you may need
to plan to extend the databank or per-
form traditional life clearance testing.

■■ What are the rules for deciding who
pays to extend the databank? Is it a
research activity, or if only one project
needs the extension, does the project
pay?

WHAT TESTS SHOULD I PLAN?
The discussion above is about how to

organize testing to obtain the best resulting
value for the effort. However, sometimes
testing may not even be the best way of
achieving the desired result. Another factor
is the effectiveness of validation and verifi-
cation (V&V) activities (Pickard and Nolan
2013). In this earlier paper, we examined
the relationship between V&V effectiveness
and cost effectiveness of V&V activities
(Figure 9).

Although the correlation is not strong,
the implication is that more cost-effective
V&V methods like requirements validation
and review tend to have lower V&V effec-
tiveness, whereas high V&V effectiveness
methods are not very cost effective.

The implication here is that the selection
of V&V methods to use depends very
much on how acceptable it is to have
issues escaping into the released product.
For safety critical systems, such as the
example discussed above, where any
undetected escape may have unacceptable
consequences, it is clearly important to
employ high V&V effectiveness methods
like hardware component test, hardware
module assembly, and test and hardware
first article inspection.

Where some undetected escapes may
be tolerable, it may be more cost effective
to spend extra effort on hardware require-

ments validation and hardware design
analysis and review.

CONCLUSIONS
■■ Use of model-based approaches to
reduce costs is nothing new — the
example shown was introduced in the
mid — 1980’s.

■■ Use of this model-based databank
approach was subjected to rigorous
review by the regulatory authorities;
acceptance by the UK Civil Aviation
Authority and the US Federal Aviation
Authority took over two years of review
and discussions.

■■ The approach depends on a change in
behavior – don’t test at engine stress
levels to clear life, as in the traditional
fatigue life analysis methods, but test
with overstress factors to achieve finite
(cracked or failed) component test
results.

■■ You don’t save money by doing less test-
ing – you save money by doing more of
the right tests! This is a specific instance
of the heuristic “You don’t make a proj-
ect cheaper by not doing things; you
make it cheaper by doing more of the
right things” (Beasley, et al. 2014).

■■ And there’s more! The example model-
based approach to critical part life
prediction helps when creating new
designs and introducing new design
features.

■■ Consider alternatives to testing to
reduce the cost to develop products
— but for safety critical systems, make
sure that any model-based approaches
are calibrated using a databank of test
results, including representative full-
scale component tests.  ¡

Figure 9. V&V effectiveness versus cost effectiveness

REFERENCES
■■ Asquith, G., and A. C. Pickard. 1988. “Fatigue Testing of Gas Turbine Components.”

in “Full Scale Testing of Components and Structures”, ed. Marsh, K. J., Butterworths,
August, ISBN 0 408022 44 2. Also published in High Temperature Technology, 6.3,
p.131, August.

■■ Beasley, R, and A. C. Pickard. 2020. “The Capability to Engineer Systems is a System
Itself!” Paper presented at the 30th Annual International Symposium of INCOSE,
Virtual, 20-23 July.

■■ Beasley, R., A. J. Nolan, and A. C. Pickard. 2014. “When ‘Yes’ is the Wrong Answer.”
■■ 	Paper presented at the 30th Annual International Symposium of INCOSE, Las Vegas,

US-NV, 30 June – 03 July.
■■ European Aviation Safety Agency (EASA). 2018. “EASA Certification Specifications

for Engines, CS - E”, Amendment 5, 13 December; see CS-E 15 for terminology, CS-E
510 for Safety Analysis, CS-E 515 and AMC E 515 for Engine Critical Parts; https://
www.easa.europa.eu/sites/default/files/dfu/CS-E%20Amendment%205.pdf .

■■ Federal Aviation Administration (FAA). 2020. “Code of Federal Regulations, Part
33, Airworthiness Standards: Aircraft Engines.” 15 October, Title 14, Chapter 1,
Subchapter C, Part 33, §33.75, “Safety Analysis”; https://www.ecfr.gov/cgi-bin/text-idx?S
ID=eed43786296c5051130faf9170d05790&mc=t rue&node=pt14.1.33&rgn=div5 .

■■ Honour, E. 2013. “Systems Engineering Return on Investment.” PhD thesis,
University South Australia. http://www.hcode.com/seroi/ (accessed 23rd October
2020).

Cost Effectiveness

V&
V E

ffe
cti

ve
ne

ss

0%
0%

20%

40%

60%

80%

100%

120%

10% 20% 30% 40% 50% 60% 70%

Cost Effectiveness and V&V Effectiveness

R2 = 0.2212

H/W Requirements Validation

H/W Design Analysis and Review

H/W Component Test

H/W Module Assembly and Test

H/W First Article Inspection

S/W 1 Requirements Validation

S/W 1 Design Review

S/W 1 Code Review

S/W 1 Component test

S/W 1 Software verification

S/W 1 System verification

S/W 1 Bench/Test Rig

S/W 2 Reviewing

S/W 2 Code Review

S/W 2 Component Testing

S/W 2 HSI Testing

S/W 2 S/W Verification Testing

S/W 2 System Verification Testing

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

74

■■ Jenkins, L. M., and A. C. Pickard. 1988. “Lifing of Discs.”
in 2nd International Parsons Conference (Materials
Development in Turbomachinery Design), Institute of
Metals, Cambridge, UK.

■■ Pickard, A. C., C. E. Brown, and M. A. Hicks. 1983. “The
Development of Advanced Specimen Testing and Analysis
Techniques Applied to Fracture Mechanics Lifing of Gas
Turbine Components.” in ASME Int. Conf. On Advances
in Life Prediction Methods, eds. D. A. Woodford and J. R.
Whitehead, Albany, US-NY, 18-20 April.

■■ Pickard, A. C., M.A. Hicks, and R. H. Jeal. 1987.
“Applications of Fatigue Analysis: Aircraft Engines.” in
“Third International conference on fatigue and fatigue
thresholds, Charlottesville, US-VA, 28 June – 3 July, EMAS.

■■ Pickard, A. C. 1988. “Design and Life Assessment of
Aeroengine Components.” in “Recent Advances in Design
Procedures for High Temperature Plant.” I Mech E
symposium, MEP, ISBN 0 852986 80 7.

■■ Pickard, A. C., A. J. Nolan, and R. Beasley. 2010. “Certainty,
Risk and Gambling in the Development of Complex
Systems.” Paper presented at the 20th Annual International
Symposium of INCOSE, Chicago, US-IL, 11-15 July.

■■ Pickard, A. C., and A. J. Nolan. 2013. “How Cost Effective
is Your V&V?” Paper presented at the 23rd Annual
International Symposium of INCOSE, Philadelphia, US-PA,
24-27 June.

ABOUT THE AUTHORS
Andrew Pickard joined Rolls-Royce in 1977 after completing a

PhD at Cambridge University in fatigue and fracture of metals and
alloys. He is a Rolls-Royce associate fellow in system engineering,
a fellow of SAE International, a fellow of the Institute of Materials,
Minerals and Mining, a chartered engineer, and a member of IN-
COSE. He is immediate past chair of the SAE Aerospace Council,
represents Rolls-Royce on the INCOSE Corporate Advisory Board
and is chief of staff for INCOSE.

Richard Beasley joined Rolls-Royce in 1986 with a physics
degree from Bristol University, and an MSc in gas turbine engi-
neering from Cranfield University. After working on integration
serodynamics, safety, reliability and life cycle engineering, he
became global chief of systems Engineering. In 2011 he became
Rolls-Royce Associate Fellow in Systems engineering. He was
part of the BKCASE SEBoK author team, a leading author on
the INCOSE systems engineering competency framework, is a
past-president of the UK INCOSE Chapter, and is currently on
the INCOSE board of directors as deputy director for services. He
is a chartered engineer, fellow of the Royal Aeronautical Society,
INCOSE ESEP, and was a visiting fellow to the Systems Centre at
Bristol University.

Andrew Nolan joined Rolls-Royce in 1989 as a software devel-
oper. He was the chief of software improvements for over 10 years
before becoming the chief of project estimation in 2013. Andy is
full time in the development and deployment of estimation capa-
bility across Rolls-Royce.

Volunteer Opportunities

A better world through a systems approach

International Council on Systems Engineering

®

Join the Board of INCOSE

There are several volunteer board positions coming up for election and
now is the time to submit your application. The positions that are up for
election are:

To find out more about the positions and to submit
your application visit www.incose.org/volunteer or
email voadmin@incose.net

Application Deadline: 6 August 2023

• President-Elect
• Chief Information Officer (CIO)
• Director for Outreach
• Sector Director, Asia-Oceania Sector
• Treasurer

Help set the Standards in the field of Systems Engineering for the Global Community

https://www.incose.org/volunteer
mailto:voadmin@incose.net

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

75

I.  INTRODUCTION

  ABSTRACT
The lifecycle of a system is extended from its early conception to its retirement of service. The lifespan of unmanned ground
vehicles (UGVs) can be expected to last over 50 years in the defense market. In this context, the rising complexity of UGV
systems imposes engineering steps that would ensure both capabilities of the system and resilience to its future inclusion in a
system-of system context. During its operational usage, the UGV is supposed to be maneuvered for specifically designed purposes
following user manual datasheet of the components off-the-shelf (COTS) that were integrated. This paper exposes the public user
datasheet relevance compared to the system engineering requirements that are the artifacts of system design architecture. The use
of connecting COTS user manual to system requirements is discussed, all the more if the systems are to be re-used in a system
production line. This article is intended to explore system of system conception methods for future robotized battlefield.

Inconsistent and
Incomplete Datasheet:
The Case for Systematic
Use of Requirement
Engineering
Lorraine Brisacier-Porchon, lorraine.brisacier@ensta-paris.fr; and Omar Hammami, Omar.hammami@ensta-paris.fr
Copyright © 2022 by Author Name. Permission granted to INCOSE to publish and use.

Mobile robots are found in
a wide spectrum of appli-
cations, such as farming, exca-
vation, demining, or military.

There are categories of usage and size for
ground robots. They are considered as com-
plex systems, because the cost of testing
or simulating a significant amount of their
behavior exceeds the investment and time
that could be spent on design. Therefore,
methods and process for prototype docu-
mentation is the key to manage its behavior.
In this article, we consider the unmanned
ground vehicle (UGV) basic functions are
all-terrain navigation, heavy loads carrying,
minimal maneuverability while being pilot-
ed. In the defense domain, where we intend
to include swarm of robots, the UGV
shall be robust, man walking fast, with the
highest battery autonomy. Among others,
we benchmarked a robot off the shelf, as

if it were a product in development in a
fictional company. The supposed expected
performance for our system is presented in
Table 1 system specification from datasheet.
It shows small-scale problems assessed in
complex system engineering and addresses
a test scenario that draws integration of a
robot in system of system battlefield.

The system mission on the field will
be referred to as “mule concept,” which
includes remote piloting a mule that
would carry loads instead of the pilot in a
predefined time at a predefined speed. The
degree of autonomy given to the mule is not
at stake in this article. We will consider that
the capability of “carrying loads” has been
exploited to describe the system require-
ments, and that this set of requirements has
been used to build the robot.

In this article, we place ourselves as
buyers of such a UGV system. Making the

acquisition of such a robot represents an
amount of money, and we describe a meth-
od to verify the systems expectations.

As described in Stevens (2017), valida-
tion and verification (V&V) time and costs
are a gamble for the company as well as the
client. In this article, we explore how to use
the V&V system engineering documenta-
tion in other contexts: user manual descrip-
tion and next product specification reuse.

The goal of this article is to discuss the
relation between requirements, system
V&V, system capabilities and multi-ob-
jective optimization as mathematical
foundation for systems engineering.
Figure 1 system driven engineering flow
shows a process proposition for system
development that includes optimization
techniques. This foundation could lead
to the creation of a method to shift from
system engineering process as described in

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

76

AFNOR (2015) to a digitally based process (Henderson et al., n.d.)
that would directly generate the best suited methods and tool for
the mule system design in our fictional company.

II.  STATE OF THE ART
a.  Requirements engineering

Requirement based engineering is the most popular practice for
defense system engineering acquisitions and architecture design
(Huldt and Stenius 2019). The state of the art on requirement
redaction is consistent, and recent publications shows that the
interest in “good” requirements expression exceeds the systems
engineering domain.

As model-based engineering (MBSE) practices progress in be-
ing associated to requirements (Bonnet, Voirin, and Navas 2019)
the definition of system in early design is improving as complexity
challenges rises. The return on investment of such practices (Duffy
et al. 2021) has been identified. The vision of INCOSE for 2025
(INCOSE 2015a) seems to be carried out. Furthermore, the vision
of the future (Voirin et al. 2020) extends MBSE to all models to
implement the best systems in the most reduced cost and delays is
being profiled.

The profile of model specifications could be adapted to the
system context and categorization (Younse, Cameron, and Bradley
2021). It is a widely accepted prolongation to the SysML 1.3
success in system engineering (Wolny et al. 2020), because it adds
views and connections to the system requirement expressions.
The model aspects based on SysML does not express all required
aspects of system design, which makes it incomplete, such as cited
in Younse, Cameron, and Bradley (2021). This is a motivation for
acquirers to specify systems in architecture frameworks, and to
dig deeper on semantic approach (Duprez and Ernadote 2020) for
system specification ambiguity reduction.

Publications on MBSE do not cover all expected transdisci-
plinary system behavior representations (Watson et al. 2020):
mechanical or electrical requirements are rather considered as
model-driven engineering (MDE). If those are the modeled ex-
pression of expected behavior, MBSE fails to represent all transdis-
ciplinary aspects of the system. Therefore, the performance of the
system will remain ambiguous until tests are performed in a real
environment. The system scale compromises defined in system
engineering cannot be represented.

To the best of our knowledge, none of these foretold systems en-
gineering methods are the basis of system user manual generation.

On the opposite, the teaser of requirement-based methodology
state of the art is oriented in a top-down approach on the very
early stages of system design. (Hahn et al. 2020) states that placing
the ‘design phase’ above all considerations in order to gain time
and/or costs is no guarantee of money efficiently spent. The article
rather states the need for methods and tools tailored to the expect-
ed outcome of the product. If whole system lifecycle, for instance
50 years, is taken in consideration, focusing efforts on modeling
and requirement expression might be more efficient if it is used
during all the lifespan of the system rather than until the system
architecture is conceived.

The application of requirements seldom includes the generation
of end-user system datasheet. This can be caused by the difference
of model details required at the process stage: the user manual
exposes details of finite usage of the system, whereas the concept
elaboration requires high level information. The mix of model
granularity and fineness blurs decision making. The problem of
multiple level of models that work together is addressed in digital
twin usage questions such as in Bachelor et al. (2020), but no
information can be found on how to mix them.

To conclude, system specifications are used to engineer the sys-
tems. User manual is written to make the best usage of the system.
Yet, the effort to ensure maintenance and usability seems to be
redundant with the effort to specify the system, especially during
its integration phase. Since we have not found publications that
would imply this, we expose a method that establishes a connec-
tion between requirements and datasheet to avoid redundancy.
This two-ways connection could simultaneously improve the next-
in-line product while reducing the costs and delays of engineering
in comparison to its predecessor. The effect of our proposition
will also be beneficial to the end-users because system capabili-
ties description as requirements should be used to generate user
manuals.

b.  Experienced feedback on MBSE and IVV of complex systems to
check the COTS engineering quality

The engineering process that has resulted in the creation of the
COTS is easily identifiable from the behavior of the system. If the
supplier has executed system engineering to design the COTS for
the system, then the system passed a V&V qualification proce-
dure. The testing environment that resulted in the system perfor-
mance claims would be easy to reproduce. The method applied in
this article is exposed in that way: what if the acquirer of the UGV
COTS were to verify the system capabilities?

The set-based vision of verification strategies (Xu and Salado
2019) would be of help in passing the tests, but we would want to
keep close to real-life situations where the scenario for our mule
concept is too simple to afford long considerations before use.
Furthermore, the changes in process and company organization
to make this set-based vision a reality leaves the last call decisions
to business investment. As resumed in Huldt and Stenius (2019), a
lack of knowledge to integrate a model-based approach with cur-
rent business processes is one of four arguments that prevent the
development of MBSE. If the views are not provided, the common
business/engineering vision cannot be built. Investment in “best
effort” often prevails.

