
INSIGHT

JUNE 2O23
VOLUME 26 / ISSUE 2

A PUBLICATION OF THE INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING ®

Agility in the future of
systems engineering

This Issue’s Feature:

System Architect

PO SW
Drone

motion

Increment
data

package AGILE
Developed

items

support

support

SW architects
and developers

Agile Master

SW architects
and developers

Agile Master

PO SW
Mission

Data

CO-ENGINEERING

IVV Team

SW & HW Development Teams

Systems Engineering Teams Support
Teams

Engineering
environment

support

Coaches
MBSE

AGILE, etc.

Capability leader
#1

Capability leader
#2

Illustration credit:  from the article
Model-Based Systems Engineering as an Enabler of Agility
by Sophie Plazanet and Juan Navas (page 26)

OUR MISSION

JOIN US

INCOSE.ORG/FUSE

Sponsored by

https://www.incose.org/fuse

JU
N

E 2O
23

VOLUM
E 26/ ISSUE 2

3

W
H

A
T

’S IN
SID

E
TH

IS ISSU
E

Inside this issue

INSIGHT
JUNE 2O23  VOLUME 26 / ISSUE 2

A PUBLICATION OF THE INTERNATIONAL COUNCIL
ON SYSTEMS ENGINEERING

®

FROM THE EDITOR-IN-CHIEF	 6

SPECIAL FEATURE	

Setting Current Context for Agility in the Future of Systems Engineering	 8

Systems Engineering Agility in a Nutshell	 11

The Supra-System Model	 15

How Large Scale Agile Can Operate Systems Engineering in the Future	 22

Model-Based Systems Engineering as an Enabler of Agility	 26

Agile MBSE: Doing the Same Thing We Have Always Done, but in an Agile Way with Models	 31

FuSE Agility as a Foundation for Sound MBSE Lifecycle Management	 34

An Agile Systems Engineering Process for Stakeholder Needs Identification
and Solution Concept Design	 39

Applying Agility for Sustainable Security	 45

Agile Programs Need Agile Reviews	 53

APPLICATION ARTICLE	

Project Lifecycle Development for a Next Generation Space Suit Project	 57

JU
N

E 2O
23

VOLUM
E 26/ ISSUE 2

4

A
B

O
U

T TH
IS

P
U

B
LIC

A
TIO

N

About This Publication

INFORMATION ABOUT INCOSE OVERVIEW

Editor-In-Chief	 William Miller
insight@incose.net	 +1 908-759-7110

Theme Editor	
Rick Dove	 dove@parshift.com

Layout and Design	 Chuck Eng
chuck.eng@comcast.net

Member Services	 INCOSE Administrative Office
info@incose.net	 +1 858 541-1725

INCOSE’s membership extends to over 20, 000 individual
members and more than 200 corporations, government
entities, and academic institutions. Its mission is to share,
promote, and advance the best of systems engineering from
across the globe for the benefit of humanity and the planet.
INCOSE charters chapters worldwide, includes a corporate
advisory board, and is led by elected officers and directors.

For more information, click here:
The International Council on Systems Engineering
(www.incose.org)
INSIGHT is the magazine of the International Council on
Systems Engineering. It is published four times per year and

features informative articles dedicated to advancing the state
of practice in systems engineering and to close the gap with
the state of the art. INSIGHT delivers practical information
on current hot topics, implementations, and best practices,
written in applications-driven style. There is an emphasis on
practical applications, tutorials, guides, and case studies that
result in successful outcomes. Explicitly identified opinion
pieces, book reviews, and technology roadmapping comple-
ment articles to stimulate advancing the state of practice.
INSIGHT is dedicated to advancing the INCOSE objectives
of impactful products and accelerating the transformation of
systems engineering to a model-based discipline.
Topics to be covered include resilient systems, model-based

systems engineering, commercial-driven transformational
systems engineering, natural systems, agile security, systems
of systems, and cyber-physical systems across disciplines
and domains of interest to the constituent groups in the
systems engineering community: industry, government,
and academia. Advances in practice often come from lateral
connections of information dissemination across disciplines
and domains. INSIGHT will track advances in the state of the
art with follow-up, practically written articles to more rapidly
disseminate knowledge to stimulate practice throughout the
community.

* PLEASE NOTE:  If the links highlighted here do not take you to
those web sites, please copy and paste address in your browser.

Permission to reproduce Wiley journal Content:
Requests to reproduce material from John Wiley & Sons publications
are being handled through the RightsLink® automated permissions
service.

Simply follow the steps below to obtain permission via the
Rightslink® system:

•	 Locate the article you wish to reproduce on Wiley Online Library
(http://onlinelibrary.wiley.com)

•	 Click on the ‘Request Permissions’ link, under the ‹ ARTICLE
TOOLS › menu on the abstract page (also available from Table of
Contents or Search Results)

•	 Follow the online instructions and select your requirements from
the drop down options and click on ‘quick price’ to get a quote

•	 Create a RightsLink® account to complete your transaction (and
pay, where applicable)

•	 Read and accept our Terms and Conditions and download your
license

•	 For any technical queries please contact 
customercare@copyright.com

•	 For further information and to view a Rightslink® demo please
visit www.wiley.com and select Rights and Permissions.

AUTHORS – If you wish to reuse your own article (or an amended
version of it) in a new publication of which you are the author, editor
or co-editor, prior permission is not required (with the usual acknowl-
edgements). However, a formal grant of license can be downloaded free
of charge from RightsLink if required.

Photocopying
Teaching institutions with a current paid subscription to the journal
may make multiple copies for teaching purposes without charge, pro-
vided such copies are not resold or copied. In all other cases, permission
should be obtained from a reproduction rights organisation (see below)
or directly from RightsLink®.

Copyright Licensing Agency (CLA)
Institutions based in the UK with a valid photocopying and/or digital
license with the Copyright Licensing Agency may copy excerpts from
Wiley books and journals under the terms of their license. For further
information go to CLA.

Copyright Clearance Center (CCC)
Institutions based in the US with a valid photocopying and/or digital
license with the Copyright Clearance Center may copy excerpts from
Wiley books and journals under the terms of their license, please go
to CCC.

Other Territories:  Please contact your local reproduction rights
organisation. For further information please visit www.wiley.com and
select Rights and Permissions.
If you have any questions about the permitted uses of a specific article,
please contact us.

Permissions Department – UK
John Wiley & Sons Ltd.
The Atrium,
Southern Gate,
Chichester
West Sussex, PO19 8SQ
UK
Email:  Permissions@wiley.com
Fax:  44 (0) 1243 770620
or

Permissions Department – US
John Wiley & Sons Inc.
111 River Street MS 4-02
Hoboken, NJ 07030-5774
USA
Email:  Permissions@wiley.com
Fax:  (201) 748-6008

PERMISSIONS

Officers
President:  Marilee Wheaton, INCOSE Fellow,

The Aerospace Corporation
President-Elect:  Ralf Hartmann, INCOSE Fellow, proSys

Secretary:  Don York, ESEP, SAIC
Treasurer:  Michael Vinarcik, ESEP, SAIC

Directors
Director for Academic Matters:  Alejandro Salado, University

of Arizona
Direector for Marketing and Communications:  Honor Lind,

Hart Initiative, Inc.
Director for Outreach:  Kirk Michealson, Tackle Solutions,

LLC
Director for Americas Sector:  Renee Steinwand, ESEP, Booz

Allen Hamilton
Director for EMEA Sector:  Sven-Olaf Schulze, CSEP,

Huennemeyer Consulting GmbH
Director for Asia-Oceania Sector:  Serge Landry, ESEP,

Equilibrant Force
Chief Information Officer (CIO):  Barclay Brown, ESEP,

Raytheon
Technical Director:  Olivier Dessoude, Naval Group S.A.

Deputy Technical Director:  Erika Palmer, Cornell University
Services Director: Richard Beasley, ESEP,

Rolls-Royce plc, retired
Deputy Services Director: Heidi Davidz, CSEP, ManTech

International Corporation
Director for Strategic Integration: David Long, INCOSE

Fellow, ESEP, Blue Holon
Corporate Advisory Board Chair: Ronald Giachetti, Naval

Postgraduate School
Corporate Advisory Board Co-Chair: Michael Dahhlberg,

ESEP, KBR
Chief of Staff:  Andy Pickard, Rolls Royce Corporation, retired

Executive Director:  Steve Records, INCOSE

ARTICLE SUBMISSION  insight@incose.net

 September 2023 issue  –  1 July 2023
 December 2023 issue  –  1 October 2023
 February 2024 issue  –  1 November 2023
 April 2024 issue  –  2 January 2024

 June 2024 issue  –  1 March 2024
 August 2024 issue  –  1 May 2024
 October 2024  –  1 July 2024
 December 2024  –  1 September 2024

Publication Schedule.  INSIGHT is published four times per year. Issue and article submission
deadlines are as follows:

For further information on submissions and issue themes, visit the INCOSE website:  www.incose.org

© 2023 Copyright Notice.
Unless otherwise noted, the entire contents are copyrighted by INCOSE
and may not be reproduced in whole or in part without written permission by
INCOSE. Permission is given for use of up to three paragraphs as long as full
credit is provided. The opinions expressed in INSIGHT are those of the authors
and advertisers and do not necessarily reflect the positions of the editorial staff
or the International Council on Systems Engineering. ISSN 2156-485X; (print)
ISSN 2156-4868 (online)

JU
N

E 2O
23

VOLUM
E 26/ ISSUE 2

5

A
B

O
U

T TH
IS

P
U

B
LIC

A
TIO

N

CORPORATE ADVISORY BOARD — MEMBER COMPANIES

CONTACT
Readership
INSIGHT reaches over 20, 000 individual members and uncounted
employees and students of more than 100 CAB organizations
worldwide. Readership includes engineers, manufacturers/purchasers,
scientists, research and development professionals, presidents and
chief executive officers, students, and other professionals in systems
engineering.

Issuance	 Circulation
2023, Vol 26, 4 Issues	 100% Paid

Contact us for Advertising and Corporate Sales Services
We have a complete range of advertising and publishing solutions
professionally managed within our global team. From traditional print-
based solutions to cutting-edge online technology the Wiley-Blackwell
corporate sales service is your connection to minds that matter. For
an overview of all our services please browse our site which is located
under the Resources section. Contact our corporate sales team today to
discuss the range of services available:

•	 Print advertising for non-US journals
•	 Email Table of Contents Sponsorship
•	 Reprints

•	 Supplement and sponsorship opportunities
•	 Books
•	 Custom Projects
•	 Online advertising

Click on the option below to email your enquiry to your nearest
office:

•	 Asia and Australia  corporatesalesaustralia@wiley.com
•	 Europe, Middle East and Africa (EMEA)

corporatesaleseurope@wiley.com
•	 Japan  corporatesalesjapan@wiley.com
•	 Korea  corporatesaleskorea@wiley.com

USA (also Canada, and South/Central America):
•	 Healthcare Advertising  corporatesalesusa@wiley.com
•	 Science Advertising  Ads_sciences@wiley.com
•	 Reprints  Commercialreprints@wiley.com
•	 Supplements, Sponsorship, Books and Custom Projects

busdev@wiley.com

Or please contact:
Marcom@incose.net

Questions or comments concerning:

Submissions, Editorial Policy, or Publication Management
Please contact:  William Miller, Editor-in-Chief
insight@incose.net

Advertising — please contact: 
Marcom@incose.net

Member Services – please contact:  info@incose.org

ADVERTISER INDEX� June  Volume 26-2
FuSE – Future of Systems Engineering	 inside front cover
CalTech Center for Technology & Management Education	 7
Systems Engineering – Call for Papers	 66
Calling All Systems	 back inside cover
INCOSE Future Events	 back cover

ADVERTISE

Aerospace Corporation, The
Airbus
AM General LLC
Analog Devices, Inc.
ARAS Corp
Arcfield
Australian National University
AVIAGE SYSTEMS
Aviation Industry Corporation of China
BAE Systems
Ball Aerospace
Bechtel
Becton Dickinson
Belcan Engineering Group LLC
Boeing Company, The
Bombardier Transportation
Booz Allen Hamilton Inc.
C.S. Draper Laboratory, Inc.
CACI, Inc – Federal
California State University Dominguez Hills
Carnegie Mellon University Software

Engineering Institute
Change Vision, Inc.
Colorado State University Systems Engineering

Programs
Cornell University
Cranfield University
Cubic
Cummins Inc.
Cybernet MBSE Co, Ltd
Dassault Systèmes
Defense Acquisition University
Deloitte Consulting, LLC
Denso Create Inc
Drexel University
Eindhoven University of Technology
EMBRAER
Federal Aviation Administration (U.S.)
Ford Motor Company
Fundacao Ezute
GE Aerospace
General Dynamics
General Motors
George Mason University
Georgia Institute of Technology

IBM
Idaho National Laboratory
ISAE – Supaero
ISDEFE
ITID, Ltd
IVECO SPA
Jama Software
Jet Propulsion Laboratory
John Deere
Johns Hopkins University
KBR
KEIO University
L3Harris Technologies
Lawrence Livermore National Laboratory
Leidos
LEONARDO
Lockheed Martin Corporation
Los Alamos National Laboratory
Loyola Marymount University
Mahindra University
ManTech International Corporation
Marquette University
Massachusetts Institute of Technology
MBDA (UK) Ltd
MetaTech Consulting Inc.
Missouri University of Science & Technology
MITRE Corporation, The
Mitsubishi Heavy Industries, Ltd
Modern Technology Solutions, Inc.
National Aeronautics and Space Administration

(NASA)
National Reconnaissance Office (NRO)
National Security Agency Enterprise Systems
Naval Postgraduate School
Nissan Motor Co, Ltd
Northrop Grumman Corporation
Pacific Northwest National Laboratory
Pennsylvania State University
Peraton
Petronas Nasional Berhad
Prime Solutions Group, Inc
Project Performance International (PPI)
Purdue University
QRA Corp
Raytheon Technologies

Rolls-Royce
Saab AB
SAIC
Sandia National Laboratories
Saudi Railway Company
Shell
Siemens
Sierra Nevada Corporation
Singapore Institute of Technology
SPEC Innovations
Stevens Institute of Technology
Strategic Technical Services LLC
Swedish Defence Materiel Administration (FMV)
Systems Planning and Analysis
Taiwan Space Agency
Tata Consultancy Services
Thales
The University of Arizona
Torch Technologies
TOSHIBA Corporation
Trane Technologies
Tsinghua University
UC San Diego
UK MoD
University of Alabama in Huntsville
University of Arkansas
University of Connecticut
University of Maryland
University of Maryland Global Campus
University of Maryland, Baltimore County
University of Michigan, Ann Arbor
University of New South Wales, The, Canberra
University of Southern California
University of Texas at El Paso (UTEP)
US Department of Defense
Veoneer
Virginia Tech
Vitech
Volvo Cars Corporation
Volvo Construction Equipment
Wabtec Corporation
Woodward Inc
Worcester Polytechnic Institute- WPI
Zuken Inc

JU
N

E 2O
23

VOLUM
E 26/ ISSUE 2

6

e are pleased to announce
the June 2023 INSIGHT

issue published cooperative-
ly with John Wiley & Sons

as the systems engineering practitioners’
magazine. The INSIGHT mission is to
provide informative articles on advancing
the practice of systems engineering and to
close the gap between practice and the state
of the art as advanced by Systems Engineer-
ing, the Journal of INCOSE also published
by Wiley. The issue theme is agility in the
future of systems engineering.

The future of systems engineering (FuSE)
is a systems community initiative enabled
and facilitated by INCOSE to realize the
Systems Engineering Vision 2035, freely
accessible at https://www.incose.org/about-
systems-engineering/se-vision-2035 . FuSE
began in late 2017 leveraging the previous
Systems Engineering Vision 2025 and in
anticipation of the latest vision announced
at the 2022 International Workshop in
January 2022. FuSE has identified four
streams to drive implementation to realize
the Vision 2035: systems engineering
vision & roadmaps, systems engineering
foundations, systems engineering
methodologies, and systems engineering
application extensions. See the FuSE
webpage at https://www.incose.org/fuse .

We thank Keith Willett for inspiring and
initiating the agile systems engineering
work as an early FuSE project, theme
editor Rick Dove, and the authors for
their contributions. Agility has been a
past INSIGHT theme with agile system-
security: sustainable systems evolve with
their environment (July 2016) and enabling
and practicing systems engineering agility
(June 2018).

William Miller, insight@incose.net

FROM THE
EDITOR-IN-CHIEF

FR
O

M
 TH

E
ED

ITO
R

-IN
-CH

IEF

W ISO, IEC, and IEEE have released
standard 15288:2023 System life cycle
processes as this issue of INSIGHT was in
the final stages of publication. The articles
herein reference the 2015 version of the
15288 standard. The FuSE agile systems
engineering project will be addressing the
new standard and the INCOSE Systems
Engineering Handbook: A Guide for System
Life Cycle Processes and Activities 5th
edition as it continues its work.

Rick Dove leads off the June 2023
INSIGHT by “Setting the Current Context
for Agility in the Future of Systems
Engineering.” A roadmap for near-term
improvement, presented at the 2021
INCOSE International Symposium,
introduced nine strategic concepts
appropriate and ready for further
movement toward standard practice. Initial
work in that direction enticed several
practitioners and researchers to address
selected concepts in this special issue of the
INCOSE INSIGHT publication.

“Systems Engineering Agility in a
Nutshell” by Rick Dove, Kerry Lunney,
Michael Orosz, and Mike Yokell succinctly
describes eight strategic aspects with
application discussions at the systems
engineering level. Systems engineering
must necessarily have the agility anticipate
and effectively respond to a dynamic and
uncertain environment. Agile systems
engineering, agile software engineering,
and agile any-kind-of engineering share
common goals and leverage common
agility-enabling strategies.

“The Supra—System Model” by Tom
McDermott, Kelly Alexander, and Richard
Wallace promotes systems engineering
as a continuous process that is 1) itera-

tive across the full life of a system and 2)
managed through a digital transformation
centered on data and models. This article
also discusses the value of “shared and
authoritatively managed data and models”
in the lifecycle of future systems. These
together present a modernized view of
systems engineering where “seamless and
efficient transfer of data and models” will
support practices that are “more agile and
responsive to changing stakeholder needs.”

“How Large Scale Agile Can Operate
Systems Engineering in the Future” by
Laurent Alt and Mikaël Le Mouëlli describe
why it is important to make agile and
systems engineering work together, how
to do it, and how this impacts how we see
value, systems, digital twins, and leadership.

“Model-based Systems Engineering as
an Enabler of Agility” by Sophie Plazanet
and Juan Navas illustrate how model-based
systems engineering (MBSE) may be
an effective enabler of agility in systems
engineering, focusing on dynamic learning
and evolution per the FuSE roadmap, with
a fictive testimony interview of a system
engineer based on a fictive example of a
drone-based product for inspection of
electrical networks using a “warm-up/run/
evaluation” process.

“Agile MBSE: Doing the Same Thing we
Have Always Done, But in an Agile Way
with Models” by Matthew Hause examines
some of the aspects of MBSE, specifically
the systems modeling language (SysML®),
and shows how an agile approach to MBSE
can help with the concepts of stakeholder
engagement, continual integration, and
dynamic learning and evolution.

“FuSE Agility as a Foundation for
Sound MBSE Lifecycle Management” by

JU
N

E 2O
23

VOLUM
E 26/ ISSUE 2

7

FR
O

M
 TH

E
ED

ITO
R

-IN
-CH

IEF

Barry Papke, Matthew Hause, and David Hetherington
describes how three FuSE agility foundation concepts
(system of innovation, effective stakeholder engagement,
and continuous integration) directly address some of the
problems seen in adoption, deployment, and sustainment
of the MBSE digital environment as a system of interest.

“An Agile Systems Engineering Process for Stakeholder
Needs Identification and Solution Concept Design”
by Lymari Castro presents a case study where an agile
systems engineering process was used to identify
stakeholder needs to design an improved cross-
organizational proposal development process during the
proposal formulation phase of a program.

“Applying Agility for Sustainable Security” by Larri
Rosser describe how the broadly adopted technical
processes from the ISO/IEEE/IEC 15288:2015 standard
can be executed using agile methods to realize a large
complex solution. Specific recommendations are provided
for executing these processes in a manner that enables
systems to be sustainably secure — that is, to retain the
desired level of security throughout the life cycle.

“Agile Programs Need Agile Reviews” by Larri Rosser
explores ways to provide insight and responsive forward
looking actionable guidance for agile projects in the
context of government and defense programs. It propos-
es a general oversight approach that produces minimal
drag and disruption and keeps pace with agile product
development.

We end this issue of INSIGHT with an application
article by Michael A. Cabrera and Steve Simske titled
“Project Lifecycle for a Next Generation Space Suit
Project” that describes the modified agile concept (MAC)
and its multi-disciplinary approach to a sampling of
various lean and agile methods integrated alongside
traditional, waterfall methods (such as a hybrid model) to
support the hypothesized project lifecycle development.
This approach was developed as part of a case study
with a design and test team responsible for building test
stations to qualify components of the life support system
on the next generation space suit. This article outlines
exclusively the scrum and lean methods in the MAC with
a cursory overview on kanban development supporting
the MAC.

We hope you find INSIGHT, the practitioners’ mag-
azine for systems engineers, informative and relevant.
Feedback from readers is critical to INSIGHT ’s quality.
We encourage letters to the editor at insight@incose.net.
Please include “letter to the editor” in the subject line.
INSIGHT also continues to solicit special features, stand-
alone articles, book reviews, and op-eds. For information
about INSIGHT, including upcoming issues, see https://
www.incose.org/products-and-publications/periodicals#IN-
SIGHT . For information about sponsoring INSIGHT,
please contact the INCOSE marketing and communica-
tions director at marcom@incose.net.  ¡

Get started: ctme.caltech.edu

Connect with us: execed@caltech.edu

Embracing Digital Engineering?
We Have the Science for That.

Customizable Programs for Organizations

Advanced Systems Engineering

Advanced Model-Based Systems Engineering (MBSE)

Technical Leadership Development Forums

Agile Project Management / Enterprise Agility

Software-Defined Futures Transformation

Machine Learning / Software Engineering

Industrial Dev*Ops for Systems Engineering

Leaders pursuing the technical frontier team with
Caltech for transformational executive and profes-
sional education. We customize unique learning
experiences for organizations and their people,
working one-on-one with leadership to design

and deliver practical learning programs and work-
shops that create impact and energize teams.

mailto:execed@caltech.edu

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

8

INSIGHT Special Feature

INTRODUCTION

  ABSTRACT
Agility in the future of systems engineering (FuSE) is one of the topic areas under the INCOSE FuSE initiative. A roadmap for
near-term improvement, presented at the 2021 INCOSE International Symposium, offered nine strategic concepts appropriate and
ready for further movement toward standard practice. Initial work in that direction enticed several practitioners and researchers
to address selected concepts in this special issue of the INCOSE INSIGHT publication. The purpose of this lead-off article is to
provide a contextual backdrop for the articles that follow.

Setting Current Context
for Agility in the Future
of Systems Engineering

Rick Dove, dove@parshift.com
Copyright ©2023 by Rick Dove. Published and used by INCOSE with permission.

Figure 1. Synergistic linkage among nine strategic foundation concepts and four
objectives

Situational
Response

Automation

Orchestrating
Agile Operations

Agile
Operation

(Performance)

Dynamic Learning
and Evolution*

Stakeholder
Engagement

Agility with Long
Lead Components

Agility Across
Organizational

Boundaries

Technical
Oversight for
Agile Projects

Agile-Systems
Engineering

(Product)

Agile
Workforce
(People)

Agile
Systems-Engineering

(Process)

Harmonizing
Risk

Continual
Integration

*Retitled “System of Innovation” in 2021 roadmap paper.

The future of systems engineering
(FuSE) is an INCOSE facilitated
systems community collaborative
initiative that identified several

specific project areas to pursue. For the
FuSE agility area, a collaborative team was
formed with representation from INCOSE’s
Agile Systems & Systems Engineering
Working Group, Lockheed Martin, NASA,
Northrop Grumman, Raytheon, and US
Department of Defense. Team workshops
held biweekly from June to November
in 2020 deliberated on objectives and
appropriate strategic foundation concepts
for near-term systems engineering agility
improvement; and assembled the concepts
as a synergistic roadmap (Figure 1) suitable
for immediate development and deploy-
ment attention (Willett et al. 2021).

Figure 1 links the foundation concepts
to the objectives in a strategic activity web
of non-dependent synergistic relationships.
Linkage lines have no arrowheads as objec-
tives give purpose to concepts and concepts
give means to objective accomplishment.
The purpose of the linkage display is to show
principal relationships among concepts and
objectives; encouraging developers and im-
plementers to emphasis and strengthen these
relationships. As concepts get developed and
implemented, additional links will emerge.

Figure 1 is not intended to depict a compre-
hensive agility strategy, but rather a set of
foundation concepts for agility improvement
appropriate for the near term.

More recent work socializes the roadmap

concepts and attempts to instigate strategy
and practice development. One activity
toward those ends is this issue of INSIGHT
magazine, with a series of articles exploring
one or more of the foundation concepts in

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

9

a variety of systems engineering contexts.
The purpose of this lead-off article is to
provide a contextual backdrop for the arti-
cles that follow.

OBJECTIVES AND CONCEPTS
FuSE agility objectives and strategies

will continuously evolve. The initial team
identified four objectives as timely and
appropriate:

1.	 Agile systems-engineering (adaptable
processes).

2.	 Agile-systems engineering (adaptable
products)

3.	 Agile operations (adaptable perfor-
mance)

Concept General Problems
to Address

General Needs
to Fill

General Barriers
to Overcome

Dynamic Learning
and Evolution

Insufficient learning and
knowledge management
processes; barriers to
learned-knowledge
application.

Situational awareness and
learning embedded in lifecycle
processes; timely/affordable
learning-application; knowledge
management.

Unclear what to do or where
to do it beyond learning
ceremonies and contract
obligation satisfaction.

Technical
Oversight

Traditional technical
oversight methods are
counterproductive in agile
programs.

An interactive approach that reveals
relevant knowledge for guidance
and decision making.

Oversight traditions; standard
contract wording; disrespect
for oversight.

Stakeholder
Engagement

Timeliness and depth of
stakeholder collaborative
engagement.

Discovery of true requirements and
integration conflicts.

Time involved; travel cost;
inconvenient scheduling; lack of
motivation.

Agility Across
Organizational
Boundaries

Incompatible siloed
cultures and languages.

Common language; less handoffs;
product-based teams; common
metrics.

Functional organizational silos.

Agility with Long
Lead Components
and Dependencies

Components and external
dependencies with long
lead times complicate
schedule coordination
and disrupt technical
performance.

Scheduling and acquisition
techniques that better align with
agile-SE principles.

[False] justification that long-
lead items prohibit the use of
agile-SE.

Continual
Integration

Late discovery of
integration and
requirements issues.

Minimize risk and rework with fast
learning; maximize stakeholder
engagement.

Development effort and
expense; technologies for
integrating/testing software
before hardware is ready.

Orchestrating
Agile Operations

Coherence among loosely
coupled multi-actor
outcomes.

Dynamic operational coordination in
real-time.

Ability to encode self-learning;
adaptive logic as decision-
support for people and for
autonomous decision making.

Situational
Response
Automation

Decision and action too
slow.

Continual dynamic adaptation
within cyber-relevant time.

Complicatedness of encoding
autonomous governance and
adjudication logic and rules;
situational awareness that
provides necessary inputs.

Harmonizing
Risk in Agile
Operations

Agility focus is principally
loss avoidance

Expand awareness and operational
realization of both the negative
side of risk (loss) and the positive
side of risk (opportunity, seek gain,
optimize).

Silo-thinking and predominance
of looking at risk only in terms
of loss.

Table 1. Brief synopsis of FuSE agility 2021 roadmap concepts

4.	 Agile workforce (adaptable people).

All of these objectives have some limited
or narrow-domain practice; but none are in
standard practice.

Criteria for foundation concepts was
established as follows:

■■ Concept has relevance to systems
engineering considerations.

■■ Concept can provide new and useful
value to the state of practice.

■■ Concept value proposition articulation
is in systems engineering terms.

■■ Concept has notional support in a
referenceable knowledge base.

■■ Concept does not yet have sufficient

published exposure for broad-based
actionable systems engineering
consideration.

■■ Concept implementation could be now.
■■ Concept is principally about what to
achieve and why (strategic intent),
rather than how (prescriptive tactics),
though notional examples of how can
augment understanding.

A brief synopsis of the concepts is in
Table 1. The team developed the entries in
Table 1 as general notions to help orient the
nature of each concept. The team did not
and does not intend to limit or constrain
concept-development thinking, rather, to

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

10

point the thinking in the intended direc-
tion.

IN CONCLUSION
The roadmap concepts address four

objectives. One objective is called out as
agile systems-engineering, the others are
there, from our FuSE perspective, to enable
and support agile systems-engineering
(hyphens to distinguish the process from
the product objective).

The roadmap is about agility in the future
of systems engineering – it was created
by people who have already started down

Figure 2: Systems engineering lifecycle spectrum – sequential to agile

Concept

Co
nc

ep
t

Retirement Utili
zat

ion

Production

Support

certain
static

uncertain Situational
Awarenessdynamic

knowledge
environment

Production
Utilization
Support

Retirement

Extremely
Sequential

Extremely
Agile

Development

Development

that road, people with experience in agile
systems engineering who have discovered
where the pavement ends and the going
gets rough.