There are also publications measuring the benefits of the MBSE
approach in managing the complexity of a robotic space system
(Younse, Cameron, and Bradley 2021). But it makes no mention
on how to re-use the specifications and how to organize all veri-
fications that cannot be represented in SysML 1.3-like languages,
such as measuring the tension of the battery in relation with the
complete vehicle system. The multi-disciplinary requirements that
should be the basis of system scale V&V cannot be represented
in one model, and the best suited method and tools options for

SDE methods

Customized SDE method
adapted SDE tool

SDE tools
Optimization

System categories

System
specifications

Figure 1. System driven engineering flow

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

77

software development objectives cannot be the best compromise
on a multi-objective point of view.

The absence of formal expressions, methods or process as-
sociated to the language, as well as to poor investment in early
stages of requirement specification (INCOSE 2015b) is proven
to be a plausible cause of ambiguities in engineering (Duprez
and Ernadote 2020). But there is no practical mention on how to
enhance the existing process while reducing engineering costs and
time in engineering. Furthermore, the mention of a model that
would measure system outcome linked with investment in testing
methods and tools for all physical performances is not discussed.
Furthermore, the client satisfaction depends on how well the
announced performances are met as described in datasheet. To
the best of our knowledge, there are no recent research that would
combine the user manual descriptions and qualification datasheet,
contractors trust, and risk management. This research question
was raised in Stevens (2017) but not exploited yet from a sub-sys-
tem contractor point of view.

c.  Theoretical proposition: optimization process
The state of the art in multidisciplinary and multi-objective op-

timization is also consistent. The mention of a need for a semantic
extension to MBSE (Wach and Salado 2020), is still an issue to
cover specific system categories and requirements and there are no
quantified application feedback of those methods. Pate, Gray, and
German (2014) presents graphical representations of non-dominat-
ed compromises in a system design evaluation. Optimization offers
a consistent model for multidisciplinary approach. But it contains
no link to a specific system goals or category in particular. We have
chosen to use anonymized datasheet on the specifications used as
our usage profile for the UGV system to organize the tests sets the
optimization objectives as systems engineering process, tools and
methods selection guide, depending on the equation:

(Q(x) → max, R(x) → min, T(x) → min) (GOAL 1)

The engineering flow proposed is selected by computer assisted
search in which illustrated in Figure 1. It proposes system-driven
engineering, based on four pillars: specifications, system catego-
ries, method, and tool. All pillars are linked with optimization
through a common language: a combination of models that are
either objectives or constraints. Its main advantage is the focus
on the multi-disciplinary decisions that can be made, evaluating
simultaneously the best process options for system development,
and at the same time sketching the expected resulting system
architecture. Detailed design costs are anticipated in that way.
Figure 1 illustrates a proposition of method that would implement

SDE. Instead of standard system specification and validation with
a “V” or “W” cycle, the representation focuses on the revision of
specification (functional and non-functional), functional archi-
tecture, component modeling, and physical architecture followed
by multi-objective optimization in order to pick the most valuable
information from the previous specifications. In this article, qual-
ity maximization is at glance. It is called method-tools-system en-
gineering problem (MTS-EP). It states Q as a function depending
on system specifications and category. Let x ∈ S be a system design
possibility. The MTS-EP problem can be formulated as:

(Q(x) → max subject to g(x) ≤ 0 and h(x) = 0 (MTS-EP 1)

The goal for Q maximization is therefore to find the x ∈ S
combinations that achieve the system defined objectives subject
to constraints. The detail of the mathematical model is related to
the investment and time input to the system concept elaboration.
This problem alone is NP-hard based on the Knapsack problem.
Functions g and h in (MTS-EP 1) are the mathematical expression
of constraints of the problem, issued from specification, system
category, and company’s system experience from past projects. The
flow in Figure 2 matches the representations for adoption of MBSE
methodology sketched in Wu et al. (2019) and adds a constraint
that is not underlined in Wu’s publications, which is the end of the
process, when allowed budget or schedule for system conception
ends. This is an application of the principles of Wheaton and Mad-
ni (2018) on UGV system category: the identification of a Pareto
front where the system scale budget and schedule constrains the
concept choices.

In this article, x is instantiated by the UGV as it was designed
and integrated. We want to put the UGV to a test and evaluate
its quality as a mule system and evaluate the quality of its spec-
ification. If the system concepts definition quality is seen as an
optimization problem, we could evaluate the performance of the
acquired system with respect the specification, and at the same
time make propositions that would simultaneously increase
quality of the system and reduce method and tools investment to
an acceptable compromise. The expected outcome of our system
specification flow proposition (SSFP) can be measured in the
next product that inherits of lessons learned from the previous
solution. If system definition ambiguities can hardly be measured,
its decrease can be measured. The adoption of our method can
result in mastering of current expenses on concept exploration,
direct generation of user manual automatically generated from the
validation datasheet, maybe even obsolescence management, fol-
lowing Morgan, Holzer, and Eveleigh (2021) adding multi-physi-
cal dimensions to their claims.

Figure 2. System specification flow proposition inspired of Wu et al. (2019)

«OperationalActivityAction»
revise system
specification

«OperationalActivityAction»

unfinished time and investment

time or schedule end

<max Q,min R;min T>

COTS
supplier
market
trading

exploration
investment
constraint

NSGA-II

specify system

Schedule
constraints

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

78

d.  A mobile robot: UGV system instance
description

Our instance is an all-terrain unmanned
ground vehicle (UGV) for rapid prototyp-
ing and research applications and a robotic
development platform. The capabilities of
UGV can be expanded by multiple acces-
sories such as a LIDAR, a GPS, a camera,
and an inertial measurement unit (IMU). It
can be used in the perception, navigation,
manipulation and teleoperation and it is
fully supported by ROS (robot operat-
ing system). Figure 3 shows UGVi views
through different angles. The choice of the
UGV instance (UGVi) is motivated by its
popularity, modularity, and availability. Its
hull design is supposed to host a load plate,
a radar, a camera, and a radio command.
All mountable equipment components
off-the-shelf COTS are not equipped in our
system, because the mule concept scenario
does not include all features available. We
do not exploit all possibilities.

UGVi is a satisfying example for mule
concept because the datasheet in Table 1
offers a 50kg payload UGV. Our integrated
human-augmented future battlefield re-
quired mules that would follow humans to
help them carrying loads. It is also popular
and has been the subject of publications
for years in specific fields such as SLAM
integration techniques, UGV positioning
and vision/static and dynamic exploration,
mixing optimization and further needs
for UGVs, UGVi manipulations, specific
objectives that can be stated for the UGVi
in a software point of view. But the state
of the art does not present multi physical
propositions for UGVi usage modeling,
nor its V&V process while being included
in a wider system of system. Yet mono-dis-
ciplinary optimizations on the UGVi can
be questionable regarding the expected
multi-disciplinary use of the robot.

These aspects could be treated using the
methodology depicted in Figure 2, giving
multidisciplinary dimensions to cited ap-
plications of MBSE. Theoretically, the more
precise and reliable COTS specifications
are, the more chances system of system ca-
pabilities can be realized in acceptable costs
and delays. The replacement of datasheet
with specifications, all the more augmented
by MBSE and optimization models to elicit
the link between specifications and project

costs and delays would lead to system of
system simulation for early validation. This
article depicts a practical experimentation
to observe that theory in practice: if the
datasheet proves to be incomplete and/or
inconsistent, system of system modeling
and simulation will not be available before
buying 20 k€ robots and spending hours of
time to describe its behavior.

III.  DATASHEET PRESENTATION
a.  Datasheet as requirements

For the experimentation, we have cho-
sen to exploit only four of the presented

specification: numbers 4, 5, 7 and 9. It is an
experimentation field that we figured suffi-
cient to address optimization quality model
problem on practical view, because it pres-
ents contradictory requirements that in-
duce concept dimensioning choices, while
being easy to measure and to confirm. The
battery autonomy will be highlighted as a
substantial multi physical compromise. If
the operating time defined in #9 is typically
3 hours, in which conditions can it be
expected to reach this performance? If the
laws of physics apply, the more load the
mule is carrying, the more energy will be

Figure 3. Different views of the UGV instance

1
Dimensions

990 mm length
670 mm width
390 mm height

39 in length
26.4 in width
14.6 on height

Track 555 mm 21.9

2 Wheelbase 512 mm 20.2

3 Weight 50 kg 110 lbs

4
Maximum payload 1 75 Kg 165 lbs

All-terrain payload 1 20 kg 44 lbs

5 Speed (max) 1.0 m/s 3.3 ft/s

6 Ground clearance 130 mm 5 in

7
Climb grade 45° 100% slope

Traversal grade 30° 58% slope

8 Operating ambient
temperature –10 to 30° 14 to 86°

9 Operating time 3 hours typical; 8 hours standby (no motion)

10 Battery 24V 20Ah Sealed Lead Acid

11 Battery charger Short-circuit, over-current, over-voltage and
reverse voltage protction

12 Charge time 10 hours

13 User power 5v / 12V / 24V; Each fused at 5A

14 Communication RS-232; 115200 Baud

15 Wheel encoders 78,000 ticks/m

16 Internal sensing
Battery status
Wheel odometry
Motor currents

Table 1. System specifications from datasheet

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

79

consumed. What is “typical” referring to? The experimentations in
place all refer to the battery extinction.

For example, it is mentioned that the operating time was about
3 hours, but it was not explained on which type of ground, the
supplied energy, with how much payload and with which speed,
and if it were compatible with slope climbing. Furthermore, if the
UGVi was optimized for requirement #9, we imagine it would
be so in all cases explained in requirement #4, supposedly on all
grounds with maximum payload.

On the other hand, it is expected not to outreach the expected
performance, otherwise it would mean that the system is over-
qualified for some features. A perfect match between datasheet
and real performance is at stake.

This selection of focus on four requirement exploitation, howev-
er arbitrary, covers all questions raised in the theoretical problem
(MTS-EP 1). It addresses multi physical capabilities of the system
with respect to its expected usage.

b. Maintaining the integrity of the specifications
The mule concept is designed to follow human pilot, while

carrying his supplies for 3hr at human walking speed (5km/h).
We have observed previously that connection between the remote
control and the robot starts to fail when the battery capacity low-
ers. If the tension falls, the electronical devices that controls the
connection will observe a disconnection. The witness of the robot
indicating the battery levels do not indicate the voltage threshold
that makes the communication fail. To measure the decaying
power, we plugged a voltmeter to our experiment, which we found
not intrusive.

Our system specifications at a glance are the following (see
Table above). Note that our use case scenario was executed at the
maximum speed the robot could reach, which is 3.6 km/hr. It is far
from our objective of 5 km/hr.

IV.  TESTS AND BENCHMARKING
We were inspired by the frameworks for vehicle tests:

vibration, slope, and military standard procedures with adapted
requirements. We have focused on battery level measurement to
follow, inspired by Dogru and Marquez (2018). In this section,
we will test the autonomy and energy specifications, the speed
specification, as well as the climb capacities.

a. Measurements methods and means
To carry out these tests, we used some measuring instrument:
■■ Distance ruler precision ±0:5mm.
■■ iPhone telephone timer to calculate the duration ±0:05s
■■ Voltmeter at the entry of the battery precision ±0:05V.

b. Energy tests
i.  TEST 001: Energy test, 50kg load on various ground
The environmental conditions, the nature of the soil and the

payload have the biggest impact on the robot mobility. This has
motivated us to test the 3 hours battery specification of require-
ment n°9 in Table 1 with 50kg payload and various ground nature
as “best effort.”

■■ Test stop condition: Battery running out.
■■ Environmental conditions presented in Table 2.

ID Title Requirement (mission) Test Method

001 Maximum Payload
various ground

The system shall carry 50kg load
following an 3h mission on campus

Test pass if the battery runs out in more
than 3h with load = 50kg on various
grounds (tarmac and dry grass)

002 All-terrain payload
dry grass

The system shall carry 20kg load
following a 3h mission on dry grass

Test pass if the battery runs out in more
than 3h on grass with load = 20kg

003 All-terrain payload
gravel soil

The system shall carry 20kg load
following a 3h mission on gravel soil

Test pass if the battery runs out in more
than 3h on gravel soil with load

004 All-terrain payload
tarmac

The system shall carry 20kg load
following a 3h mission on tarmac

Test pass if the battery runs out in more
than 3h on tarmac with load = 20kg

005 Speed (max on flat
tarmac

The system shall maintain a 1m/s speed
when following the mission onn tarmac

Test pass if the speed is measured to be
≥ 1m/s with 20kg load on average on 10m

006 Climb grade on
various grounds

The system shall climb 45° slope carrying
50kg load when following the mission in
the campus

Test pass if the robot climbs 5.5° and 25°
on tarmac, and if it climbs 18.5°, 22°, 24°
with load = 50kg

007 Climb test onn dry
grass

The system shall climb 45° slope carrying
20kg load when following the mission in
the campus

Test pass if the robot climbs 35° slope
with load = 20kg on dry grass

Temperature Machining and Damage

Humidity Scoring and Burning

Precipitation Dents and Bruises

Weather
Cloudy weather

50 kg

Powered components Lidar, GPS, calculator, WiFi,
camera

Flat Ground

Type of soil Duration

Tarmac 1hr 15min

Wet grass 1 hour

Table 2. Test log on various grounds, 50kg load

Observations:  test fail
1.	 After 1hr 30min of operation, we started to lose the commu-

nication with the robot (about 12 times in 30 min)
2.	 After 2hr 15min of operation, we totally lost communica-

tion. The autonomy requirement has not been met in our
conditions.

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

80

Since our first test was unsuccessful, we planned to be more
specific with the ground nature and load, and to report the behav-
ior of the power system. The system will be loaded with 20kg in
the next tests. The ambiguity of the Table 1 requirements will be
resolved with our next tests.

ii.  TEST 002: Energy test, 20kg load on grass
■■ Test stop condition: battery running out.
■■ Test results in Table 3.

5.	 Compared to test 001, the battery autonomy was extended
by 30 minutes in similar conditions. This is a clue to the
impact of the load on the system autonomy

6.	 from 16hr 20min, that is, in the last ten minutes of the
experiment, even if the robot is controlled to go straight
ahead, it cannot drive straight ahead (when controlled to go
straight ahead, its trajectory is affected.

Figure 4. Dry grass test environment

Observations:  test fail
1.	 After 1hr 55min of operation, we started to lose com-

munication with the robot (about 8 times in 50 min), we
measured the voltage at each communication loss, and we
presented the values in Table 4.

2.	 After 2hr 45min of operation, we have totally lost the com-
munication. The 3 hours have not been reached.

3.	 We noticed that the communication with the robot de-
pends on the Wi-Fi, but the minimum voltage and current
required for normal operation of the Wi-Fi are 24VDC and
0.3A, this can explain the total loss of communication in this
test and which occurred when the voltage was 24.05V.

4.	 The site chosen for this experiment is a dry grass, which is
relatively flat, without tall grass, and therefore the robot can
move forward without wasting much energy to submerge
the grass, and there is not an up or down process during the
operation.

Starting time Ending time

Time 13hr 45min 16hr 30min

Temperature 26° 27 °

Humidity 42% 39%

Precipitation 0 0

Wind 7.2 km/hr 7.2 km/hr

Weather Sunny weather Sunny
weather

Voltage 27.55 V 24.05 V

Load 20 kg

Powered components Lidar, GPS, calculator, WiFi,
camera

Flat Ground
Type of soil Duration

Dry grass 24hr 45min

Table 3. Test log energy on grass, 20kg load

Table 4. Voltage measurements test grass, 20kg

Time Voltage

15 hours 40 minutes 24.53  Volts

15 hours 57 minutes 24.45  Volts

16 hours 09 minutes 24.27  Volts

16 hours 16 minutes 24.16  Volts

16 hours 20 minutes 24.12  Volts

16 hours 24 minutes 24.09  Volts

16 hours 27 minutes 24.05  Volts

16 hours 30 minutes 24.05 V

Starting time Ending time

Time 14hr 20min 17hr 55min

Temperature 26° 27 °

Humidity 45% 46%

Precipitation 0 0

Wind 10.8 km/hr 10.8 km/hr

Weather Sunny weather Sunny
weather

Voltage 27.4 V 23.79 V

Load 20 kg

Powered components Lidar, GPS, calculator, WiFi,
camera

Flat Ground
Type of soil Duration

Tarmac 3hr 35min

Table 5. Test log energy on tarmac, 20kg load

Figure 5. UGVi on
tarmac

iii.  TEST 004: Energy test, 20kg load on tarmac
■■ Test stop condition: Battery running out or loss of
communication.