Agile systems engineering is a princi-
ple-based method for designing, building,
sustaining, and evolving systems when
knowledge is uncertain and/or environ-
ments are dynamic.

Agile systems engineering is best
understood in contrast to sequential
systems engineering in how the two relate
to the system life cycle spectrum. Figure
2 shows pure forms of these two life cycle

models in terms of their activity phases
and data flows. All systems engineering life
cycle models fall somewhere between the
two ends of the spectrum, depending upon
the process-encoded degree of attentiveness
and responsiveness to dynamics in
knowledge and environment.  ¡

REFERENCE
■■ Willett, K. D., R. Dove, A. Chudnow,

R. Eckman, L. Rosser, J. S. Stevens, R.
Yeman, and M. Yokell. 2021. “Agility
in the Future of Systems Engineering
(FuSE) – A Roadmap of Foundational
Concepts.” Paper Presented at the
31st Annual INCOSE International
Symposium, Virtual: 17-22 July.

ABOUT THE AUTHOR
Rick Dove is an unaffiliated independent

operator. He chairs the INCOSE working
groups for Agile Systems and Systems Engi-
neering, and for Systems Security Engineer-
ing; and leads both the security and agility
projects for INCOSE’s initiative on the
future of systems engineering (FuSE). He is
an INCOSE Fellow, and author of Response
Ability, the Language, Structure, and Culture
of the Agile Enterprise.

Supported by

The INCOSE Professional Development Portal (PDP)
is a comprehensive solution for Systems Engineers
and other professionals who want to enhance their

systems engineering knowledge and skills.

www.incose.org/pdp

International Council on Systems Engineering
A better world through a systems approach / www.incose.org

®

https://www.incose.org/pdp

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

11

  ABSTRACT
Systems engineering must necessarily have the agility to anticipate and effectively respond to an increasingly dynamic and
uncertain environment. Agile systems engineering, agile software engineering, and agile any-kind-of engineering share common
goals and leverage common agility-enabling strategies. This article succinctly describes eight strategic aspects with application
discussions at the systems engineering level.

Systems Engineering
Agility in a Nutshell

Rick Dove, dove@parshift.com; Kerry Lunney, kerry.lunney@thalesgroup.com.au; Michael Orosz, mdorosz@isi.edu; and Mike
Yokell, mike.r.yokell@gmail.com
Copyright ©  2023 by Rick Dove, Kerry Lunney, Michael Orosz, and Mike Yokell. Published and used by INCOSE with permission.

CRACKING THE SHELL

Agile software development has
pioneered and proliferated
methods for managing software
projects (for example, Scrum

etc.) and engineering software products
(for example, XP etc.) when knowledge
is uncertain, and environments are
dynamic. The success of these approaches
is challenging other engineering disciplines
to find better ways to navigate their
development activities through similar
uncertainties and dynamics.

Agile software development methods
(process tactics) necessarily leverage the
nature of software engineering. A software
product is created by engineers who are
supported by an integrated hierarchy of
many tools (computers, code compilers,
user interfaces, development platforms,
etc.) that gives them fast turn-around
control over design, fabrication, and ver-
ification. Piecewise functional prototypes
can be created and tested in minutes and
deployed into evolving user product in
hours and days.

Contrast that with electronic printed cir-
cuit board (PCB) development — procured
parts, separate design and fabrication
engineers, custom mechanical enclosure
designs, procurement interaction, and
supply chain issues. Oversimplified, but the
nature of engineering activity and concerns
is clearly very different. Making a PCB en-
gineering process more agile would neces-
sarily use different methods than software

development. Nevertheless, those methods
would have the same fundamental goals:
reduce the adverse effects of uncertain
knowledge and dynamic environments.

While tactical methods necessarily vary
among different engineering domains
(the how part), strategies for achieving
common goals (the what and why parts)
are domain independent. This article

offers eight strategic aspects (Figure 1)
that individually can improve the agility
of engineering in any domain as well
as at the systems engineering level. The
next two pages present all eight strategic
aspects, each in terms of needs (why) and
behaviors (what), with a discussion of
application from the systems engineering
point of view.

Being Agile:
Operations

Concept
Attentive

Situational
Awareness

Attentive
Decision
Making

Iterative
Incremental

Development
Common-
Mission
Teaming

Continual
Integration

and Test

Shared-
Knowledge

Management

Product Line
Architectures

Uncertain
Knowledge

and
Dynamic

Environments

Figure 1. Eight strategic aspects of agile engineering

C5

C4

C3

C2

C1

C4

C3

C2

C1

C3

C2

C1

C2

C1C1

Time

O
bs

erve Orient
DecideAct

OODA
Loop

Meccano/Erector Set – Plug and Play Interconnect Standards

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

12

Product Line Architectures
Needs:  Facilitated product and process experimentation,
modification, and evolution.
Behaviors:  Composable and reconfigurable product and process
designs from variations of reusable assets.
Discussion:  One fixed process approach won’t fit all projects, so an
appropriate process should be easy to compose and evolve accord-
ing to context and usage experience. Variations of reusable assets
are built over time as features are modified for different contextual
usage.
A hallmark of agile systems engineering is iterative incremental
development, which modifies work in process as suitability is repet-
itively evaluated. The agility of the process depends upon the agility
of the product — so both process and product can be easily changed.

Attentive Situational Awareness
Needs:  Timely knowledge of emergent risks and opportunities.
Behaviors:  Active monitoring and evaluation of relevant internal
and external operational-environment factors.
Discussion:  Are things being done right (internal awareness)
and are the right things being done (external awareness)? Having
the agile capability for timely and cost-effective change does little
good if you don’t know when that ability should be exercised.
Situational awareness can be enhanced with systemic methods
and mechanisms.

Attentive Decision Making
Needs:  Timely corrective and improvement actions.
Behaviors:  Systemic linkage of situational awareness to decisive
action.
Discussion:  Empower decision making at the point of most
knowledge. As a counter example, technical debt (a term for
knowing something needs correction or improvement but
postponing action) is situational awareness without a causal link
to prompt action.

Iterative Incremental Development
Needs:  Minimize unexpected rework and maximize quality.
Behaviors:  Incremental loops of building, evaluating, correcting,
and improving capabilities.
Discussion:  Generally increments create capabilities and
iterations add and augment features to improve capabilities.
•	 Increment cycles are beneficially timed to coordinate events

such as integrated testing and evaluation, capability deploy-
ment, experimental deployment, or release to production.

•	 Increments may have constant or variable cadence to accom-
modate management standards or operational dynamics.

•	 Iteration cycles are beneficially timed to minimize
rework cost as a project learns experimentally
and empirically.

Notational Agile Architecture Pattern

John Boyd’s OODA loop

Alert in-the-moment attention

Iterative capability improvements (looping) and incremental
capability additions (successive development periods)

Re
sp

on
d Evolve

Sense

Evaluation
&

Memory

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

13

Common-Mission Teaming
Needs:  Coherent collective pursuit of a common mission.
Behaviors:  Engaged collaboration, cooperation, and teaming
among all relevant stakeholders.
Discussion:  Collaboration, cooperation, and teaming are not syn-
onymous, and need individual support attention. Collaboration
is an act of relevant information exchange among individuals,
cooperation is an act of optimal give and take among individuals,
and teaming is an act of collective endeavor toward a common
purpose.

Continual Integration & Test
Needs:  Early revelation of system integration issues.
Behaviors:  Integrated demonstration and test of work-in-process.
Discussion:  Discovering integration issues late in development
activities can impact cost and schedule with major rework. Syn-
chronizing multiple domain engineering activities via continual
integration and test provides faster and clearer insight into
potential system integration issues.

Shared-Knowledge Management
Needs:  Accelerated mutual learning and single source of truth
for internal and external stakeholders.
Behaviors:  Facilitated communication, collaboration, and
knowledge curation.
Discussion:  There are two kinds of knowledge to consider. Short
time frame operational knowledge:  what happened, what’s
happening, what’s planned to happen. Long time frame curated
knowledge:  what do we know of reusable relevance, e.g., digital
artifacts, lessons learned, and proven practices.

Being Agile:  Operations Concept
Needs:  Attentive operational response to evolving knowledge
and dynamic environments.
Behaviors:  Sensing, responding, evolving.
Discussion:  Agile systems engineering is not about doing Agile,
it is about being agile. Being agile is a behavior, not a procedure —
a behavior sensitive to threats and opportunities in the operation-
al environment, decisive when faced with threat or opportunity,
and driven to improve these capabilities. Deciding how to imple-
ment any of the core aspects, even this one, should be done with
sense-respond-evolve principles in mind as aspect objectives.

Tightly integrated coherent operation

Three principles that operationalize agility

SpaWar iteratively evolving unmanned technology
integration platform

Depicted books represent informational containers of any kind;
but typically digital

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

14

The succinctness of the descriptions
and the display on two pages is done with
purpose. Descriptive content attempts to be
sufficient to inform and direct application
intent without overly constraining ap-
proaches compatible with culture, organi-
zational readiness, and possible contract
constraints. This two-page brief can func-
tion as a personal things-to-consider scope
reminder or as a whole-picture guide for
collaborative discussion or improvement.

Each of the aspects can individually
improve capability to deal with uncertain
knowledge and dynamic environments
in any engineering process; but to have
something intended as an agile engineer-
ing process at either domain or system
level requires multiple aspects operating
in concert. Individual aspects are strategic
concepts that can tactically manifest over a
range of intensity. Thus, the degree of agili-
ty is a product of how many of these aspects
are operational as well as how effectively
each one contributes to the agility required
by the operating environment.

These eight aspects in their current form
have emerged from the pooled knowledge
of the authors of this article – knowledge
gained from their experiences in case
study work, university research work, and
responsibilities for organizational systems
engineering processes and practices. None of
these aspects are new concepts. What is new
is the amalgamation organized as domain
independent fundamental strategies for en-
gineering when knowledge is uncertain and
operating environments are dynamic.

Figure 2 depicts the relationship between
the eight strategic aspects presented here
and the nine foundational concepts in the
roadmap developed for agility in the future
of systems engineering (Willett et al. 2021).
Maturing and evolving the concepts on the

right side will leverage the aspects on the
left side.

Whether your organization is down
the road already or just thinking about
the values of being more agile, each of the
aspects likely has some form of practice in
place already. One way to inspire actionable
awareness of the collective view beyond
theory is to develop and share a short case
study — one that shows each aspect in
real practice instances somewhere in your
organization.  ¡

REFERENCES
■■ Dove, R., K. Lunney, M. Orosz, and

M. Yokell. 2023. “Agile Systems
Engineering – Eight Core Aspects.”
Proceedings International Symposium.
International Council on Systems
Engineering. Honolulu, US-HI, 15-20
July. www.parshift.com/s/230715IS23-
AgileSE-EightCoreAspects.pdf .

■■ Willett, K. D., R. Dove, A. Chudnow,
R. Eckman, L. Rosser, J. S. Stevens, R.
Yeman, and M. Yokell. 2021. “Agility
in the Future of Systems Engineering
(FuSE) – A Roadmap of Foundational
Concepts.” Paper Presented at the
31st Annual INCOSE International
Symposium, Virtual: 17-22 July.

ABOUT THE AUTHORS
Rick Dove is an independent researcher,

systems engineer, and project manager
generally focused on the systems agility
and systems security areas. He chairs the
INCOSE working groups for Agile Systems
and Systems Engineering and for Systems
Security Engineering. He leads both
the agility and security project areas for
INCOSE’s future of systems engineering
(FuSE) initiative. He is an INCOSE fellow,
and author of Response Ability — the

Being Agile:
Operations

Concept
Attentive

Situational
Awareness

Attentive
Decision
Making

Iterative
Incremental

Development
Common-
Mission
Teaming

Continual
Integration

and Test

Shared-
Knowledge

Management

Product Line
Architectures

Uncertain
Knowledge

and
Dynamic

Environments

Situational
Response

Automation

Orchestrating
Agile Operations

Agile
Operation

(Performance)

Dynamic Learning
and Evolution*

Stakeholder
Engagement

Agility with Long
Lead Components

Agility Across
Organizational

Boundaries

Technical
Oversight for
Agile Projects

Agile-Systems
Engineering

(Product)

Agile
Workforce
(People)

Agile
Systems-Engineering

(Process)

Harmonizing
Risk

Continual
Integration

*Retitled “System of Innovation” in 2021 roadmap paper.

Maturing & Evolving Application ConceptsStarting & Improving Strategic Aspects

Figure 2. Large organizations likely have units working in both early and advanced stages

Language, Structure, and Culture of the
Agile Enterprise.

Kerry Lunney is the country engineer-
ing director and chief engineer in Thales
Australia. She has extensive experience
developing and delivering large system
solutions, working in various industries
including ICT, gaming, financial, transport,
aerospace and defence, in Australia, Asia,
and US. She also participates in several
global working groups and research proj-
ects. Kerry is a past president INCOSE, and
holds the expert systems engineering pro-
fessional (ESEP) qualification. She is also an
INCOSE fellow, and a fellow of engineers
Australia with the status of engineering ex-
ecutive and chartered professional engineer.

Dr. Mike Orosz directs the Decision Sys-
tems Group at the University of Southern
California’s Information Sciences Institute
(USC/ISI) and is a research associate pro-
fessor in USC’s Sonny Astani Department
of Civil and Environmental Engineering.
Dr Orosz has over 30 years’ experience
in government and commercial software
development, systems engineering and
acquisition, applied research and develop-
ment, and project management and has de-
veloped several successful products in both
the government and commercial sectors.

Dr. Mike Yokell is a leader in systems
engineering in the US aerospace and
defense industry. He has been the US
representative to international standards-
setting bodies for systems and software
engineering and was the project editor for
two new international standards on systems
of systems engineering. Mike is certified as
an expert systems engineering professional
by INCOSE. He holds multiple US and
European patents for model-based systems
engineering and large-scale immersive
virtual reality.

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

15

INTRODUCTION

  ABSTRACT
This article presents an initial set of concepts resulting from research by the Office of the Undersecretary of Defense for Research
and Engineering (OUSD/RE) and the Systems Engineering Research Center (SERC) under an initiative called “systems engineer-
ing modernization” (SEMOD). This article discusses the “supra-system model,” which evolved as a different view of systems engi-
neering lifecycle activities across the entire life of an engineered system. This view promotes systems engineering as a continuous
process that is 1) iterative across the full life of a system and 2) managed through a digital transformation centered on data and
models. This article also discusses the value of “shared and authoritatively managed data and models” in the lifecycle of future sys-
tems. These together present a modernized view of systems engineering where “seamless and efficient transfer of data and models”
will support practices that are “more agile and responsive to changing stakeholder needs.”

The Supra-System
Model

Tom McDermott, tmcdermo@stevens.edu; Kelly Alexander, kelly.d.alexander12.ctr@mail.mil; and Richard Wallace, richard.
wallace@gtri.gatech.edu
Copyright © 2023 by Tom McDermott, Kelly Alexander, and Richard Wallace. Published and used by INCOSE with permission.

In this article, we propose a systems engineering lifecycle model
called the “supra-system model” as a visual means to adjust
how we think about how systems of any type are developed
and modified across their entire lifetimes. This supra-system

model is not a replacement or counter to other established lifecycle
models, it is intended to augment other models. Since the 1970s,
systems engineering practice, particularly its use in defense acquisi-
tion programs, has followed a mental model that the system’s lifecy-
cle is fully aligned with the engineering and program management
activities that define, realize, and deploy it. This article promotes a
more holistic view that the actual lifecycle of the system is com-
posed of many engineering and program lifecycles to recognize that
data and models need to be considered as part of the actual lifecycle
of the system, not just a program or engineering cycle. Finally, this
model aims to formalize the external lifecycle associated with the
supra-system, which must be considered a primary contributor to
system data and models.

This article is also not an argument for or against digital model-
based systems engineering (MBSE) but recognizes that data is
independent of models, and models have value independent of
systems. These must be managed across entire system lifecycles.
SEMOD conceptualizes a view of systems engineering that has
at its core “shared and authoritatively managed data” that can be
transformed through various models and tools to create digital
decision artifacts and enduring virtual system representations.
This fundamental change driver is well described in the DoD
Digital Engineering Strategy (Office of the Deputy Assistant
Secretary of Defense for Systems Engineering 2018) and the
Systems Engineering Vision 2035 (INCOSE 2035), but these
documents do not clearly articulate the value of “model-based”
and “digital data” well enough. The SEMOD project found:

The value of systems engineering modernization will be
realized through a more seamless and efficient transfer of data
and models, starting from underlying performance drivers
through models to decisions and ease of drilling back down
from decisions to data.

In the early years, systems engineering artifacts were largely
paper documents or drawings, and now they are mostly based
on digital technologies but far from “seamlessly integrated and
efficient.” There also remained the question of where these data
and models come from and how they live their life. This was the
question that led to the supra-system model.

The SEMOD research team realizes that existing systems engi-
neering mostly linear lifecycle depictions like the “Vee” model and
the DoD’s “Defense Acquisition Wall Chart” do not promote the
future vision of data and models at the core of systems engineering
and acquisition. The lifecycles of the data and models are associat-
ed with but not necessarily the same as the lifecycle of the realized
system. We found:

New systems engineering lifecycle processes must evolve that
address shared and authoritatively managed sets of digital data
and models associated with the system’s entire lifecycle, not just
a single engineering or program lifecycle.

In addition, newer systems engineering subdisciplines like
software systems engineering, information technology, enterprise
architecture, distributed modeling & simulation, and automated
manufacturing systems view lifecycle process and technical review
as much more iterative than what is implied by current systems
engineering guidance. Therefore, we found that the mission of

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

16

systems engineering modernization, contrary to much of the pub-
lished digital engineering literature, should focus less on models
and more on increasing responsiveness by promoting lifecycle
processes that increase the number of iterations and shorten the
cycle time between them. This led to our vision statement:

The vision of systems engineering modernization is to use data
and models to create system engineering practices that are more
agile and responsive to changing stakeholder needs.

This article describes the rationale for systems engineeering
modernization, and then what we found to be the value drivers for
digital and model-based engineering initiatives. The article then
describes the concept of the “supra-system model,” its underlying
theory, and its potential use in modernized systems engineering
practice. Finally, the article concludes with how these might ad-
dress some gaps between agile practice in the software world and
agile systems engineering.

The full SEMOD research program identified a set of pain
points and then a set of roadmaps that reflect modernization
steps specific to systems engineering in US defense acquisition
programs. These have not yet been generalized to all applications
of systems engineering but can be accessed in the published SERC
reports (McDermott and Benjamin 2022, McDermott, Mesmer,
and Ergin 2023).

WHY SYSTEMS ENGINEERING MODERNIZATION?
Today systems are not only physical; they are software-intensive,

highly connected, and have extensive automation and user config-
uration capabilities. Software engineering became a discipline in
1967, manufacturing automation (the third industrial revolution)
began in the 1970s, and the World Wide Web was invented in
1989. In addition, the DoD’s Defense Modeling and Simulation
Office was opened in the early 1990s, and large-scale networked
simulation of defense systems followed. These have continued
to evolve the systems engineering discipline, not as a whole, but
as sets of related subdisciplines (systems engineering, software
systems engineering, information technology, and enterprise
architecture, distributed modeling & simulation, and automated
manufacturing systems).

Following the successful evolution of the unified modeling
language (UML®) in the software discipline, the systems modeling
language (SysML®) was published in 2007. It started the growth
in model-based systems engineering (MBSE) as an improved
approach to managing technical and programmatic risk. “Industry
4.0” originated in 2011 and introduced the concept of a “digital
twin” as a non-physical product realization. The DoD’s digital
engineering (DE) strategy was published in 2018, ushering in the
vision of a digital era of systems engineering.

Throughout this change, the historical background of systems
engineering has continued to be linked with the physical real-
ization of large complex systems and other critical capabilities
that are intended to persist for many years. The need for rigor-
ous definition, analysis, and testing of these critical systems will
always exist, but the lifecycle processes we choose to use must be
tailored to the system’s actual use and life. Modernized systems
engineering discipline needs to be more model-based, agile, and
responsive, which will be accomplished with more efficient life-
cycle processes. Fundamentally, modernized systems engineering
practices and lifecycle processes must define how data and models
can be used to be more iterative and responsive to user needs. In
this project, we found that it is not the mental model or vision
of current policy and guidance related to these focus areas. Our
systems engineering modernization vision is stated below:

The vision of systems engineering modernization is to use data
and models to create system engineering practices that are more
agile and responsive to changing stakeholder needs.

DIGITAL TRANSFORMATION OF SYSTEMS ENGINEERING
At the core of systems engineering modernization is “shared

and authoritatively managed data” that can be transformed
through “shared and authoritatively managed models” and related
tools to create digital artifacts that can be used by various deci-
sion-makers and others needing digital access to the design and
descriptions of the system across its lifetime. These artifacts were
almost always paper documents or drawings in the early years.
Now they are based on digital technologies but far from “seam-
lessly integrated and interoperable.” The cartoon in Figure 1 might
best describe the current state of digital artifact development.

Figure 1. Data transformation mental model (McDermott
and Benjamin 2021) technologies but far from “seamlessly
integrated and interoperable.”

Digital Artifact – An artifact produced within, or generated from, the engineer-
ing ecosystem. These artifacts are generated through transformation of data
and models into views in order to visualize, communicate, and deliver data,
information, and knowledge to stakeholders.

In the figure, the diamonds on the bottom represent data
connections and transfers, as opposed to human connections
and transfers at the top. Systems engineers have long used digital
data and various modeling and analysis tools to produce digital
artifacts for decision-making (such as PowerPoint slides). We do
not see this flow as changing in modernized systems engineering.
However, the underlying data models have not been “seamlessly
shared” or likely not shared at all, and authority for that data has
often been held by independent activities generally organized by
discipline. Today, much of the “transformation” is still a manual
interpretation of disparate data and analyses. This manual inter-
pretation limits our ability to be iterative and responsive across
disciplines and disciplinary tools. It is inefficient and also non-ho-
listic. One might describe the current state of systems engineering
as seeing the whole while looking through a set of soda straws. We
desire a fully integrated, iterative workflow where the system is
the focus, not the owner of the data or the particular element of a
design. Today’s primary challenge in digital engineering is not so
much being “model based.” It is understanding and creating the
underlying data model that integrates across requirements, design,
test, disciplines, and disciplinary processes, with it being shareable
and shared.

This leads us to the value statement for systems engineering
modernization, depicted in Figure 2 and the box below:

The value of systems engineering modernization will be
realized through a more seamless and efficient transfer of data
and models, starting from underlying performance drivers
through models to decisions and ease of drilling back down
from decisions to data.

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

17

Systems engineering and related acquisition processes can be
visualized as a set of iterative data transformations from sources of
truth that produce artifacts for human consumption — across all
stages of a system life cycle. Figure 3 redraws the widely depicted
define → realize → deploy & use stages of the systems engineering
lifecycle process stages in a circular process to represent it as a:

1.	 set of data transformations at the core;
2.	 layered across disciplines and tasks;
3.	 in continuous iterative processes that could be entered from

any point.

In the figure, we generalize define, realize, and deploy as a
“learn → build → measure” to be more consistent with current
design literature.

prototyping, and incremental definition activities where build-first
is the pathway to learning; and in sustainment life cycles where
deployed system measurement and learning should apply to both
the system sustainment, but also to define the next build. This
SEMOD circular mental model better recognizes that systems
engineering technical and management processes can be applied
to any life cycle in any type of system. Figure 4 visualizes the do-
mains of systems engineering in association with the ordering of
learn, build, and measure cycles.

Figure 2. Systems engineering modernization value depiction

Figure 3. Circular processes with data at the core

In systems engineering technical and management processes,
data is transformed through models into views, which support
analyses leading to decisions. These transformations have tradi-
tionally produced decision artifacts severed from the underlying
data and models and captured in independent static document
or presentation forms. Digital artifacts may still be documents or
presentable views but should remain digitally connected to the
underlying data and models from which they draw context and
explainability. This process flow reflects “data transformed into
models then analyzed through views to make decisions docu-
mented in digital artifacts.” This process flow has been the core of
systems engineering technical and management processes within
each lifecycle phase since the inception of systems engineering. It
was a largely manual, inefficient process flow focused on present-
ability rather than context.

As defined by ISO/IEC/IEEE 15288, systems engineering lifecy-
cle processes do not define a specific ordering of process areas, but
much of the literature and existing mental models imply a process
ordering that is started in the learn (define) stages (ISO/IEC/IEEE
2015). Systems engineering lifecycle processes have been used
not just in critical systems where up-front system definition and
learning are essential but also in process and system innovation,

Systems engineering modernization’s challenge is maintaining
appropriate systems engineering rigor and associated process
definition in all discipline applications. We contend that systems
engineering rigor is maintained using the data → transform →
analyze → decide flow of Figure 3, not through a specific order-
ing of SE processes.

The workflow view in Figure 5 (on the next page), shows
conceptually how shared and authoritatively managed data is
transformed into digital artifacts in different life cycle stages in
any pathway. This linear workflow model is familiar and comfort-
able to system engineers but does not visually represent that these
data transformations into and out of the shared and authoritatively
managed federations of data and models actually happen iterative-
ly and continuously across the entire life of a system. This will be a
distributed federation of data and models. These data and models
might originate in any phase of a system’s lifecycle and any func-
tion associated with engineering and management. In fact, this
will always be the case. Increasing responsiveness does not mean
eliminating these critical systems engineering processes, just in-
creasing the number of iterations and shortening the cycle time
between them. Also, “who owns the data and models” remains a
pain point in this transformation.

Figure 5 is particularly relevant to systems engineering mod-
ernization, as “data management” is not currently defined as a
disciplinary process in systems engineering standards. Data mod-
els and data storage systems are separate systems that must also be
developed and deployed in support of the fielded system. These
must be defined and built along with other system development
aspects. These also have their own lifecycles.

This led us to the need for a new visually representative model
for systems engineering modernization, which must address how
shared and authoritatively managed data and models are defined,
built, deployed, and used in systems:

New systems engineering lifecycle processes must evolve that
address shared and authoritatively managed sets of digital data
and models associated with the system’s entire lifecycle, not just
a single engineering or program lifecycle.

In our interviews and workshops on this project, we found that
the terms data, digital models, digital artifacts, digital threads, and

Figure 4. Different lifecycle ordering in different applications
of systems engineering

BuildBuild

Build

Measure

Measure

Measure

Learn

Learn Learn

Focus on Large & Complex
Systems in Critical Application

Focus on Products
and User Experience

Focus on Enterprise Use
Acceptance and Access

Systems Engineering Design Engineering Enterprise Engineering

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

18

virtual systems, or “digital twins,” have different definitions, uses,
and driving forces behind their lifecycles. As a result, they are not
being viewed in an integrated set of lifecycle and process models.
In response, we developed a more integrative view of an systems
engineering lifecycle model called “the supra-system model.” This
model was created as a discussion tool to distinguish historical
systems engineering lifecycle and process models from a modern-
ized approach needed to support today’s activities and systems.

THE SUPRA-SYSTEM MODEL
Thullier and Wippler, in their chapter “Finding the Right

Problem” from the book Complex Systems and Systems of Systems
Engineering, caution us always to consider three lifecycles
associated with any system, each with interdependencies and
relative positions in the evolution of a system (Thullier and
Wippler 2011):

■■ “the system lifecycle: the “experiences” of the system itself;
■■ the program lifecycle of the system: the rhythm of the project
during study, development, production, etc. of the system;

■■ the engineering cycle: the processes and activities involved in
engineering the system.”

ISO/IEC/IEEE 15288:2015 refers extensively to “the life cycle
of a system” and “stages of a system’s life cycle” and then defines
sets of system lifecycle processes used within organizations and
projects (ISO/IEC/IEEE 2015). Historical systems engineering
literature tends to portray system lifecycles and project lifecycles
as simultaneous and combined. This may have been appropri-
ate when most systems engineering activities were focused on
large-scale physical systems, but with wider application of systems
engineering system lifecycles, program lifecycles have become
more distinct and separated in their purpose.

It is important to note that there are two established definitions
of the term “lifecycle” (Merriam-Webster n.d.):

1.	 “the series of stages in form and functional activity through
which an organism passes between successive recurrences of
a specified primary stage” (multi-generational)

2.	 “a series of stages through which something (such as an
individual, culture, or manufactured product) passes during
its lifetime.” (single generational)

Systems engineering and the “systems lifecycle” as defined by
ISO/IEC/IEEE 15288:2015 and the Project Management Institute’s
(PMI) project lifecycle (Project Management Institute, n.d.) tend
to follow the single generational lifecycle definition. Design engi-
neering, software engineering, and enterprise engineering models
tend to match the multi-generational lifecycle definition better.

15288 defines a set of process descriptions for affecting both the
engineering cycles and project lifecycle, in the words of Thullier
and Wippler. The “experiences of the system itself ” will progress
through a number of such engineering and program lifecycles.
As systems engineering spreads broadly across all industries and
applications, keeping these different lifecycles well distinguished is
important.

Thullier and Wippler note that in the system’s lifecycle, the
“experience of the system” must be evaluated in periods and across
“levels of temporal or time invariance.” In their description, the
actual lifecycle of a system progresses (experiences) from idea; to a
virtual existence in models, documents, software, and today many
digital artifacts; then to a physical existence. Systems engineering
technical and management process divides these into stages.
Systems engineering processes recognize “within each level [of
abstraction], we may distinguish periods of time which we may
observe the integrity of the structure and behavior of the system
[as invariant]” (Thullier and Wippler 2011). We may use these
periods to enable interdisciplinary and collaborative activities,
referred to as phase gates or decision points. Virtual artifacts,
by their nature, can cycle through more rapid periods of change
than physical artifacts (Thullier and Wippler 2011). In other
words, systems continually evolve but also have periods where
their structure and behavior (virtual and physical) are invariant
and support the establishment of baselines and review activities.
We cannot assume that all types of systems and subsystems share
common periods of invariance.

Figure 5. Data transformation into the life cycle

DoD Adaptive Acquisition Pathways

Different SE
Lifecycle Models

What SE Modernization looks like:

Early Stage SE T&E Support SE

Utility Exchange

Sources of Truth Sources of TruthSources of Truth

System Development SE

Digital Artifacts

“shared and authoritatively managed data”

System Engineering Technical Reviews

Data Presentation & Usage
(most likely exported for
human consumption)

Data Storage
(not a universal data model)

Data Exchange

Mission Analysis Requirements AoA Digital Threads Digital Product Data

Digital Twins
Test &

Evaluation

Interfaces System Models

Engineering Models

Data Exchange Data Exchange Data Exchange Data Exchange Data ExchangeData Transformation

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

19

Thullier and Wippler also note that program lifecycle phases
“are aligned (or mixed in) with key steps (or stages) of the system
lifecycle. This allows us to fix program phases on integrated,
coherent, and stable states of the system in question, and thus
to make important decisions at precise moments in the life of
the system” (Thullier and Wippler 2011). They further note that
the engineering lifecycle is “the process that consists of moving
from need…to an optimized solution – i.e., the best compromise
integrating all constraints (cost/ time/performance) for the entirety
of the phases and situations involved in the system lifecycle... This
should not, however, be taken to mean that these processes must be
carried out in a sequential manner” (Thullier and Wippler 2011).
In other words, the idea that the system lifecycle, the program
lifecycle, and engineering lifecycles can always be combined
together is convenient but also a fallacy. There are “periods of
temporal invariance” where we can view these lifecycles together
to make crucial decisions; otherwise, they should be considered as
independent. Trying to force them to remain in lockstep limits
our ability to be iterative and responsive. This is perhaps the
reason why agile/DevOps software practices have come to look and
be regarded as so different from “traditional” systems engineering.
For example, the necessary period of invariance to design and test
the structural integrity of a physical aircraft wing will be much
longer than the period to design and test a new software function
or even a model of that wing.

Here, it is important to note that core systems engineering
lifecycles and processes are not new; they have evolved in different
ways since the first was envisioned in the 1960s. Stanley Shinners,
in the 1967 book Techniques of Systems Engineering first intro-
duced the concept of systems engineering as the methodological
approach to define, realize, and deploy a system inherent in today’s
systems engineering lifecycle processes. Shinners defined these
general techniques: understand the problem, consider alterna-
tive solutions, choose the most optimum design, synthesize the
system, test the system, compare test results with requirements
and objectives, and update the system characteristics and data
(Shinners 1967). This process flow represents the basis for both
classical systems engineering and software DevOps practice. The
techniques are the same, only the process implementations are
different. This is the engineering lifecycle that should be applied
to all virtual and physical systems in any program management
lifecycle. What is changing today with the advance of digital
computing is how we maintain systems engineering rigor using
the modernized data → transform→ analyze → decide flow of Figure
3 for any type of system, subsystem, or component.

There remains a fourth lifecycle that must also be considered
in conjunction with the life of a system. Arthur David Hall, in A
Methodology for Systems Engineering (1962), stated that systems
engineering must consider the environment the system enters
into: “The environment is the set of all objects outside the system:
(1) a change in whose attributes affect the system and (2) whose
attributes are changed by the behavior of the system.” We cannot
bind the system away from its external environment but must
consider the experience of the system to be affected both by the
technical and management processes that evolve the system and
the external situations that seek to adapt the system (Hall 1962).
In General Systems Theory, Ludwig von Bertalanffy noted that all
systems could be divided according to levels of complexity into
systems, supra-systems, and subsystems. The different levels inter-
act and are not independent of each other (von Bertalanffy 1969).
While the engineering lifecycle should be interested in decom-
posing the system into subsystems, the system itself should not
be managed independently from its supra-system. The program
lifecycle should ideally consider both subsystem and supra-system
interdependencies. The supra-system is the next-level system that

most closely interacts with the system of interest. Interestingly,
“supra-system” is a commonly used term in social science but
never used in engineering circles. Its time has come, as much of
the authoritative data and models we are interested in actually
describe system and supra-system boundaries.

Thus, there are four individual lifecycles that may affect the
“experience of the system.” These must be distinguished if we want
a systems engineering process model that reflects any application
of systems engineering with the rigor we have been accustomed
to. One is the lifecycle of the system itself and potentially of the
offspring it produces (both aspects of the lifecycle definition).
Two others are the engineering and program or project lifecycles,
which conduct processes internal to the system’s life. Finally, the
supra-system lifecycle reflects the direct experiences of the system
itself in its operational context as related to the closest other sys-
tems it interacts with.

In addition to recognizing that each of the four lifecycle/process
models may be individually relevant, each of these lifecycle pro-
cesses must evolve to address shared and authoritatively managed
sets of digital data and models associated with the entire lifecycle
of the system itself, not just a single engineering or program lifecy-
cle. Much of this data is contextual data in the supra-system. The
established views that combine management processes/lifecycle
and engineering processes/lifecycle do not fit well into the circular
data-oriented mental model: technical (engineering) iterations
and management (program) iterations in today’s world have very
different decision processes and respond to varying types of data,
with some content overlap. Furthermore, systems engineering
should be a holistic or systems-oriented problem-solving approach
that reflects both the system and the supra-system, independent of
the engineering cycle of a program. These are visualized together
in Figure 6.

Authoritative Sources of Data and Models are Associated with the System Itself

“System Experience”
should be captured in
stored data and used
to continually update
or remake our models

Figure 6. Multiple lifecycles of interest centered on data and
models

THE SUPRA-SYSTEM MODEL APPLIED TO DEFENSE ENGINEERING
AND ACQUISITION

In the SEMOD project, the team focused on the systems
engineering lifecycles and processes defined and used in defense
engineering and acquisition practices. To fully reflect the su-
pra-system model of Figure 6, the team developed a new concep-
tual view of the full defense acquisition lifecycle shown in Figure
7. This is the supra-system model applied to the US Department of
Defense (DoD). In this view, we attempted to capture everything
associated with DoD engineering and acquisition activities in one
mental model. It must be tailored and redrawn based on differing
types of development, delivery, and support processes. This view
is complex, but it becomes insightful in several ways with study.
First, it illustrates systems engineering as a cyclic rather than
a linear approach. Although almost all literature attempting to
standardize a lifecycle model will say that activities are ongoing
and should continue through the lifecycle, the circular illustra-

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

20

tion drives this point home more visually and directly. Second,
it captures the view that the “experience of the system itself ” is
a continuous journey that could be affected by multiple external
supra-system evolutions, program cycles, and engineering cycles.
Third, this view clarifies the digital transformation using a layered
model with data storage and transformation at the core, models
as the data transformation layer, and systems engineering process
areas as the outer layers. Data and models can be associated with
any activity in the system lifecycle and must live their lives with
the entire experienced life of the system, not just a single program
lifecycle. Lastly, it organizes the colors of the outer ring and related
technical and management processes in the “build/measure/learn”
context, capturing the underlying goal of continuous iterative
development.

This view was enlightening to defense engineering and
acquisition, particularly defense areas of focus like mission
engineering, digital engineering, and agile development. It
recognizes that data and models may come from any system
experience, including stages that happen before and after what the
DoD would define as an acquisition program. In particular, early
concept development and later test and evaluation activities in the
deployed environment explicitly learn and measure relationships
between the system and supra-system and produce data that
should be retained to inform other activities across the fully
modernized systems engineering lifecycle. Mission engineering
and operational test & evaluation are functionally separated from
other defense acquisition functions today, and data and models are
not rigorously shared.

The lifecycle model depicted here incorporates traditional
DoD acquisition milestones (triangles). However, it highlights
them in the context of the multi-faceted ongoing work and
where they fall within the broader context. It highlights different
DoD acquisition pathways, major capability acquisition (MCA),
mid-tier acquisition (MTA) prototypes, urgent operational needs
(UON), and software acquisition (SW) all have differing entry
points and associate systems engineering process instantiations in

a system’s lifecycle. It highlights that the measurement activities
(test and operations) of predecessor or similar systems are a major
contributor of data to future systems. Finally, it highlights that
data and associated models persist in the lifecycle as in physical
system lifecycles.

RELEVANCE OF THE SUPRA-SYSTEM MODEL TO AGILE SYSTEMS
ENGINEERING:  IT’S ABOUT THE DATA, AND FLOW

Data is the core of the supra-system model. Data has been
called the most valued asset in today’s business world. Models are
the transformation layer. Much of a system’s “experience” today
emerges from a set of behaviors that are coded in models built on
data. The progression of a system “from idea to virtual existence
to physical existence” remains true, but creating physical existence
should not be the dominant mental model of the modern systems
engineer. This does not mean that fundamentally new and valu-
able hardware solutions will not come into existence, just that we
cannot let engineering and management processes that grew from
the need to manage and control large complex physical systems
drive the life of virtual systems anymore. We can be much more
efficient today remaining virtual.

The supra-system model relates data and models to estab-
lished systems engineering techniques and processes. Shinner’s
“systems engineering techniques” still apply, holistic problem
solving remains the purpose. However, learning and building and
measuring systems in their virtual existence is much more efficient
than cycling through physical iterations. The power of data and
models and associated tools comes from our ability to “shift-left”
our learning of the emergent properties of the system into earlier
developmental stages. This includes shifting left to the historical
experience of previous generations of a system or similar systems
if that provides data or models we can reuse. The most relevant
measures of this shift are improvements in lead time (of the
system), consistency in cycle times (of processes), and the number
of anomalies found earlier in the lead time. The other important
measure will be from automation: data will improve our ability to

Figure 7. The supra-system model applied to defense acquisition (McDermott and Benjamin 2021)

Sustainment MCA Pathway

UON Pathway

SW Pathway

MTA Pathway

MS
TRR

MS
IOC

Milestone:
Material
Solution

Milestone
Decision Point:
Development

Not complete.
May be different flavors
for each pathway

 NOTIONAL VIEW: FULL SE
MODERNIZATION LIFE CYCLE

• Cyclic nature of modern SE
• Still milestone-based
• SE core priniples in every Acq pathway
• Flexible system life cycle entry points:
 Learn-Build-Measure (MCA)
 Build-Measure-Learn (Mid-Tier, SW, UON)
 Measure-Learn-Build (Sustainment)
• Continuous Iterative Development
 processes (around the circle)
• Continuous Data Management and
 Transformation processes (at the core)

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

21

automate the movement of data and models from one discipline to
another, from one component to another, and from one phase to
another (McDermott and Salado 2021).

The supra-system model envisions the system lifecycle as a
continuous flow across internal engineering and program cycles
and external supra-system driven change cycles. The core principle
behind agile development is also flow: the flow of work should
continue consistently across all engineering and program cycles.
The cyclic nature of agile methodology encourages thin vertical
slices of workflow across multi-disciplinary teams to deliver thin
slices of value (capabilities) more rapidly and consistently to the
supra-system. This is counter to large horizontal slices of workflow
that are subject to planning bottlenecks and constraints. A process
workflow that is built from thin-sliced periods that aggregate into
larger slices is more responsive than a workflow based on longer
slices. Dead time between steps in the flow should be isolated
and removed. This requires that we view the whole supra-system,
not just parts. Even a lifecycle process as large as the defense
acquisition lifecycle can be envisioned as a set of activities in a

more agile flow when we view it as the supra-system shown in
Figure 7.

There is nothing about agile practice or this supra-system model
that will change the fact that a critical safety assurance test of a
large physical component may take months while a critical safety
assurance test of a software component may take minutes. Engi-
neering lifecycles will always have large temporal variability across
disciplinary methods and component types. Program lifecycles
should be designed and balanced to match the needs of engineer-
ing to learn, build, and measure, and not set program milestones
that default to the longest engineering cycles. Likewise different
systems will enter into a supra-system that may be or become
more volatile and uncertain than others. Program lifecycles should
reflect needs for adaptability of the system to supra-system, not as
a simple first pass through the system development and transi-
tion. Current systems engineering literature does not distinguish
between system, program, engineering, and supra-system lifecycle
processes and current systems engineering mental models that
“force them to remain in lockstep” should be retired.  ¡

REFERENCES
■■ Hall, A. D. 1962. A Methodology for Systems Engineering, Van

Nostrand.
■■ INCOSE. 2035. Systems Engineering Vision 2035, International

Council on Systems Engineering, https://www.incose.org/about-
systems-engineering/se-vision-2035 .

■■ ISO/IEC/IEEE 15288:2015. Systems and software engineering
— System life cycle processes.

■■ McDermott, T., and A. Salado. 2021. SERC Final Technical
Report SERC-2021-TR-024, Application of Digital Engineering
Measures, November.

■■ McDermott, T., and W. Benjamin. 2022. SERC Final
Technical Report SERC-2022-TR-009, Program Managers
Guide to Digital and Agile Systems Engineering Process
Transformation, September.

■■ McDermott, T., B. Mesmer, and N. Ergin. 2023. SERC Final
Technical Report SERC-2023-TR-002, Systems Engineering
Modernization Policy, Practice, and Workforce Roadmaps,
April.

■■ Merriam-Webster online dictionary. n.d. https://www.merriam-
webster.com/dictionary/life%20cycle .

■■ Office of the Deputy Assistant Secretary of Defense for Systems
Engineering. 2018. Department of Defense Digital Engineering
Strategy. June, Washington. US-DC.

■■ Project Management Institute. n.d. “What is Project
Management?” https://www.pmi.org/about/learn-about-pmi/
what-is-project-management .

■■ Shinners, S. 1967. Techniques of System Engineering, McGraw-
Hill Education.

■■ Thullier, P., and J. Wippler. 2011. “Finding the Right Problem,”
in D. Luzeaux and J. Rualt, eds., Large Scale Complex Systems
and Systems of Systems. ISTE.

■■ von Bertalanffy, L. 1969. General System Theory; Foundations,
Development, Applications, New York, US-NY: G. Braziller.

ABOUT THE AUTHORS
Tom McDermott is the chief technology officer of the Systems

Engineering Research Center (SERC) and a faculty member in the
School of Systems and Enterprises at Stevens Institute of Tech-
nology in Hoboken, NJ. With the SERC he develops new research
strategies and is leading research on digital transformation, educa-
tion, security, and artificial intelligence applications. He previously
held roles as faculty and director of research at Georgia Tech Re-
search Institute and director and integrated product team manager
at Lockheed Martin. Mr. McDermott teaches system architecture,
systems and critical thinking, and engineering leadership. He
provides executive level consulting as a systems engineering and
organizational strategy expert. He is a fellow of the International
Council on Systems Engineering (INCOSE) and recently complet-
ed 3 years as INCOSE director of strategic integration.

Dr. Kelly Alexander is the chief systems engineer at System
Innovation. She has over 35 years of experience in systems engi-
neering and project management. As a US Department of Defense
civilian, she served as the director of systems engineering policy
and program support, director for common operating environ-
ment at HQ US Army, and spearheaded the transition of modular
software into the US Army’s tactical software. She also led the
Army’s digital transformation and modular open systems using
open standards and open architectures. Dr. Alexander earned a
PhD in systems engineering from George Washington University,
master’s degrees from George Washington University (systems
engineering) and National Defense University (national resource
strategy), and a bachelor’s degree in industrial engineering from
North Carolina State University.

Dr. Richard Wallace is a senior research engineer in the Sys-
tems Engineering Research Division at the Georgia Tech Research
Institute of Technology (GTRI) field office in Dayton, OH. At
GTRI, he analyses and models complex systems and processes. He
has over 40 years of experience in research, commercial, and DoD
engagements for embedded and system-software development as
an electrical computer engineer for federated-distributed systems
and National SIGINT systems. Recent avionics programs include
MQ-9 and RQ-170. In addition, he was an essential participant
in the development of ANSI-MIL-STD-1815A (Ada), IEEE-1076
(VHDL), and IEEE-1850 (PSL). Dr. Wallace received his PhD in
computer engineering from Complutense University, his MS in
computer science from the University of Dayton, and his BS from
the University of Idaho.

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

22

  ABSTRACT
The significant shift happening today towards more connected, more automated, and more autonomous systems is bringing soft-
ware inside all systems, and at the same time agile practices. Our experience of large-scale agile deployments in companies build-
ing or operating complex systems in automotive and aerospace shows that, whereas both approaches can easily coexist in isolated
teams within the same company, major problems arise when coordinating them at the leadership level, where they are perceived
as antagonist, and create misalignments, friction and quality issues. In this article, we propose to describe why it is important to
make agile and systems engineering work together, how to do it, and how this impacts how we see value, systems, digital twins,
and leadership. The following concepts of the FuSE agile roadmaps are addressed:

■■ Agility with long lead time components and dependencies
■■ Agility across organizations boundaries
■■ Orchestrating agile operations.

How Large Scale Agile
Can Operate Systems
Engineering in the Future

Laurent Alt, alt.laurent@bcg.com; and Mikaël Le Mouëlli, lemouellic.mikael@bcg.com
Copyright © 2023 by Laurent Alt and Mikaël Le Mouëlli. Published and used by INCOSE with permission.

PERCEIVED DISCONNECT BETWEEN AGILE
AND SYSTEMS ENGINEERING

In many industries, the increasing
expectations on time-to-market,
complexity, sustainability, regulations,
and personalization are stressing the

development processes in place, to make
them more flexible and more adaptive. In
addition, software is taking a large share
of the added value of products, and forces
organizations to expand their software
development capabilities and adopt agile
practices.

But there is a perceived opposition
between systems engineering practices
(which are often perceived as reliable but
rigid) and agile (faster but permissive).
Each approach has its benefits but also
comes with constraints that seem to be at
odds with the other.

So this “softwarization” trend raises
the question of maintaining the existing
processes in place, while putting in place
agile ways of working. This also raises the
question of which agile practices should be
looked at, and if they should be adapted.

In the following, we consider agile in a
very broad sense, including the end-to-end
DevOps view based on feedback loops
from real operations data, not constraining
ourselves by any specific framework nor
organizational implementation. We will
simply consider agile as a collaborative and
sustainable way of incrementally deliver-
ing value and learning, based on facts and
data. This view encompasses both software
startups and companies like SpaceX.

THE NEW CHALLENGES AHEAD
The best illustration of the numerous

challenges that manufacturing industries
are facing now is Tesla. It is true that the
focus has mostly been put on the electrifi-
cation side of the car market, but however
significant this shift is for the economy, that
technical challenge could be manageable
for every original equipment manufacturer
(OEM) by wisely using current engineering
practices. It simply amounts to replacing
one propulsion technology by another one.

But the problem is much bigger than
that.

On top of electric propulsion, new
important trends are actually impacting all
automotive OEMs:

■■ more and more software in functions:
for example, braking systems now
heavily rely on sensors to trigger
braking, and also make it possible to
recover energy to the battery.

■■ new usage trends like ADAS
(advanced driver-assistance systems)
use numerous sensors, and many
options can be turned on and off as a
preference.

■■ independence of software
from hardware, and increased
platformization of the technology, in
order to optimize reuse across car lines,
especially due to the complexity of
software.

■■ new business models based on user
stickiness, increased connectivity, and
more frequent updates.

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

23

■■ extension of the reach of software to
a more global mobility scope, like
charging stations.

These trends are not specific to automo-
tive, of course, we can see them emerging
in all markets, although not all at the same
speed.

As a consequence of this, many
organizations are adopting agile practices.
But agile is often used in the information
technology (IT) department and in
teams doing the development of software
applications. Besides, systems engineering
practices are used for embedded software
and hardware organizations. This situation
is simply due to these organizations
working in silos, each using what they
are most familiar with. Both worlds are
connected but do not operate consistently,
and, consequently, they have a hard
time defining shared priorities, speaking
the same language, implementing
requirements that are fulfilled by a mix
of software and hardware, and usually
discover quality issues too late.

Therefore, it is important to first explore
how these agile and systems engineering
teams can work together effectively, keep-
ing the best of both worlds, in particular for
products with long development lead times.

HOW AGILE AND SYSTEMS ENGINEERING CAN
WORK TOGETHER

Without going against classical stage
gate processes, which are designed to
progressively derisk the delivery of complex
products, here are a few guidelines to make
the two systems work together.

■■ the agile iterations rhythm can be
designed to match programs gates. One
single agile cadence can be aligned
on several programs, in order to deal
properly with teams with fixed capacity.

■■ backlog items, which describe agile
teams activities for example user
stories, can be seen as studies with
requirements as an input, and systems
design documents as output (definition
of done). According to the process stage
we are in, the expected precision can
be more or less precise (acceptance
criteria). But they can also well be
other types of activities, like testing,
documenting, and so forth. A more
detailed description of this incremental
precision approach can be found in
Krob (2019), for example.

■■ their business value can be used the
usual way (related to the client), or
reflect the expected gains from trade-
offs (performance vs cost, for example),
or even negatively as the risk of
delaying them (Reinertsen 2009).

The benefit of this unifying approach is
not local, it is global.

Locally, IT teams already working in
agile will likely not be fond of formalizing
requirements, until they must develop
offboard features that are linked to onboard
features. Locally, hardware teams will likely
find little added value in slicing their work
in small increments, until they become part
of a mechatronic system that is evolving at
the speed of software changes. But globally,
the whole organization can communicate,
develop, and integrate consistently.

Having now in mind an agile way of
working that can cover all aspects of a com-
plex, long lead time product, let’s now look
more closely at a few key aspects of product
development.

DEFINING VALUE
The concept of “business value” is central

to agile, since it governs how priorities
are assigned to activities within a fixed
capacity and fixed deadline constraint. Yet
it is not so easy to define and manipulate,
so much so it has sometimes been called
“the elephant in the agile room” (Schwartz
2016). The question lies in how to define
it, but also how to easily allocate it down
to the level of teams and bring them
actionable priorities very frequently
to enable the so much needed teams
empowerment.

Where is the problem? For agile teams
in start-ups continuously delivering a
service or an app to end users and being
able to measure the outcomes of a new
version on their business, it is easy to
define some business value, and to connect
it to everyone’s daily work. But for large
companies delivering complex products
that take months or even years to deliver, it
is different. A car or an aircraft are defined
by several target attributes such as range,
cost, NVH (noise, vibration, harshness),
weight, and so forth, that are more or less
strictly allocated across all the sub-systems
upfront, and further design activities
actually produce or refine trade-offs
between those attributes. In addition, other
properties as impact on manufacturability,
sustainability, or delivery timeliness must
be optimized too.

So, for complex systems, value is a
multi-criteria concept that is defined in the
context of a global product and organi-
zational setting, and due to impacts, the
overall convergence of the system design vs
the target attributes can only be evaluated
by integrating all the design elements. The
more entangled the trade-offs, the more
frequent updates we need.

Systems engineering practices make
these choices possible. Frequency can be
achieved by automation and intensive

use of model-based systems engineering
(MBSE) and simulation tools. But agile
provides the incremental way of working
that makes it possible to smoothly make
the trade-offs converge as we move from
upfront phases to more detailed design
phases, and make them flow across the
whole organization.

There is yet another aspect of value that
must be considered.

Let’s go back to the ever-increasing part of
software in the design. The most important
effect of this, is that that software is mas-
sively reused from a continuously evolving
platform rather than specified against new
requirements each time, increasing value
even after launch through over-the-air
(OTA) updates, hence creating the emer-
gence of long-lived platforms that support
whole product lines. Practically, this means
that the concept of value must also include
the contribution of an activity to a long-
term architecture vision, and across several
product lines, which must be balanced with
short term priorities of single products.

LOOKING AT SYSTEMS AS PRODUCTS
The speed at which products are being

delivered is progressively becoming a
problem, especially as new constraints
arrive. This is not new, since compliance to
regulations have always been an important
provider of requirements, and sustainability
regulations are simply making the context
more complex.

The problem is that, even with good
systems engineering practices, many
organizations already struggle with how to
best balance innovation and carrying over
existing design solutions in the context of
new requirements. When requirements are
cascaded too fast too early, this prevents
proper reuse (or adaptation) of existing
designs.

This is getting worse when one thinks of
reusing across several product lines, where
the variety of requirements is multiplied by
the specifics of each line.

And even worse if we think that OEMs
want to “own” the intelligence of their
systems and therefore migrate the algorith-
mic part of their subsystems up to a vehicle
software layer. And worse yet, consider-
ing the rapid evolution of sustainability
regulations that force OEMs and suppliers
to progressively have all their components
fulfill requirements under more and more
sustainability constraints, implying that
components must follow a path towards
more sustainability.

In a sustainable organization, this much
change can only be managed with an evolu-
tionary approach covering all aspects of the
product, technology, knowledge, organiza-
tion, testing facilities, and so forth.

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

24

A working mode where rigid expec-
tations overcome reuse, and leave little
room for trade-offs and adaptation, is
called “project” mode in the agile world,
as opposed to the “product” mode, where
reuse and evolution are the default. This
may sound counterintuitive, since agile is
often believed to be very flexible and to
encourage massive changes, but most of
this agility comes from changing priorities,
not from refactoring the technical stack
nor disbanding teams and forming new
ones. As Martin Fowler (one of the Agile
Manifesto authors) puts it, design is not
dead with agile, it simply becomes different
(Fowler 2004). Enabling agility does not
prevent good thinking upfront but is better
achieved with the ability to make redesign
possible when needed.

Therefore, agility is managed by inte-
grating, at the core of the organization,
the idea that each component must be
considered as something that will evolve
and that provides a service either internally
or externally, that improves over time. This
does not go against systems engineering, it
simply means that organizations would bet-
ter manage systems as products (meaning,
systems associated with a vision, a develop-
ment roadmap, a value delivered, competi-
tion, the means to deliver it, and so forth.

The solution consists in having the tech-
nical choices for a system be made in the
context of a long-term vision of that sys-
tem, a set of functions and structure pro-
gressively evolving along a roadmap, and
assigning a product owner as the person
who prioritizes the increments. This does
not only hold for the system of interest, but
also for sub systems on several levels.

Finally, organizing this way puts more
emphasis on the importance of model-
ing and managing stable interfaces, how
functions are fulfilled, how they evolve, in
order to provide the necessary autonomy
for product owners to manage their own
work in an autonomous manner. Therefore,
this product approach must reinforce good
systems engineering practices.

DEVOPS AND DIGITAL TWINS
Agile is about working incrementally,

and this ability to work by increments
heavily relies on all stakeholders agreeing
on shared facts. In software it is the famous
principle of the Agile Manifesto “working
software over comprehensive documen-
tation.” Everyone in a company doing a
software product understands this software
and what problems it solves for its users,
so it is the best means to communicate and
assess the work done. The word “working”
has its importance too, since it means that
whatever is considered done should have
undergone a minimum of testing. This is

the raison d’être for the DevOps chain.
In hardware, however, due to much

longer cycle times, we cannot wait for a
product to be delivered, even for a subsys-
tem. So, one can rely on systems diagrams,
3D prints, digital mockups, prototypes,
mules, etc.

However, if we look precisely at the
verification and validation (V&V) part,
and taking into account that the system of
interest is a mix of software and hardware,
if we wish to have the equivalent of a
DevOps chain, the ideal artefact is a
digital twin. This is so for two reasons.
The first one is that the digital twin is
agnostic regarding the kind of technology
the system is using (hardware, embedded
software, or software). The second one is
that it can span the entire lifecycle of the
product, even after launch, all the product
configurations, and help simulate further
software updates over the same hardware
product.

An additional difficulty that will become
more important is the integration of
humans in the definition and operations of
systems. Of course, this will definitely bring
more complexity and more constraints for
development and operations, but we also
believe that this additional complexity
will accelerate the use of data, the Internet
of things (IoT), and artificial intelligence
(AI), together with the definition of ethical
principles.

Of course, it is a daunting task to model
100% of a system with MBSE. But there
are ways to model things incrementally,
by considering some of the components as
black boxes, simulating their behavior with
models, and progressively increasing the
coverage of the whole system as needed.

LEADERSHIP AND CULTURE
It is well known that culture and leader-

ship are the main issues in large scale agile
transformations. Moving towards agile
is probably the most difficult change in
organizations since it implies a significant
culture shift across all functions.

There are many aspects of this change:
teams’ empowerment, collaboration across
teams and leaders, data driven decisions,
value driven priorities, product mindset vs
project mindset, being flexible on priorities,
caring about organizational learning, focus
on quality, etc.

Those can be found in the vast litera-
ture about agile leadership, but the most
important thing about it is that the higher
you go in hierarchy and responsibilities, the
more difficult it is to make these changes
happen due to the increasing pressure, time
scarcity, and the longer history of control
those leaders have acquired by reaching
their position.