■■ Test results in Table 5.

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

81

Observations:  test successful
1.	 Compared to test ii, the battery life was extended by another

50 minutes this time. This could indicate an influence of the
ground nature on the battery autonomy.

2.	 After 3hr 35min of operation, we totally lost communica-
tion, but before that, we did not lose it. However, during the
last almost 20 minutes of the experiment, the response speed
of the robot to various operations degraded, and the rotation
speed was significantly reduced.

3.	 We chose a flat tarmac. Compared to grass test 002, the
tarmac has fewer gullies, so the robot has fewer bumps when
moving forward. As a result, the power consumption was
slower, and the communication system had less “chattering”
because the direct current was not drawn to make punctual
efforts to pass gullies.

iv.  TEST 003: Energy test, 20kg load on gravel soil
■■ Test stop condition: Battery running out or loss of communi-
cation.

■■ Test results in Table 6.

2.	 After 2hr 40min of operation, we have totally lost the com-
munication.

3.	 There is a lot of coarse gravel on the ground, which can
increase the friction when the robot moves, and make the
progress of the robot very bumpy, where the bumps are
much bigger than on tarmac and on dry grass.

4.	 Due to these gravels, the rotation speed of the robot de-
creased significantly, the rotation became very difficult and
bumpy.

5.	 Although the experiment lasted 2 hours and 50 minutes in
total, at the beginning it took us about 40 minutes to bring
the robot to the test site, which is the ground with gravel.
During these 40 minutes, the robot was moving on tarmac.
In comparison with test 004, we assume that 40 minutes on
tarmac could only improve the performance on our test on
gravel.

6.	 This test should be run again to know if the performance
on gravel is better than grass or not. But the fact that the
test was still unsuccessful even with 40 minutes on tarmac
and extra care on that day proves our point for this article:
the requirement on “3hr typical” was not met in those
conditions.

c.  TEST 005: Load and speed tests
The maximum speed of the robot supposed to be equal to 1 m/s

(as indicated on the Datasheet), So we did a speed test with 20kg
load on Tarmac to put to test requirement n°5 from table 1.

Starting time Ending time

Time 14hr 20min 17hr 10min

Temperature 26° 27 °

Humidity 45% 45%

Precipitation 0 0

Wind 10.8 km/hr 10.8 km/hr

Weather Sunny weather Sunny
weather

Voltage 27.47 V 23.92 V

Load 20 kg

Powered components Lidar, GPS, calculator, WiFi,
camera

Flat Ground
Type of soil Duration

Dry soil with
gravel

2hr 50min

Table 6. Test log energy on grass, 20kg load

Figure 6. Gravel soil illustration

Observations:  test fail
1.	 After 1hr 45min of operation, we started to lose the com-

munication with the robot (about 7 times in 45 min), we
measured the voltage at each communication loss, and we
presented the values in the following table.

Table 7. Voltage during test 003

Time Voltage

16 hours 35 minutes 24.36  Volts

16 hours 49 minutes 24.28   Volts

16 hours 58 minutes 24.15   Volts

17 hours 03 minutes 24.06  Volts

17 hours 06 minutes 23.99  Volts

17 hours 08 minutes 23.95  Volts

17 hours 10 minutes 23.92  Volts

Table 8. Test log combining load and speed on tarmac

Temperature 25° C

Humidity 42%

Precipitation 0%

Wind 11 km/hr

Weather Sunny weather

Load 20 kg

Flat ground Tarmac

Observations:  test fail
1.	 The robot covered 9.57m in 9.90sec (on average) (for 5 tri-

als: 10.00sec, 9.98sec, 9.78sec, 9.71sec, 10.02sec) on tarmac.
speed= 0.967 m/sec.

2.	 The robot covered 17.94m in 18.47sec (on average) (for 5
trials: 18.55sec, 18.45sec, 18.26sec, 18.62sec, 18.46sec) on
tarmac. speed= 0.971 m/sec.

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

82

3.	 We used the lines perpendicular to the edge of the road
as the starting line and the ending point, but they are not
completely vertical, so the robot was tilted when it moves
forward, so the actual walking route is greater than the
distance between the lines that we measured. Therefore, the
measured speed is less than the actual speed at that time. If
the robot tilts as it moves forward, the further it moves, the
larger the distance measurement error and the larger the
speed measurement error. At the end of the experiment, we
found that if the side of the robot is aligned with the edge of
the road at the beginning, the robot can better avoid tilting.

For accuracy, we have +/-0.5 mm at 1 m for the tape measure
that was used to measure the distance and the error of the iPhone
timer was +/-0.05s. However, we believe that the main source of
error in the timing of the experiment is human reaction time. The
coordination of the start timing, the reaction time when crossing
the finish line, these errors will be greater than the instrument
error and will depend on the timekeeper. This introduces a bias in
the validation team that would motivate automatic simulation in
later testing process.

d.  TEST 006: Climbing tests
The maximum climb grade of the robot supposed to be 45° as

indicated on the requirement n°7, so we did a climb test on wet
soil, with minimal payload. Figure 7 represents the conditions:

e.  TEST 007: Stress tests
The robot is suppose to climb 30 slopes with 20kg load, so we

did a stress test with 50kg load on different slopes. This exceeds
the all-terrain recommended payload in requirement n°4. Figure 8
represents the Tarmac test conditions, and Figure 8 to 12 represent
the wet grass tests conditions.

Temperature 12°

Humidity 27%

Precipitation 10%

Wind 24 km/hr

Weather Cloudy weather

Load 20 kg

Powered components Lidar, GPS, calculator, WiFi,
camera

Sloping Ground
Type of soil Slope angle

Wet soil 34.5°

Table 9. Test log climbing 34.5° slope, 20kg load

Figure 7. UGVi climbing test 35° slope on wet grass

Observations:  test fail
1.	 We tested the robot on a 35° slope on wet soil: the robot

failed to climb it. It climbed about one meter upthe slope
then it started to diverge to the right and started to tumble
down the slope. as seen in Figure 7. The requirement was
not met in these conditions.

Temperature 12°

Humidity 72%

Precipitation 10%

Wind 24 km/hr

Weather Cloudy weather

Load 50 kg

Sloping Ground

Type of soil Slope angle

Tarmac 5.5°, 25°

Wet grass 18.5°, 22°, 24°

Table 10. Test log stress slope, 50kg load

Figure 8. UGVi on tarmac 5.5° slope

Figure 9. UGVi on tarmac 25° slope

Figure 10. UGVi on grass 22° slope

Figure 11. UGVi on grass 18.5° slope

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

83

Observations:  test pass
1.	 We tested the robot on two slopes less than 20 °, the first one

is about 5.5° on tarmac and the other one is about 18.5 ° on
wet grass.

2.	 We tested the robot on three slopes less than 30°, two slopes
on wet grass of 22 ° and 24 °, and a 25 ° slope on tarmac.

This indicates that for some requirements, the UGVi performs
better than expected. This indicates that for this purpose only,
the specification is not efficient, because these performances were
never clearly specified.

V.  DISCUSSION
The V&V on our UGVi demonstrated that the datasheet

furnished no insight/hint to system usage, and that the UGVi
system was not fit for our mule capability. Moreover, since almost
no datasheet performance was met, we could not determine
whether the system is intended for our purpose or not. At this
point, we would have preferred to read the initial requirements,
which are meant to express the system functions. Last, if the
system were picked from a set of non-dominated optima solution
to (MTS-EP), there would be a perfect match between the
original intended capability of the system and its performance.
The following actions could be set: lower the buyer’s expectations,
which could lead to the end of business, improve the datasheet, and
improve the system performance toward some chosen capabilities.

We have introduced a loop that ensures the increase of com-
pany knowledge, and at the same times links directly the system
requirements to its intended use cases and user documentation.
Failing all tests on UGVi performance gives enough reasons to
invest in a method that would benefit both user manual descrip-
tions and correlation between system and its intended capabilities.
The inclusion of MBSE in the process of capability description
would decrease ambiguities on the intentions of the builder in
the requirements and in the user manual. Our process can also
include physical models at the highest level of conception. The
complete optimized system-driven engineering architecture
conception flow will include some re-engineering to transform
the UGVi into an optimized mule system. This involves re-writing
the system specifications and re-designing it in the first step, and
then propose a re-design in those objectives that would fit the
objectives better. The solutions could be explored with simulation
rather than real-life V&V, to reduce the costs of re-design. The test
logs could be smartly combined to improve the next specifications
for future product developments.

We have considered the “mule concept” as the systems expect-
ed capabilities. There were no declared capabilities on the UGVi
design details. There is no proof that the UGVi was designed as a
“mule concept” more than another purpose. The concept archi-
tecture capabilities have never been exposed by the builder. This
could be improved with more visibility on the system capabilities
by the builder, using for instance the operational views in domain
specific architecture frameworks and/or detailed representations

Figure 12. UGVi on grass 24° slope

of the system instance in model-based design or MBSE.
The SSFP design flow described is a proposition that match-

es requirement improvements, V&V practice, and user manual
redaction challenges. It introduces a method that enhances the
quality of the system V&V context, shares the best-known intend-
ed performances of the system, and automatically generates the
user manual datasheet. Furthermore, the SSFP flow introduces a
re-engineering method that would continuously improve engi-
neering specifications while mastering products engineering costs
and delays over the concept and maintenance phase of the system
lifecycle. This could smoothly replace the “best effort” system
engineering by a promising optimized system driven engineering.
Further research shall focus on quantification of the gains using
such a method UGV-category product development.

The correlation between the objective expression will be subject
of other publications and will bring insight to the complete GOAL
equation rather than only the “MTS-EP”. If our proposition
could help enhancing the quality of the system, the outcome on
resource and time of design are considered “best effort.” Further
publications will fill the other goals of (GOAL) introduced in the
state of the art.

For defense system definition, robots on the battlefield will
follow the military standards given by ISO and STANAG, which
will advise contract managers on how V&V for system behavior
on battlefield will be considered (Michelson 2021). Therefore, the
COTS which cannot prove to be compliant with the standards will
be excluded from defense contracts because it will be impossible
to integrate them in the larger system of system capability forecast.

VI.  CONCLUSIONS
Datasheets are not adequate to reflect the properties of a system

but can be replaced by system engineering specifications which
improve accuracy of subsystem behavior description. The lack of
completeness and ambiguity carried out by the very structure of a
usual datasheet ends up with cumulative ambiguity and over-test-
ing with no guarantee of results for end systems. Should datasheets
be banned in favor of systematic requirement engineering files or
documents requires that all suppliers of components and subsys-
tems are trained and master the systems engineering process.

On the opposite side, datasheets easily reveal the lack of knowl-
edge in systems engineering and requirements engineering.
Therefore, companies have three options: (a) stick to the usual
“reliable” supplier with no investment in writing the “should-be”
requirements and avoid evolving equipment, (b) stick to the usual
“reliable” supplier with consistent investment in writing the “should-
be” requirements and pay for the component evolutions, or (c)
impose systems engineering exchange protocols. Some industries
such as the semiconductor and the embedded system industry are
not familiar with systems engineering and make extensive use of
component and subsystem datasheets. If the aim is to lay out seam-
less system engineering flow down to physical architecture and up
to V&V, there is a major overhaul to be conducted.

In our multi-physical UGVi example, system tests failed:
technical validation was not reached. If the system was sold to a
client, none of the claimed capabilities could be covered as proved
in our bench-marking. The only objective that was reached was
not even specified, therefore would have generated no outcome.
The experiment presented here illustrates the necessity of
introducing environmental conditions and objectives to technical
specifications. It also indicates that the original requirement
artifacts for the system would do a better job at describing the
expected performance of the system, especially if it is enhanced
by architecture frameworks and MBSE concept design, which
are the trends to seek completeness and unambiguous system
description.  ¡

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

84

REFERENCES
■■ AFNOR. 2015. ISO/CEI/IEEE 15288:2015 Systems and Software

Engineering — System Life Cycle Processes. AFNOR. www.afnor.
org .

■■ Bachelor, Gray, Eugenio Brusa, Davide Ferretto, and Andreas
Mitschke. 2020. “Model-Based Design of Complex Aeronau-
tical Systems Through Digital Twin and Thread Concepts.”
IEEE Systems Journal 14 (2): 1568–79. https://doi.org/10.1109/
JSYST.2019.2925627 .

■■ Bonnet, Stephane, Jean-Luc Voirin, and Juan Navas. 2019.
“Augmenting Requirements with Models to Improve the
Articulation between System Engineering Levels and Opti-
mize V&V Practices.” INCOSE International Symposium 29 (1):
1018–33. https://doi.org/10.1002/j.23345837.2019.00650.x .

■■ Dogru, Sedat, and Lino Marquez. 2018. “A Physics-Based
Power Model for Skid-Steered Wheeled Mobile Robots.” IEEE
Transactions on Robotics 34 (2): 421–33. https://doi.org/10.1109/
TRO.2017.2778278 .

■■ Duffy, James B, Robert Combs, Jingyao Feng, and James P
Richardson. 2021. “Return on Investment in Model-Based
Systems Engineering Software Tools,” 15.

■■ Duprez, Jean, and Dominique Ernadote. 2020. “Towards a
Semantic Approach of MBSE Frameworks Specification.”
INCOSE International Symposium 30 (1): 1405–19. https://doi.
org/10.1002/j.2334-5837.2020.00794.x .

■■ Hahn, Heidi Ann, Nick Lombardo, Ann Hodges, Mitchell Ker-
man, and Frédéric Autran. 2020. “Implementing Systems En-
gineering in Early Stage Research and Development (ESR&D)
Engineering Projects.” INCOSE International Symposium 30
(1): 433–48. https://doi.org/10.1002/j.2334-5837.2020.00732.x .

■■ Henderson, Kaitlin, Virginia Tech, Perry St, and Durham Hall.
n.d. “Is CAD A Good Paradigm for MBSE?” 15.

■■ Huldt, T., and I. Stenius. 2019. “State-of-Practice Survey of
Model-Based Systems Engineering.” Systems Engineering 22
(2): 134–45. https://doi.org/10.1002/sys.21466 .

■■ INCOSE. 2015a. “A World in Motion - SE VISION 2025.”
■■ ——— . 2015b. INCOSE Systems Engineering Handbook 4e.

WILEY.
■■ Michelson, Brian. 2021. “Why NATO Needs Lethal Autono-

mous Weapon Standards.” https://cepa.org/why-nato-needs-le-
thal-autonomous-weapon-standards/ .

■■ Morgan, Markeeva, Thomas Holzer, and Timothy Eveleigh.
2021. “Synergizing Model‐based Systems Engineering, Mod-
ularity, and Software Container Concepts to Manage Obso-
lescence.” Systems Engineering, June, sys.21591. https://doi.
org/10.1002/sys.21591 .

■■ Pate, David J., Justin Gray, and Brian J. German. 2014. “A
Graph Theoretic Approach to Problem Formulation for Mul-
tidisciplinary Design Analysis and Optimization.” Structural
and Multidisciplinary Optimization 49 (5): 743–60. https://doi.
org/10.1007/s00158-013-1006-6 .

■■ Stevens, Jennifer Stenger. 2017. “Warranting System Validity
Through a Holistic Validation Framework: A Research Agen-
da.” INCOSE International Symposium 27 (1): 654–71. https://
doi.org/10.1002/j.2334-5837.2017.00385.x .