Here, we will simply mention one
important point, that we find particularly
relevant in the context of complex systems.

Since systems should be considered as
products (or platforms) with a roadmap,
leadership must have an increased ability
to balance value and technical feasibility
of these products more widely and more
frequently. This does not mean that all
leaders should master both skills, but
rather that the organization should enable
the seamless collaboration of value driven
and technically savvy people in order to
manage, on several levels of the system,
balanced priorities between value delivery
and technology feasibility.

In our experience, the pattern of
disconnect between business and tech is
pervasive. We have seen many situations
where programme directives are so
compelling from the start that they make
reuse very difficult and impede the creation
of technology roadmaps. But we have also
seen many times systems architects spread
across organizations, each having local
influence but reporting to non tech-savvy
leaders, or, on the contrary, being enough
involved upfront to make important
choices, but without having enough
understanding of the business implications
of their choices, due to the lack of ability to
communicate across the leadership layers.

Of course, the agile ways of working
make this connection more natural, since it
is usually embedded in the sprint plannings
and quarterly business reviews, or SAFe
planning interval (PI) plannings. But when
it is about executives, quarterly discussions
are not enough to make a significant cultur-
al change happen.

To us, this raises the question of how
to structure communication, in a way
that naturally connects both worlds.
Systems engineering concepts need to be
made more accessible, so that as many
stakeholders as possible can be involved in
decisions. We have successfully used high
level “product maps” to align leaders on a
shared understanding of a product view of
their work, as opposed to simply delivering
their work as a program. This has been
successful in spreading a shared sense
of the product, spot and share high level
“invisible” dependencies at leadership level
and early in the development plans.

Consequently, another topic that also
needs to be addressed is the way leaders
organize their agendas, in order to make
these connection points as frequent as
possible. One cannot simply expect to
develop complex products and to change
mindsets if the only alignment between
stakeholders happens once a quarter. This
point is addressed more in length in Alt-Le
Mouëllic (2022).

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

25

CONCLUSION
With the increasing importance of

software in complex products, agile ways
of working are also becoming a standard
in the development process. However, the
perceived opposition between systems
engineering and stage gate processes on one

hand, and agile on the other hand, often
creates dual organizations that struggle to
work effectively.

Software organizations can be reluc-
tant to adopt some systems engineering
practices, as much as hardware organiza-
tions may not find a lot of added value in

adopting agile. But the problem is not a
local one, it is global. There are tremendous
gains in unifying product development
methods to encompass hardware and soft-
ware, and this brings new insights in how
agile should be considered at the scale of a
company.  ¡

REFERENCES
■■ Alt, L., and M. Le Mouëllic. 2022. “How leaders can take

ownership of their Agile Transformation.” LinkedIn. https://
www.linkedin.com/pulse/how-leaders-can-take-ownership-agile-
transformation-laurent-alt/ .

■■ Beck K. et al. 2001. Manifesto for Agile Software Development.
https://agilemanifesto.org/ .

■■ Fowler, M,. 2004. Is Design Dead? https://www.martinfowler.
com/articles/designDead.html .

■■ Krob, D, 2019. “CESAF: an Iterative & Collaborative Approach
for Complex Systems Development. Complex Systems Design
& Management.” Paris, FR. ffhal-02561389. https://hal.science/
hal-02561389 .

■■ Reinertsen, D. 2009. “The Principles of Product Development
Flow: Second Generation Lean Product Development.”
Celeritas Publishing.

■■ Schwartz, M. 2016. The Art of Business Value. IT Revolution
Press.

ABOUT THE AUTHORS
Laurent Alt is a seasoned leader (CTO, CEO) in technology

development and innovation (notably at Dassault Systèmes and
Lectra), and is now an expert in enterprise agility and systems
engineering at BCG Paris, mainly supporting the move of
automotive and aerospace companies towards software and agility,
leveraging systems engineering practices.

Mikaël Le Mouëllic is a managing director and partner, at
BCG Paris since 10 years, after 6 years in charge of production
management at Vallourec. Mikaël is the head of BCG’s R&D
practice in Europe, helping automotive and aerospace companies
in their transformation towards agile.

®

Join the INCOSE Board

There are several volunteer board positions coming up for election and now
is the time to submit your application. The positions up for election are:

Application Deadline: August 6, 2023
Visit incose.org/volunteer

• President-Elect
• Director for Outreach
• Sector Director, Asia-Oceania Sector
• Treasurer

HELP SET THE STANDARDS IN THE FIELD OF
SYSTEMS ENGINEERING FOR THE GLOBAL COMMUNITY

https://www.incose.org/volunteer

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

26

INTRODUCTION

  ABSTRACT
Model-based systems engineering (MBSE) with agility can help systems engineering programs which deal with both increasing
complexity and frequent changes in environment and usages, shorter time-to-market, uncertainty of the needs, and more sophis-
ticated industrial schemes. Agile approaches originated in software engineering can be extended and tailored to a certain extent
to complex systems engineering and particularly to MBSE. Main benefits of agility are provision of a minimum viable product
as early as possible in the schedule, early capture of changes of needs, enabling to deliver a system answering to the real needs,
and securing of the value proposal. It includes also potential reduction in rework of the final system through regular customer
feedback throughout development (left shift for the defect correction with early exposure), and efficiency of the use of resources.
Concerning MBSE, the use of models as a single source of truth for completeness and consistency is useful to share and secure the
design by improving communication within engineering teams and the building and support of the development strategy, and to
help to automate some tasks such as model exchange and synchronization. In addition to the benefits of each approach, combining
them may help to:

■■ Organize and synchronize the development and validation effort of one or multiple engineering teams.
■■ Faster impact analysis including trade-off studies/options and hence a faster reaction to evolutions in expectations and
constraints, that is, the agility of systems.

■■ Show regularly “end to end” value to the customer and other stakeholders.

Model-Based Systems
Engineering as an
Enabler of Agility

Sophie Plazanet, sophie.plazanet@thalesgroup.com; and Juan Navas, juan.navas@thalesgroup.com
Copyright © 2023 by Sophie Plazanet and Juan Navas. Permission granted to INCOSE to publish and use.

In this article, we illustrate how model-
based systems engineering (MBSE)
may be an effective enabler of agility
in systems engineering, focusing

on dynamic learning and evolution (cf
concepts of the INCOSE facilitated future
of systems engineering (FuSE) roadmap),
with a fictive testimony interview of a
system engineer based on a fictive example
(a drone-based product for inspection of
electrical network), used to condensate
experiences at Thales. Key concepts are
presented, then the process of “warm-up/
run/evaluation” is detailed, and we finish
with the way to deal with an evolution
request in a MBSE and agile context.

1.	 Could you tell more about your product
and firm and yourself?

I am a system engineer in the company
Pythagoras. My firm develops and sells
lightweight drone-based products for dif-
ferent markets: agriculture, aircraft exterior

inspection, and public security enforce-
ment. In addition to the drones themselves,
these products embed mission control and
data analysis software. These drone-based
products feature manual and automated
piloting, data acquisition using a wide
range of technologies, live data process-
ing, data recording, live, and post mission
data analysis. After market analysis of the
context, resulting in identification of the
need of inspection of electrical networks,
my firm has launched the development of a
new product providing this service.

2.	 What means agility in systems engi-
neering? And agility with MBSE?

Agility in systems engineering refers to
an engineering effort in which teams can
adapt to new circumstances (for example
changes in or new stakeholders needs)
while meeting the customer expectations in
terms of schedule, quality, and cost. Agile
systems engineering is a principle-based

method for designing, building, sustaining,
and evolving systems when knowledge
is uncertain and/or environments are
dynamic.

Agility with MBSE refers to the use of
key concepts favoring agility and co-engi-
neering such as capabilities and function-
al chains, developed in an iterative and
incremental way. And, to the use of system
modelling tools to define these concepts,
which allows additional engineering rigor
and quality.

3.	 What are the key concepts you used for
agile with MBSE?

We focused on a subset of Arcadia con-
cepts that are particularly useful in orga-
nizing the engineering effort and carrying
value at the solution level: capabilities,
functional chains, and scenarios. These en-
gineering artefacts were the references for
all engineering teams (systems, software,
hardware, IVV, etc.).

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

27

We used agile concepts of increments,
iteration, increment data packages, EPIC,
and user stories.

■■ Increment is a working, tested subset of
the system (or of the systems engi-
neering artifacts) delivered regularly
to the system stakeholders and built
on top of an existing baseline. Value
can be knowledge, risk reduction, new
features, enhanced performance, etc.

Each iteration is a standard,
fixed-length timebox including several
successive blocks of fixed duration,
where agile teams deliver incremental
value in the form of working, tested
software and systems. The duration
of these blocks may vary according to
many factors, both system-related (for
example, life-cycle phase, complexity of
the capabilities included in the scope)
and organization-related (for example,
system or software engineering levels,
available resources, and human
resources policies)

iterations. In a MBSE context, it could
be modelling artefacts (along the needs
and contexts solution perspectives) de-
scribed below, associated to textual and
model requirements, constraints, justifi-
cations, and simulation-based analysis
that are associated to these engineering
artifacts (Figure 2).

4.	 How did you define the engineering
workflow?

To define the engineering workflow
between the project’s major milestones and
associated reviews, we used a sports anal-
ogy. You need first to prepare your body
(warm-up) before performing a continuous
and strong effort (run), and then, if you
want to improve, you need to measure and
analyze your performance (evaluate).

Warm-up:  The “warm-up” activities
refer to tasks that will reduce the risk of
the engineering efforts that will be done
afterwards. It is about capture, selection,
and prioritization of the work to be done to
meet the objectives of the next milestone,
providing the expected value to the stake-
holders. It is also about the estimation of
efforts required to do it and the definition
of the schedule to do it.

Run: For an engineering team, the “run”
activity is made of iterations or blocks,
aiming at implementing product capabili-
ties. This includes (non-exhaustive list) the
detailed definition of product functions and
exchanges involved in the capabilities, the
development of the system and subsystems’
architecture, the development of the soft-
ware and hardware implementing expected
behavior, and the verification and valida-
tion of what will be delivered at the end of
an increment and to the customer.

Evaluation:  The evaluation focuses on
ensuring that the whole product incre-
ment produced during the iteration can
be released; the major part of the integra-
tion, verification, and validation effort is
performed incrementally during the run
iterations, and the evaluation focuses on
ensuring that the whole can be released.
During early stages, evaluation may include
multi-viewpoints analysis (safety, security,
performance, reliability, testability, etc.),
the preparation of a review of experts or
the execution of simulations. Later it may
include the approval by the customer or
the packaging of software and hardware
releases. To evaluate how was produced the
engineering effort, the engineering team

described by

made of

involves Is the work content
description of

EPIC

USER/TECHNICAL/BUG
STORY

Figure 1. Relations between different
concepts

■■ We refer to EPIC as an element of plan-
ning, which refers to a functional chain
or scenario (or composition or pieces of
them) and to other engineering data. It
is used to define the expected content of
a system increment and thus the value
to be delivered to the user. It is defined
in user stories that are developed in
successive blocks. The content of the
user stories was defined so that value
(working software) was delivered after
each software block (Figure 1).

■■ An Increment Design Data Package
is a set of engineering data, related to
an increment, that will be transferred as
a baseline to either lower engineering
levels teams (for example, a subsystem)
or to other engineering teams (for
example, verification and validation),
becoming their inputs for subsequent

System architectural design

System-level V&V procedures

Subsystems, software, etc.

Figure 2.  Increment packages dispatched to other agile teams at the end of iterations

Milestone Milestone

Concept

Development

“Warm-up” “Run” “Evaluation”

Milestone MilestoneIteration X:
production of

macro-
increment X

Iterations
X.1 to X.n

Iteration
review

Iteration
review Release

Time

BL
O

CK

Figure 3. Engineering workflow of warmup, run, and evaluation, composed of several
blocks/iterations

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

28

members review the engineering practices,
identify what went well and wrong, eluci-
date ways to improve the way they perform
their engineering effort, including the de-
pendencies with stakeholders, both outside
and inside their organization (Figure 3).

Note that:
■■ The team defines the effort and time
length allocated to the warm-up activity
between two milestones.

■■ Warmup, run, and evaluate activities
are not necessarily sequential, they can
and are often executed in parallel: for
example, some key members of the
team can “warmup” by defining the
scope, while others can “run” and pay
technical debt that needs to be done at
that moment.

■■ You can perform these activities several
times.

5.	 How did you perform the warmup in
the early stages of this development?

We organize with the help of Pythago-
ras engineering coaches (agile, MBSE,…)
orientation workshops, where all the teams
have discussions to define the following
points:

■■ The articulation between engineering
teams:  for example, what is a “contract”
between engineering teams made of,
what are the outputs from/inputs to
each team, what is the development
pace (length of iterations, for instance
here 12 weeks was collectively decided)

■■ The model-based engineering strate-
gy: what is the purpose of each model
view? How will the views be structured?
Are there existing building blocks to
assemble? We defined a modelling plan.

■■ The engineering tools and how they
will be configured: we chose the Team-
4Capella tool that integrates natively
the MBSE Arcadia method and allows

engineers to work concurrently, which
was an enabler to co-engineering.

■■ The identification and selection of the
scope of work and its schedule, with
a first vision of the product/system to
develop: We did this by selecting the
capabilities that will be developed,
validated, maintained or retired, along
with their related functional chains and
scenarios (Figure 4).

We defined which functional chains
or scenarios (or composition or pieces
of them) should be delivered for which
iteration, as part of which scope of work of
increment (Figure 5).

We defined in a model an intentional
architecture of the system, that is, the
architectural principles in which further ar-
chitectural definition work will be based. In
further run and evaluation phases, updates
or complements of these assets (operational

analysis, capabilities, architecture, etc.)
were done. Thus, MBSE has accelerated
learning by building and revising models of
the intentional architecture.

■■ Organization and exploitation of
models: Each capability of the system
was assigned to a capability leader
(cf below), who was accountable for
the associated functional chains.
The capability leader coordinated
the co-engineering with integration,
verification, and validation (IVV) and
software teams on their capability
iterations after iterations (Figure 6).

The results of these workshops as well as
the model-based engineering strategy were
then formalized in the systems engineering
management plan.

Deal with the uncertainty of the
needs: We identified while modelling what
we don’t know and variability points. We

Visualize data in live during flight

Display acquired HD video in live
Display multi-spectral image in live
Display thermal image in live
Visualize all collected mission data
Visualize substance level in live

Definition of increments with
expected functional chains

Vertical slices of architectural
design across need and
solution models

System architectural design

System-level V&V procedures

Subsystems, software, etc.

Figure 4. Example of the definition of increments for the capability “visualize data live
during flight”

Figure 5. Extract of the repartition of
functional chains in different iterations

System Architect

PO SW
Drone

motion

Increment
data

package AGILE
Developed

items

support

support

SW architects
and developers

Agile Master

SW architects
and developers

Agile Master

PO SW
Mission

Data

CO-ENGINEERING

IVV Team

SW & HW Development Teams

Systems Engineering Teams Support
Teams

Engineering
environment

support

Coaches
MBSE

AGILE, etc.

Capability leader
#1

Capability leader
#2

Figure 6. Example of Pythagoras organizational breakdown structure (OBS)

Acquire multi-spectral image

ITERATION 1
Acquire data (pictures, videos, scan...

Acquire thermal image
Acquire 3D image

Acquire HD video

Acquire HD video of moving element

Automatically follow a moving target

Visualize mission progress status

Acquire HD image

Manually trigger thermal image acquisition
Manually trigger multi-spectral image

Manually trigger 3D image acquisition

ITERATION 2
Acquire data (pictures, videos, scan...

Automatically follow a flight plan

Manually acquire data

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

29

capitalized information in the model that
could be for example inputs for decision to
eliminate some architecture alternatives in
a set-based approach.

Thanks to the testimonies of a previous
project, we had learned the lessons that this
warmup phase shall be performed with a
sufficient scoping and not skipped.

6.	 How did you perform the run,
designing, and implementing the
increment design data packages?

First, we defined the content of
increments. It could be by for example
an “end-to-end service” slice. As an
alternative, it could be logical component,
with the help of a simulator to simulate
inputs/outputs and behaviors. Each slice,
once implemented, is fully functional,
creates value for the user, and makes
user feedbacs possible. Taking care of
the compatibility of interfaces between
components is key especially for IVV work
(with for example the delivery of interface

data with identification of their version in
increment data packages) (Figure 7).

Then we delivered the architectural
design produced by systems teams to soft-
ware and IVV teams, which was based on
the capabilities and associated functional
chains or scenarios describing them. In the
example below, increment data package
relates to the functional chain “manually
control the drone motion.”

Representative members of the software
team participated to regular reviews of
the increment data package current build
by the systems team. Their role was to
anticipate the feasibility and to make sure
the system-level vision of the solution
was compatible with the current software
architecture. Participation of software
architects in the agile co-engineering effort
at system level was key for the developers to
“accept” the models they will receive from
the systems engineers. This effort helped
to secure the design. In such reviews, there
had been the presentation of physical
architecture blank displaying the functional
chain “manually control the drone motion,”
with the physical components involved (for
example, micro controller, etc.), the expect-
ed behavior of these physical components,
the operator external entity...

The development team received then
for a run iteration n+1 the increment data
package related to this functional chain,
(cf Figure 8). Having inside the increment
functional chain or scenarios (or composi-
tion or pieces of them) helped the team to
better understand how the implementation
of a piece of interface or a small feature fits
in the product-wide picture. It helped them
also to split in EPIC, applying the agile pre-
cepts, to refine the received EPICs in user
stories that were developed in successive
blocks. The content of the user stories was
defined so that value (working software)
was delivered after each block. For example,
a block was about plugging the actual
drone motion to the piloting graphical
interface on the tablet. This increment data
could contain system mode machine from
solution perspective such as below, textual
requirements associated to model elements,
etc. (Figure 9).

The pace of the IVV team was aligned
with the pace of the software development
team. The releases were driven by IVV,
allowing to test end-to-end services
with system integration. The IVV team
integrated in the system the components
delivered by the software team every third
week and run the test procedures written
collaboratively in co-engineering during
the previous iteration. Each test procedure
“tells the story” of its corresponding
functional chain, the test steps roughly
matching the steps of the functional chain.

Increments by
« logical component »

Increments by
“end to end service slice”

Actor Actor

Actor Actor

F F

F F

F F

F F

F

F

F

F

Component 1 Component 2 Component 1 Component 2

Figure 7.  Increments by logical components or by end-to-end service slice

Run iteration n Run iteration n+1

FC «Manually control
the drone motion»

Systems
team

End of It
erat

ion n

End of It
erat

ion n+1

Control SW
team

V&V team

GUI, mode supervision,
development of joystick driver, etc.

FC «Manually control
the drone motion»
VALIDATED

Co-engineering
and reviews

Co-production of test
procedures

Refinement of EPICs/FCs
in User Stories

Tests thhe components delivered
by the Control SW team

Architectural design

Figure 8. An increment package dispatched to other agile teams at the end of
iterations

Figure 9. A piece of increment data package for the functional chain “manually
control the drone motion”

(When) Ground is detected (AFTER) 30 sec with no activity

Manual Automatic

Idle on ground

manual instruction

start notification

start notification

Mission is
completed

Final

entry/Execute automated
aircraft-specific flight plan

Init

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

30

To obtain this result, IVV practitioners
worked closely with the capability leaders
in order to translate each need-perspective
functional chain in a corresponding
system-level test procedure. Models helped
to share the design.

When a problem was encountered on
a test step, finding the corresponding
function or functional exchange in the
model was straightforward. Using auto-
mated impact analysis, the investigation on
the related data was also immediate. It is
straightforward to locate the possible cause
of a problem. This analysis of the model can
have different outputs. If the model (need
and corresponding solution) is correct,
a defect is created on the faulty compo-
nent. If the model is actually faulty, then a
defect is created on the model itself, and an
evolution request is created for the involved
component.

7.	 How did you evaluate the design
iteratively?

For example, we organized a review
of experts and the simulation about the
product increment of the last iteration. We
synthetize these results and run performed
IVV results in a table such as in Figure 10
to evaluate and monitor the progress status.
We also performed a retrospective to take
a step back and improve our engineering
practices.

8.	 When did the process of warm up/run/
evaluation end?

The process of warm up/run/evaluation
ended when all the capabilities in
Figure 2 were all released and accepted

by the customer. Then the life cycle of
the system transitions from development
to full operation by the customer. The
engineering organization is also an active
actor of the evolutionary maintenance
of the system: a “warm-up” iteration
is currently performed to prepare the
engineering teams for this new phase. We
reuse both the previous work capitalized
in the model and the previous process
exposed.

9.	 How did you deal with an evolution
request in a MBSE and agile context?

Agile with MBSE helps to bring the value
proposition and short loop for customer
feedback. For example, during customer
visibility milestones, the functional chains
”manual drone control with joystick” and
”manual drone control with tablet” were
released and validated by the customer.
Additional needs (obstacle avoidance
and switch between automated piloting
and manual piloting) expressed during
this milestone were captured in the
need-perspective model. We performed
impact analysis with the help of queries
or any other form of data extraction
from the model to precisely compute the
consequences of these evolution requests
and consequently discussed with the
customer to bring value corresponding to
its request in further iterations.

CONCLUSION
In this article, we illustrated how MBSE

may be an effective enabler of agility in
systems engineering, focusing on dynamic
learning and evolution (cf concepts of the

FuSE roadmap). MBSE accelerates learning
by building and revising models since
the early stages and helps explore and get
agreement on solutions when evolution is
requested. Key concepts used in the contact
of MBSE with agile were presented, then
the process of “warm-up/run/evaluation”
was detailed and we finished with the
way to deal with an evolution request in a
MBSE and agile context. Combining both
approaches may help to:

■■ Organize and synchronize the
development and validation effort of
one or multiple engineering teams.

■■ Faster impact analysis including trade-
off studies/options and hence a faster
reaction to evolutions in expectations
and constraints, that is, the agility of
systems.

■■ Show regularly “end-to-end”
value to the customer and other
stakeholders.  ¡

ABOUT THE AUTHORS
Sophie Plazanet has been working

in system engineering for several years,
especially during the past 5 years in
Thales. Passionate about MBSE, she joined
Thales Corporate Engineering in 2021
where she is a MBSE coach, supporting
the Thales engineering teams to adopt
MBSE practices. She holds a Master of
Engineering and Master of Research in
advanced systems and robotics from Arts
& Métiers ParisTech Engineering School.

Juan Navas is a systems architect with 15
years’ experience on performing systems
engineering activities and implementing
innovative engineering practices in
multiple organizations. He currently
leads the modelling and simulation team
at Thales Corporate Engineering and
dedicates most of his time to expertise
and consulting for Thales business units
and other organizations worldwide,
accompanying managers and architects
when implementing MBSE practices.
He holds a PhD in embedded software
engineering, a MSc degree in control
and computer science, and a degree in
electronics and electrical engineering.

Figure 10. Progress status of design, development, and test per capability at the end
of iteration 3

Capability % designed % developed % validated
Manually pilot the drone 40% 20% 10%

40% 20% 20%Automatically follow a flight plan

30% 10% 10%Manually acquire data

60% 40% 40%Automatically acquire data

70% 70% 30%Visualize data during mission execution

100% 50% 40%Visualize data after mission execution

50% 20% 0%Analyze data after mission execution

0% 0% 0%Analyze data during mission execution

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

31

  ABSTRACT
Agile systems engineering is not new. Work has progressed on this for many years to the point that criteria has been established
regarding best practice as well as a means of quantifying adherence. The future of systems engineering (FuSE) initiative is reex-
amining how agile systems engineering fits into the FuSE (Willette et al. 2021). As model-based systems engineering (MBSE) is
also a FuSE theme, it is only proper to look at how agile systems engineering and MBSE complement and enable each other. This
article examines some of the aspects of MBSE–specifically the Systems Modeling Language® (SysML) – and show at how an agile
approach to MBSE can help with the concepts of stakeholder engagement, continual integration, and dynamic learning and evo-
lution. For reasons of space, the article will only provide minimal definitions and explanations of the basics of MBSE, agile, and
SysML and as these are well known concepts.

Agile MBSE: Doing the
Same Thing We Have
Always Done, but in an
Agile Way with Models

  KEYWORDS:  MBSE, SysML, agile, process

Matthew Hause, matthew.hause@hotmail.com
Copyright © 2023 by Matthew Hause. Published and used by INCOSE with permission.

STAKEHOLDER ENGAGEMENT

An extract of the definition of
systems engineering taken from
the INCOSE website states that
“systems engineering focuses

on establishing, balancing and integrating
stakeholders’ goals, purpose and success
criteria, and defining actual or anticipated
customer needs, operational concept and
required functionality, starting early in the
development cycle….” (INCOSE 2023). A
key aspect of translating stakeholder goals
and customer needs to requirements and
eventually systems is to effectively interact
and communicate with stakeholders
and customers. The definition further
states that systems engineers “baseline
and model requirements and selected
solution architectures for each phase of the
endeavor,” hence models are a key aspect
for all aspects of systems engineering,
especially for stakeholder engagement. If
the models can assist, inform, and at times
provide the bulk of this communication,
then the model will serve a double purpose

for both the system engineers and the
stakeholders. Additionally, the Systems
Engineering Handbook version 4 in section
2.10 Systems Engineering Leadership
describes “working with the stakeholders
(including customers), representing their
points of view to the team and the team’s
point of view to them.” The team will
already be familiar with models, so this
further enhances the benefits of the model
as well as the communications.

USE CASES AND CONTEXT
There are a variety of ways of collecting

stakeholder needs including operational
concept (OpsCon) definition, concepts of
operations (ConOps), business and mission
needs analysis. These can and often are
expressed in model form. The Systems
Modeling Language® (SysML) can be used
to capture these stakeholder and customer
needs with the use case diagram. A use case
is a methodology used to identify, clarify,
and organize system requirements. The use

case defines possible sequences of interac-
tions between systems and users in a partic-
ular environment and related to a particular
goal. The use case description describes all
the steps taken by a user to achieve a goal.
There are three main elements to use cases:

■■ Actors: The stakeholder, customer,
system user, cooperating system, etc.
These can be abstract as well as concrete
people, organizations, external systems,
and abstract actors such as time.

■■ The use case: The use case itself
represents the goal or final successful
outcome that the stakeholder wishes to
achieve. The use case text description
outlines the process and steps taken
to reach the end goal, including the
necessary functional requirements and
their anticipated behaviors.

■■ The system context:  the circumstances
in which the goal is meant to be
achieved including constraints,
environmental factors, interface, and
timing limitations, etc.

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

32

USE CASE MECHANICS
The use case descriptions are writ-

ten using stakeholder terminology and
language to correctly capture the intended
purpose and flow and to ensure that they
accurately capture customer needs. This
clearly defines functional requirements for
the development team. Logical sequences
and constructs can be difficult to follow in
textual language, so activity diagrams can
also be used to capture required behavior
and then translated to text. These activity
diagrams can also follow on from textual
use case descriptions to further elaborate
the system behavior. The defined activities
can be allocated to structural elements as
well as traced back to the original stake-
holder needs and use cases.

An important aspect to capture in
parallel is the system scope or context to
determine those elements included in and
excluded from the project. The system of
interest (SoI) is shown in the center of the
diagram with connections to the various
stakeholders and other interfacing systems.
This initial logical diagram can be trans-
lated to a more physical version defining
specific interface types, data and other
exchanges, timing aspects, capacities, etc.
There may also be multiple contexts for
the SoI depending on mobility, timing,
and lifecycle as well as stakeholder varia-
tions. Having established this stakeholder
baseline, it is validated with the customer,
iterating as necessary. The model should
include stakeholders throughout the project
lifecycle not just the functioning system
reflecting all stages of the 15288 standard
(ISO 2015).

Use cases can also encapsulate a set of
functional requirements to form a cohesive
causal sequence providing customer value,
features, and goals. The use case refines the
functional requirements in that it expresses
them in model format. Functional require-
ments can also be traced to use cases de-
fined with the customer, so can be derived
from requirements, or precede them.

As the system is developed, the imple-
mentation of the use case forms a useful in-
crement in the system development: build
the functionality and structure necessary to
implement the use case. When appropriate,
implemented use cases can be demonstrat-
ed to the customer to ensure that the goal is
being met in an acceptable way. Although
use cases are commonly used in software
development, they also represent system
functionality including physical user inter-
face (UI), human factors interactions, phys-
ical system ergonomics, etc. Enabling this
stakeholder involvement early and often
ensures that the users are engaged and that
their goals are being met. I have used these
incremental delivery techniques through-

out my career as a means of demonstrating
“visible signs of life” in project development
and to increase customer confidence. It has
the added benefit of providing a platform
for continuous integration and delivery as
implementation often requires multiple
cooperating system elements for successful
implementation.