■■ Voirin, Jean‐Luc, Olivier Constant, Eric Lépicier, and Frédéric
Maraux. 2020. “Dream the Future: Systems Engineering in
2030.” INCOSE International Symposium 30 (1). https://doi.
org/10.1002/j.2334-5837.2020.00754.x .

■■ Wach, Paul, and Alejandro Salado. 2020. “The Need for Se-
mantic Extension of SysML to Model the Problem Space.” 18th
Annual Conference on Systems Engineering Research, Oct.
8-10.

■■ Watson, Michael, Azad Madni, Bryan Mesmer, and Dorothy
McKinney. 2020. “Envisioning Future Systems Engineering
Principles Through a Transdisciplinary Lens.” INCOSE Inter-
national Symposium 30 (1): 1517–32. https://doi.org/10.1002/
j.2334-5837.2020.00801.x .

■■ Wheaton, Marilee J., and Azad M. Madni. 2018. “Model
Based Tradeoffs for Affordable Resilient Systems.” INCOSE
International Symposium 28 (1): 30–39. https://doi.org/10.1002/
j.23345837.2018.00465.x .

■■ Wolny, Sabine, Alexandra Mazak, Christine Carpella, Verena
Geist, and Manuel Wimmer. 2020. “Thirteen Years of SysML:
A Systematic Mapping Study.” Software and Systems Modeling
19 (1): 111–69. https://doi.org/10.1007/s10270-019-00735-y .

■■ Wu, Quentin, David Gouyon, Sophie Boudau, and Éric Levrat.
2019. “Towards a Maturity Assessment Scale for the Systems
Engineering Assets Valorization to Facilitate Model‐Based Sys-
tems Engineering Adoption.” INSIGHT 22 (4): 37–39. https://
doi.org/10.1002/inst.12274 .

■■ Xu, Peng, and Alejandro Salado. 2019. “A Concept for
Set‐based Design of Verification Strategies.” INCOSE Inter-
national Symposium 29 (1): 356–70. https://doi.org/10.1002/
j.23345837.2019.00608.x .

■■ Younse, Paulo J., Jessica E. Cameron, and Thomas H. Brad-
ley. 2021. “Comparative Analysis of a Model‐based Systems
Engineering Approach to a Traditional Systems Engineering
Approach for Architecting a Robotic Space System through
Knowledge Categorization.” Systems Engineering 24 (3):
177–99. https://doi.org/10.1002/sys.21573 .

ABOUT THE AUTHORS
Lorraine Brisacier-Porchon is a PhD student in systems engi-

neering with ENSTA Paris. She obtained her Engineering degree
in 2014 at ENSTA Bretagne, Brest. She applied SysML 1.3 for
MBSE as a system architect on land defense systems during 7 years
at Nexter Systems. She undertook the PhD project in 2020 after
taking part in an international program development.

Omar Hammami is a professor at ENSTA ParisTech, France
and an expert in complex systems and systems engineering. He
has served as an expert for projects evaluation for several inter-
national organizations in the field of systems engineering with
applications in transport and energy, organizations, and value
chains in semiconductor and embedded systems. Omar Hamma-
mi has published over 200 papers in international conferences and
journals in the fields of computer science and system engineering
for complex systems. He is involved on a regular basis in the or-
ganization of several conferences and events worldwide related to
large scale systems. He is involved in MENA region for large scale
systems engineering projects. He holds a PhD in computer science
from Toulouse University, France, and a HDR in physics from
Orsay University, France.

His research interests are in theoretical foundations of systems
engineering and multidisciplinary optimizations.

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

85

APPROACH / OUTLINE

  ABSTRACT
During the initial concept development phase, systems engineers focus on defining the problem space and system functions to
explore candidate concepts that may address the systems engineers’ problems. Model-based conceptual design (MBCD) tech-
niques may be used to assist the customer and other stakeholders develop a greater understanding of the system concept, as well
as identifying areas in the system that are affected by changes in requirements. This approach has generally been documented
for describing the system concept in the early stages in the lifecycle, without significant focus on the test and evaluation (T&E)
space that would be needed to evaluate these concepts, or identifying where the T&E space would be affected with a change in
requirements. Our hypothesis is that decision makers would equally gain insight into the T&E considerations as well as system
space considerations using MBCD techniques. An approach is offered to extend the previously published MBCD methodology to
better consider the T&E space.

Exploring the Test and
Evaluation Space using
Model Based Conceptual
Design (MBCD) Techniques

David Flanigan, david.flanigan@jhuapl.edu; and Kevin Robinson, kevin.robinson@shoalgroup.com
 Copyright © 2019 by David Flanigan and Kevin Robinson. Permission granted to INCOSE to publish and use.

Developing a system concept
requires defining the problem
space and required capabilities,
functionality, and interfaces of

the system concept space. A Model-based
conceptual design (MBCD) technique can
describe the linkage of these problems and
potential solution space in order to visual-
ize the impact of changes from the problem
to the solution space, and vice versa. The
MBCD approach is conveyed via a struc-
tured entity-relationship descriptive model
instead of a traditional static document,
which may promote rapid understanding of
the causality of changes and may encour-
age quicker decision making and become
informed of the problem space.

This paper offers an additional emphasis
to the existing MBCD process by extending
it to integrate test and evaluation (T&E)
artifacts and interfaces more thoroughly
to the operational domain, system do-
main, and analysis domain as previously
described by Robinson et al. (2010). The

paper starts by describing the motivation in
incorporating the T&E domain to the exist-
ing methodology, and how the test domain
artifacts can be modeled and analyzed,
to quantify the impacts of changes to the
other domains. For clarity of reading, an
illustrative example is offered to explore the
modified technique and offers examples of
what these metrics may look like to provide
insight to decision makers.

INTRODUCTION / MOTIVATION
The MBCD technique has been intro-

duced to aid in understanding the problem
space. Like existing model-based systems
engineering (MBSE) techniques employed
later in the lifecycle, it helps to visualize
and structure systems engineering infor-
mation. It allows for a richer visual picture
to structure how changes in the capabilities
/ requirements may result from changes in
the problem definition space, ultimately
influencing the system capability space, con-
cept of operations, or interfaces needed to

successfully complete the mission. This ap-
proach can be helpful in the initial concep-
tual phase but does not currently consider in
detail the T&E phase of the project during
development of a conceptual system design.
By including the information that more fully
describes the T&E activities of the project,
additional insight into the full system design
may be considered, to include the require-
ments / capabilities to be tested as well as
the complex test ranges and equipment to
verify these requirements and changes in the
requirements. Decision makers may receive
equal insight into the entire system concept
by incorporating the T&E elements into
the MBCD process, as well as considering
operating and system concepts.

LITERATURE REVIEW
MBCD is implemented through a series

of models to provide communication be-
tween the various system development ele-
ments (developers, stakeholders, users, etc.)
and is described by Wylie et al. (2016), and

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

86

Aluwihare et al. (2014) from which this pa-
per takes motivation to extend the current
methodology. Cook et al. (2015) uses the
MBCD approach to assess the technical risk
of concepts using modeling and the un-
derstanding of interdependencies between
the different models, which can inspire the
use of modeling to conduct analysis on
the various concepts. Do et al. (2014) have
used MBCD to explore the interactions that
are needed when exchanging information
and insights while executing contracts
between the acquirer and supplier. Tetlow
et al. (2013) utilize the MBCD approach
to further explore the requirements and to
assess the mission success of the conceptual
system using a model-based approach. Do
and Tetlow’s descriptions detail the linkage
between the user needs and system model-
ing, to develop a credible and valid system
model for further analysis of the needs.
Other uses of models to inform system sim-
ulations have been produced (Yaroker et al.,
2013) that utilize a similar methodology as
the MBCD approach.

It can be concluded from the literature
review that MBCD has a wide range of
applications and user communities, which
provides motivation to incorporate the
T&E community in this methodology.

DESCRIPTION OF THE APPROACH
The modified MBCD approach is

described in five separate segments. The
first defines how MBCD is used for system
concept development and discusses the
relevant artifacts, actors, and information.
The second describes the proposed T&E ex-
tension to the MBCD technique. The third
segment describes the linkage between the
test domain and the other MBCD domains
(notably the operational, system, and anal-
ysis). The fourth segment offers additional
considerations to evaluate the entire system
model. The last segment offers an approach
to evaluate the new linkages and to visu-
alize the insight gained when one domain
causes changes to the other domains.

First Segment: MBCD Usage
MBCD is used to structure and link

information about the understanding of a
problem to possible solutions. Wylie et al.
(2016) describe the usage of MBCD using
descriptive models to describe the problem
space, what the system is comprised of, and
how the system interfaces are described.
In their approach, they provide a logical
design-based process to define the traceabil-
ity, and therefore design rationale, between
strategic guidance, operational activities,
operational needs, functions, functional
requirements, refined requirements, and
software components. Through use of the
descriptive models, the software developers

are then able to develop their model of the
system, and how it traces to the previ-
ously described artifacts. This traceability
visualization can then aid the software
developers and decision makers to appreci-
ate where changes in the modified artifacts
could affect the current software develop-
ment plans. This level of insight can assist
the decision makers to address the right
problem and assist the developers to focus
on the right solution set. Figure 1 provides
an example of this traceability between do-
mains through an abstraction of the schema
employed to structure the model.

Second Segment: T&E Extension
An additional domain is proposed for

inclusion into the MBCD methodology to
address the T&E domain. This includes in-
formation elements that would describe the
activities needed to test the requirements
and functions, trace the tests to the require-
ments, and include the system components
that would need to be tested. Proposed ele-
ments of the test domain would include test
plans, test ranges, test events, test articles,
test targets, and test constraints. Based on
the authors’ experiences across the concep-
tual design and T&E domains, a high-level
example of the schema of this test
domain is provided in Figure 2.

Third Segment: Test-Domain
Linkage to Existing MBCD
Domains

The newly formed test domain
model may be integrated into the
MBCD model through the inte-
gration of the schemas. Robinson
et al. (2010) define a model-based
systems engineering approach to
describe a complex capability to
include the enterprise context,
operational domain, system
domain, and the analysis domain.
The strategic domain (enterprise
context) focuses on the guidance.

 23345837, 2019, 1, Downloaded from https://incose.onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2019.00653.x, Wiley Online Library on [04/03/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

The operational domain focuses on the
mission tasks, operational environment,
and service requirements. The system
domain focuses on the functions needed to
address the mission, as well as the specific
components that perform the functions.
The analysis domain supports the studies
and analysis to analyze the operational
and system domain. Figure 3 (next page)
augments the existing schema of opera-
tional domain and system domain with the
test domain, thus providing the framework
for developing the enhanced descriptive
model, including the T&E activities.

As more domains are included with
the model, the abstracted schema repre-
sented in Figure 3 increases in complexity
and becomes less readable. For clarity of
reading, the interfaces and directionality
from Figure 3 have been converted into an
interdependency matrix, shown in Table 1.

The table is intended to be read from
left to right, from the source node (row)
to the target node (column). A number of
“1” indicates there is an interface from that
specific source to target node. Note that the
directionality should be reflected in this
matrix, as not all interfaces have a 2-way di-
rection, although can if desired for usability

 23345837, 2019, 1, Downloaded from https://incose.onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2019.00653.x, Wiley Online Library on [04/03/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Strategic
Guidance
Document

Guidance
Element

Documented
SME Guidance

Scenario Function

Function

Requirement

Requirement

Function

Top-Level
Need

Consolidated
Operational

Need

Operational
Need

Vignette

Operational
Activity

Software
development
environment
constraints

Software
component

Requirement
refined by

refined by

results in

refinesrefines

specifiesspecified bybasis ofguides

documents

documents

decomposes

decomposed by

decomposes

decomposed by specifies

specifies

Strategy System

Software
development

Model-based conceptual design

Operational

Figure 1. Traceability from conceptual design to software development (Wylie et al.,
2016)

Figure 2. Test domain MBCD model

Test Plans

Test Article Test Event

Test Domain

Test TargetsTest
Constraints

Test Range
Provides

Performs in

Constrains Participates in

Contained in

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

87

are then able to develop their model of the
system, and how it traces to the previ-
ously described artifacts. This traceability
visualization can then aid the software
developers and decision makers to appreci-
ate where changes in the modified artifacts
could affect the current software develop-
ment plans. This level of insight can assist
the decision makers to address the right
problem and assist the developers to focus
on the right solution set. Figure 1 provides
an example of this traceability between do-
mains through an abstraction of the schema
employed to structure the model.

Second Segment: T&E Extension
An additional domain is proposed for

inclusion into the MBCD methodology to
address the T&E domain. This includes in-
formation elements that would describe the
activities needed to test the requirements
and functions, trace the tests to the require-
ments, and include the system components
that would need to be tested. Proposed ele-
ments of the test domain would include test
plans, test ranges, test events, test articles,
test targets, and test constraints. Based on
the authors’ experiences across the concep-
tual design and T&E domains, a high-level
example of the schema of this test
domain is provided in Figure 2.

Third Segment: Test-Domain
Linkage to Existing MBCD
Domains

The newly formed test domain
model may be integrated into the
MBCD model through the inte-
gration of the schemas. Robinson
et al. (2010) define a model-based
systems engineering approach to
describe a complex capability to
include the enterprise context,
operational domain, system
domain, and the analysis domain.
The strategic domain (enterprise
context) focuses on the guidance.

 23345837, 2019, 1, Downloaded from https://incose.onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2019.00653.x, Wiley Online Library on [04/03/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

The operational domain focuses on the
mission tasks, operational environment,
and service requirements. The system
domain focuses on the functions needed to
address the mission, as well as the specific
components that perform the functions.
The analysis domain supports the studies
and analysis to analyze the operational
and system domain. Figure 3 (next page)
augments the existing schema of opera-
tional domain and system domain with the
test domain, thus providing the framework
for developing the enhanced descriptive
model, including the T&E activities.

As more domains are included with
the model, the abstracted schema repre-
sented in Figure 3 increases in complexity
and becomes less readable. For clarity of
reading, the interfaces and directionality
from Figure 3 have been converted into an
interdependency matrix, shown in Table 1.

The table is intended to be read from
left to right, from the source node (row)
to the target node (column). A number of
“1” indicates there is an interface from that
specific source to target node. Note that the
directionality should be reflected in this
matrix, as not all interfaces have a 2-way di-
rection, although can if desired for usability

 23345837, 2019, 1, Downloaded from https://incose.onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2019.00653.x, Wiley Online Library on [04/03/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Needline
(Operational
Connectivity)

Operational
Information

Exchange
Characteristics

Operational
Activity

System
Constraints

Test
Constraints

Test Article

Test Event

Test Range

Test Targets

Test Plans

Function

Exhibits

Exhibits

Exhibits Exhibits

Performs

Transfers

Traces to
Represents

and
evaluates

Represented
by

InfluencesInfluences

Contains

Monitors

Provides data

Provides data

In/output

System Domain
Operational Domain

Test Domain

Connected to

Specifies

Comprised of

Performed by

Component

Links

(External)
Interfaces

(Data)
Item

Operational
Need

Operational
Node

Performance
Characteristic

(MOE)
Performance
Characteristic

(MOE)

Operational
Constraints

Traces to

Figure 3. Modified MBCD model abstracted schema

Table 1. MBCD Model interdependency

Operational Domain

O
pe

ra
tio

na
l D

om
ai

n

System Domain

Sy
st

em
 D

om
ai

n

Test Domain

Te
st

 D
om

ai
n

1 1

1
1

1
1

1
1

1

1 1 1

11

1
1

1
1

1

1
1

1

1 1

1

1

1

1

1
1

1
1

Operational Contraints

Test Plans
Test Article

Test Targets
Test Event
Test Range

Test Constraints

(Data) Item
Function

Links
Component

System Contraints

Operational Need

Operational Node

Operational Activity
Operational Information

(External) Interfaces

Performance Characteristic (MOE)

Performance Characteristic (MOP)

Exchange Characteristics

Needline(Operational Connectivity)

Op
er

at
io

na
l C

on
tra

in
ts

Te
st

 P
la

ns

Te
st

 A
rti

cle

Te
st

 Ta
rg

et
s

Te
st

 E
ve

nt

Te
st

 R
an

ge

Te
st

 C
on

st
ra

in
ts

(D
at

a)
 It

em

Fu
nc

tio
n

Li
nk

s

Co
m

po
ne

nt

Sy
st

em
 C

on
tra

in
ts

Op
er

at
io

na
l N

ee
d

Op
er

at
io

na
l N

od
e

Op
er

at
io

na
l A

ct
iv

ity

Op
er

at
io

na
l I

nf
or

m
at

io
n

(E
xt

er
na

l)
In

te
rfa

ce
s

Pe
rfo

rm
an

ce
 C

ha
ra

ct
er

is
tic

 (M
OE

)

Pe
rfo

rm
an

ce
 C

ha
ra

ct
er

is
tic

 (M
OP

)

Ex
ch

an
ge

 C
ha

ra
ct

er
is

tic
s

Ne
ed

lin
e(

Op
er

at
io

na
l C

on
ne

ct
iv

ity
)

and readability. This table shows the three
domains (operational, system, and test),
which each have three possible domain
interactions (one internal and two external).

Fourth Segment: Evaluation of the New
Linkage

The fourth segment evaluates how the rest
of the overall descriptive model is affected
when one domain element is changed.
Changes may be viewed from different
perspectives: the decision makers will view
changes to the model as a change in capa-
bility or fielding date, which may affect their
investment strategy. Developers may view
changes to the model as changing their de-
livery dates or scheduling of efforts. Analysts
may view changes to the model as updating
their assessment of the system capability,
which then may affect the decision maker’s
insight of the system’s capability. Testers may
view changes to the model that may affect
their existing testing capabilities or future
testing capabilities that need to be developed.

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

88

Changes to one domain may affect
other domains described in the model.
For example, if there are changes to the
operational domain (such as requirements),
this may affect the system development
efforts if there are new capabilities needed,
or if the system design approach needs to
be modified. As a result of this operational
requirements change, testing approaches
may need to be changed, which may affect
the scheduling of the test facility or modifi-
cation of the test articles or targets.

Fifth Segment: Impacts of the Changes
Once the MBCD model has been

modified, evaluation of the model should
be conducted to ensure that the MBCD
concepts are still valid, and the decision
makers and other actors gain insight into
the problem when changes to one domain
are introduced. Several means are offered to
evaluate how the linkages may be conduct-
ed. One method could be to leverage the
network science community, to describe
the number of nodes that are affected
by a node that will change (for example,
changing requirements and understanding
what impacts this change would have in
the other domains). Other network science
metrics are size, average degree, average
path length, connectedness, node centrality,
and node influence.

As the triad of systems, operational, and
testing domains are affected by changes
in one of the domains, we may observe a
change in both the primary and secondary
influences that a domain has on the rest
of the system. Using Table 1, changes to
the test domain could affect the system
and operational domain as the primary
influence. However, each of these domains
has their own potential influences, creating
a secondary influence (system domain may

affect the test and operational domain, and
operational domain may affect the system
and test domain). There exists a potential
for the primary change in one domain to
indirectly affect itself through the primary
domain influenced. It may be postulate that
a lesser impact will be seen through the
secondary domain effect but leave this for
future work to quantify the primary and
secondary impacts. Table 2 provides an
example of such a primary (left side) and
secondary (right side) of impacts based on
one modification (function from system
domain). An example of a primary impact
is by affecting the “function” within the sys-
tem domain, will affect five elements in the
system (highlighted in orange). An example
of the secondary effect is that each of these

elements will have their own influence on
the operational, system, and test domain,
moving up and down the columns (shown
on the right side in blue), affecting seven
elements within the system.

Illustrative Example
An illustrative example is offered to

evaluate if the modified MBCD technique
has merit and offers additional value to the
stakeholders when changes are introduced.
Here an existing example that uses MBCD
to evaluate fire and emergency services
(Spencer and Harvey 2014) is leveraged
and simplified. This example was developed
for the Department of Fire and Emergency
Services (DFES) of the Government of
Western Australia. The MBCD process was

EM responder
transportation

DFES Operational Context Diagram

EM responders
Transports

Senses incid
ent

Alerts

As
si

gn
s

Incident

Sensor
Dispatcher

to incident

Responds

Figure 4. Modified DFES operational context diagram (OV-1)

Systems Engineering for Specifying Complex Capability.” 2010
Systems Engineering Test and Evaluation Conference: SETE.
Engineers Australia.

■■ Spencer, Daniel, and David Harvey. 2014. “A Model-Based
Approach to Capability in Fire and Emergency Services.” 2014
Systems Engineering Test and Evaluation Conference: SETE
2014. Engineers Australia.

■■ Tetlow, M. et al. 2013. “Modelling Requirements for Mission
Success Prediction.” MODSIM2013, Adelaide, AU.

 23345837, 2019, 1, Downloaded from https://incose.onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2019.00653.x, Wiley Online Library on [04/03/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Table 2. MBCD model interdependency primary and secondary impacts
Operational Domain

O
pe

ra
tio

na
l D

om
ai

n
System Domain

Sy
st

em
 D

om
ai

n
Test Domain

Te
st

 D
om

ai
n

1 1

1
1

1
1

1
1

1

1 1 1

11

1
1

1
1

1

1
1

1

1 1

1

1

1

1

1
1

1
1

Operational Contraints

Test Plans
Test Article

Test Targets
Test Event
Test Range

Test Constraints

(Data) Item
Function

Links
Component

System Contraints

Operational Need

Operational Node

Operational Activity
Operational Information

(External) Interfaces

Performance Characteristic (MOE)

Performance Characteristic (MOP)

Exchange Characteristics

Needline(Operational Connectivity)

Op
er

at
io

na
l C

on
tra

in
ts

Te
st

 P
la

ns

Te
st

 A
rti

cle

Te
st

 Ta
rg

et
s

Te
st

 E
ve

nt

Te
st

 R
an

ge

Te
st

 C
on

st
ra

in
ts

(D
at

a)
 It

em

Fu
nc

tio
n

Li
nk

s

Co
m

po
ne

nt

Sy
st

em
 C

on
tra

in
ts

Op
er

at
io

na
l N

ee
d

Op
er

at
io

na
l N

od
e

Op
er

at
io

na
l A

ct
iv

ity

Op
er

at
io

na
l I

nf
or

m
at

io
n

(E
xt

er
na

l)
In

te
rfa

ce
s

Pe
rfo

rm
an

ce
 C

ha
ra

ct
er

is
tic

 (M
OE

)

Pe
rfo

rm
an

ce
 C

ha
ra

ct
er

is
tic

 (M
OP

)

Ex
ch

an
ge

 C
ha

ra
ct

er
is

tic
s

Ne
ed

lin
e(

Op
er

at
io

na
l C

on
ne

ct
iv

ity
)

Operational Domain

O
pe

ra
tio

na
l D

om
ai

n

System Domain

Sy
st

em
 D

om
ai

n

Test Domain

Te
st

 D
om

ai
n

1 1

1
1

1
1

1
1

1

1 1 1

11

1
1

1
1

1

1
1

1

1 1

1

1

1

1

1
1

1
1

Operational Contraints

Test Plans
Test Article

Test Targets
Test Event
Test Range

Test Constraints

(Data) Item
Function

Links
Component

System Contraints

Operational Need

Operational Node

Operational Activity
Operational Information

(External) Interfaces

Performance Characteristic (MOE)

Performance Characteristic (MOP)

Exchange Characteristics

Needline(Operational Connectivity)

Op
er

at
io

na
l C

on
tra

in
ts

Te
st

 P
la

ns

Te
st

 A
rti

cle

Te
st

 Ta
rg

et
s

Te
st

 E
ve

nt

Te
st

 R
an

ge

Te
st

 C
on

st
ra

in
ts

(D
at

a)
 It

em

Fu
nc

tio
n

Li
nk

s

Co
m

po
ne

nt

Sy
st

em
 C

on
tra

in
ts

Op
er

at
io

na
l N

ee
d

Op
er

at
io

na
l N

od
e

Op
er

at
io

na
l A

ct
iv

ity

Op
er

at
io

na
l I

nf
or

m
at

io
n

(E
xt

er
na

l)
In

te
rfa

ce
s

Pe
rfo

rm
an

ce
 C

ha
ra

ct
er

is
tic

 (M
OE

)

Pe
rfo

rm
an

ce
 C

ha
ra

ct
er

is
tic

 (M
OP

)

Ex
ch

an
ge

 C
ha

ra
ct

er
is

tic
s

Ne
ed

lin
e(

Op
er

at
io

na
l C

on
ne

ct
iv

ity
)

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

89

followed to define the DFES mission, driv-
ers, and capabilities, and used the capability
management framework to consider during
the planning, development, and execu-
tion of the capability development more
thoroughly.

This example is utilized to introduce
the MBCD process and the test domain.
The intent of the example is to exercise the
interdependency and quantification of the
impact of changes when portions of the
entire model are changed.

Operational Domain Description
The operational domain is defined by

the DFES mission to detect, analyze, and
respond to emergencies and incidents.
Depicted in Figure 4 is the mission in

graphical form using an OV-1. Within
each of these domains, the following
elements are defined in Table 3.

System Domain Description
There are numerous systems that are

used in this example. These are organized
by the various phases of the operation
(sensing, alerting, processing, dispatching,
transporting, and responding). These
systems are also listed in Table 3. Note that
these systems will also include the actors that
will operate the systems and other aspects
not included in the simplified example.

Test Domain Description
The test domain will identify several

elements that would be used to test the

various mission activities that are being
evaluated. From our example, four capabil-
ities would be tested, listed in Table 4 that
are organized by capability test objective,
and applicable test elements.

Insight and Utility of the Modified MBCD
Process

The modified model can be utilized to
incorporate the test domain along with the
operational and system domains. While the
stakeholders, development team and test
team are developing their respective efforts,
we would expect numerous interactions be-
tween the three teams during the capability
development. Expected questions in re-
sponse to a domain change should start with
“how does that affect the other domains?”

The model would be developed and
then verify with the three domain teams to
ensure that the elements and interactions
are correct. Data would be elicited through
tailored interviews and workshops to deter-
mine if sufficient insight was gained by all
parties during the system development.

CONCLUSIONS / NEXT STEPS
This paper has offered a modification to

the existing MBCD process to incorporate
the test domain into the conceptual devel-
opment phase. The aim being to ensure that
the testing community and capabilities are
also considered during the initial devel-
opment to identify long-lead capability
development, or how interdependent the
operational and system development teams
are to affect the test capabilities.

Next steps would be to identify an
example project that this approach could
be applied to and gain concurrence by
all three domains. A model would be
developed to describe the specific domains
and follow the MBCD process during the
system development lifecycle. Data could
be collected at relevant milestones (for
example, preliminary design review, critical
design review, test readiness review, etc.). If
the hypothesis proves correct that insight
is gained by all domain stakeholders, the
project could progress to a larger and
more interdependent system concept for a
further proof of concept.  ¡

Functions Systems Actors

Sense smoke/incident Sensor Fire service personnel

Send alert Telephone/radio Rescue coordinators

Confirm incident/select
action Data Terminal

Dispatch response units Tanker, pumps, hoses

Respond to incident Transport vehicle

Table 3. DFES domain elements

Functions Test Objective Test Element

Sense smoke/incident Determine if incident is
properly detected

Sensors, fire source,
facility environment

Send alert Determine if alert is
sent timely

Communications
(transmitter and receiv-
er), communications
environment

Confirm incident/
select action

Determine if response
is correctly determined

Dispatcher, displays,
dispatcher environment

Dispatch response
units

Determine if dispatch is
correctly executed

Response units, trans-
portation environment

Respond to incident Determine if response
is adequately executed

Responders, fire source,
facility response
environment

Table 4. DFES test elements

REFERENCES
■■ Aluwihare, Chanaka, Michael Waite, and Christopher French.

2014. “Model Based Systems Engineering: a Methodology for
Collaborative Requirements Engineering.” Australian Defence
Engineering Conference 2014. Engineers Australia.

■■ Cook, S. C., et al. 2015. “Evaluation of a Model-Based Techni-
cal Risk Assessment Methodology.”

■■ Do, Quoc, Stephen Cook, and Matthew Lay. “An Investigation
of MBSE Practices Across the Contractual Boundary.” Proce-
dia Computer Science 28: 692-701.

■■ Robinson, Kevin, et al. 2010. “Demonstrating Model-Based

Systems Engineering for Specifying Complex Capability.” 2010
Systems Engineering Test and Evaluation Conference: SETE.
Engineers Australia.

■■ Spencer, Daniel, and David Harvey. 2014. “A Model-Based
Approach to Capability in Fire and Emergency Services.” 2014
Systems Engineering Test and Evaluation Conference: SETE
2014. Engineers Australia.

■■ Tetlow, M. et al. 2013. “Modelling Requirements for Mission
Success Prediction.” MODSIM2013, Adelaide, AU.

 23345837, 2019, 1, Downloaded from https://incose.onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2019.00653.x, Wiley Online Library on [04/03/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

90

■■ Wylie, Matthew, David Harvey, and Tommie Liddy. 2016.
“Model-Based Conceptual Design Through to System
Implementation-Lessons from a Structured Yet Agile
Approach.” 2016 Systems Engineering Test and Evaluation
Conference: SETE 2016. Engineers Australia.

■■ Yaroker, Yevgeny, Valeriya Perelman, and Dov Dori. 2013.
“An OPM Conceptual Model‐Based Executable Simulation
Environment: Implementation and Evaluation.” Systems
Engineering 16 (4): 381-390.

ABOUT THE AUTHORS
David Flanigan is a member of the principal professional staff

for The Johns Hopkins University Applied Physics Laboratory,
providing systems engineering services to various Department of
Defense and Department of Homeland Security clients, and has 20
years of active duty and reserve service with the US Navy. A grad-
uate of the University of Arizona, he holds a MS in information
systems and technology, a MS in systems engineering from the

Johns Hopkins University, and a PhD in systems engineering and
operations research from George Mason University. Dr. Flanigan
is a member of INCOSE, INFORMS, and MORS.

Kevin Robinson is the chief engineer at Shoal Engineering with
a distinguished career in the field of guided weapons in both the
UK Ministry of Defence and Australia’s Department of Defence.
He has made significant contributions to the development of ad-
vanced guided weapons through modelling and analysis, research,
and leadership of large cross discipline teams. Throughout his
career, Kevin has taken a leadership role in advancing the field of
model-based systems engineering (MBSE) via his publications and
contributions to the systems engineering community. He initiated
and chaired Australia’s first annual MBSE symposium, formed and
chaired INCOSE’s model-based conceptual design working group,
delivered a keynote address to INCOSE’s international symposium
in 2016, and has made contributions to INCOSE’s Systems Engi-
neering Handbook and related standards. He has joined INCOSE’s
future of systems engineering (FuSE) initiative core team.

Download your copy at
incose.org/impact

2023 INCOSE Impact Statement
A summary of INCOSE’s achievements and plans for the future

https://www.incose.org/impact

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

91

INTRODUCTION

  ABSTRACT
A complex system is characterized by emergence of global properties which are very difficult, if not impossible, to anticipate
just from complete knowledge of component behaviors. Emergence, hierarchical organization, and numerosity are some of the
characteristics of complex systems. Recently, there has been an exponential increase on the adoption of various neural network-based
machine learning models to govern the functionality and behavior of systems. With this increasing system complexity, achieving
confidence in systems becomes even more difficult. Further, ease of interconnectivity among systems is permeating numerous
system-of-systems, wherein multiple independent systems are expected to interact and collaborate to achieve unparalleled levels of
functionality. Traditional verification and validation approaches are often inadequate to bring in the nuances of potential emergent
behavior in a system-of-systems, which may be positive or negative. This paper describes a novel approach towards application
of machine learning based classifiers and formal methods for analyzing and evaluating emergent behavior of complex system-
of-systems that comprise a hybrid of constituent systems governed by conventional models and machine learning models. The
proposed approach involves developing a machine learning classifier model that learns on potential negative and positive emergent
behaviors, and predicts the behavior exhibited. A formal verification model is then developed to assert negative emergent behavior.
The approach is illustrated through the case of a swarm of autonomous UAVs flying in a formation, and dynamically changing the
shape of the formation, to support varying mission scenarios. The effectiveness and performance of the approach are quantified.