CONTINUAL INTEGRATION, AND CONTINUOUS
DELIVERY

In the age of MBSE, system deliveries
need to evolve past delivery of documents
and physical systems. Models are being
used throughout the development lifecycle
starting with model-based acquisition and
through to development and onto product
line management (PLM), computer-aided
design (CAD), and into manufacturing.
Models are developed, delivered, and
evaluated throughout the product lifecycle.
In the same way that systems are developed
incrementally with increments of compo-
nents, subsystems, systems, etc., models
and model elements can also be delivered
incrementally. With agile software devel-
opment, the product owner discusses the
objective that the sprint should achieve
and the items that, upon completion,
would achieve the sprint goal. The team
then creates a plan for how they will get
them “done” before the end of the sprint
(Schwaber 2021). In this same way, models,
model architectures, model elements, and
diagrams need to start with a clear set of
goals, intended audience, and questions to
be answered/addressed. These criteria guide
what needs to be developed as well as guid-
ance on how much and how little needs to
be done. Without this clear guidance, the
developers can start down an endless path
of modeling without reaching a conclusion
or fail to create a useful deliverable. In
addition to the goals, the intended audience
needs to be clearly determined. High level
decision makers and stakeholders should
not be given detailed technical drawings,
but instead should be provided with con-
sumable reports enabling them to make
their decisions. In other words, appropriate
deliverables need to be given to the appro-
priate people.

As described above in the previous
section, use cases can provide a useful
deliverable increment. As they often cut
across systems and interfaces, these require
integration of these different model and
system elements including blocks, behavior,
etc. Prior to starting this, the model struc-
ture or architecture needs to be defined.
These include libraries of types, interfac-
es, components, package structure, and
dependencies, etc. Major system elements
and their interfaces should be defined early
in the project and provide reusable com-

ponents along the lines of modular open
systems architectures (MOSA) (DoD 2018).
These elements should also be deliverables
and care should be taken to ensure that
they are available and accessible to the
entire team. This ensures interoperability
and compatibility. The right architectures
enable change rather than restrict change.
Correct and fixed major interfaces ensure
parallel development enabling integrated
deliverables. Agreement and delivery on
these model development milestones are
also part of the continuous integration and
delivery lifecycle.

AGILE AND THE DIGITAL THREAD
As well as project deliverables, attention

also needs to be given to the integration
and test of the tools comprising the digital
thread. (This topic was covered extensively
by Papke et al. (2023), so I will simply add
a few comments.) Tools almost never inte-
grate as advertised even if they come from
the same provider. In addition, different
versions from different providers may be
incompatible or not provide the same levels
of integration. This integration needs to be
tested and prototyped using the production
environment to ensure that deliverables
can be generated at the right time and in
the right format. Otherwise, projects may
have a significant delay while reports,
traceability, and procedures are generat-
ed or worse generated by hand. Impact
analysis and traceability mechanisms and
procedures need to be tested to ensure that
the incremental changes can be integrated,
analyzed, and tested. Rollback procedures
should also be prototyped if the project has
taken a wrong turn. Sadly, these issues are
often only considered when things have
gone badly wrong. The time to test your
sprinkler systems is not when the factory is
on fire. Finally, the digital thread forms an
authoritative source of truth (ASOT), (DoD
2018) where data is entered once and refer-
enced where, when, and how it is necessary.
Duplication of information means that it
can become untrustworthy or inaccurate.

DYNAMIC LEARNING AND EVOLUTION
To add to Benjamin Franklin’s quote, the

only things certain in life are death, taxes,
and change. No project ever runs without
errors, and all projects must have the capac-
ity to adapt to the inevitable change. I often
say that systems engineering is the process
of correcting your mistakes, misunder-
standings, miscomprehensions, omissions,
miscommunications, assumptions, etc.
Projects never have all the information they
need at the beginning and part of modeling
is to highlight the knowns and unknowns.
The purpose of models is to document
what you know when you know it to figure

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

33

out what you don’t know. This often does
not correspond to the traditional MBSE
process since high and low-level require-
ments, needs, implementation constraints,
assumptions, etc., can become known at
various stages in the project. So, the order
in which these are documented can be
immaterial if these are documented and in
the correct model location. The model can
form the basis of a dynamic learning and
evolution environment if the ASOT princi-
ples defined above are adhered to.

DO THE OODA
The OODA loop of observe, orient,

decide, and act is a four-step approach to
decision-making that focuses on filtering
available information, putting it in context
and quickly making the most appropriate
decision while also understanding that
changes can be made as more data becomes
available. It was developed by military strat-
egist and United States Air Force Colonel
John Boyd (Boyd 1976). Boyd applied the
concept to the combat operations process,
often at the operational level during mili-
tary campaigns. It is now also often applied
to understand commercial operations and
learning processes. The approach explains
how agility can overcome raw power
in dealing with human opponents. It is
especially applicable to cyber security and

cyberwarfare. Projects can also suffer from
“analysis paralysis” or hit roadblocks. When
a roadblock is met, flag it and move on.
SysML has a problem concept that can be
used to document the roadblock in whatev-
er form it takes. Revisit the roadblock prior
to the end of the scrum period to see if
additional modeling and research has now
revealed an answer.

SYSTEMS 1, 2, AND 3
Schindel and Dove (2016) outlined the

agile systems engineering life cycle MBSE
(ASELCM) pattern where:

■■ System 1 is the target system under
development.

■■ System 2 is the system that produces,
supports, and learns about the target
system.

■■ System 3 is the process improvement
system, called the system of innovation
that learns, configures, and matures
system 2. System 3 is responsible for
situational awareness, evolution, and
knowledge management – the provider
of operational agility.

For project success, there must be a clear
delineation and understanding of sys-
tems 1, 2, and 3 in the process and during
modeling. Responsible teams should be
assigned for each to ensure continuous

improvement. Post project, mandatory
lessons learned sessions must be built in,
scheduled, and budgeted for all projects.
Without these sessions, lessons will not be
learned, issues documented, and improve-
ments implemented.

SUMMARY AND CONCLUSION
For many years, the thoughtful and labo-

rious process of systems engineering looked
at agile systems engineering as an oxymo-
ron. Over the past two decades, agile has
become a key enabler of system develop-
ment and systems engineering, shortening
timescales, and improving results. MBSE
is also emerging as the way the systems
engineering is done to the point that the
“MB” in MBSE is becoming redundant.
For FuSE concepts to advance, the various
principals need to work in harmony with
one another to enable the Systems Engi-
neering Vision 2035 published by INCOSE.
This article looks at some of the ways in
which agile and MBSE can work together
to advance these concepts. I have used the
principles of both agile and MBSE through-
out my career of over 45 years as they just
seemed the most obvious and natural ways
to do things. My hope is that these become
ubiquitous and “the way things are done”
rather than new concepts.  ¡

REFERENCES
■■ Boyd, John R. 1976. Destruction and Creation. U.S. Army

Command and General Staff College. (3 September). Available
online at https://upload.wikimedia.org/wikipedia/commons/a/a6/
Destruction_%26_Creation.pdf .

■■ US Department of Defense. 2018. “Department of Defense
Digital Engineering Strategy”, Office of the Deputy Assistant
Secretary of Defense for Systems Engineering. 9 May.
www.acq.osd.mil/se 

■■ Willett, K, R. Dove, A. Chudnow, R. Eckman, L. Rosser, J.
Stevens, R. Yeman, and M. Yokell. 2021. “Agility in the Future
of Systems Engineering (FuSE) – A Roadmap of Foundational
Concepts.” INCOSE International Symposium, 31: 158-174.

■■ INCOSE. 2023. About Systems Engineering, Available online
at https://www.incose.org/about-systems-engineering/sys-
tem-and-se-definition/systems-engineering-definition , Accessed
March, 2023.

■■ ISO/IEC/IEEE 15288:2015 Systems and software engineering
— System life cycle processes, Available Online at https://www.
iso.org/standard/63711.html , Accessed March 2023.

■■ Papke, B, M. Hause, D. Hetherington, and S. McGervey. 2022.
“MBSE Model Management Pain Points – Wait, this looks fa-
miliar!” NDIA Systems and Mission Engineering Conference.
November, NDIA Proceedings (dtic.mil)  .

■■ Schwaber, K., and J. Sutherland. 2013. “The Scrum Guide”,
Scrum.Org, https://www.scrum.org/resources/scrum-guide , 13
March.

■■ Schindel, W., and R. Dove . 2016. “Introduction to the Agile
Systems Engineering Life Cycle MBSE Pattern”, Proceedings
International Symposium. International Council on Systems
Engineering. Edinburgh, Scotland, July 18-21.

ABOUT THE AUTHOR
Matthew Hause is an SSI principal and MBSE technical

specialist, a former PTC fellow, a co-chair of the UAF group and
a member of the OMG SysML specification team. He has been
developing multi-national complex systems for over 45 years
as a systems and software engineer. He started out working in
the power systems industry and has been involved in military
command and control systems, process control, manufacturing,
factory automation, communications, supervisory control and
data acquisition (SCADA), distributed control, office automation,
and many other areas of technical and real-time systems.
His roles have varied from project manager to developer. His
role at SSI includes mentoring, sales presentations, standards
development, presentations at conferences, specification of the
unified architecture framework (UAF®) profile, and developing
and presenting training courses. He has written over 100 technical
papers on architectural modeling, project management, systems
engineering, model-based engineering, and many other subjects.
He is a proud recipient of the INCOSE MBSE propellor hat award.

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

34

  ABSTRACT
Over the past several years, numerous industries have increased their adoption of the systems modeling language (SysML®) and
model-based systems engineering (MBSE) as a core practice within their engineering lifecycles. However, the introduction of
SysML and MBSE methodologies has not yet yielded many of the originally envisioned benefits. System models are becoming
larger and more complex and many large MBSE projects continue to experience problems with model integration, repository
performance, and model lifecycle management. The root cause is the failure to recognize the MBSE digital environment as a
complex engineering information processing system that requires the same rigor and development processes as the system-of-
interest (SoI) it is designing. This article describes how three future of systems engineering (FuSE) agility foundation concepts
(system of innovation, effective stakeholder engagement, and continuous integration) directly address some of the problems seen
in adoption, deployment, and sustainment of the MBSE digital environment as an SoI.

FuSE Agility as a
Foundation for Sound
MBSE Lifecycle
Management

Barry Papke, barry.papke@3ds.com; Matthew Hause, matthew.hause@hotmail.com; and David Hetherington;
david_hetherington@ieee.org
Copyright © 2023 by Barry Papke, Matthew Hause, and David Hetherington. Permission granted to INCOSE to publish and use.

MBSE ADOPTION, DEPLOYMENT, AND SUSTAINMENT
IS NOT WITHOUT IT’S CHALLENGES

FuSE agility is one of the initiatives
intended to shape the future of sys-
tems engineering and contribute to-
ward the practical realization of the

Systems Engineering Vision 2035 published
by INCOSE. FuSE agility includes nine
foundational concepts to advance thinking
and practice in “agile-systems engineering”
(development of agile systems) and “agile
systems-engineering” (an agile systems
engineering process). Creating an agile
system requires an agile organization using
an agile process.

While the challenges of realizing the
Systems Engineering Vision 2035 are before
us, there are a number of urgent challenges
biting at our heels, specifically in the area
of MBSE deployment and MBSE lifecycle
management (Noguchi 2022 and Papke
2022). Many large MBSE projects have
not fully realized the envisioned benefits.
Common pain points include:

■■ Model integration issues between
government-reference models, prime
contractor models, and supplier models
and across disconnected networks.

■■ Integration issues between descriptive
models and computational/analytical
models.

■■ Insufficient representation of their
systems of interest, leading to stake-
holder confusion, increased backlog of
rework, and system architecture and
design flaws

■■ Dramatic slowdown of modeling tool
performance as the number of models
users grew, model size grew, and during
model delivery activities for major
reviews.

■■ Insufficient verification and validation
of model simulations and outputs.

■■ Lack of configuration control and lack
of quality control in model content.

Industry is beginning to realize that the
digital engineering environment is its own
system of interest with requirements for
what it must provide, functions it must
perform, interfaces and data exchanges it
must support, and performance parameters
it must achieve. As a system it must also be
based on a sound architecture (both the
tool environment and the models it con-
tains) that provides key architectural proper-
ties such as loose coupling, proper cohesion,
modularity, maintainability, extensibility, etc.

This article focuses primarily on “agile
systems-engineering” (an agile systems
engineering process) and three specific
FuSE agile concepts: system of innovation,
effective stakeholder engagement, and
continuous integration (Willette, et al.
2021) to provide actionable guidance in the
context definition, deployment, operation,
and sustainment of the MBSE digital
engineering environment.

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

35

SYSTEM OF INNOVATION
The system of innovation was described

in the paper “Introduction to the Agile Sys-
tems Engineering Life Cycle MBSE Pattern”
(Schindel and Dove 2016). It consists of
three (3) systems:

•	 System 1:  the target system under
development.

•	 System 2:  the system that produces,
supports, and learns about the target
system. This is the logical system
within which the target system will
exist during its lifecycle.

•	 System 3:  the process improve-
ment system, called the system of
innovation that learns, configures,
and matures system 2. System 3 is
responsible for situational awareness,
evolution, and knowledge manage-
ment – the provider of operational
agility.

In the context of the MBSE digital en-
vironment, the target system (System 1) is
the actual physical system. One of the key
features of the agile systems engineering life
cycle model (ASELCM) is that the target
system provides feedback through the
physical environment to the lifecycle man-
ager. This feedback could be sensor data,
user complaints, feature requests, or other
feedback based on the deployed operation
of the physical system. The lifecycle domain
system (System 2) is the digital engineering
environment that consists of tools, process-
es, and people that develop and maintain
System 1. System 3 is the functional engi-
neering and project management organiza-
tions that plan the definition, deployment,
and sustainment of System 2 and also
control its funding and resources.

In terms of the system that learns,
configures, and matures System 2, System
3 has been in hibernation for decades. The
people, processes, and tools for execution
of the systems engineering lifecycle have
been codified in standards, documented in
engineering procedures, and specified in

contract statements of work. There has been
little innovation to the document-based
systems engineering process since its first
inception. Project planning is based on past
metrics and standard processes.

Many of the project challenges and
execution problems seen in large MBSE
projects can be traced directly to the
inability of System 3 to recognize and
adapt to the impact of MBSE. The largely
manual, document-based systems
engineering process has been replaced by
a highly complex, engineering information
processing system that has interfaces and
information exchanges with other systems
in the digital engineering system-of-
systems (Maier 1996).

Unlike documents, models are living
entities that are also systems with an
architecture, functions, interfaces, and
performance requirements. While projects
are still adapting to perform design reviews
and associated quality assurance processes
which focus on the verification and valida-
tion (V&V) of the system design, the need
for such activity is clearly understood, in
the context of System 1 (the system under
development), V&V asks:

Verification – does the system satisfy the
specified requirement within cost, sched-
ule, and acceptable technical risk (did we
build the thing right.)

Validation – does the system achieve
its mission and business objectives and
intended use in the operational environ-
ment (did we build the right thing.)

In MBSE, there is another system of in-
terest (SoI) that must be considered, System
2 which is the model itself as an engineer-
ing artifact in the engineering lifecycle:

Verification – is the system model
syntactically and semantically correct
and does it contain all required
engineering content (is it a good model-
based representation of the design.)

Validation – does the model fulfill its ob-
jectives as a digital engineering artifact
in the digital engineering environment
(is the model useful to all applicable
stakeholders throughout the engineering
lifecycle.)

In the document-based world for De-
partment of Defense projects, there was
little, or no thought given to the docu-
ment format and content specified as the
“contract deliverable.” Document based de-
liverables were defined by a system of data
items descriptions (DIDs) and DD Form
1423 “Contract Data Requirements List.”
In the commercial domain, most organiza-
tions had similar pre-defined templates and
formats.

SYSTEM OF INNOVATION ENABLER FOR
SUCCESSFUL MBSE ADOPTION

Most large MBSE projects today are still
“first attempts” to deliver systems using
this methodology. Projects are attempting
to do many more things with models as
the “authoritative source of truth” such as
implementation of the “digital thread” than
were attempted with documents (DoD
2018)]. The growth in size and complexity
of models during the engineering lifecycle
continues to present new problems and
challenges to model lifecycle management,
model integration, and digital infrastruc-
ture performance. Projects can no longer
depend on the predictability of their legacy
document-based processes. They require an
agile approach to address these challenges.

The system of innovation provides this
agility through three basic principles:
sensing, responding, and evolving.

■■ Sensing – MBSE projects must monitor
and measure key indicators of both
project progress (a measure of System
2 performance) as well as data from
System 1. This requires more than
assigning budget, scope, and schedule
to the MBSE deployment activity. It
means recognizing that many assump-
tions made about the MBSE workflows,
MBSE model architecture, and network
architecture may be incorrect and are
yet to reveal themselves. As we used to
say — Inside every small problem is a
large problem struggling to get out!

■■ Respond – MBSE projects must make
decisions about what they see and be
prepared to react to address the actual
performance of their MBSE deploy-
ment. Detailed planning and compli-
ance are not sufficient. Initial plans
will need to evolve as new information
comes to light.

■■ Evolve – MBSE projects must embrace
the fact that their process will evolve,
and this evolution must be supported

Figure 1. Agile systems engineering life cycle model pattern (Schindel and Dove 2016)

3. System of Innnovation (SOI)

(Substantially all the ISO15288 processes are included in all four Manager roles)

1. Target System

Target
Environment

2. Target System (and Component) Life Cycle Domain SystemLearning & Knowledge
Manager for LC Managers

of Target System

Learning & Knowledge
Manager for Target Systems

Life Cycle Manager
of LC Managers

LC Manager of
Target System

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

36

with a culture of experimentation,
re-evaluation, and new institutional
memories.

EFFECTIVE STAKEHOLDER ENGAGEMENT
Effective stakeholder engagement is

another key FuSE agility concept that is
well understood and generally applied
correctly with respect to the SoI being
developed, but is neglected in the context of
deployment, operation, and sustainment of
the MBSE digital engineering environment.
As with the system of innovation, stake
holder engagement within document-based
systems engineering processes is largely
dormant. Stakeholder concerns are codified
in the standards, DIDs, and statements
of work. In MBSE projects, there are
many new and significant activities and
processes, that each have new stakeholders
and new concerns. Those new concerns
must be identified and addressed as part
of the MBSE definition, deployment, and
execution activities.

For example, in document-based proj-
ects, deliverables are managed through
defined data management processes and
organizations. The engineering information
is controlled at the document level. The
tools to create documents are “commodity
office applications” that require minimum
information technology (IT) resources and

little “backend” management or support.
Little has changed in document and data
management technology.

In MBSE projects, engineering infor-
mation is managed at the model element/
property level. The model repositories are
complex server applications that require
significant back-end IT support. Models are
living entities that access data and integrate
with other models. Model re-use is a major
benefit of MBSE and is typically imple-
mented using reuse libraries, which require
a library manager or curator.

The backend repository IT support and
library curators are new stakeholders.
Legacy stakeholders including customers,
subcontractors, and other engineering dis-
ciplines have new and different stakeholder
needs with respect to the MBSE models and
digital environment.

EFFECTIVE STAKEHOLDER ENGAGEMENT
AS AN ENABLER FOR SUCCESSFUL MBSE
ADOPTION

As a symptom of new MBSE projects
failure to apply the system of innovation
concept and to perform their three key
functions (sense, respond, and evolve),
many MBSE projects fail to recognize how
the technology, tools, and processes of
MBSE have created the need to perform
new stakeholder engagement analysis for

definition, deployment, and operation of
the MBSE modeling environment. The
stakeholder analysis for the MBSE models
and digital environment (System 2) is just
as important as that for the SoI (System 1)
itself. This is at the core of the second di-
mension of V&V as described earlier. If we
don’t understand stakeholder needs correct-
ly, how can we know whether the models
and their digital environment is producing
models that fulfill their objectives as a
digital engineering artifacts (validation)?
Projects must understand the needs and
concerns of both new and legacy stakehold-
ers with respect to the models, tools, and
processes of MBSE (Flyvbjerg 2023).

CONTINUAL INTEGRATION AS AN ENABLER
FOR SUCCESSFUL MBSE ADOPTION

Continuous integration is yet another
key FuSE agility concept that is well
understood and generally applied correctly
with respect to the SoI being developed
(particularly in software intensive
projects), but is neglected in the context of
deployment, operation, and sustainment of
the MBSE digital engineering environment.
The concept of continuous integration
(that is, continuous delivery) is at the
core of agile. The key principle of agile
development is to deliver products
iteratively and incrementally, maximizing

Figure 2. MBSE model and digital environment stakeholders have diverse needs and concerns

uc [Model] Model [MBSE Environment Stakeholders]

Install and Configure
Servers and Repository

Applications

Develop System
Architecture

Access Reuse
Libraries

Obtain Component
List and R&M Data

Generate Model-
Based Deliverables

Execute Low
Fidelity Simulation

Execute High Fidelity
Physics-Based

Simulation

Receive Model Based
SWAP Data for

Installation Design

Push Design
Constraints Back to
the System Model

Review Model-
Based Deliverables

Analyze Existing
System Models

for Reuse

Push R&M Performance
Estimates Back to System

Model

Receive Model Based Prime
Integrator Reference Models

and Requirements
Review for Model Quality
and Modeling Standards

Merge Subcontractor
Models with Prime
Integrator Models

Develop
Architecture for

Assigned Subsystems

Generate Log Files to
Investigate Problems

Manage Databases

Update Reuse
Libraries

Run and Mantain
Periodic Backups

Monitor Server
and Network
Performance

MBSE Models and Digital Environment
« system context »

« stakeholder »
System Engineer

« stakeholder »
R&M Engineer

« stakeholder »
Mechanical Engineer

« stakeholder »
Customer

« stakeholder »
IT Installer

« stakeholder »
Library Curator

Subcontractor

Quality Assurance Engineer

« stakeholder »
IT Log and

Backup Manager

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

37

opportunities for feedback. Incremental
deliveries of ‘done’ products to ensure
a potentially useful version of working
product is always available” (Schwaber
and Sutherland 2013). This concept is
about enabling integration as early and as
often as possible revealing issues caused
by incompatible or insufficient interfaces
and information exchange specifications
(Willette et al. 2021).

As mentioned previously, the MBSE
digital engineering environment is a com-
plex engineering information management
system within a larger system-of-systems
digital engineering environment. Within
a given systems engineering department,
the interfaces and engineering workflows
between networks and tools may be well
defined and mature. However, most of
these interfaces and workflows are specific
to the project and may be new or poorly
defined and largely or entirely untested. In
addition, as part of a system-of-systems,
the tools and networks in customer and
supplier environments and in other engi-
neering disciplines evolve independently
which may affect these interfaces. Contin-
ual integration provides the opportunity
to begin exercising the interfaces and
workflows between engineering depart-
ments, customers, and suppliers early, when
the model content is relatively small and to
establish performance baselines for critical
MBSE processes such as model download
and commit time, simulation execu-
tion, and other server/network resource
demands. This does not mean propagating
model changes instantly across the project.
It refers to planned, incremental model
integrations that coincide with incremental

delivery of the System 1 design, as part of
an agile project workflow.

In their application of agile systems
engineering, projects must ensure that the
output of each “sprint” is both a useful
version of the design description, but also a
useful version of the system-of-models that
fulfill their intended role in the engineering
lifecycle. The sprint objectives should also
include model data exchanges between
contractor/supplier/customer environment,
branch merges and model integration and
any end-to-end simulations, queries or
other “digital thread” related workflows.

SUMMARY AND CONCLUSION
Once projects commit to adoption of

MBSE in their engineering projects, they
take on new challenges related to the
deployment, operation, and sustainment of
the complex digital engineering envi-
ronment consisting of the models, tools,
network, processes, and people involved.
Because projects have operated so long
with the mature and much simpler docu-
ment-based systems engineering approach,
they failed to realize the impact of such a
transformational change in their engineer-
ing lifecycle. This article highlighted three
of the FuSE agility foundation concepts
(system of innovation, effective stakeholder
engagement, and continuous integration)
and described how each concept can help
address the challenges that large projects are
experience in their initial MBSE journey.
Several other concepts are also key enablers
such as technical oversight for agile projects,
agility across the value stream, and orches-
trating agile operations, but were beyond
the scope of this article.

The article also highlights the depen-
dencies between each of the FuSE agility
foundation concepts. In this context, the
system-of-interest is the set of models
and the model based digital engineering
environment that consists of the tools, IT
infrastructure, processes, and people.

The system of innovation operational-
izes agility by sensing, responding, and
evolving. One of the key elements to sense
is the stakeholder needs. If these are not
understood, the response will be ineffective.
Continuous integration provides feedback
in how well the stakeholder needs are being
met. If this feedback is not provided, there
is no learned knowledge to drive the neces-
sary evolution of the SoI.  ¡

REFERENCES
■■ Department of Defense. 2018. Depart-

ment of Defense Digital Engineering
Strategy. Office of the Deputy Assistant
Secretary of Defense for Systems Engi-
neering. 09 May. www.acq.osd.mil/se .

■■ Willett, K., R. Dove, A. Chudnow,
R. Eckman, L. Rosser, J. Stevens, R.
Yeman R and M. Yokell. 2021. “Agility
in the Future of Systems Engineering
(FuSE) – A Roadmap of Foundational
Concepts.” INCOSE International
Symposium, 31: 158-174.

■■ Maier, M. W. 1996. “Architecting Prin-
ciples for Systems-of-Systems.” INCOSE
International Symposium, 6(1), 565-573.

■■ Noguchi, R. 2022. “Converging MBSE
Methodology” NDIA Systems and
Mission Engineering Conference.
November. NDIA Proceedings (dtic.
mil) .

■■ Papke, B., M. Haus, D. Hetherington,
and S. McGervey. 2022. “MBSE Model
Management Pain Points – Wait, this
looks familiar!” NDIA Systems and
Mission Engineering Conference.
November. NDIA Proceedings (dtic.
mil) .

■■ Flyvbjerg, B. and D. Gardner. 2023.
“How Frank Gehry Delivers On Time
and On Budget.” Harvard Business
Review. January-February. Accessed 03
March 2023, https://hbr.org/2023/01/
how-frank-gehry-delivers-on-time-and-on-
budget .

■■ Schwaber, K., and J. Sutherland. 2013.
“The Scrum Guide.” Scrum.Org, 13
March. https://www.scrum.org/resourc-
es/scrum-guide .

■■ Schindel, W., and R. Dove. 2016.
“Introduction to the Agile Systems
Engineering Life Cycle MBSE Pattern.”
Proceedings International Symposium.
International Council on Systems
Engineering. Edinburgh, Scotland, 18-
21 July.

Figure 3. FuSE agility foundation concepts depend on each other

Feedback

Response

What to
Measure

Continuous
Integration

Effective
Stakeholder
Engagement

System of
Innovation

Feedback
on Needs

The MBSE
Digital

Environment SOI

Identifies the needs and
performance objectives
of the SOI.

Detects and
measures the
performance
of the SOI.

Senses the needs and
performance of the SOI.
Responds with decisions,
actions and evaluations.
Evolves and improves with
learned knowledge and
capability.

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

38

ABOUT THE AUTHORS
Barry Papke is the manager for the cyber system

industry process success team for CATIA/No Magic.
He has thirty-five years of systems engineering and
operations analysis experience in the aerospace
and defense industry across the entire systems
engineering lifecycle from concept development
through integration, test, and post-delivery support.
Throughout his career, he has been actively involved
in application of model-based methods including
requirements management, enterprise architecture,
cost estimation, system design, and operations analysis.
Barry has a BS in mechanical engineering from Texas
A&M University and a MS in systems engineering
from Steven’s Institute of Technology. He is a member
of the INCOSE Agile and Security Working Groups
and the MBSE initiative.

David Hetherington is a principal systems engineer
with System Strategy, Inc. He serves multiple defense
and commercial industry sectors. He has extensive
personal experience in designing and leading design
teams for both software and hardware covering an
unusually broad range of system types. These complex
systems have varied from real-time control to software
internationalization, to offshore oil drill ships, to
enterprise software applications, to automotive radar
chipsets, to electronic publishing, and more. In
addition to MBSE, he has a strong concentration of
domain knowledge in safety, reliability, maintainability,
and diagnostics.

Matthew Hause is an SSI principal and MBSE
technical specialist, a former PTC fellow, a co-chair of
the unified architecture framework (UAF®) group, and
a member of the OMG SysML specification team. He
has been developing multi-national complex systems
for over 45 years as a systems and software engineer. He
started out working in the power systems industry and
has been involved in military command and control
systems, process control, manufacturing, factory
automation, communications, supervisory control
and data acquisition (SCADA), distributed control,
office automation, and many other areas of technical
and real-time systems. His roles have varied from
project manager to developer. His role at SSI includes
mentoring, sales presentations, standards development,
presentations at conferences, specification of the
UAF profile, and developing and presenting training
courses. He has written over 100 technical papers on
architectural modeling, project management, systems
engineering, model-based engineering, and many other
subjects.

www.incose.org/sehandbook

SYSTEMS ENGINEERING HANDBOOK
A GUIDE FOR SYSTEM LIFE CYCLE PROCESSES AND ACTIVITIES

F I F T H E D I T I O N

®

International Council on Systems Engineering

The INCOSE Handbook
5th Edition has published

INCOSE Members get a
55% discount.

Visit incose.org/wiley to get
your discount code.