  KEYWORDS:  Complex System-of-Systems, Emergent Behavior, Machine Learning, Formal Verification

Framework for Formal
Verification of Machine
Learning Based Complex
System-of-Systems

Ramakrishnan Raman, ramakrishnan.raman@honeywell.com; Nikhil Gupta, nikhil.gupta4@honeywell.com; and Yogananda
Jeppu, yogananda.jeppu@honeywell.com
Copyright © 2021 by Ramakrishnan Raman, Nikhil Gupta, and Yogananda Jeppu. Permission granted to INCOSE to publish and use.

A system can be considered as an
integrated and interacting com-
bination of elements and/or sub-
systems to accomplish a defined

objective (INCOSE 2015). These elements
may include hardware, software, firmware,
and other support. Systems-of-systems
(SoS) are systems of interest whose system
elements are themselves systems (Jamshi-
di 2008). SoS has evinced keen interest
among the systems engineering communi-
ty, and there has been significant research
pertaining to principles and practices on
the architecture design, development, de-
ployment, operation, and evolution of SoS
(Lane 2013; Nielsen et al. 2015; INCOSE

INSIGHT 2016; Raman and D’Souza 2018;
and Raman and D’Souza 2019). Applica-
tions of SoS principles and practices span
many domains, including electrical power
distribution, and Internet-of-Things. SoS
characteristics discussed in literature
include operational/managerial indepen-
dence, emergent behavior, and evolutionary
development.

In a general sense, the adjective “com-
plex” describes a system or component that
by design or function or both is difficult
to understand and verify. A complex
system is characterized by emergence of
global properties which are very difficult,
if not impossible, to anticipate just from

a complete knowledge of component
behaviors (Aiguier et al. 2008). Emergence,
hierarchical organization, and numerosity
are some of the characteristics of complex
systems (Ladyman et al. 2013). Specifically,
for complex SoS, the “stringing” together
of the constituent systems results in unique
functionality and emergent behavior being
exhibited at the SoS level that is very diffi-
cult to envision and predict and cannot be
attributed to any of the constituent systems
individually. Understanding measures of
effectiveness (MOEs) (INCOSE 2015),
is critical to analyze the impact of the
emergent behavior at SoS level. There are
different types of complexity measures dis-

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

92

cussed from different perspectives (Kinsner
2008). The perspective of complexity used
in this paper is with respect to the degree of
difficulty in accurately predicting the future
behavior. This complexity is determined
by the entity being observed, the capabili-
ties of the observer, and the behavior that
the observer is attempting to predict. This
paper proposes an approach for analyz-
ing and evaluating emergent behavior of
complex SoS. In our proposed approach,
the entity being observed is a complex SoS,
the observer being a machine learning clas-
sifier, and the behavior being attempted to
predict is the positive or negative emergent
behavior of the complex SoS.

The rest of the paper is organized as
follows: The next section discusses key
elements pertaining to the proposed ap-
proach, namely emergent behavior, MOEs,
machine learning, and formal methods. The
subsequent section discusses the proposed
approach and illustrates it through case of a
complex SoS that comprise a hybrid of con-
stituent systems governed by conventional
and machine learning models. The case tak-
en is a swarm of autonomous UAVs flying in
a formation, and dynamically changing the
shape of the formation, towards supporting
different mission scenarios. Finally, benefits
and limitations of the proposed approach,
conclusions and future work are discussed.

EMERGENT BEHAVIOR, MOEs, MACHINE
LEARNING, AND FORMAL METHODS

This section discusses some of the
key elements pertaining to the proposed
approach.

Emergent Behavior
Emergence refers to the ability of a

system to produce a highly structured
collective behavior over time, from the
interaction of individual subsystems
(Kinsner 2008). Common examples include
a flock of birds flying in a V-formation, and
ants forming societies of different classes
of individual ants, wherein these patterns

are not induced by a central authority. For a
system, emergent behavior refers to all that
arises from the set of interactions among
its subsystems and components. Complex
systems are expressed by the emergence of
global properties which are very difficult,
if not impossible, to anticipate just from
a complete knowledge of component or
subsystem behaviors (Giammarco 2017).
Emergent behavior can be characterized
as positive or negative, depending on the
impact on the MOEs. The challenge for
complex systems is that there is inadequate
knowledge on combination of events
that would result in a negative emergent
behavior. The intent of our proposed
approach is towards learning from
emergent behaviors exhibited and asserting
for occurrences of negative emergent
behaviors for complex SoS.

Measures of Effectiveness – MOEs
MOEs. Measures of effectiveness are the

operational measures of success that are
closely related to the achievement of the
objective of the system of interest, in the
intended operational environment under a
specified set of conditions (INCOSE 2015).

It reflects the overall customer and user sat-
isfaction, and it manifests at the boundary
of the system. MOEs are independent of the
specific solution (INCOSE 2005). Example
of MOEs include service life of a satellite,
search area coverage, and survivability. Fail-
ure of the system to meet an MOE implies
that the system does not meet its purpose
and objectives (Smith and Clark 2006).

SoS MOEs versus System MOEs. In the
context of SoS, each constituent system of
the SoS has its own MOEs. The MOEs for
a constituent system can be independent-
ly measured to assess its success. MOEs
of the SoS are the operational measures
of success for the SoS as a whole. Figure
1 illustrates SoS MOEs versus constit-
uent system MOEs. System A can have
MOEs: SysA-MOE-1, SysA-MOE-2, and
SysA-MOE-3. The MOEs of System A rep-
resent the measures of success for System A
as an independent system, and the MOEs
for System A can be independently mea-
sured to assess the success of System A. In
addition to each constituent system having
its own MOEs, MOEs are also relevant at
the SoS level, that is, SoSx would also have
its own MOEs. The MOEs at the SoS level

Sys-A-MOEsn

System of System X

Sys-B-MOEs

Sys-C-MOEs

Sys-D-MOEs

SoS-MOEs

System A

System B

System C

System D

n 1

2

1
1

1

2
2

2

n

n

System-of System

SoS MOEs

SystemMOEs

System

SoS Behaviors
Exhibited

System Behaviors
Exhibited

impacts

impacts

1..*
1..*

1..*

1..* 2..*

Figure 1. SoS MOEs and constituent system MOEs

System of System MoEs

System A is a key
player in the SoS

Relative importance of
each SoS MOE

SoS MoE1

Sy
sA

–M
oE

–1

Sy
sA

–M
oE

–2

Sy
sA

–M
oE

–3

Sy
sB

–M
oE

–1

Sy
sB

–M
oE

–2

Sy
sC

–M
oE

–1

Sy
sC

–M
oE

–2

Sy
sD

–M
oE

–1

Sy
sD

–M
oE

–2

Relative
impact of
each System
MOE on each
SoS MOE

Raw score

MOEs of constituent Systems

Rank

So
S M

oE
 W

eig
ht

Relative
Weight

SoS MoE2
SoS MoE3
SoS MoE4

9
7
5
1

12
5

13
5

13
0

49 49 49 7 56 5

9 9

9
99

7

7

7

5
5

7 7 7 1
1

7
5 57

21
%

21
%

8% 8% 8% 1% 9% 1%22
%

3 1 2 5 5 5 8 4 9

Figure 2. SoS – System MOE relationship matrix

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

93

represent the measures of success for the
SoS as a whole. Figure 1 further illustrates
the impacts on MOEs at system level and
at SoS level. The MOEs of the system are
impacted by the behaviors exhibited by the
system. Similarly, the MOEs of the SoS are
impacted by the behaviors exhibited at SoS
level. Further, the behaviors exhibited at
constituent system level also impacts the
SoS MOEs.

As discussed earlier, one of the char-
acteristics of SoS is that the stringing
together of the constituent systems results
in unique behavior and functionality that
gets exhibited at the boundary of the SoS,
that is, the behavior may not be attributed
to any of the constituent systems function-
ing independently. With this being the case,
the relationships between the MOEs of the
SoS vis-à-vis the MOEs of the constituent
systems might turn out to be complex and
dynamic. There are different means to
analyze the MOE relationships between the
constituent systems and SoS. SoS-System
MOE relationship matrix (Raman and
D’Souza 2017; and Raman and D’Souza
2019) is one of the means to analyze the
relationships, as indicated in Figure 2. The
impact of different system MOEs on the
SoS MOEs could vary. There might be sce-
narios where a specific constituent system
might be meeting all its MOEs, but the SoS
MOEs might not be met. Similar scenarios
will be discussed in this paper in the next
section.

Machine Learning
Machine learning can be broadly

defined as computational methods using
experience to improve performance or to
make accurate predictions (Mohri et. al.
2012). Here, experience refers to the past
information available to the learner, which
typically takes the form of electronic data
collected and made available for analysis.
Machine learning represents the field of
study that allows computer programs to
learn without being explicitly programmed.
The often-used definition is: “A computer
program is said to learn from experience
E with respect to some task T and some
performance P, if its performance on T, as
measured by P, improves with experience
E” (Mitchell, 1997). Artificial neural net-
works (NN), inspired by biological neural
networks in brains, comprise a collection
(organized in layers) of interconnected
units (nodes), with each node having the
capability to receive a signal, process the
signal, and transmit the processed signal to
other units linked to it. NN has been used
on numerous learning problems, including
vision, speech recognition, social networks,
board games, and medical diagnosis. In
a neural network, the first layer is termed

the input layer since it is connected to
the external input data. The last layer is
termed the output layer since it provides
the outputs of the total neural network. All
the other intermediate layers are termed
hidden layers. Each node unit processes
the signal via an activation function. Each
input has a weight that can be modified.
Each unit computes the activation function
f of the weighted sum of its inputs.

Recently, there is an explosion in the
adoption of neural network-based machine
learning models in various systems and are
increasingly being used to control many
physical systems, such as cars and drones.
A good starting point to get the context
of the work discussed in this paper is a
comprehensive survey paper that provides
a detailed look at the field with a review of
over 150 odd papers (Xiang et al. 2018) that
discusses the use of neural network-based
machine learning techniques in safety
control systems, and the formal methods/
verification used to validate the networks.
The verification of NN is a hard task as it is
said to be an NP complete problem. Most
of the difficulties arise from the presence of
activation functions and the complex struc-
ture of the neural network. Nevertheless,
neural networks-based machine learning
techniques have been used in some of the
safety critical systems: F-15B intelligent
flight control system (William-Hayes 2005)
and intelligent autopilot system (Baomar
and Bentley 2017). Neural networks are
however susceptible to small changes in
their inputs, and therefore ensuring their
correct behavior under various conditions
is very important. The Reluplex algorithm,
which stands of ReLU with Simplex caters
to the activation function Relu using the
simplex algorithm, is evaluated on a set of
45 real world NN problems (Katz 2017).
In this paper, we have used MathWorks®
MATLAB R2020b Statistics and Machine
Learning Toolbox™.

Formal Methods
Formal methods are mathematics-based

techniques for the specification, develop-
ment, and verification of digital systems
(RTCA 2011). The mathematical basis
of formal methods consists of formal
logic, discrete mathematics, and comput-
er-readable languages. The use of formal
methods is motivated by the expectation
that, as in other engineering disciplines,
performing appropriate mathematical
analyses can contribute to establishing the
correctness and robustness of a design.
Formal methods can be used to model
complex systems as mathematical entities.
The complex system behavior is broken
down into smaller units and each one of
these is defined as mathematical equa-

tions. Defining systems formally enables
system validation (mathematically correct
behavior – mostly safety criteria) using
means other than testing – like a proof of
correctness. The mathematical techniques
are used to prove the correctness of the
assumptions and theory using property
proving. There are many tools that can be
used for formal methods in the systems
development V-Model (Nanda et al. 2018).
Another branch of formal verification is
called model checking, which involves a
model of the system and a way to define the
property of the system. The model checking
tool then explores the possible states the
model can be in and checks for violations
of the property. A violation of the property
yields a counter example that is used for
debugging the model. It may give concrete
evidence of the correctness of the property
and this proves that the property can never
be violated for any combination of states
and within the overriding assumptions.
There is a possibility of the formal methods
tool to provide an outcome stating that
the property cannot be proved due to the
limitation of the tool. This usually happens
due to the large state space that is created
and makes the proving impossible given
the memory limitation of the computing
platform. In such cases one must slice the
model or limit the input space to reduce the
bloat-up of the state space. In this work, we
have used Simulink Design Verifier, a tool
from MathWorks (SLDV 2020) that uses
formal methods to generate test cases, find
design errors and to prove the correctness
of assertions or properties defined as Sim-
ulink blocks or MATLAB code. We have
successfully demonstrated the use of SLDV
in our earlier work (Raman and Jeppu
2019). In this paper, we also look at another
tool called CBMC (2020). This tool is a
bounded model checker that looks at prop-
erties in a small defined region and bound
and argues on its correctness. CBMC works
on the C code, and it has additional features
like MC/DC testing, array checks, branch
coverage etc. that can be used on the gen-
erated code. We explore the use of CBMC
in the current problem statement to look at
the NN correctness and the SoS behavior.

PROPOSED APPROACH
This section discusses the proposed

framework towards application of machine
learning based classifiers and formal meth-
ods for analyzing and evaluating emergent
behavior of complex system-of-systems.
Figure 3 provides an overview of the
proposed approach. The complex SoS has
a set of defined MOEs. The SoS comprises
independent constituent systems, with each
having their own corresponding system
MOEs. The proposed approach involves

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

94

UAVs is taken from publicly available liter-
ature (Tahir et al. 2019; X. Dong et al, 2019;
and Hassanien and Emary 2016). This is
specifically done to avoid any restrictions
that may come in sharing the work with the
community. The example, though generic,
is sufficiently complex and is of significant
relevance to the aerospace community
and can further be scaled up to serve more
complex use cases.

Swarm Formation Flying
As discussed in the earlier section, emer-

gence refers to the ability of a system to pro-
duce a highly structured collective behavior
over time, from the interaction of individual
subsystems. A typical example pertains to a
flock of birds flying in a specific formation,
which is supposed to give many benefits
including reduced energy requirements and
safety. Similar approaches have been adopt-
ed for swarm of UAVs too, wherein specific
formation shapes are expected to provide
specific benefits – including fuel savings
and redundancy in mission coverage. The
scenario being simulated is a system-of-sys-
tems comprising six autonomous UAVs as
the constituent systems. The autonomous
UAVs collaborate with each other during
the required situations and fly in a forma-
tion to leverage the desired benefits as and
when required. Various scenarios pertain to
the different formation shapes as required
for the mission. For an individual constitu-
ent system UAV, the MOEs would pertain
to parameters such as whether the required
speed constraints are adhered to or not, and
whether the required space constraints with
adjacent autonomous UAVs are adhered to
or not. For the SoS comprising the various
autonomous UAVs, MOEs would pertain to
aspects such as the time duration to transi-
tion from one formation shape to another,
the safety and separation constraints being
adhered to by all the autonomous UAVs,
and the formation shape being maintained
without distortion. For experiments,
simulations were done to study various
scenarios that would be encountered during
the autonomous UAV formation flying.
MathWorks® MATLAB R2020a Aerospace
& Control System Toolbox was used to
build the models for the same.

The high-level SoS model is illustrated in
Figure 5. The formation shape and indexing
for the six autonomous UAVs is indicated
in the figure (in “formation order”). For the
specific formation, UAV-1 is considered as
the leader of the formation. Each signal line
depicted in the model represents data from
all the six UAVs. The states of each individ-
ual UAV include the inertial position and
velocities. The states are initialized in the
vehicle block with random initial positions
with respect to the leader of the formation.

Figure 3. Overview of proposed approach

building a machine learning (ML) classifier
that observes the various MOEs at SoS level
and constituent system level, leverages the
MOE relationship matrix (Figure 2), and
learns the emergent behavior. The formal

verification engine is used to assert the
occurrence of negative emergent behavior.
Figure 4 provides details of the proposed
approach. To illustrate the proposed
approach, the generic case of a swarm of

System A

Formal Verification
Engine

ML
Classifier

System B

System C

Complex SoS

Observe SoS MOEs, codify MOE
relationship matrix, learn

positive & negative emergent
behavior and predict

Assert
negative
emergent
behavior

Sys-A MOEs Sys-B MOEs Sys-C MOEs

SoS MOEs: 1, 2, ..m

1
m

Figure 4. Proposed framework

Complex SoS – Analyze
Known/Exhibited
Behaviors & MOE

Relationships

Establish Behavior Model

Experience of New
Emergent Behaviors

Define property of not
having −ve behavior

Execute Formal Verification
engine

Plug-in ML Classifier
onto SoS

Check formal assertions of
−ve behaviors

Establish Formal
Verification Engine

Train/Re-train ML
Classifier

Classify Behaviors as
Positive/Negative

Emergence

Figure 5. SoS model – with 6 constituent systems (autonomous UAVs)

Actual States Desired States

Desired States

Actual States

Forces

States

Desired

Actual

Actual States

Forces

Forces

MATLAB Animation Display

Logging and Prediction

Swarm Instincts
Formation order

1
3 4

5 2 6

Controller

Vehicle

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

95

The states are consumed by the swarm
instincts block to generate desired states
to maintain or change the formation. The
desired states are passed onto the control-
ler which generates required forces to be
applied on the vehicle.

The required forces are then sent to the
vehicle, which integrates them to get the
current states. MATLAB animation display
was used for visualizing the formation in
real time during the various simulation
runs. The constituent system autonomous
UAV vehicle block is illustrated in Figure
6. The forces from the controller block are
integrated within the 6-degree of freedom
(6DOF) point mass block to generate the
inertial position and velocities in ENU (east
north up) frame. Impulse noise block intro-
duces an impulse force at a random instant
and of random total magnitude. This was
used to simulate various scenarios such

as wind gust. The force noise block adds a
Gaussian noise to all the forces to simulate
real world conditions. Figure 7 illustrates
the model that pertains to the various
formation shapes as part of the simulation
runs. There are three frames of relevance
in the model: (a) leader relative formation
plane frame, in short, referred to as the
formation plane (b) leader relative inertial
frame, and (c) absolute inertial frame. The
desired shape of formation and formation
plane angles are taken as input, either from
a time series file or from a signal genera-
tor. The desired formation plane angle is
defined by Euler angles, which is consumed
as a time series file or from a signal gen-
erator. The angles are converted to DCM
(direction cosine matrix) in ZYX (axis)
order. The desired positions in formation
plane are transformed to the leader relative
inertial frame using the DCM of formation

plane. Leader relative inertial positions are
converted to absolute inertial by adding
leader’s inertial frame position. Figure 8
illustrates the individual controller model
that resides in each of the autonomous
UAVs. The controller generates the desired
forces to achieve the desired states from the
actual current states. The cascaded propor-
tional–integral–derivative (PID) is used
to control the outer loop positions and the
inner loop velocity. Saturation is added to
the outputs to limit the control corrections
to realistic values. Some of the formations
are illustrated in Figure 9, along the rolling,
pitching and yawing planes.

Design of Experiments
An orthogonal array of experiments is

devised to analyze the behavior of the SoS
for different values of various state param-
eters, as indicated in Figure 10. Following

Figure 6. Constituent system model – an autonomous UAV

NoiseX
NoiseY
NoiseZ

Force Noise

force_noise_on

impulse_noise_on

Forces . x

Forces . y

Forces . z

6DOF Point Mass
(Coordinated Flight)

Coordinated
Flight

6th Order
Point Mass

Vehicle dynamic model

Actual States

Fx (N)

Fy (N)
XEast (m)

XNorth (m)
XUp (m)

Fz (N)

gamma
chi
Velocity

x
y
z

vx
vy
vz

Y (rad)
X (rad)
V (rad)

vx
vy
vz

Figure 7. SoS – autonomous UAVs formation

desired_formation_xyz

[FormationPlaneRotationMatrix]

[FormationPlaneRotationMatrix]

[FormationPlaneRotationMatrix]

desired_formation_plane_angle

Desired formation plane angle

Rotation Order: ZYX

D2R DCMbe[R1,R2,R3]

Desired relative positions in
formation plane to inertial plane

Desired leader relative
inertial pos to

absolute inertial pos

Desired absolute
inertial positions

Actual inertial
positions

Desired formation using signal generator

xyz

PhiThetaPsi

Actual inertial positions

Actual absolute inertial positions

Actual leader absolute position

Actual formation plane positions

Leader inertial position

XYZ

Angles

Formation plane rotation matrix

Formation plane rotation matrix

Desired leader relative formation plane
Desired leader relative inertial frame

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

96

parameters are considered for behavior
analysis: (1) initial / final formation shape,
(2) angles of rotation of formation’s plane
of reference, as defined by Euler angles phi
ϕ, theta θ, psi ψ, (3) vehicles facing wind
gust, and the corresponding magnitudes on
X,Y,Z axes, with/without forces.

Principal Component Analysis (PCA) and
Zone Visualization

There are many factors that impact the
emergent behavior of SoS, and visualization
of the SoS state parameters would provide
deeper insights. However, to understand
the interplay of the various factors on SoS
emergent behavior, a higher dimensional
visualization is required which would be
difficult to represent. Principal component
analysis (PCA) (Martınez and Kak 2001)
is used towards getting lower dimensional
views. PCA comprises projection of an
n-dimensional input data onto a reduced
k-dimensional linear subspace, such that
the reconstruction error is minimized. The
lower-dimensional view is a projection of

various points in the multi-dimensional
space when viewed from its most informa-
tive viewpoint. PCA can be done by singu-
lar value decomposition of a data matrix,
after mean centering, and normalizing the
data matrix for each attribute.

Figure 11a illustrates the plot of PCA of
UAV pair-wise distances (15 pairs between
the five UAVs), against the PCA of UAVs
pair-wise slopes (15 pairs between the five
UAVs, with two slopes along XZ and YZ).
The figure essentially represents the state
of the SoS, reducing the multi-dimension-
al state parameters to lower dimensions,
enabling identification of specific regions/
zones of positive (1) and negative (0) emer-
gence. Further, the state space of a constitu-
ent system can be analyzed against the state
space of the SoS, with respect to the emer-
gent behavior and the MOEs. Figure 11b il-
lustrates the plot of PCA of SoS versus PCA
of UAV#3 MOEs. The following 3 scenarios
are depicted in the figure: the zone of both
SoS and UAV#3 exhibiting bad behavior
(legend 0 in the plot, red); the scenario of

UAV#3 meeting its own MOEs, but SoS is
exhibiting negative behavior (legend 1 in
the plot, yellow); and finally, the scenario
of both UAV#3 and the SoS exhibiting pos-
itive behavior (legend 3 in the plot, green).
Further the scenario of UAV#3 not meeting
its MOEs while the SoS exhibiting posi-
tive behavior does not occur. This implies
scenario wherein the constituent system is
a key player in the SoS (scenario depicted
in MOE relationship matrix in Figure 2).
Three different supervised learning classifi-
cation algorithms were tried (a) naïve Bayes
classification, (b) fitted binary classification
decision tree, and (c) KNN-nearest neigh-
bor (Mitchell 1997). The decision surface
of these different classification algorithms
is illustrated in Figure 12, matching well
with Figure 11b (legend used in Figure 12 is
same as used in Figure 11b).

Machine Learning Model – ML Classifier
In the simulation runs of the complex SoS

comprising autonomous UAVs, various state
parameters of the formation are logged —

Figure 8. Constituent system: autonomous UAV – controller

Desired . x
Actual . x

Desired . y
Actual . y

Desired . z
Actual . z

Desired vx

Actual . vx

Desired vy

Actual . vy

Desired vz

Actual . vz

Force . x

Force . y

Force . z

Acceleration is converted to force
by a mass gain term in PID block

Ref
PID(z)

Ref
PID(z)

Ref
PID(z)

Ref
PID(z)

Ref
PID(z)

Ref
PID(z)

Position controller Velocity controller

Figure 9. Various UAV formations in different planes

Rotating plane of formation

Rolling plane Pitching plane Yawing plane

Changing shape of formation

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

97

Experi-
ment # Initial Shape Final Shape Final

psi
Final
theta

Final
phi Gust UAVs Gust X

(kN)
Gust Y

(kN)
Gust Z
(kN)

Force
on/off

1 Triangle Triangle -45 -45 -45 0 5 5 5 0

2 Triangle Triangle -45 -45 0 UAV3 2.5 2.5 2.5 1

3 Triangle Triangle -45 -45 -45 UAV 3 and 6 1.6 1.6 1.6 1

4 Triangle Inv. Triangle 0 0 -45 0 5 2.5 2.5 1

5 Triangle Inv. Triangle 0 0 0 UAV3 2.5 1.6 1.6 1

6 Triangle Inv. Triangle 0 0 45 UAV 3 and 6 1.6 5 5 0

7 Triangle Closed Loop 45 45 -45 0 5 1.6 1.6 1

8 Triangle Closed Loop 45 45 0 UAV3 2.5 5 5 0

9 Triangle Closed Loop 45 45 45 UAV 3 and 6 1.6 2.5 2.5 1

10 Inv. Triangle Triangle 0 45 -45 UAV3 1.6 5 2.5 1

11 Inv. Triangle Triangle 0 45 0 UAV 3 and 6 5 2.5 1.6 0

12 Inv. Triangle Triangle 0 45 45 0 2.5 1.6 5 1

13 Inv. Triangle Inv. Triangle 45 -45 -45 UAV3 1.6 2.5 1.6 0

14 Inv. Triangle Inv. Triangle 45 -45 0 UAV 3 and 6 5 1.6 5 1

15 Inv. Triangle Inv. Triangle 45 -45 45 0 2.5 5 2.5 1

16 Inv. Triangle Closed Loop -45 0 -45 UAV3 1.6 1.6 5 1

17 Inv. Triangle Closed Loop -45 0 0 UAV 3 and 6 5 5 2.5 1

18 Inv. Triangle Closed Loop -45 0 45 0 2.5 2.5 1.6 0

19 Closed Loop Triangle 45 0 -45 UAV 3 and 6 2.5 5 1.6 1

20 Closed Loop Triangle 45 0 0 0 1.6 2.5 5 1

21 Closed Loop Triangle 45 0 45 UAV3 5 1.6 2.5 0

22 Closed Loop Inv. Triangle -45 45 -45 UAV 3 and 6 2.5 2.5 5 1

23 Closed Loop Inv. Triangle -45 45 0 0 1.6 1.6 2.5 0

24 Closed Loop Inv. Triangle -45 45 45 UAV3 5 5 1.6 1

25 Closed Loop Closed Loop 0 -45 -45 UAV 3 and 6 2.5 1.6 2.5 0

26 Closed Loop Closed Loop 0 -45 0 0 1.6 5 1.6 1

27 Closed Loop Closed Loop 0 -45 45 UAV3 5 2.5 5 1

Figure 10. Design of experiments (DOE)

including distances and bearings between
each of the UAVs. The scenarios are labelled
as “good”(1) or “bad”(0) based on the
behavior seen at the SoS level. These labelled
scenarios are fed into a neural network, and
supervised learning algorithms were devised
so that the network learns on the positive
and negative emergent behaviors. Figure
13 illustrates the neural network-based ML
model. The number of hidden layers, and
number of units in the hidden layer defines
the topology of the network. The inputs
to the ML model are the various pairwise
Euclidean distances, YX slopes (β) and
ZX slopes (α) in the swarm, as illustrated
in Figure 14. The trend of the parameters
for a window of 4-time steps is provided
as the learning data set. The data set is

Figure 11. PCA analysis and visualization

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

98

further split into training set, validation set
and test sets. Typically, the training set is
used to fit the model, while the validation
set is used to estimate prediction error for
model selection. The test set is then used for
assessment of the generalization error of the
final chosen model. Learning algorithms
are devised that can automatically tune
(and learn) the weights and biases so that
the output produced by the network closely
matches the desired output. Mathematically,
this close matching involves an associated
cost function that needs to be minimized.
Hence, the training process is iterative,
to minimize the cost function below a
threshold, with each iteration fine tuning
the parameters. The iteration concludes
once the cost function reaches the minima,
below the expected threshold. The weights/
biases thus learned by the neural network
at the end of the iteration represents the
parameters that can be used to directly
transform the inputs to outputs. The data
set comprising over half a million records is
split between training (75%), testing (15%),
and validation (15%) sets.

The performance of the learning is
assessed in terms of cross entropy function,
wherein minimizing the cross-entropy
(CE) leads to better classifiers. Figure 15
illustrates the ML classifier training perfor-
mance, for the scaled conjugate algorithm.
The confusion matrix indicated in the fig-
ure illustrates the accurate and inaccurate
classifications. The rows correspond to the
predicted class (output class) and the col-
umns correspond to the true class (target
class). The diagonal cells (green color) in-
dicate the correctly classified observations.
The off-diagonal cells (light rose color) are
the incorrectly classified observations. Both
the number of observations and the per-
centage of the total number of observations
are shown in each cell. The column on the
far right of the plot shows the percentages
of all the examples predicted to belong to
each class that are correctly and incorrectly
classified. These metrics are the precision
(or positive predictive value) and false
discovery rate, respectively. The row at the
bottom of the plot shows the percentages
of all the examples belonging to each class
that are correctly and incorrectly classified.
These metrics are often called the recall
(or true positive rate) and false negative
rate, respectively. The cell in the bottom
right of the plot shows the overall accuracy.
As seen, overall, the prediction accuracy
performance achieved is 99.6%.

ML Classifier – Behavior Predictions
The trained ML classifier is used to

observe the SoS behavior and predict
positive and negative emergence. The ML
classifier is plugged onto the SoS model as

Figure 13: Machine learning ML classifier

1 – Positive Emergence
0 – Negative Emergence

Activation function ƒ

Euclidean Distance
ML

Classifieru[t],
u[t–1],
u[t–2],
u[t–3],

Z Slope Angle ∝

Y Slope Angle β

Input Layer Hidden Layer Output Layer

Figure 14. UAV formation – state parameters w.r.t pairs of constituent systems

∠ AOC = ZX slope between UAVs
∠ BOC = YX slope between UAVs
Distance OP = Euclidean distance between UAVs

ZX slope

YX slope

A

P

X

B

YZ

O

C

Figure 15. ML classifier – training performance

32688
59.2%

223278
40.4%

1249
0.2%

959
0.2%

99.4%
0.6%

99.6%
0.4%

99.6%
0.4%

99.6%
0.4%

99.7%
0.3%

All Confusion Matrix

Gradient = 0.0097747, at epoch 407

Target Class

Ou
tp

ut
 Cl

as
s

0

1

10

100

10-2

Training 38662 4.66377e-0 3.76297e-1

82856 13.21661e-0 4.63454e-1

82856 13.21046e-0 4.45350e-1

Results

Samples CE %E

Validation

Testing

gr
ad

ie
nt

Figure 12. Classification of SoS versus UAV#3 behaviors

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

99

NNPredict_SwarmHealth

+/– Emergence
Prediction

NN Prediction [NNGoodBadState]y1x1

slope zx and yx between aircrafts

[TrueGoodBadState]

combined_dataset

[1x180]180

181

181

18060

60

120

120

[1x180]

Log dataset

Distance and slopes
uT

[TrueGoodBadState]
GoodBad State21

2121

Distance matrix

Distance matrix

Tapped delay distance to other aircrafts

XYZ tapped delay

XYZ with tapped delayXYZ

zx slope

yx slope

dist_to_other_ac_tapped_delay

dist_to_other_ac

minimum_ac_dist

21

60

60

15

15

6{36}

60

15

120

60
1 out

1 out

72

72

60

Tapped delay to get sequence data

≥

ML Classifier

illustrated in Figure 16, to understand and
predict the emergent behaviors as positive
and negative behaviors. Figure 17 indicates
snapshots of the tool scope monitor,
wherein values closer to 1 indicates positive
emergent behavior being exhibited, while
values closer to 0 indicates negative
emergent behavior.