If you are having any issues
ordering the book please contact

info@incose.net

https://www.incose.org/sehandbook

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

39

INTRODUCTION

  ABSTRACT
This paper presents a case study where an agile systems engineering process was used to identify stakeholder needs to design an
improved cross-organizational proposal development process during the proposal formulation phase of a program. The agile
systems engineering process leveraged the incremental application of design thinking techniques to engage the stakeholders and
identify the care-abouts of an organization during proposal formulation in support of a change management effort. The goal of the
change management effort was to design solutions that increased collaboration and engagement across the various internal and
external stakeholders without changing the overarching corporate proposal development process. The identified solutions broke
existing organizational silos and changed the dynamics of the organization impacting over 1,200 employees. The case study relates
to the future of systems engineering (FuSE) concepts of stakeholder engagement and agility across organizational boundaries.

An Agile Systems
Engineering Process
for Stakeholder Needs
Identification and
Solution Concept Design
Lymari Castro, lcastr2@radium.ncsc.mil
Copyright © 2023 by Lymari Castro. Published and used by INCOSE with permission.

In 2019, the Goddard Space Flight
Center (GSFC) Engineering and Tech-
nology Directorate (ETD) initiated a
change management effort to improve

their participation in proposal formula-
tion (in this paper referred as the proposal
process). During the proposal formulation
phase the organization provides feasible
engineering concepts and cost estimates
for new proposals. For many years, the
organization faced the challenges of pro-
viding timely engineering support to the
proposal process. In 2019, the organization
began a change management effort to look
at the organization as a system and codify
its architecture (people, processes, tools,
and behaviors) with the goal of optimizing
the proposal process from the perspective
of the organization to improve the ETD
experience with the process.

BACKGROUND — THE NEED FOR CHANGE
The ETD organization designs feasible

engineering concepts and develops cost es-
timates that are included in the proposals to
compete for funding of new projects. Pro-
posal development is a cross-organizational
process, that includes the collaboration of
science, engineering, and finance resourc-
es (among others) for 12 to 18 months to
formulate proposals for new projects. In
this process, multiple proposals are being
worked simultaneously at different stages
of the process. The organization did not
have a full visibility into the announcement
of opportunities for project proposals and
often the organization was engaged by
other organizations to provide engineering
expertise late in the process, that is, six
months before proposal due date.

The ever-changing nature of the scientific
and technology environment, combined
with competing internal and external prior-
ities and an evolving engineering work-
force, placed a significant burden in the
organization to be able to meet the demand

for engineering support. Over time, the
demand for engineering support outpaced
the organization’s capacity to support the
proposals, resulting in employee burnout.
Organizational silos resulted in unclear
priorities and limited ability to transfer
knowledge and skills for reuse between
proposal teams.

In 2019, the organization initiated a
change effort to improve their engage-
ment with the proposal process with the
goal of taking a more proactive stance to
support proposal formulation and increase
employee engagement and satisfaction. The
organizational goals were to identify the
top challenges and care-abouts of the work-
force supporting the proposals, and design
solutions that will improve the experience
of the engineering organization during
proposal formulation while satisfying the
needs of the entire organizational work-
force and without changing the overcharg-
ing corporate proposal process.

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

40

THE AGILE SYSTEMS ENGINEERING PROCESS
The change management effort used

an agile systems engineering process that
leveraged design thinking techniques for
requirements identification and solution
concept design in an incremental manner.
The agile systems engineering process grad-
ually engaged the various stakeholder roles
in the organization to gather their needs,
pain points and opportunities for improve-
ment of the proposal development process.
In addition, the agile systems engineering
process used the techniques from lean
startup such as the value proposition canvas
and the business model canvas as tools
to map potential solutions to pain points
and opportunities from the perspective of
each stakeholder segment in the proposal
process.

Figure 1 shows the design thinking tech-
niques that were incrementally used during
the case study and the order in which they
were used. The techniques used during the
case study are from the LUMA Institute of
Innovation (Ref. 1).

ACHIEVING STAKEHOLDER ENGAGEMENT
THROUGHOUT THE CHANGE EFFORT

One of the biggest challenges was to
bring all the stakeholders onboard of the
change effort and make them active par-
ticipants of the initiative. The first step to
engage all the stakeholders into the change
effort, was to gather their individual per-
spectives through a set of interviews.
a)	 Structured Interviews: During the

initial three months of the change
effort, individual structured interviews
were conducted with 27 members of
the workforce representing a total of
seven work roles who contributed to
the proposal process. Each interview
was two hours long and questions
were tailored to the organization
(see Figure 2), and framed to
address the following categories: (1)
understand the stakeholder role,
(2) discover the problems each role
was experiencing in the process, (3)
validate the problems, (4) discover
opportunities for improvement, and
(5) validate potential opportunities for

improvement. Interviews resulted in
stakeholder engagement throughout
the change effort since the various types
of stakeholders were able to have a
better understanding about how their
individual contributions impacted
other stakeholders in the proposal
formulation process.

b)	 Value Proposition Canvas and
Business Model Canvas: The infor-
mation gathered in the interviews was
captured in a value proposition canvas
(Ref. 2) for each stakeholder role. This
provided a mapping of problems and
potential solutions for improvement
and helped visualize the notional solu-
tion-problem fit.

Data from the interviews highlighted
common challenge themes. Common
themes identified were: cost estimation,
concept development, and planning/
governance of the proposal process. The
next step was to use the business model
canvas to frame each common theme
and capture the key elements needed
to make improvements in that area of

the proposal process. Key elements
captured in the business model canvas
were: the stakeholder value proposition
for each role in the process, partnering
organizations, and stakeholders for
making process improvements. Figure 3
shows the relationship between the val-
ue proposition canvas and the business
model canvas.

The next step of the agile systems
engineering process was to codify the
business process from the perspective of
the organization by using the experi-
ence diagram technique to capture the
participation of the various stakeholders
in the proposal process.

c)	 Experience Diagramming:  The expe-
rience diagramming (Figure 4) tech-
nique was used to visualize the existing
proposal process workflow showing the
various steps and the roles in which the
organization engaged the proposal pro-
cess. The technique provided a holistic
view of the proposal process from the
perspective of the organization. This
activity baselined the organizations’ par-

ticipation in the proposal process
thus capturing the true complexity
of the process, entrance and exit
points of the various ETD internal
organizations and roles in the pro-
posal process, key decision points,
dependencies, and bottlenecks in
the process caused by multiple iter-
ations of work required to achieve
a feasible concept design that met
proposal cost constraints.

After all individual stakeholders’
perspectives were gathered for the
various roles in the organization
and the proposal process was codi-
fied from the perspective of the or-
ganization, the next step of the agile
systems engineering process was
to bring each stakeholder segment
of the organization to collectively
focus on the problems they wanted
to get solved and collaborate to
create solutions for those problems.
This was achieved through a series

Example of Questions
Stakeholder Role
1.	 Tell me about your role in the organization.
2.	 How much time do you spend working the

proposal process?
Problem Discovery (pains)
1.	 What is the hardest part of your role?
2.	 What tasks take most of your time?
Problem Validation
1.	 Tell me about your last experience working

with the proposal process.
2.	 How important is it for you to fix this problem?
Opportunity Discovery (gains)
1.	 Is there anything that can be done differently

to make your job easier?
2.	 What do you think of making changes to the

process?
Opportunity Validation
1.	 Do you see any barriers to change the process?

Figure 2. Example of interview questions

Figure 3. Value proposition canvas and
business model canvas relationship
(Ref. 6)Figure 1.  Design thinking techniques used in the case study

Stakeholder
MappingInterviews StoryboardsAffinity

Clustering
Creative
Matrix

Experience
Diagramming

Rose, Bud, Thorn

Observing Problem Understanding Solution Exploration

How Might We
Statements

Impact-Difficulty
Assessment Matrix

Concept
Poster

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

41

of design thinking workshops. Each work-
shop targeted a specific set of stakeholder
segments in the organization.

Three design thinking workshops were
conducted to incrementally engage the
various stakeholders in the organization
and guide them through the problem iden-
tification process and solution exploration
process, as shown in Figure 1.

The first four-hour workshop targeted
the systems engineering stakeholder seg-
ment of the organization. The second four-
hour workshop targeted the management

stakeholder group of the organization. The
outputs of the first workshop were shared
with the management stakeholder group
before the second workshop, which helped
them design solutions that worked for both
stakeholder segments.

A third workshop engaged all the various
stakeholders in the organization: systems
engineers, management, senior executives,
hardware engineers, software engineers,
architects, mission leads, testers, and exter-
nal stakeholders from other organizations.
The goal of this eight-hour activity was
to blend the perspectives of all the stake-
holders to create a common vision for the
future of the organization in the context of
the proposal process. The activity ensured
all stakeholder segments in the organiza-
tion were represented and resulted in the
design of solutions that addressed the needs
of the entire organization instead of one
portion of the workforce. The results from
the previous two workshops were shared

with all attendees in preparation for the
third workshop, which helped the group
craft solutions that built upon the previous
designs completed by the management and
the systems engineering groups.

The agile systems engineering process
used the stakeholder mapping technique
to understand the social network of the
proposal process and the interactions of
stakeholders internal and external to the
organization.

d)	 Stakeholder Mapping: The stakeholder
mapping technique was used to identify
the social network of the proposal pro-
cess in the context of the three challenge
areas: concept development, cost esti-
mation, and planning/governance. The
technique created a view of the proposal
process ecosystem and the interactions
between internal and external stake-
holders (Figure 6).

Persona to design for

Who is involved
in the experience?
Who else?

People

Where does the
experience tend
to take place?

Places

What do people
interact with
along the way?

Things

Step Step StepMajor
Step Step Step StepMajor

Step Step Step StepMajor
Step

Major
Step

TIME
Figure 4. Experience diagram (Ref. 3)

Workshop 1

Workshop 3

Workshop 2

• Engineering
Team

• 20 participants
• Problem

Discovery and
Solution
Exploration

• Management
Team

• 10 participants
• Problem

Discovery and
Solution
Exploration

• Engineering,
Management,
and Executive
Leadership
Teams

• 50 participants
• Creation of

solutions and
prioritiaztion

Figure 5.  Incremental design thinking
workshops

Figure 6 Stakeholder mapping example

Positive

Negative

Potential

Figure 7 Rose, bud, thorn template

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

42

f)	 Affinity Clustering: With the affinity clustering technique, the
organization grouped the positives, negatives, and opportuni-
ties by similar categories, therefore creating a graphical repre-
sentation of the issues, sharing insights between stakeholders,
and gaining collective understanding of the common themes
and their relationships (Figure 8).

After achieving common understanding amongst the stake-
holders about the problem areas, the next step was to narrow
down the scope of each problem by using the “How might we…”
statement and visualize the vote techniques.

g)	 “How Might We” Statements: For each cluster, problems were
framed by re-stating each cluster in a prescriptive approach
that converted the problem into a question. Questions were
framed as “How might we…” to narrow down the scope of
the problem area and focus on a very specific aspect of the
problem. The technique gave the opportunity for the team
members to share their individual perspectives and brainstorm
ideas for solutions.

h)	 Visualize the Vote: Each group voted for the top three “How
Might We…” statements they wanted to explore in more detail
during the solution exploration phase.

After consensus was achieved between all the stakeholder
groups about the top challenges to be solved, the agile systems
engineering process used the solution exploration design thinking
techniques (see Figure 1). During solution exploration, stake-
holders brainstormed potential solutions, then identified the most
valuable solutions that were feasible, viable and desirable; and
created concept designs for those solutions using storyboards and
concept posters for their subsequent implementation.

i)	 Creative Matrix: By using the creative matrix technique, the
organization explored the intersection of the various dimen-
sions of the proposal process such as Leadership, Governance,
Technology, and Process against the steps in the proposal
workflow thus identifying ideas for solutions in each of the
intersections in the creative matrix (Figure 10).

j)	 Impact-Difficulty Assessment Matrix: The impact-difficul-
ty matrix technique plots the relative importance and level
of difficulty of implementing each solution. The technique
promoted deliberation between stakeholders until consensus
was achieved about the relative importance of each proposed
solution. Solutions were categorized as luxuries, quick wins,
high value, or strategic. Relationships and dependencies
between solutions were identified, creating a roadmap for their
implementation (Figure 11).

k)	 Storyboards:  Storyboards created the context for the imple-
mentation of high value solutions and built common un-
derstanding among the stakeholders about how the solution
will work, thus providing the requirements needed for the
implementation of the solution (Figure 12).

l)	 Concept Posters: Concept posters (Figure 13) captured how
high value solutions will work, the resources needed for their
implementation, and a notional timeframe for implementa-
tion. This technique created a common vision and roadmap
for the future state of the proposal process. Combined, the
storyboards and concept posters provided the requirements
and the concept design for solutions.

Figure 8. Affinity clustering example

Figure 9. Problem statements framing example

Figure 10. Creative matrix example

Figure 11.  Impact-difficulty matrix example

The next step was to gain a better insight into the challenges
and areas for improvement. This was accomplished by using the
rose, bud, thorn, and the affinity clustering techniques.

e)	 Rose, Bud, Thorn:  The rose, bud, thorn technique was used
to quickly identify positives (roses), negatives (thorns), and
opportunities (buds) of the proposal process in each of the
challenge areas (Figure 7). The activity provided deeper insights
into the challenges and opportunities for improvement.

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

43

ACHIEVING AGILITY ACROSS
ORGANIZATIONAL BOUNDARIES DURING
SOLUTION IMPLEMENTATION

After the storyboards and concept
posters were created for the high value
solutions that were viable, desirable, and
feasible for the organization, cross-organi-
zational teams were created to implement
each of the high value solutions. As a result
of the third design thinking workshop,
the stakeholders in the organization were
fully engaged and eager to implement the
solutions. This high level of engagement
resulted in people self-identifying as leads
for the implementation of solutions. Once
the leads were in place, the organizational
leaders invited others to participate in the
implementation of solutions. This resulted
in self-organized implementation teams
with representation from all segments of
the organization.

By using the information from the im-
pact-difficulty matrix, the concepts posters
and storyboards as guidance, each team
developed long term strategic plans and
one-year action plans. The one-year action
plans and the strategic plans were used
to create a backlog of tasks for each team
to realize the full implementation of each
solution. By applying the concepts of agile
development, teams broke each task into
subtasks to manage the implementation
work in sprints. They also engaged other
external stakeholders as champions of the
changes in their respective organizations.

As result of the change effort, the
organization implemented solutions that
provided them the ability to be more
flexible and proactive in their interactions
across the organizational silos to be more
effective during proposal development, and
improve cross-organizational collaboration

was achieved by implementing the follow-
ing changes:
•	 Process Innovation: Organizational

management identified earlier points
of engagement in the proposal process
during the proposal formulation
phase. This resulted in changing some
of the roles and responsibilities of
the stakeholders, and the creation of
new roles. In addition, new points of
engagement with organizational external
stakeholders were identified in the earlier
phases during proposal pre-concept
formulation to ensure the organization
was ready to provide support to proposal
development when needed by the external
stakeholders.

•	 Emotional Innovation: The organization
identified new ways of sharing knowledge
and lessons learned across proposals and
teams. Reusing knowledge across propos-
als accelerated concept development and
cost estimation processes.

•	 Emotional Innovation: The organization
created new ways of recognizing the
engineering workforce in a timely
manner when working proposals. This
resulted in new types of incentives and
awards for working proposals, even
when the proposal did not get awarded.
This resulted in increased workforce
engagement and motivation throughout
proposal development.

CONCLUSION
The agile systems engineering process

relied on the use of design thinking
practices to incrementally guide the
organization through problem solving
and to identify solutions that were

Figure 12. Storyboard example Figure 13. Concept poster example

with more visibility, early awareness of
proposal request announcements for better
matching the demand to the capacity for
proposal development support, and better
transfer knowledge across teams and
organizations as a way of optimizing the
end-to-end workflow to support proposal
development. This resulted in emotional
and process innovation (see Figure 14).
The one-year change management effort
provided the foundational requirements
for the successful implementation of
improvements to the proposal process
and created the foundation for future
optimization that will result in technology
innovation such as digital engineering.

Agility across organizational boundaries

Organizational
Behaviors (Emotional
Innovation

Functional
Innovation

Desirability
(Human)

Feasibility
(Technology)

Viability
(Business,
Process)

Design
Thinking

1. Needs &
Desires

3. Technical
Possibilities

2. Requirements
for success

Process
Innovation

Figure 14. Design thinking is at the intersection of desirability, viability, and feasibility
(adapted from Ref. 4)

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

44

BUILD YOUR CAREER
IN SYSTEMS ENGINEERING

STEP BY CERTIFIED STEP

WWW.INCOSE.ORG/CERTIFICATION
EMPOWER YOURSELF THROUGH CERTIFICATION

A better world through a systems approach
International Council on Systems Engineering

®

S
Y

S
T

EM
S ENGINEERIN G PRO

FESS
IO

N
A

L

ASSOCIATE

INCOSE

™

S
Y

S
T

EM
S ENGINEERIN G PRO

FESS
IO

N
A

L

EXPERT

INCOSE

™

S
Y

S
T

EM
S ENGINEERIN G PRO

FESS
IO

N
A

L

CERTIFIED

INCOSE

™

feasible, viable, and desirable (Figure 14),
which resulted in emotional and process
innovation. The agile systems engineering
process used in the case study, anchored
on identifying the needs and care-abouts
of the organization (that is, desirability
for change) leading to changes in
organizational behaviors, and identifying
the requirements for the change effort to

be a successful activity that brought value
to the organization resulting in process
innovation (that is, viability).

The incremental design thinking process
allowed to identify the true requirements
for the change effort, and actively engaged
stakeholders in the change process to
design solutions that worked in their
environment, thus creating motivation and

ownership. By using incremental design
thinking workshops, the perspectives
of all stakeholders in the organization
were captured, therefore creating a single
vision for the organization. The identified
solutions broke existing organizational
silos and changed the dynamics of the
organization impacting over 1,200
employees.  ¡

REFERENCES
■■ 1. LUMA Institute. n.d. https://www.luma-institute.com/about-

luma/luma-system-explore-methods/ .
■■ 2. Lean Startup. n.d. https://steveblank.com/2014/10/24/17577/ .
■■ 3. Experience Diagram Template. n.d. https://www.mural.co/

templates/experience-diagramming .
■■ 4. Design Thinking Venn Diagram. n.d. IDEO Global Design

and Innovation Company, https://www.ideou.com/pages/
design-thinking .

■■ 5. Design Thinking Venn Diagram. n.d. https://www.
uxdesigninstitute.com/blog/desirability-viability-and-feasibility/ .

■■ 6. Strategyzer. n.d. https://www.strategyzer.com/canvas .

ABOUT THE AUTHOR
Lymari Castro is a systems engineer and effort leader at the

Department of Defense (DoD). Mrs. Castro holds a BS in physics
from the University of Puerto Rico, a masters in engineering
physics from Cornell University, and a masters in systems
engineering from Stevens Institute of Technology. Mrs. Castro
has a total of 23 years of working experience. Prior to joining
DoD, she worked as an instructor of physics at the Polytechnic
University of Puerto Rico and at Raytheon Technologies as a radar

systems engineer. She has assumed a variety of technical roles
and positions at DoD. She has been an analyst, project systems
engineer, lead systems engineer of a DoD major acquisition
program, lead systems engineering of a portfolio comprised
of 50 software data management products, and effort lead of
large organizational transformational efforts. In 2016, she was
recognized with the National Intelligence Meritorious Unit
Citation and she was selected for the competitive senior technical
development program to enhance her expertise in agile systems
engineering. She completed external assignments at the Systems
Engineering Research Center, the Carnegie Mellon University
Software Engineering Institute, and NASA Goddard Space Flight
Center. Mrs. Castro is an avid agile practitioner, and she is a
certified scaled agile framework consultant, large scale scrum
practitioner, scrum at scale practitioner, enterprise business agility
strategist, and agility team health facilitator. In addition, she is
practitioner of lean startup and design thinking methods. She
has multiple publications in international journals and briefed
at several international conferences. She is a member of the
International Council of Systems Engineering, Agile Alliance,
Society of Women Engineers, and the National Defense Industrial
Association. (LinkedIn Profile: www.linkedin.com/in/lymaricastro ) .

https://www.incose.org/certification

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

45

  ABSTRACT
Systems engineering faces ongoing challenges due to the pace of change in technology and needs as well as the complexity,
resilience, and adaptability demanded of solutions. System security needs and challenges are a prominent factor in the increasing
demands placed on solutions and the systems engineers who design and develop them. The adoption of program level agile
execution is one strategy for addressing these escalating challenges. In this article we describe how the broadly adopted technical
processes from the ISO/IEEE/IEC 15288:2015 standard can be executed using agile methods to realize a large complex solution. In
addition, we provide specific recommendations for executing these processes in a manner that enables systems to be sustainably
secure – that is, to retain the desired level of security throughout the life cycle.

Applying Agility for
Sustainable Security

Larri Ann Rosser, larri.rosser@rtx.com
Copyright © 2023 by Larri Rosser. Published and used by INCOSE with permission.

OVERVIEW

Agile practitioners recognize
three general phases of agile
execution. Inception is the
period in which the need is

identified, the project is initiated, and the
design envelope is defined. Realization
is the period in which the solution is
defined, developed, integrated, and tested
in a series of short cycles. Transition
is when the solution is moved into its
operational context and begins to be used.
This article describes agile operation and
sustainable security techniques across the
complete life cycle with special emphasis
on the inception phase and the definition
of a solution architecture that enables
sustainable security. The goal of sustainable
security is achieved by embedding security
concerns and solutions in every aspect
of the architecture – needs, behaviors,
structure and characteristics and then
leveraging that architecture description
to drive design, development, integration,
verification, and validation.

The approach defined in this article
is recommended as a best practice for
implementing large, complex programs in
environments of rapid change, interopera-
bility, and innovation. This type of adaptive
execution is required for the future of
systems engineering (FuSE).

Systems engineering today is a chal-
lenging field and trends suggests that
challenges will only grow over time. The
Systems Engineering Vision 2035 published
by INCOSE encourages systems engineers
to prepare to “deal with the continuously
changing environment, be more responsive
to stakeholders, and become more com-
petitive” (INCOSE 2022). The document
also identifies three specific goals for future
systems engineering practice:

■■ Architect balanced solutions that satisfy
diverse stakeholder needs for capability,
dependability, sustainability, social
acceptability, and ease of use

■■ Adapt to evolving technology and
requirements

■■ Manage complexity and risk.

This article seeks to demonstrate appli-
cation of systems engineering processes in
the life cycle of a large-scale agile project,
both to achieve the above goals in general,
and also the more specific goals of creating
systems that are sustainably secure — that
is, they are not only secure when designed
but maintain the desired level of security
throughout their operational life.

SYSTEMS ENGINEERING TECHNICAL
PROCESSES IN THE CONTEXT OF AN AGILE
LIFE CYCLE

The focus of this article is the application
of the technical processes, known as the
15288 standard (ISO/IEC/IEEE 2015), to a
large complex project in an agile life cycle
with the intention of defining, realizing,
and operating a sustainably secure system.
We acknowledge the role of the other
process classes (technical management,
agreement and organizational project
enabling processes) defined in 15288 as
applicable in this use case, but in order
to control scope we limit our focus to the
technical processes which have the most
direct impact on our goals.

The INCOSE Systems Engineering
Handbook (INCOSE 2015) states that the

Operations — Maintenance — Disposal

Validation

Transition

Verification

Integration

Implementation

Stakeholder
Requirements
 Definition

Requirements
 Analysis

Architectural
 Design

Figure 1.  ISO/IEC/IEEE 15288 systems
engineering technical processes depicted
in the vee model

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

46

technical processes can be applied within
any life cycle model. In a waterfall lifecycle,
these processes are often represented as
being applied over the systems engineering
vee, as shown in Figure 1.

 This representation illustrates a generally
sequential execution of the processes with
linkages between definition processes
on the lefthand side of the vee and
confirmation processes on the righthand
side. Although it is acknowledged in the
discipline that feedback cycles and iteration
exist within the waterfall model, the general
flow is from one process to the next, with
delivery into operation occurring after the
processes involved with design, delivery,
and verification are essentially complete.

An agile lifecycle applies the same
processes within a different operational
cadence, as shown in Figure 2. Agile
practitioners acknowledge three broad
phases of activity within the lifecycle –
inception, in which a need is articulated
and the design envelope of the solution
is defined; realization, in which the
solution is designed, implemented,
and, tested; and transition, in which the
solution is moved into its operational
use. Because agile execution proceeds in
short cycles and incorporates feedback
rapidly, all technical processes are applied
throughout the lifecycle, but at different
levels depending on which phase is
underway. During inception, business/
mission analysis, stakeholder needs

and requirements, system requirements
definition and architecture definition
are primary. More detailed design and
implementation processes are employed
as needed (in prototyping and trades, for
example) and operational processes are
considered. In the realization phase, design,
analysis, implementation, integration, and
verification are the primary processes, with
earlier processes revisited as updates are
suggested by discovery, and the operational
processes are considered in planning
and invoked for early operational testing
and similar activities. In the transition
phase, transition, operation, validation,
maintenance, and disposal are the primary
processes, with the other processes being
invoked when updates are determined to
be needed. The execution lifecycle shown
in Figure 2 is recommended for projects
desiring to create sustainable security and
is assumed by other recommendations in
this article.

General Recommendations for Sustainable
Security

Two semesters of academic directed
research yield the following recommenda-
tions for enhancing the sustainable security
posture of solutions through specific appli-
cations of the process system described by
ISO/IEC/IEEE 15288.

Execute using an agile lifecycle: Agile
execution enhances the ability to respond
to changes in context and technology,

which is critical to maintaining the desired
security posture.

Include security personnel and consid-
erations early in the inception phase: Both
literature review and workshops with
system security engineers highlight oppor-
tunities to better embed security into the
solution architecture by explicit inclusion
early in the concept development cycle.

Elicit security needs and challenges in
business/mission analysis and stakeholder
needs and requirements: These standard
early processes provide an opportunity to
evaluate security needs from the perspec-
tive of owners and users in the context in
which the system will operate.

Include loss-driven and malicious user
perspectives in analyses: Loss-driven
engineering provides an approach to refine
understanding of customers’ risk tolerance,
which is not likely to be uniform across all
possible areas of risk. Inclusion of known
malicious use cases allows the identifica-
tion of specific high-risk scenarios for this
customer and solution.

Express security elements in require-
ments and architecture: Working sessions
highlight that security is frequently treated
as a design detail that does not impact
functional requirements or architecture.
This leads to erosion of security posture
through trades and refactoring as well as
limiting the inclusion of security consider-
ations in regression testing.

Figure 2. Technical processes in agile iterations

Business of Mission Analysis
Stakeholder Need and Requirements Definition
System Requirements Definition
Architecture Definition

Design Definition
System Analysis
Implementation
Integration
Verification

Transition
Validation
Operation
Maintenance
Disposal

RealizationInception Transition

Figure 3. Agile approach to requirements definition

RealizationInception Transition

Variable
Intent+

Fixed
Solution

Variable
Intent+

Fixed
Solution

Variable
Intent+

Fixed
Solution

Variable
Intent+

Fixed
Solution

Variable
Intent+

Fixed
Solution

Variable
Intent+

Fixed
Solution

Mission
Anaylsis

Stakeholder
Needs

Requirements
Definition

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

47

Agile Approach to Requirements
Requirements definition in an agile life

cycle is an intentionally iterative process.
Initially only those requirements that
drive the architecture or fundamental
top level solution decisions are defined
and baselined. The rest are left as high-
level needs which will be elaborated and
baselined later based on the agile execution
concept of making decisions at the “last
responsible moment” (Balbes 2022). This
paradigm of decision making recognizes
that making decisions earlier than required
increases the risk of rework and sub-
optimal solutions due to changes in needs
or context over time.

The concept of fixed and variable
solution intent (Scaled Agile 2021)
can be used to illustrate this approach.
Requirements articulate the solution intent
or respond to a stated need. Those parts
of the intent that must be solidified to
move forward with solution realization
are defined as requirements and baselined.
These represent the fixed solution intent.

At inception, only those elements of the
need that define the design envelope are

fixed. As realization progresses, analyses are
performed, lessons are learned. and more
parts of the solution intent are expressed
as requirements and baselined. Figure 3
illustrates this approach.

Requirements Recommendations for
Sustainable Security

Identify key security concerns through
loss driven analysis: Once the capabilities
needed for the solution are identified
through mission/business analysis and
stakeholder needs definition, identify
potential losses associated with the required
capabilities and determine which are of
critical concern to the stakeholders.

Use unacceptable losses to select key
misuse cases:  Identify both careless and
malicious acts that could trigger critical
losses and express them as misuse cases.

Establish functional and performance
requirements to address critical malicious
behaviors and prevent unacceptable
losses: Define functional requirements that
prevent or mitigate the impact of misuse
cases and protect against unacceptable loss.

Agile Approach to Analysis of Alternatives
Trade studies and analysis of alternatives

(AoA) are an ongoing part of agile
execution, one of the key practices that
drive evolution of solution intent. Agile
solution definition can be considered as
iterations of set based design, with trades
and AoA based on learning from previous
iterations and changes in context driving
the pruning or refactoring of the solution
set tree. Figure 4 illustrates this concept.

Analysis of Alternatives Recommendations
for Sustainable Security

Include key security characteristics
(quality qttributes or QAs, defined with the
architecture) as criteria for trades and AoA.
In order for this approach to be effective,
the defined quality attributes need to be
specific. It is difficult to evaluate whether
an approach is “secure” because security
has many meanings and many facets. When
defining QAs related to security, focus
on attributes that specifically combat the
misuse cases that can lead to unaccept-
able losses identified for the solution in
question. For example, a system for which

RealizationInception Transition

Elaborate, Enhance, ReviseCreate

Need
Purpose, Intent, Focus

Behavior
Actions

Workflows
Operations

Behavior
Actions

Workflows
Operations

Structure
Organization

Groupings
Separations

Attributes
Characteristic, Properties, Traits

Need
Purpose, Intent, Focus

Structure
Organization

Groupings
Separations

Attributes
Characteristic, Properties, Traits

Behavior
Actions

Workflows
Operations

Need
Purpose, Intent, Focus

Structure
Organization

Groupings
Separations

Attributes
Characteristic, Properties, Traits

Behavior
Actions

Workflows
Operations

Need
Purpose, Intent, Focus

Structure
Organization

Groupings
Separations

Attributes
Characteristic, Properties, Traits

Refine & Adapt

Figure 5. Agile approach to architecture

Figure 4. Evolving the solution set via trades and AoA

RealizationInception Transition

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

48

uptime is critical and distributed denial of
services (DDoS) attacks are a key misuse
case, quality attributes such as resilience
and scalability are more helpful in identify-
ing suitable solutions than “security.”

Agile Approach to System Architecture
In an agile lifecycle, architecture is an

iterative activity focused on defining a
design envelope within which the solution
is realized and then making and commu-
nicating critical system wide decisions that
shape the solution.

In the inception phase, the “bones” of
the architecture are defined, providing
fundamental definitions and decisions that
embody the essential nature of the solution.
Currently, no attempt is made to define
an exhaustive architecture. In fact, some
elements are intentionally left undefined
because the architect judges that better
decisions can be made later in the cycle.

In the realization phase, the architecture
is fleshed out lessons are learned, choices
are made, and user feedback is received. At
any point in the realization process, there
are a set of possible architectures for the
solution, and as realization progresses, the
set becomes more refined based on learning
from previous cycles, evolution in tech-

nology and mission and the architectural
decisions that are made.

In the transition phase (while the system
is in operation) the architecture continues
to be refined and adapted as needed. If
wholesale architecture changes are needed,
the solution may spawn another cycle of
realization with the intent to either replace
or evolve the existing solution. Figure 5
illustrates this approach to architecture.

Architecture Recommendations for
Sustainable Security

Integration of system security concerns
into solution architectures is a critical step
to ensuring sustainable security. Solution
architectures guide design, development,
testing and deployment so leveraging the
architecture to communicate security con-
cerns, characteristics, and decisions ensures
that they are embedded in the solution.
The following paragraphs describe some
techniques for integrating security into
architecture, using a medical records access
system as an example.

An architecture describes four essential
aspects of a solution: the need it is to fulfill,
the behavior it must perform, the structure
it must exhibit, and the characteristics it
must embody. Adherence to these elements

drives the design, development, and evolu-
tion of the solution, and proper articulation
of the architecture ensures that the solution
meets the stated needs (Figure 6).

Need: We express the solution needs,
identified through mission/business analy-
sis, stakeholder needs definition and system
requirements definition, as capabilities in
a DoDAF CV-2 capability taxonomy dia-
gram. One of the security-related capabili-
ties uncovered during loss driven analysis is
to secure protected data (PII).

Behavior:  Since exposure of PII is most
often associated with criminal hacking, we
include a misuse scenario “money for data”
that describes the malicious acts that must
be guarded against to protect the data. This
misuse case will inform validation activities
from peer reviews to validation security
challenge scenarios.

Structure:  In a DoDAF internal block di-
agram (SV-2) we identify a separate segment
in the architecture to house only protected
data. This segment can only be accessed with
supplemental authorization and can be iso-
lated when an attack is detected using “fire
doors”. This structural choice will inform the
design of virtual machines, containers, and
storage units and drive the configuration of
firewalls and guards.

Figure 6. Example: embedding security considerations in architecture

Request FSA/HAS
Reimbursment

Submit
Insurance claim

Monitor Suspect
Activities

Secure
System

Request
Payment

Order OTC
Goods/Services

Provide
Emergency Intake

Provide
Recommendations

Issue Warnings
and Reminders

Coach User

Track Activities

Track Vitals

Provide Admission
Information

Order Presecription
Goods/Services

Order
Goods/Services

Provide Intake
Information

Manage
Personal Health

Access
Personal Data

Manage
Access

Read
Personal Data

Update
Personal Data

Share
Personal Data

Authenticate
User

Validate
Operation

Search
Personal Data

Secure
Protected Data

Update Security
Mechanisms

Perform Security
Tests/Scans

Encrypt/Decrypt

Manage

Monitor
Data Flow

Access
Control

Patient
Interface

Provider
Interface

Service
Interface

Security
Monitor Utilities

Fire Door

Encrypt/
Decrypt

General
Data

General
Data

General
Data

Protected
Data

Payer
Interface

Tracking Recom-
mendations Reminders Coaching

PII Tracking Data
Recommendations

Warnings

Symptoms
Diagnoses
Treatments

Orders

Results
Responses

Results
Dispositions

Prescriptions
Responses

Instructions

Symptoms
Diagnoses
Treatments

Orders

Symptoms
Diagnoses
Treatments

Orders

Access Target
System

Gain Control
of Data

Provide Money
for Data

Request Money
for Data

Malicious
Actor

Target

Patient

Medical
Office

Hospital Payer

Pharmacy

Test/Image
Center

First
Response

Unit

OV-5 (activity Diagram) SV-1 SV-2

Design
Principles

Qualify
Attributes

Health
Everywhere

Solution

CV-2

StructureBehavior

Need

Characteristics
Data Protection
Useability
Affordability
Accessibility
Resiliency
Modularity
Scalability
Maintainability

Very High
Very High
High
High
High
High
Medium
Medium

PII Exfiltration Challenge
Emergency Intake
First Year Cost
Rural International Access
DDos Attack
PII Isolation
DDos Attack
Security Update

Limited access, isolation, access validation
User centered design
Just enough capability
RESTful transactions, limited NRT data transfer
Diverse communications, resource auto-spawn
Encapsulation, limited global data, loose coupling
Auto-scale with guardrails
Light off operation

Attribute Priority Use Case Principle

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

49

Characteristics: We define a high prior-
ity quality attribute of modularity to ensure
the isolation of segments from one another
in order to maintain a high level of protec-
tion. This characteristic will supply criteria
for trades and analysis of alternatives.

TEST AND EVALUATION
Agile Approach to Test and Evaluation

In agile systems, both verification and
validation begin early in realization.
Verification comes in the form of unit tests
for features and stories. A best practice in
agile development is the use of test driven
development (TDD) in which the tests
are defined and implemented using test
automation tools such as Cucumber or
Jmeter before the code is developed. The
developers run the tests against their code
until it passes, then the code is submitted
for build and higher-level test. If issues
are found, they are corrected in the code,
and when possible, the unit test is updated
to catch the error. Once both the code
functionality and test validity are verified,
both the code and its associated test are
checked into the baseline. The unit test will
be used against future updates to this code
and in regression testing, which occurs at
some level at least daily.

To begin validation early, a variant of
the TDD process, called acceptance test
driven development (ATDD) is used. This
technique defines a series of system level
scenarios or workflows which exercise the
capabilities of the system in the manner
that emulates actual use. These scenarios
are vetted with customers and users
to ensure that the are representative of
expected usage. Tests to exercise these
scenarios are developed and then all
functions are stubbed out, resulting in an
initial test that steps through the workflow
without exercising any functionality. As
stories and features are completed, they

are fitted into the appropriate scenario
test and run. This allows validation of
the new functionality within a mission-
relevant scenario or scenarios — some core
functionality appears in many scenarios.
Once the updated test runs properly, it
is submitted to the baseline to be used in
regression and to support the testing of
additional functionality for that scenario.

These automated tests form a critical part
of the demonstrations that occur at the end
of each sprint and increment. Test proce-
dures are discussed, test reports shared, and
tests run in the presence of the customer.
In some cases, users will replicate the auto-
mated tests manually or perform free-form
exploratory testing of the functionality in
order to provide feedback on the function-
ality as it will be used in operations.

The architectural description of a solu-
tion plays a significant role in agile test
planning. The behavioral description in the
architecture (capabilities, services, work-
flows, use cases, etc.) inform the mission
scenarios used for validation. The behavior-
al description also guides the breakdown of
functionality into features and stories to be
implemented and the development of tests
to verify their completion.

The structural portion of the architec-
ture description identifies interfaces and
defines their functionality, which is used to
develop automated interface tests as well
as to integrate information exchanges into
scenario testing.

The architectural characteristics (quality
attributes and architectural principles)
enable analysis for peer reviews. Along
with the needs, structural and behavioral
descriptions of the architecture, they
support operational validation activities
such as red/blue exercises and day-in-the-
life (DITL) tests.

As shown in Figure 7, all these verification
and validation activities begin early, with

formal test run-throughs happening at the
end of the very first sprint or increment. It
is understood that early tests only exercise
a small subset of the system, and that each
iteration of testing will incorporate both
test of new functionality and regression and
validation of the cumulative baseline.

Test and Evaluation Recommendations for
Sustainable Security

Include response to malicious acts mis-
sion thread(s): Create scenarios driven by
a malicious actor attempting to inflict harm
on the system. The scenario starts with an
attack by a malicious actor and exercises
the solution’s ability to detect, repel, work
through, and recover from the attack.

Include test of defense against key
losses as part of regression:  Include then
mission scenarios described above in
each regression run to keep track of the
solution’s overall security posture. Since
these scenarios may be long and resource
intensive, consider alternating among
attack scenarios with each run.

Include tabletop and live red/blue exer
cises in response to unacceptable losses as
part of increment demonstrations: While
automated tests provide an efficient
method of identifying likely security issues,
human-in-the-loop tests do a better job of
identifying new threats and corner cases.
Plan tabletop and on-system red/blue
exercises to ferret out security weaknesses
throughout the system life cycle.

RISK MANAGEMENT
Agile Approach to Risk Management

The basic artifacts and techniques of
risk management — risk identification, risk
evaluation, risk register, risk board, risk
handling, etc. — are in general applicable
in an agile lifecycle. Differences occur in
the details of implementation as shown in
Figure 8.

Figure 7. Agile approach to system test

RealizationInception Transition

10.1 10.2 10.3 10.4 10.5 10.6 R 1.0 R 1.1 R 1.2 R 1.3

Behavior
Actions

Workflows
Operations

Need
Purpose, Intent, Focus

Structure
Organization

Groupings
Separations

Attributes
Characteristic, Properties, Traits

Define Architecture

Thread Test
Performance Test

Pen Test
User Form

Ad Hoc Test

Peer Review
Story Test

Feature Test
Regression

Peer Review
Story Test

Feature Test
Regression

Peer Review
Story Test

Feature Test
Regression

Peer Review
Story Test

Feature Test
Regression

Peer Review
Story Test

Feature Test
Regression

Peer Review
Story Test

Feature Test
Regression

Thread Test
Perf Test
Pen Test

User Form
Ad Hoc Test

Thread Test
Perf Test
Pen Test

User Form
Ad Hoc Test

Thread Test
Perf Test
Pen Test

User Form
Ad Hoc Test

Thread Test
Perf Test
Pen Test

User Form
Ad Hoc Test

Thread Test
Perf Test
Pen Test

User Form
Ad Hoc Test

Operational
Test

Performance
metrics

Operational
Test

Performance
metrics

Operational
Test

Performance
metrics

Operational
Test

Performance
metrics

Verify

Validate

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

50

Agile planning events such as backlog
grooming, sprint planning, and increment
planning provide additional opportunities
to identify risk. Many risks identified by
individual teams can be managed within
the team, but some are significant or wide-
spread enough that they are presented to
the program risk board for management.

The agile backlog provides a mechanism
for scheduling and performing risk handling
activities. Once a risk mitigation plan is pre-
pared, it is broken into features and stories
like any other work, added to the backlog
and prioritized. This provides outstanding
visibility into whether the risk activities are
being performed and how they are being
prioritized relative to other activities.

Risk Management Recommendations for
Sustainable Security

Use loss-driven analysis during the in-
ception phase to identify critical customer
risks: To enhance the solution’s sustain-
able security posture, apply loss-driven
analysis techniques, which can enhance
risk identification through articulation of
unacceptable losses and the identification
and analysis of key misuse cases that apply
to the solution context.

Make review of current security
threats a standard part of risk review
process:  Since specifics of security risk
are constantly changing, a system security
subject matter expert (SME) should review
the current state of the security risk envi-
ronment with the risk management board
and the board should discuss whether that
state merits any changes in recorded risks
or their handling plan.

An example risk from a medical records
access system provides an illustration of
novel aspects of risk management in an
agile context. “Mass PII exfiltration” was
identified by the customer as an unac-
ceptable loss in the loss-driven analysis of
stakeholder needs. Table 1 shows the risk

register entry developed for this risk.
This risk will be handled through miti-

gation, but a contingency plan will also be
put in place in case mass exfiltration does
occur. Contingency plans are common for
ongoing security risks.

The risk mitigation plan for this risk is
shown in Table 2.

Step 1 of the risk mitigation plan focuses
on embedding exfiltration protection in
the solution architecture in the inception
phase. Notice that this step has been broken
out into individual smaller activities that
are inserted into the backlog of work for
the current increment. They are scheduled
for specific sprints and assigned to specific
individuals.

During realization, specific design,
analysis and test activities will ensure that

the architectural constructs are implement-
ed and doing their job. During transition
(operations, sustainment, and disposal)
the operational security team, guided by
the operational security plan, will perform
activities such as periodic stress testing
and disciplined disposal of assets to protect
against data exfiltration. These steps are not
yet broken down into story-sized activities
but are placed on the backlog in conceptual
form to act as planning placeholders for
future risk mitigation work.

Figure 9 shows the change in risk proba-
bility over time. This particular risk is miti-
gated primarily by reducing the probability
of occurrence as there is little that can be
done to reduce the impact if it occurs. The
color bands show the general risk level at
any point in time — above 15% is considered

Table 1. Risk register entry

Ref # MRP-001

Date Identified 01/15/2023

Risk Title Mass PII exposure

Risk Description IF PII data is made public THEN the company
will be liable or remediation costs, be exposed
to civil lawsuits and suffer reputational
damage that can lead to loss of business

Probability 0.2

Consequence $10M

Expected Monetary Loss $2M

Risk Adjusted Loss $2.25M

Risk Response Mitigate

Contingency Action Trigger Data exfiltration detected

Annual Sales $50M

Risk Tolerance $32

RealizationInception Transition

Plan Plan Plan Plan Plan Plan Plan Plan Plan Plan Plan
Risk Identification Workshop

+Loss Driven Analysis
+Misuse Scenarios

Risk Register

Backlog

Figure 8. Agile approach to risk management

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

51

high risk, 10 to 15 percent is considered me-
dium risk and below 10% is considered low
risk. The lifelines indicate life cycle phase
transitions. The left period is inception, the

center period is realization, and the right
period is transition. Risk drops sharply at the
end of inception when security features have
been designed. During realization, the risk

moves down incrementally as the features
are implemented and tested. In operations,
the risk will rise based on exposure, operator
behavior, and new threats, and then lower
again based on patches training and proce-
dure updates and refactor.

Agile Approach to Life Cycle Management
Since agile projects emphasize

early and repeated value delivery, the
processes associated with the transition
phase — validation, operation, maintenance,
and disposal — begin relatively early in the
project’s life span and continue until the
system is retired, as shown in Figure 10.
Large complex agile systems use a roadmap
to identify key milestones, events, and
transitions that occur throughout the life of
the solution. These can include customer
events, strategic operational changes,
and solution lifecycle events that impact
the capabilities and activities associated
with the system. The roadmap provides
a high-level framework for planning and
prioritizing work associated with delivering
system value.

Table 2. Risk mitigation plan

Ref # Step Time Phase Owner

1 Architect for Exfiltration Protection Inception Architect

1.1 Include exfiltration-related misuse cases in operational
architecture Sprint I-1 Architect

1.2 Define exfiltration-related attributes in Quality Attributes
Workshop Sprint I-2 Architect

1.3 Define exfiltration resisting capabilities in Operational
Architecture Sprints I-3, I-4 Architect

1.4 Partition architecture to protect PII Sprints I-3, I-4 Architect

1.5 Include exfiltration resistance scenario in tabletop evaluation
of architecture Sprint I-5 Security SME

2 Include Exfiltration Evaluation in Definition of Done Realization Product owner

3 Perform Exfiltration Resistance Testing as Part of Regression Realization Test Lead

4 Include Exfiltration Resistance in Operational Security Test
Plan Transition Operational security

Lead

25

20

15

10

5

0
1 2 3 4 5 6 7 8 9 10 11 12

Figure 9. Change in risk probability over time

Figure 10. Agile approach to life cycle management

RealizationInception Transition

Continuous Improvement Activities

Integration and Delivery Pipeline

Backlog

Roadmap

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

52

REFERENCES
■■ Balbes, M. 2022. Want to Make the Right Decision? Procras-

tinate Until ‘The Last Responsible Moment [Online] Viewed
19 February 2023. https://adtmag.com/articles/2022/06/09/
the-last-responsible-moment.aspx .

■■ Dove, R., and W. Schindel. 2016. “Introduction to the Agile
Systems Engineering Life Cycle MBSE Pattern.” INCOSE
International Symposium 26(1):725-742.

■■ Health Sector Cybersecurity Coordination Center (HC3). 2019.
A Cost Analysis of Healthcare Sector Data Breaches. [Online]
Viewed February 26, 2023. A Cost Analysis of Healthcare Sector
Data Breaches | Technical Resources | ASPR TRACIE (hhs.gov) .

■■ INCOSE. 2023. Systems Engineering Vision 2035: Engineering
Solutions for a Better World Executive Summary, International
Council on Systems Engineering, San Diego, US-CA.

■■ INCOSE. 2018. INCOSE System of Systems Primer Internation-
al Council on Systems Engineering, San Diego, US-CA.

■■ INCOSE (2015). Systems Engineering Handbook: A Guide for
System Life Cycle Process and Activities (4th ed.). D. D. Walden,
G. J. Roedler, K. J. Forsberg, R. D. Hamelin, and T. M. Shortell
(Eds.). San Diego, CA: International Council on Systems Engi-
neering. Published by John Wiley & Sons, Inc.

■■ ISO/IEC/IEEE. 2015. Systems and Software Engineering —
System Life Cycle Processes. ISO/IEC/IEEE 15288:2015(E) first
edition 2015-05-15. CH.

■■ Ross R., M. McEvilley, and M. Winstead. 2022. Engineering
Trustworthy Secure Systems. NIST Special Publication (SP)
NIST SP 800-160v1r1. National Institute of Standards and
Technology, Gaithersburg, US-MD.

■■ Rosser, L. 2022. “SYS598 Directed Research problem analysis
results, July 2022” (unpublished work)

■■ Rosser, L. 2022. “SYS598 Directed Research solution
recommendations, November 2022” (unpublished work)

■■ Scaled Agile. 2022. “SAFe for Lean Enterprise” Scaled Agile
[Online] Viewed 1 February 2023. https://scaledagileframe-
work.com .

■■ Scaled Agile. 2021. “Solution Intent.” Scaled Agile [Online]
Viewed 19 February 2023. https://www.scaledagileframework.
com/solution-intent/ .

■■ Scholl, M., et al. 2010. Security Architecture Design Process
for Health Information Exchanges (HIEs). National Insti-
tute of Standards and Technology Interagency Report 7497.
National Institute of Standards and Technology, Gaithersburg,
US-MD.

ABOUT THE AUTHOR
Larri Ann Rosser has worked in engineering and technology

for four decades as an electrical engineer, software engineer,
systems engineer, and architect. She holds a BS in information
systems and computer science from Charter Oak State College,
and a Master of Science in systems engineering from Worcester
Polytechnic Institute. She holds multiple patents in the man
portable systems domain and is a CAP certified architect, a SAFe
program consultant, and a Raytheon six sigma expert. She is the
co-chair of the INCOSE Agile Systems and Systems Engineering
Working Group, a member of the INCOSE Complex Systems
Working Group, and a member of the NDIA SED Architecture
Committee and the NDIA ADAPT working group. At Raytheon,
she works with programs and product lines to apply modern
methods to system realization.

The backlog specifies the capabilities,
features, and stories that create solution
value. Capabilities are the large details of
the work to be done in the new future of
the solution. The backlog items prioritized
include new or enhanced functionality
along with enabling activities such as
studies and plan development. During each
backlog refinement event, future roadmap
elements are considered and when
necessary, activities in support of them
are prioritized to be worked. In addition,
the agile execution cadence includes
periodic assessments (retrospectives) of
the execution process and identification
of improvement activities that are added
to the backlog for implementation. As the
solution moves into operation, the content
of the backlog will include operations,
sustainment, and disposal activities.

The integration and delivery pipeline is
stood up as soon as realization begins. It is
used to schedule and automate integration,
verification, and validation work, including
peer reviews, system builds, testing of new
features, regression testing, performance
testing, and penetration testing. In modern
systems, an instance of the integration
and delivery pipeline is delivered as part
of the solution and continues to be used
to integrate, test, and deploy bug fixes,
security updates, and recapitalization
content. Agile programs integrate

continuous improvement activities into
their cycles of activity and provide a
mechanism for the solution to evolve.

Process System: Life Cycle Management
Recommendations for Sustainable Security

Perform periodic reviews of current
security threats to identify potential
changes:  Some general security threats
persist throughout the life of a solution, but
both solution vulnerabilities and malicious
actor tactics may change over time. To
sustain the solution security posture, the
operational security team should evaluate
security risks for such contextual changes
and, when necessary, update training,
procedures or technology in response.

Include security requirements and
characteristics in analysis of updates,
additions, and removals: When system
changes are planned during the transition
phase, impact to the system security pos-
ture should be considered and the change
should be executed in a way that preserves
system security.

SUMMARY
Systems engineering is in a period of

change and evolution based on demand
for increasingly complex, adaptable, and
interoperable solutions to a wide range of
needs. Escalating system security demands
are an instance of this pattern. In this paper,

we describe how the effective and well-
established processes of ISO/IEC/IEEE
15288 can be implemented in the context
of an agile life cycle in order meet the
challenges of future systems engineering in
general and sustainable security in specific.

This approach embraces the inevitability
of change and treats solution realization
as ongoing refinement of a solution set
focused on meeting the established need.
Rather than executing in a primarily
sequential fashion, technical processes are
revisited frequently, refining the solution
intent based on learning gained from
activities completed as well as changes in
mission need, operational context and both
social and technological landscapes. In this
paradigm, architecture provides guidance
for execution the technical processes
of realization and transition while the
architecture itself evolves and matures in
response to frequent feedback.

This modern approach to systems
engineering employs well-honed processes
and methods in a dynamic environment.
The goal is not to resist change or enforce
a static solution definition, but rather to
harness change to produce solutions that
meet needs in a forward-leaning fashion
and remain relevant and useful throughout
the solution life.  ¡

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

53

INTRODUCTION

  ABSTRACT
Current technical oversight approaches used for government programs (for example, stage-gate reviews) are not agile — their
expectations are not aligned with agile development cadences, and they are not adequately responsive to continuous unpredictable
change. This article explores ways to provide insight and responsive forward looking actionable guidance for agile projects in the
context of government and defense programs. It proposes a general oversight approach that produces minimal drag and disruption
and keeps pace with agile product development.

Agile Programs Need
Agile Reviews

Larri Rosser, larri.rosser@rtx.com
Copyright © 2023 by Larri Rosser. Published and used by INCOSE with permission.

For at least a decade, the US gov-
ernment has been exploring the
use of agile methods on defense
and other federal acquisitions in

order to reduce costs while more effectively
supporting missions. Compared to com-
mercial application software development
efforts from which agile practices initially
emerged, these acquisitions tend to be com-
plex, completion-based efforts to realize
systems, not just software. These challenges
encourage evolution in agile execution,
leading to the definition of numerous
approaches to scaling and expanding agile
practices. Descriptions of these advanced
agile approaches can be found in commer-
cial scaling frameworks such as scaled agile
framework (SAFe) (Scaled Agile Frame-
work 2021), disciplined agile (DA) (Pro-
gram Management Institute 2020), and en-
terprise unified process (EUP) (Enterprise
Unified Process 2020) as well as execution
case studies from Lockheed Martin (Dove,
Schindel, and Garlington 2018), Northrup
Grumman (Dove and Schindel 2017), and
Rockwell Collins (Dove, Schindel, and
Hartley 2017), among other sources.

During this time, various agencies of
the US government have studied agile
execution and released several documents
discussing the application of agile practices
to government contracts. These include Ag-

ile Assessment Guide: Best Practices for Agile
Adoption and Implementation (US Govern-
ment Accountability Office 2020), Design
and Acquisition of Software for Defense
Systems (Defense Science Board 2018), and
The TechFAR Handbook (TechFAR Hub
2022). In addition, they have worked with
industry to provide instructions for apply-
ing specific agile practices to government
programs, including earned value (National
Defense Industrial Association 2019) and
agile contracting (Office of Management
and Budget 2012).

In the area of technical oversight,
however, the standard recommended by
the Department of Defense (Office of the
Under Secretary of Defense for Acquisi-
tion, Technology, and Logistics 2017) is
ISO/IEC/IEEE 15288.2, IEEE Standard for
Technical Reviews and Audits on Defense
Programs (IEEE Computer Society 2014).
Although tailoring of criteria is permit-
ted and even encouraged, tailoring this
standard appropriately for agile programs
presents challenges, as the standard is
organized around the phases in the tradi-
tional waterfall lifecycle.

AGILE DEVELOPMENT VS. STAGE-GATE
REVIEWS

Agile Systems Engineering Life Cycle
Model for Mixed Discipline Engineering

describes agile systems engineering as
“effective system engineering in the face
of uncontrolled change” and identifies “an
asynchronous/concurrent life cycle model
framework” as one of the hallmarks of agile
systems engineering. (Schindel and Dove
2019) This approach to systems engineering
does not fit comfortably with current
prevalent gate review practices, which tend
to assume that product realization activities
occur sequentially and that reviews evaluate
final outputs of one phase of engineering
activities that has recently completed to
determine if the project can proceed to
the next (sequential) phase (Lapham et
al. 2016 p. 19). Mismatches between the
expectations of agile engineering and
traditional gate reviews can lead to several
undesirable effects, including incorrect
evaluation of solution maturity, unhelpful
or unactionable findings, and inaccurate
assessment of risk.

This observation does not imply that
either agile product development or
traditional stage-gate reviews are wrong,
but rather to point out that, as currently
implemented, they are ineffective together,
and to propose alternatives that preserve
the intended value of both concepts.

At a conceptual level, the intent of gate
reviews is to assess progress and determine
if the program is able to proceed to their

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

54

next set of planned activities. Gate reviews
facilitate interaction between program
personnel, stakeholders, and independent
experts to identify risks and propose
approaches for handling them.

The International Council on Systems
Engineering Systems Engineering Handbook
(INCOSE 2015) identifies the following
outcomes of gate reviews:

■■ Ensure that the elaboration of the
business and technical baselines are
acceptable and will lead to satisfactory
verification and validation (V&V)

■■ Ensure that the next step is achievable,
and the risk of proceeding is acceptable

■■ Continue to foster buyer and seller
teamwork

■■ Synchronize project activities.

From this generic perspective and
detached from experience with a typi-
cal system requirements review, critical
design review, or test readiness review,
these outcomes are just as valuable to
agile projects as they are to those using
the waterfall lifecycle. Unfortunately,
conflicts in assumptions and expectations
between agile execution and traditional
review approaches can limit the ability of
the review to identify gaps and risks and
decrease the value output of the execution
team by focusing them on activities that do
not support value delivery. The remainder
of this article explores ways to effectively
provide value added independent reviews
to agile projects.

APPLYING AGILE VALUES TO GATE REVIEW
INTENT

The manifesto for agile software devel-
opment does not provide a comprehensive
approach for expressing agility in systems
engineering, but it does offer some key
ideas for enabling agility (Beck et al. 2001).
Principles for Agile Development proposes
wording changes to the manifesto and
its supporting principles to make their
applicability to systems engineering clear.

The value statements of the manifesto are
shown to be applicable to systems overall as
well as software, with a single adjustment
of focusing on working capabilities rather
than working software (Marbach, Rosser,
and Osvalds 2015). Table 1 summarizes
these values and their use in structuring
gate reviews for agile projects.

Individuals and Interactions – the
critical value of individuals and interactions
to agile product development manifests
in the use of small, cross-functional teams
who plan and coordinate frequently in face-
to-face group discussions. This approach
can be applied to reviews by identifying a
small group of reviewers who, as a group,
have the skills and experience to provide
valuable insight on the program’s prog-
ress and recommendations for improving
performance and reducing risk. This group
of reviewers should review the program
progress holistically as a team rather than
taking a “divide and conquer” approach.
Agile progress is measured against system
capabilities, and the reviews should not
sub-optimize around individual disciplines,
domains, or activities.