SoS with Hybrid (conventional + machine

learning) Constituent Systems
The scenario of the SoS comprising a mix

of conventional constituent systems and
machine-learning model-based constitu-
ent systems is then studied. Towards this,
the conventional controller (Figure 8) is
replaced with a machine learning based NN
controller for UAV numbered #3 (Figure
5). The NN controller (Figure 18) is built
by tapping the data from the conventional

Figure 16. ML-classifier integrated into SoS model

Figure 18. NN controller

Figure 17. Machine learning model predictions of emergent behavior. (top) Sos
Behavior Labelled on tiime steps as “good” (1) or “bad” (0); (bottom) ML Classifier
predicted behavior probabilities, between 1 (“positive emergence) and 0 (“negative
emergence”)

controller (UAV#3), and feeding it to a
neural network, and making the network
learn the functioning of the conventional
controller. The data set comprising over
three million records is split between
training (75%), testing (15%), and valida-
tion (15%) sets. The learning is stopped at
epoch of 1000. The R value in this case has
reached only about 0.4 after completion of
1000 epochs (a robust learning would imply
an R value very close to 1). This learning
is stopped to serve the purpose of dealing
with a system that can exhibit negative
emergent behavior at times. Figure 19 illus-
trates the scenario of the formation flying
with the NN controller managing UAV #3
included in the formation. As indicated,
UAV#3 misbehaves (that is, exhibits an
oscillating behavior). This misbehavior is
predicted by the ML classifier, indicating a
negative emergence for the SoS.

Formal Methods
We have used formal methods for model

checking in the earlier work (Raman
and Jeppu 2020). We could optimize
for time by changing the sampling time
and abstracting the behavior of collision
in the collision avoidance problem. We
tried the same approach of using the
Simulink design verifier on the 6 UAVs
maneuvering together. The assertion was
that once the maneuver occurs the UAVs
will not collide while they maneuver.
During the maneuver, a wind gust can

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

100

is satisfied but to really ensure that the
behavior is correct we have changed the
threshold for minimum distance to a larger
value to ensure that it fails and provides a
counter example. CBMC can provide us
this solution with a failure. It takes about
700 seconds to solve the problem. We pro-
vide the complexity of the problem as the
number of variable and clauses the CBMC
generates from the UAV SoS C code. The
number of variables and clauses define the
complexity of the problem. CBMC converts
the C code into a conjunctive normal
form (CNF). The CNF is a conjunction
of one or more clauses, where each clause
is a disjunction of variables. The C code
gets translated to approximately 2,350,198
variables which are combined into around
9,416,265 clauses. The approximation is
because these number change with the
change in the range looked for the time of
disturbance td. In view of the complexity of
the neural network problem and the large
time taken by the formal methods tool, we
have explored another way of looking at the
neural network performance in terms of
the PCA explained above. The PCA defines
the plot of the principal components of the
slope or angle between each UAV and the
distance measures the range between the
UAVs. It is possible to define a region in
the plot of PCA that defines a safe behavior

shift location of the UAVs. The individual
controller behavior was approximated to a
proportional control. The sample time was
increased, and the direction cosine matrix
eliminated by considering the maneuver
in a plane of operation. These assumptions
were made based on our earlier experience
of using formal methods.

The Simulink design verifier took about
eight hours to indicate that there could
be a collision if there was a gust. We had
to look at a small zone around the gust
region for the model checking. Bringing
in a variable in the gust time could not
provide a result as it hit the limits of the
computing resources used. We explored a
C bounded model checker CBMC on the
C language implementation of the neural
network. The 6 UAV engagement scenario
was coded in C and the minimum distance
computed between the various UAV as
a measure of asserting the behavior that
collision could not happen. CBMC is a
bounded model checker, and we can look
at the zone where the maneuver occurs for
proving the correctness. CBMC unwinds
the “while loop” for the time of execution
and “for loops” for the 6 UAV. The ML
classifier in loop in CBMC hit the limits
of the computing resources used. Other
features of CBMC like array bound checks
and divide by zero checks worked well with
the neural network code. Subsequently, C
program simulation of UAVs was tried –
the simulation of the 6 UAV in the C code
is shown in Figure 20. The 6 UAVs move
in a 2-dimensional space and carry of a
maneuver to invert the V shape. A wind
gust disturbance is applied that shifts the
position of all UAVs during the maneuver.

The UAV realign to the new shape as seen
in the plot. The simulation works well as
seen. We now need to prove that it is always
the case. We define the problem statement
for the formal correctness as Definition 1
(see below).

CBMC can prove that the condition

Definition 1: The distance between UAVi and UAVj at time t is given by

where  (xi – xj) and (yi – yj) represent the

coordinates of UAVi and UAVj respectively.

d t(i, j) =  (xi – xj)2 + (yi – yj)22

∆ is maximum unsafe distance, holds. We look at this property in CBMC using
the assert statement and assume the time of disturbance as a variable. We look
at 20 seconds after maneuver as tc

Given start time maneuver tm, end time for maneuver tc and a disturbance at time
td where  tm ≤ td ≤ tc  then property ϕ =   min   d t (i, j) ≥ ∆ ,  ∀ t : tm ≤ t ≤ tc where

1≤  i, j ≤  6 ∧ i ≠ j

Figure 20. SoS – trajectories simulation in C programming language

Figure 19. SoS behavior with machine learning based UAV #3

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

101

for the swarm of 6 UAV. The region can be
defined in this case a polynomial in X (the
PCA slope) providing a Y (PCA distance)
as shown in Figure 21. If the PCA values
are in the safe zone and the neural network
indicates so then we can say that neural
network is correctly predicting the MOE
of collision or unsafe swarm behavior. In
the initial study on this given a small zone

REFERENCES
■■ Aiguier, M., P. L. Gall, and M. Mabrouki. 2008. “A Formal

Definition of Complex Software.” Proceedings of the 3rd
International Conference on Software Engineering Advances,
ICSEA, MT.

■■ Baomar, H., and P. J. Bentley. 2017. “Autonomous Landing and
Go-Around of Airliners Under Severe Weather Conditions
Using Artificial Neural Networks.” Workshop on Research,
Education and Development of Unmanned Aerial Systems
(RED-UAS) Linköping, SE.

■■ CBMC. 2020 Bounded Model Checking for Software. https://
www.cprover.org/cbmc/ .

■■ Dong, X., Y. Li, C. Lu, G. Hu, Q. Li and Z. Ren. 2019. “Time-
Varying Formation Tracking for UAV Swarm Systems With
Switching Directed Topologies.” IEEE Transactions on Neural
Networks and Learning Systems 30 (12): 3674-3685.

■■ Giammarco, K. 2017. “Practical Modeling Concepts for
Engineering Emergence in Systems of Systems.” IEEE System
of Systems Engineering Conference (SoSE), Waikoloa, US-HI,
18-21 June.

■■ Hassanien, A.E. and E. Emary. 2016, Swarm Intelligence –
Principles, Advances, Applications. CRC Press.

■■ INCOSE. 2005. Technical Measurement Guide. INCOSE TP-
2003-020-01.

■■ ———, 2015. Systems Engineering Handbook. 4th Edition.
Hoboken, US-NJ: Wiley.

■■ ———, 2016. Systems of Systems, INSIGHT 19 (3).
■■ Jamshidi, M. 2008. Systems of Systems Engineering: Principles

and Applications. CRC Press.
■■ Kang, E., and L. Huang. 2018. “Formal Specification and

Analysis of Autonomous Systems in PrCCSL/Simulink Design
Verifier.” Cornell University Library arXiv:1806.07702. https://
arxiv.org/abs/1806.07702/ .

where there was a collision the formal
method could provide an indication that
the neural network was indeed providing
an error. As the space increases, we again
hit the tool and memory limitations. The
results are preliminary but this, we feel, is a
good direction to explore in future.

CONCLUSIONS & FUTURE WORK

This paper presented a novel approach
towards application of machine learning
based classifiers and formal methods
for analyzing and evaluating emergent
behavior of complex system-of-systems.
The various elements of the framework
were illustrated through a case of a swarm
of autonomous UAVs flying in a formation,
and dynamically changing the shape of
the formation, to support varying mission
scenarios. PCA based zone classification
for analyzing constituent system versus
SoS behaviors, machine learning classifier
models for predicting positive and negative
emergent behaviors, and formal verification
models were presented, including their
effectiveness and performance. In the
future, we plan to enhance the framework
to address multiple scenarios pertaining
to evolution of the SoS. Over a period,
different changes can happen in constituent
systems, such as new functions getting
added, obsolete functions getting removed,
efficient means of realizing some of existing
functions being incorporated and other
structural changes. These changes could
cause changes in the emergent behavior of
the SoS.  ¡

■■ Katz, G., C. Barrett, D. Dill, K. Julian, and M. Kochenderfer.
2017. “Reluplex: An Efficient SMT Solver for Verifying
Deep Neural Networks.” Cornell University Library
arXiv:1702.01135.

■■ Kinsner, W. 2008. “Complexity and its Measures in Cognitive
and Other Complex Systems.” 7th IEEE International
Conference on Cognitive Informatics, Stanford University,
US-CA, 14-16 August.

■■ Ladyman, J., J. Lambert, and K. Wiesner. 2013. “What is a
Complex System?” European Journal for Philosophy of Science
3: 33-67.

■■ Lane, J. A. 2013. “What is a System of Systems and Why Should
I Care?” USC-CSSE-2013-001.

■■ Martınez, A. M., and A. C. Kak. 2001. “PCA versus LDA.”
IEEE Transactions on Pattern Analysis and Machine
Intelligence 2: 228–233.

■■ Mitchell, T. 1997. Machine Learning. McGraw Hill.
■■ Mohri, M., A. Rostamizadeh, and A. Talwalkar. 2012.

Foundations of Machine Learning. MIT Press, Cambridge US-
MA.

■■ Nanda M., J. Jayanthi, and Y. Jeppu. 2018. “Formal
Methods—A Need for Practical Applications.” eds. M. Nanda
and Y. Jeppu. Formal Methods for Safety and Security. Springer.

■■ Nielsen, C.B. et al. 2015. “SoS Engineering: Basic Concepts,
Model-Based Techniques and Research Directions.” ACM
Computing Surveys (18).

■■ PVS. 2018. Specification and Verification System. http://pvs.csl.
sri.com/

■■ Raman, R., and M. D’Souza. 2017. “Knowledge Based Decision
Model for Architecting and Evolving Complex Systems‐of‐
Systems.” INCOSE International Symposium 27: 30-44.

Figure 21. PCA and the region defined by the polynomial

SP
ECIA

L
FEA

TU
R

E
M

A
R

CH
 2O

23
VOLUM

E 26/ ISSUE 1

102

■■ Raman, R., and M. D’Souza. 2018. “Learning Framework
for Maturing Architecture Design Decisions For Evolving
Complex SoS.” 13th IEEE Conference on System of Systems
Engineering (SoSE), Paris, FR, 19-22 June, pp. 350-357.

■■ Raman, R., and M. D’Souza. 2019. “Decision Learning
Framework for Architecture Design Decisions of Complex
Systems and Systems‐of‐Systems.” Systems Engineering 22:
538– 560.

■■ Raman, R., and Y. Jeppu. 2019. “An Approach for Formal
Verification of Machine Learning based Complex Systems.”
INCOSE International Symposium 29: 544-559.

■■ Raman, R., and Y. Jeppu. 2020. “Formal Validation of
Emergent Behavior in a Machine Learning Based Collision
Avoidance System.” IEEE International Systems Conference
(SysCon), CA, 24-27 June.

■■ RTCA. 2011. DO-333 Formal Methods Supplement to DO-
178C and DO-278A.

■■ SLDV. 2020. Simulink Design Verifier. http://www.mathworks.
com/products/sldesignverifier.html .

■■ Smith, N., and T. Clark. 2006. “A Framework to Model and
Measure System Effectiveness.” 11th ICCRTS Coalition
Command and Control in The Network Area Conference.

■■ Tahir, A., J. Böling, M. Haghbayan, H. T. Toivonen, and J.
Plosila. 2019. “Swarms of Unmanned Aerial Vehicles — A
Survey.” Journal of Industrial Information Integration 16,
https://doi.org/10.1016/j.jii.2019.100106 .

■■ Williams-Hayes, P. 2005. “Flight Test Implementation of
a Second Generation Intelligent Flight Control System.”
Infotech@Aerospace Conference, Arlington, US-VA, 26-29
September http://doi.org/10.2514/6.2005-6995 .

■■ Xiang, W., P. Musau, A. W. Ayana, D. M. Lopez, N. Hamilton,
X. Yang, J. Rosenfeld, and T. T. Johnson. 2018. “Verification for
Machine Learning, Autonomy, and Neural Networks Survey.”
Cornell University Library arXiv:1810.01989 http://arxiv.org/
abs/1810.01989 .

ABOUT THE AUTHORS
Dr. Ramakrishnan Raman received B.Tech and MS degrees

from IIT Madras, and PhD from IIIT-Bangalore. He is a certified
Six Sigma Black Belt and is an INCOSE certified Expert Systems
Engineering Professional – ESEP. He has extensive systems
and software engineering experience in domains of building/
industrial automation, and aerospace. He has been the lead
systems engineer and architect for the design of many complex
systems globally over the years. He is currently a principal
systems engineer at Honeywell Technology Solutions, Bangalore.
(ORCID:0000-0002-8471-9172)

Dr. Yogananda Jeppu is a BE in electronics and
communication, from Mangalore University, a post graduate in
missile guidance and controls from Pune University. He has a PhD
in certification of safety critical control systems using model based
techniques. He has been working in the field of control system
design and implementation, simulation of aerospace systems, and
verification and validation for aircrafts and missiles for the past
32 years. He started his career in 1987, working on missiles and
the Indian Light Combat Aircraft program with Defense R&D
Organization. He is currently working in Honeywell Technology
Solutions as a principal systems engineer. (ORCID: 0000-0003-
1401-6348)

Nikhil Gupta completed his BTech and MTech in aerospace
engineering from IIT Madras in 2018 with a specialization in
guidance, navigation, and control of unmanned aerial vehicles.
He has participated in several aeromodelling competitions and
loves piloting RC aircraft and multirotors. He holds a patent to his
name and is certified as a SolidWorks Associate and in Six Sigma
Green Belt for software. Currently, he is working in Honeywell
Technology Solutions as a senior embedded engineer in the field
of alternate guidance and navigation methods primarily using
computer vision and neural networks.

FuSE refi nes and evolves the SE Vision 2035 across competencies,
research, tools & environment, practices, and applications

FuSE fosters involvement and collaboration within and
outside of INCOSE

FuSE identifi es critical gaps towards the vision realization and
initiates & supports relevant actions

FuSE educates, shares success, and expands

OUR MISSION

JOIN US

INCOSE.ORG/FUSE

https://www.incose.org/fuse

From now

Make your hotel
reservation

Sponsorship
registration open

Registration fees
available

Registration open
Final program on-line

Virtual platform
open

Event
(15 - 20 July 2023)

December 2022

March 2023

April 2023

June 2023

July 2023

INCOSE’s
Impact

VISIBILITY
Unique brand of recognition
and visibility for your
organization

PRACTICE
Access to the latest thinking
relevant to the practice of
Systems Engineering

Why
become a
sponsor?

SUPPORT
Demonstrate organizational
support to INCOSE’s mission

SPOTLIGHT
Put a spotlight on your
organization’s competency in
Systems Engineering

CONNECTIONS
Put a spotlight on your
organization’s competency in
Systems Engineering

ASSOCIATION
Be associated with the highest
culture of professionalism and
innovation

18000+ Members
65+ Chapters
77+ Countries
120+ Corporate Advisory Board Members

Social media
1,950 members 3,750 members 470 members 21,500 members 3,220 members

The Venue
Hawaii Convention Center
1801 Kalākaua Ave
Honolulu, HI 96815 - USA

Dates
Saturday 15 July, 2023
Thursday 20 July, 2023

Sponsorship Opportunities

https://www.incose.org/symp2023

https://www.incose.org/symp2023