Working (capabilities) – the agile
focus on measuring progress by evaluating
working capabilities can easily be
extended to gate reviews by focusing on
demonstration of what has been achieved,
that is, evaluating those vertical threads of
functionality that have been implemented
from end to end, requirements through
integration and test, rather than looking at
a single part of the development work for
all functionality whether it is working yet
or not. This focus on working functionality
can be extended to include the review of
working program artifacts such as the
backlog, system models, and automated test
reports rather than static plans.

Customer collaboration – in typical
government programs, there is a contract
which binds the government and the
contractor to perform tasks and provide
outcomes. When the parties intend to em-

ploy agile methods, it’s necessary to focus
on how the contract enables continuous
change, and reviews need to focus on how
well these change processes are working
to enable response to change within the
framework of the contract.

Responding to change – because agile
projects are designed to respond rapidly
to frequently occurring change, there is
no economy of scale in infrequent large
batch reviews. Instead, reviews should be
frequent, enabling small course corrections
implemented at the speed of change. For
this to be viable, reviews must be light-
weight, minimally intrusive and focused
on the work that is on deck to be done.
Reviewers who remain with the program
throughout its lifecycle and a focus on
working artifacts, with little or no material
prepared specifically for the review are
recommended best practices for keeping
the reviews lean and effective.

FRAMING OVERSIGHT FOR AGILE PROJECTS
To deliver valuable technical oversight

to agile projects, reviews must be framed
to coordinate and synchronize with agile
product development in the same way
that current stage-gate reviews align with
waterfall development. In this section, we
examine some key areas where re-framing
can increase the effectiveness of reviews for
agile projects.

Program Stages
Traditional reviews tend to perceive

certain realization activities as being
performed in phases that terminate with a
review of the work for that stage, thus the
concept of requirements reviews, design re-
views, test reviews and so on. In agile engi-
neering, these activities are not performed
in this sort of discrete grouping, but rather
in iterative or concurrent fashions, which
makes the traditional gate review approach
ineffective at assessing progress and adjust-
ing course. However, there are detectable
phases of activity on agile projects, which
can inform the timing and focus of reviews.

Figure 1 summarizes the general phases
of agile engineering development. These
phases, or analogues thereof, appear in
several agile frameworks and process flow
descriptions including disciplined agile
(Program Management Institute 2022), en-
terprise unified process (Enterprise Unified
Process 2020), and the agile software devel-
opment lifecycle (Eby 2016). Some works
describe additional phases or sub-phases,
but from the perspective of technical over-
sight, these three phases provide adequate
granularity.

Inception is the phase that begins with
contract award and ends when the pro-
gram is ready to begin iterative capability

Table 1. Agile values application to gate reviews

Agile Value Review Application

Individuals and interactions
over processes and tools

Group reviews of core topics supplemented
by subject matter expert (SME) reviews

Working (capabilities)
over comprehensive
documentation

Prioritize review of working program
artifacts including models over static
documents

Customer collaboration over
contract negotiation

Focus on how the contract allows the
program to collaborate with the customer to
create value

Responding to change over
following a plan

Frequent light-weight touchpoints rather
than rigid go-no go decisions

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

55

development. This phase includes both
traditional program startup activities and
those engineering and technical activities
required to make the program ready to
commence agile development. Systems
Engineering for Software Intensive Projects
Using Agile Methods refers to these activities
as “pre-planning” activities and describes
them in some detail (Rosser et al. 2014 p.
6). From the perspective of review plan-
ning, the end of this period provides a good
point to evaluate the program’s readiness to
set the agile realization process in motion.
Plans, requirements, staffing, tooling, and
artifacts can all be evaluated, not to deter-
mine if they are finished, but rather if they
are adequate to start.

Realization is the phase in which ca-
pabilities are designed, implemented, and
tested using agile methods. During this
time, work is done in small batches, often
repeated many times. Concurrent activities
occur, and reprioritization of work and
pivoting in direction is common. During
this phase, large formal reviews are costly
and ineffective and should be eliminated
in favor of frequent, tightly scoped light
weight course correction touch points. The
focus of these touchpoints should primarily
be capabilities just completed and those
that are selected for completion in the
upcoming iteration. Requirements, design,
and test plans/results for the capabilities
being reviewed are all considered.

Transition – at some point, agile capabil-
ity development ceases, or at least pauses.
In some cases, the contract may end, and
the program shuts down. In other cases,
an initial operating capability may have
been achieved, or a first article completed
and transition to operations or production
required. This is another useful time for
an extensive review, this time to determine
if the deliverable items are ready for the
pending transition. For government and
defense contracts, transition reviews are
a good point to evaluate against required
standards such as technology readiness lev-
el (TRL) or manufacturing readiness level
(MRL) or to assess the solutions readiness
to request operational permissions such as

authorization to operate (ATO). There may
be multiple transition events in the context
of a single program if multiple phases or
effectivities have been contracted.

Review Focus
All reviews should focus on concerns

that have high impact on the project or
product being reviewed, and agile project
reviews are no different in this regard.
However, the specific elements that have
high impact may not be the same as in re-
views for other project types. The following
paragraphs highlight some areas worth
evaluating on agile projects.

Working capabilities are the primary
yardstick of progress on agile projects. A
critical part of an agile review should be
focused on what’s working. Newly work-
ing capabilities should be assessed for
fulfillment of customer needs, previously
implemented elements should be checked
to ensure that they are still working, still
meet needs and are still aligned with overall
program direction. Progress to date can
also be evaluated compared to the overall
mission requirement and remaining time
and budget.

Integration and synchronization are
critical to success on agile projects. Disci-
pline in continually identifying and man-
aging dependencies at all levels is critical,
as there is typically not a lengthy “get well”
integration period planned near the end of
the program.

Health of baselines must be evaluat-
ed regularly. The possibility of multiple
significant changes occurring close together
means that baselines must be up to date,
working, and configuration controlled at all
times. Deficiencies such as technical debt
and performance shortfalls must be tracked
and kept visible due to their impact on
decisions and prioritization of work.

Working execution assets such as
backlog, models, regression test results, and
demonstration outcomes provide excellent
insight into program progress, process, and
risk without requiring program personnel
to construct presentations.

Best practices for whatever agile

program execution model that is employed
should be a part of any agile review. This is
particularly important since most of these
practices are fairly new and potentially
unfamiliar to team members or at odds
with established expectations or adjacent
processes.

Review Content
The content of agile reviews should in-

clude artifacts that contribute to or indicate
the health of program execution. Some
items to evaluate are described below.

Working plans – This may include the
master phasing schedule and integrated
master schedule but should also include
any agile planning artifacts such as back-
logs and roadmaps.

Integrated test plan and results – most
agile practices encourage early and frequent
integration and test, and both the approach
and results are valuable objects of review.

Traceability is exceptionally important
on agile projects where changes occur
frequently and anywhere in the chain from
customer requirements to operational sys-
tems. Bi-directional traceability from end to
the end of realization should be evaluated.

Tools and automation is a force multi-
plier for agile projects. Effective integrated
toolsets can increase both quality and
productivity when properly configured and
employed.

Baseline maturation and quality – as
the central value output of agile product
realization, baselines should be monitored
for current state of quality, maturity, and
performance as well as trends that may
need attention.

Continuous improvement based on
short cycles of learning is an intrinsic
advantage of agile development, but only
when improvement opportunities are iden-
tified, and improvements made.

Review Approach
The general approach to agile reviews

should reflect agile values and principles.
Reviews should be cross functional and
collaborative, not stove-piped. The focus
should be on delivery of value not comple-
tion of intermediate artifacts. They should
be collaborative, not confrontational, and
seek to course correct without limiting
velocity, with goals of continuous improve-
ment rather than striving for immediate
perfection.

Review Outcomes
The outcomes of an agile review should

align with the principles and characteristics
of agile project realization. Some desirable
outcomes are described below.

Enhanced value delivery – agile projects
measure success in valuable capabilities

Inception Realization Transition

Program Startup
“Increment Zero” or

“Sprint Zero”
“Construction”
“Development”

“Define/Design/Build/Integrate/Test”

“Deployment”
“Delivery”
“Sell-Off”

“Initial Operating
Capability”

“Transition to Production”Activities needed to
enable the program to

create value in an
agile manner

Activities needed to create valuable
capabilities in short cycles of learning Movement of

completed capabilities
to the next step

Figure 1. Agile phases and boundaries

SP
ECIA

L
FEA

TU
R

E
JU

N
E 2O

23
VOLUM

E 26/ ISSUE 2

56

delivered to the customer. Reviews should
strive to make actionable recommendations
that enhance value delivery in some way.
This can include increased quality, faster
delivery, lower cost, decreased risk, or
better fulfillment of mission needs.

Predictable performance – given
that agile projects encourage ongoing
modifications to the solution intent based
on changes in the mission, technical and
business environment, it’s critical that
the team performance can be reliably
predicted. This enables effective replanning
and reprioritization. Reviews strive to make
actionable recommendations that enhance
performance transparency through
metrics, retrospectives, management of
dependencies, and risks.

Ongoing improvements – successful
agile projects leverage the short cycles
of learning inherent in the agile practice
to continually improve in a wide range
of areas throughout their period of
performance. Reviews strive to make
actionable recommendations for
improvement. Prioritize those areas where
the program may be struggling, but don’t
ignore those areas that are “good enough.

Continuous learning for all – for
programs, review teams, and organizations
“the best we can do” last time may not be
the best we can do this time. Reviews strive

to make actionable recommendations for
improvements not only to the program
under review, but to the review team,
the review process, and the organization
overall.

Summary
The key to agile reviews is to review as

you develop — agilely. Encourage inline
quality improvements rather than waiting
for outsiders to initiate corrections. Focus
on valuable outcomes, fast feedback, and
continuous learning.

CHALLENGES AND OPPORTUNITIES
Implementing an agile approach to

reviews is not without its challenges.
Existing norms and processes may need
to change to admit new ways of working.
Standards and processes that assume
sequential execution of engineering
activities need to be refactored to address
end to end completion of small units
of work. The perception that reviews
are “grades” and the program’s goal is
to “pass” must evolve to see reviews as
checkpoints that identify opportunities
to improve. Criticism needs to give way
to collaboration, where all participants
are focused on enhancing value delivery.
Cultural habits of covering our backsides or
hiding our challenges and shortfalls needs

REFERENCES
■■ Beck, K., et al. 2001. “Manifesto for Agile Software Develop-

ment.” viewed 21 November 2021. https://agilemanifesto.org/ .
■■ Defense Science Board. 2018. “Design and Acquisition of

Software for Defense Systems.” 14 February.
■■ Dove, R., W. Schindel, and K. Garlington. 2018. “Case Study:

Agile Systems Engineering at Lockheed Martin Aeronautics
Integrated Fighter Group.” Proceedings International
Symposium, International Council on Systems Engineering,
Washington, US-DC, 7-12 July.

■■ Dove, R., and W. Schindel. 2017. “Case Study: Agile SE Process
for Centralized SoS Sustainment at Northrop Grumman.”
Proceedings International Symposium. International Council
on Systems Engineering, Adelaide, AU, 15-20 July.

■■ Dove, R., W. Schindel, and R. Hartley. 2017. “Case Study: Agile
Hardware/Firmware/Software Product Line Engineering at
Rockwell Collins.” Proceedings 11th Annual IEEE International
Systems Conference, Montréal, Québec, CA, 24-27 April.

■■ Eby, K. 2016. ”Understanding the Agile Software Development
Lifecycle and Process Workflow.” SmartSheet. Viewed 4 March
2022. https://www.smartsheet.com/understanding-agile-soft-
ware-development-lifecycle-and-process-workflow .

■■ Enterprise Unified Process c. 2020. ”Life Cycle Phases.”
Viewed 4 March 2022. http://www.enterpriseunifiedprocess.com/
essays/phases.html .

■■ IEEE Computer Society. 2014. ISO/IEC/IEEE 15288.2, IEEE
Standard for Technical Reviews and Audits on Defense
Programs.

■■ INCOSE. 2015. Systems Engineering Handbook: A Guide for
System Life Cycle Process and Activities (4th ed.). D. D. Walden,
G. J. Roedler, K. J. Forsberg, R. D. Hamelin, and T. M. Shortell
(Eds.). San Diego, US-CA: International Council on Systems

Engineering. Published by John Wiley & Sons, Inc.
■■ Lapham, M. et al. 2016. RFP Patterns and Techniques for

Successful Agile Contracting. Carnegie Mellon University,
Software Engineering Institute Special Report, November.

■■ Marbach, P., L. Rosser, and G. Osvalds. 2015. “Principles for
Agile Development.” Proceedings International Symposium.
International Council on Systems Engineering, Virtual Event,
17-22 July.

■■ National Defense Industrial Association. 2019. An Industry
Practice Guide for Agile on Earned Value Management
Programs.

■■ Office of Management and Budget. 2012. ”Contracting
Guidance to Support Modular IT Development.” Viewed 20
March 2022.https://obamawhitehouse.archives.gov/sites/default/
files/omb/procurement/guidance/modular-approaches-for-
information-technology.pdf .

■■ Office of the Under Secretary of Defense for Acquisition,
Technology, and Logistics. 2017. Best Practices for Using
Systems Engineering Standards (ISO/IEC/IEEE 15288, IEEE
15288.1, and IEEE 15288.2) on Contracts for Department of
Defense Acquisition Programs.

■■ Program Management Institute c. 2022. ”Full Delivery Life
Cycles.” viewed 3 March 2022. https://www.pmi.org/disciplined-
agile/process/introduction-to-dad/full-delivery-lifecycles-
introduction .

■■ Rosser, L., G. Osvalds, P. Marbach, and D. Lempia. 2014.
“Systems Engineering for Software Intensive Projects Using
Agile Methods.” Proceedings International Symposium.
International Council on Systems Engineering, Las Vegas US-
NV,30 June – 3 July.

to transform into eagerness for inquiry and
improvement. And we must make these
changes in an environment of constantly
accelerating change. However daunting
that sounds, it’s the best option before us.
If the world is changing rapidly, we need
agile practices, including agile oversight, to
respond effectively to that change.

Fortunately, there are nuggets in new
practices and changing technologies
that promise to help us provide effective
oversight that keeps pace with change.
Integrated digital engineering and the
use of models at all levels of the system
of interest provide direct insight into the
current state of baseline capability and
maturity. Increasing automation offers
several opportunities. Automated checks of
concerns like traceability and test coverage
can reduce human effort in reviews as they
also enhance quality. The use of end-to-end
DevSecOps pipelines offers the possibly
of in-line zero preparation reviews, in
which data collection and presentation
become an ongoing automated function
of the pipeline and meetings can focus on
discussing concerns and ways to overcome
them. The data and information gathered
from these reviews can be fed back to ev-
ery level of our organization to ensure that
we continue to improve on pace with the
challenges we face.  ¡

>  continued on page 65

JU
N

E 2O
23

VOLUM
E 26/ ISSUE 2

57

A
P

P
LIC

A
TIO

N

A
R

TICLE

INTRODUCTION

  ABSTRACT
A hypothesis for an optimized, project lifecycle development method was formulated by understanding (i) the project environ-
ment of implementation, (ii) applicable, current state-of-the-art frameworks, and (iii) eliciting feedback before, during and after
testing from those individuals participating in the lifecycle development framework. While traditional waterfall methods have
their place, high uncertainty projects instigate exploratory work and as such, agile implementations were created to allow projects
to quickly adapt (PMI 2017). In the context of dynamic environments and niche products, NASA is no stranger. Understanding
the current state of the project and current state-of-the-art facilitates an approach that allows for well-established techniques in
the way of lean and agile to benefit project development. Additionally, these inclusions may help expose knowledge gaps in the
current state-of-the-art and also lend credibility to approaches derived to help close those gaps. This article describes the modified
agile concept (MAC) and its multi-disciplinary approach to a sampling of various lean and agile methods integrated alongside
traditional, waterfall methods (such as a hybrid model) to support the hypothesized project lifecycle development. This approach
was developed as part of a case study with a design and test team responsible for building test stations to qualify components of the
life support system on the next generation space suit. This article will outline exclusively the scrum and lean methods in the MAC
with a cursory overview on kanban development supporting the MAC.

Project Lifecycle
Development for a Next
Generation Space Suit
Project

Michael A. Cabrera, michael.a.cabrera@nasa.gov ; and Steve Simske, steve.simske@colostate.edu
Copyright © 2023 by Michael A. Cabrera and Steve Simske. Published and used by INCOSE with permission.

In 2019, the presidential administra-
tion proposed a return to the moon
by 2024, allocating additional funding
and a condensed schedule specifically

for the next generation spaces suit (Simon
2020). Two years later, NASA’s Office of the
Inspector General (OIG) released an audit
indicating that current forecasting project-
ed that a flight-ready suit was years away
from completion and that the government
would spend over $1 billion dollars on
design, testing, qualification, and develop-
ment efforts. As a result, the next genera-
tion space suit, the Exploration Extravehic-
ular Activity Mobility Unit (xEMU) project,
would end and the portfolio of work would
be transferred to contractor-developed suits

instead of building the xEMU qualification
and flight suits “in-house” (Martin 2021).
As part of a case study on the systems engi-
neering challenges associated with xEMU
development, one of the specific areas
examined was the history and development
of the ground support equipment (GSE)
used to qualify flight components on the
exploration portable life support system
(xPLSS). These GSE test stations require a
similar pedigree as their space suit flight
components and as such, demand a strict
standard against quality and safety. In a
similar respect to neighborin g projects
across the xEMU suite of projects, xPLSS
GSE development too had struggled with
respect to cost and schedule expectations.

One of the goals of the case study on
GSE development was to understand the
current state of the project by meeting with
team members to understand the current
sentiment on project lifecycle development,
review project documents to understand
root causes of cost and schedule challenges,
review the current state-of-the-art, and
identify applicable project lifecycle develop-
ment approaches. The goal is to ultimately
determine a development method by which
the GSE test station team may be able to
optimize lifecycle and team development so
as to more effectively approximate cost and
schedule expectations.

The current hypothesis regarding the
formulation of the proposed project

JU
N

E 2O
23

VOLUM
E 26/ ISSUE 2

58

A
P

P
LIC

A
TIO

N

A
R

TICLE

lifecycle development asks, “will a
modified, agile-hybrid project lifecycle
development model applied to waterfall
teams develop a superior product
within time and schedule constraints
in a hardware-intensive environment?”
Analysis to test the hypothesis includes
iterative and incremental project lifecycle
model tempering where focus groups
of subject matter experts evaluate the
additions of agile and lean-based lifecycles
in a project lifecycle model until the
tempered model across three iterations is
satisfactorily accepted by panel approval.
Likert scale, panel scoring, and failure
modes and effects analyses (FMEA) were
the quantitative measures used as success
criteria measurements as resources were
not available to effectively run a project in
its entirety as a function of the MAC for
vetting against the project’s current lifecycle
model. Results from the research currently
indicate that schedule time is reduced if
specific areas of scrum, lean and kanban are
implemented, effectively reducing budget
while scope is preserved. It must be noted
that while multiple tempered model tests
across multiple subject matter experts has
approximated a solution that is specific for
the GSE team’s needs, by no means is this
a definitive or fully optimized model. With
regards to the GSE team’s specific needs and
within the context of the work performed,
tempered model testing helped disqualify
certain approaches or facets of approaches
while preserving those that testing deemed

satisfactory for implementation. The initial
hypothesis was verbatim with the exception
that the question was phrased for scrum
alone in comparison to agile-hybrid as the
current hypothesis prompts. This change
was a result of vetting various alternatives
to approximate an answer and taking the
approach of discovering data to disqualify
the prevailing hypothesis to further
approximate the most correct project
lifecycle approach.

It is important to note that is strictly a
hypothesized approach to project lifecycle
development. The ideas and approaches
discussed were not fully exercised in practice
in part due to the nature of the type of work,
funding, and resources required. This should
be considered as a postmortem of a project
that by Likert scaling polling had requested
the consideration of a hybrid lifecycle
approach to GSE test station development.
The metrics, project documents, and existing
project personnel aided in supporting the
testing via focus group paneling through
three iteration testing of an approach and
not a usage of the hypothesized approach
of a project development of a test station.
This hybrid took the form of different
developments, including waterfall, agile,
lean, extreme programming (XP), kanban,
and feature driven development (FDD).

A HYBRID PROJECT LIFECYCLE
The MAC project lifecycle is a hybrid of

waterfall with lean and agile philosophies
added and was organized specifically

to address the needs of xEMU’s xPLSS
GSE projects. While the organization of
the MAC is specific to GSE test station
development, the MAC approach provides
any engineering team with a user’s manual
to allow for transformation of said team
from a pure waterfall development into a
platform combining various methods into
a hybrid framework. The following hybrid
methods are augmented and included in
the waterfall development skeleton of the
project framework, which preserves all
facets of the project that are not as receptive
to agile or lean methodologies, which are
best reserved for operations or externalities
that are needed by but not controlled by
project (that is, calibration, cleaning, and
fabrication of hardware).

The following methods are a comprehen-
sive list which include facets of prototyping,
incremental modeling, and spiral modeling
within the context of scrum, lean, and
kanban frameworks:
■■ Scrum (iterative and incremental delivery
project model)

•	 supports for schedule velocity
modifications, iterative, and
incremental deliveries of hardware,
rapid prototyping, and an
empowered team development.

•	 supplemental and interrelated to
scrum are XP and FDD which
assist in schedule velocity, and pair
programming to cross-train cross-
functional engineering groups, help
assist in story pointing, and break

Kanban

Risk

Kick-O� Initial Design
Review

Product
Delivery

Pre-
Fabrication

Design
Review

Pre-TRR &
Test

Readiness
Review

Lean-Based

Monitoring &
Controlling

Executing Closing
Initiating &

Planning

Management

Preliminary Design
Sprint 2 Procurement

Sprint 7

Formal Mechanical, Electrical,
Pressure Design

Sprint 3GSE Kick-Off Meeting with
Preliminary Procurements

Sprint 1 Mechanical & Electrical,
Drawing

Sprint 4, 5, 6

Figure 1. Modified agile configuration lifecycle

JU
N

E 2O
23

VOLUM
E 26/ ISSUE 2

59

A
P

P
LIC

A
TIO

N

A
R

TICLE

down work into smaller packages.
■■ Lean (waste identification project model)

•	 supports the identification and
quantification of the seven forms
of lean waste with risk management
used to illustrate how trading
minimal increases to risk with
regards to quality and safety allow for
significant decreases to schedule and
cost while preserving scope.

■■ Kanban (visualization project model)
•	 supports for value map streaming

and visualization of all project arti-
facts to ensure process control and

proper work in progress limits.

SCRUM APPROACH FOR HARDWARE
Scrum finds success in software-

intensive teams but has limitations for full
acceptance in the context of hardware-
intensive development due to constraints
of physicality (Schmidt et al. 2017).
However, there are areas where scrum has
its place in hardware development projects
with regards to prototyping and schedule
estimations (Peterson et al. 2021). Due to
the nature of the work performed in the
case study, it is advisable that schedule re-

estimations be performed as a part of wave
rolling planning when the project work
does not have sufficient historical data or
is expected to change (Briatore et al. 2021).
Using an inspired variation of earned value
metrics (EVMs) in tandem with story
pointing techniques from FDD allow for
re-estimations against work packages when
respective packages are comparable.

For context, the GSE team will create
story points for projected task effort and
once the work is completed will record
the actual effort. A reconciliation between
the projected vs. actual effort is used to
inform future sprints. This effort should
be done during the sprint retrospectives
as a function of the “what could we have
done differently?” question prompted at the
conclusion of a sprint. The table provided
shows a sample sprint from one of the
earlier activities on the project, which uses
an eight-hour effort during each day to help
complete the work package(s).

The first step is to organize the task
effort by assigning story points in a manner
in which a burn rate (that is, a periodic
measurement of task velocity to complete
story points) can be organized. Typically,
this burn rate should be constant and
follow, when possible, a linear progression.

Burndown Chart

Days

St
or

y P
oi

nt
s

Projected Effort Actual Effort
1300
1200
1100
1000

900
800
700
600
500
400
300
200
100

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2. Burndown chart of projected vs. actual effort on story points

Week 1 Week 2 Week 3

Task Actual Effort Points Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 Day 16

Meet with Component Owner and Review Rig
Requirements 128 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Meet with Resource Managers and Receive ROMs 128 128 121 111 101 99 92 87 81 75 65 55 45 42 34 24 9 0

Create Rig Cost Estimate 128 128 120 112 104 79 74 69 59 49 39 29 19 9 0 0 0 0

Create Completion Form PD 128 128 108 106 104 99 89 79 69 64 54 44 34 29 19 9 0 0

Create Rig Schedule 128 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Define Rig Scope 128 128 127 117 107 99 91 83 75 74 64 54 44 34 24 19 9 0

Create Mechanical P&ID 128 128 126 116 106 96 86 76 71 66 61 56 46 36 26 16 6 0

Create Electrical Block Diagram 128 128 123 118 113 108 98 88 85 82 67 52 37 22 7 0 0 0

Create Rough CAD Model 128 128 126 116 106 96 91 81 76 71 68 63 48 38 28 18 8 0

Create Powerpoint presentation 128 128 127 126 125 124 123 122 121 120 119 84 34 0 0 0 0 0

W
or

k
Re

m
ai

ni
ng

Table 2. Actual task effort

Week 1 Week 2 Week 3

Task Projected Effort (Burn Down Rate) Points Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 Day 16

Meet with Component Owner and Review Rig
Requirements 128 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Meet with Resource Managers and Receive ROMs 128 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Create Rig Cost Estimate 128 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Create Completion Form PD 128 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Create Rig Schedule 128 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Define Rig Scope 128 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Create Mechanical P&ID 128 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Create Electrical Block Diagram 128 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Create Rough CAD Model 128 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Create Powerpoint presentation 128 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

W
or

k
Re

m
ai

ni
ng

Table 1. Projected task effort

JU
N

E 2O
23

VOLUM
E 26/ ISSUE 2

60

A
P

P
LIC

A
TIO

N

A
R

TICLE

The second step is to record the actual
effort to demonstrate the reality of the
effort that is performed. The third step is to
reconcile the differences in an effort to re-
estimate task efforts for future scheduling.
This is done by creating a burndown chart
(that is, a graphical depiction of projected
vs. actual schedule velocity against story
point completion over time) to characterize
projected effort vs. actual effort and a
recalculation of equivalent story points
moving forward by dividing the original
story point (that is, an analogous planned
work EVM for task effort estimation) by
the story point modifier (SMI) (that is, an
analogous schedule performance index
(SPI) from the EVM).

In terms of scrum implementation, a
schema was developed and a sample sprint
shown which pairs with the EVM-inspired
metric and projected vs. task effort story
pointing. In addition to the story point and
schedule re-estimation efforts, prototyping
and the idea of a “moving prototype” that
follows the build of the GSE hardware,
allows for proof of concept and early
troubleshooting when traveling with the
actual product parallel in development.
Prototypes take the following forms and for
the MAC, prototypes include both physical
and conceptual models:

■■ Physical: Scrum is limited in its ability
to fully integrate with hardware projects
as opposed to the tested and proven
software-intensive projects. With certain
hardware, in particular GSE hardware,
physical breadboards can be made and
modified over time. The majority of test

stations in the case study are electrical
harnessing, tubing, structure, fasteners,
valves, sensors, instrumentation, a
graphical user interface with LabVIEW®,
vacuum chamber, vacuum system,
and interfaces with facility and test
articles. In most cases, the majority of
existing hardware onsite (that is, NASA
Johnson Space Center) may be used for
these breadboarding efforts. During
fabrication, mechanical and electrical
issues may be troubleshot early by
keeping a physical prototype to include
the following:

•	 A mechanical loop with all
instruments to simulate the envi–
ronment in which the test article will
reside. This model may be updated
periodically as continued purchased
parts are added to the build and
verifying functionality as the design
progresses.

•	 An electrical loop with all
instruments to simulate the
environment in which the test article
will reside. This model may be
updated periodically as purchased
parts are added to the build and
verifying functionality as the design
progresses.

■■ Conceptual: Hardware projects may
greatly benefit from a conceptual proto-
type as much of the time, these efforts are
inherently built into the project structure.
These conceptual prototypes may include:

•	 Test station mechanical piping and
instrumentation diagrams (P&ID).

•	 Creo® mechanical computer-aided

design (CAD) models.
•	 Visio® electrical schematics.
•	 LabVIEW® pseudo-code software

schemas.
■■ Software: GSE test stations are run with
LabVIEW® software and as such may
follow a prototypical scrum lifecycle. The
architecture is developed alongside the
purchased hardware and much like typ-
ical software scrums, each iteration will
improve upon the existing build.

GETTING LEAN
The lean philosophy emphasizes cutting

waste and inefficiencies (Kupiainen et al.
2015) and identifies seven forms of waste.
These have been established primarily for
manufacturing processes but have also
found their way in software development.
In the context of hardware development,
outlined are the seven forms of waste for
software intensive projects (Griffiths 2012),
which are analogous to GSE development
of hardware.

1. Defects
a)	 Defects are items delivered to the

customer that do not fulfill scope
with regards to hardware and/or
documentation. These could also be
bugs associated with software builds
for the test stations.

2. Hand-offs
a)	 This is considered the effort to

facilitate motion to communicate
information from one group to
another. Examples include if teams
are not co-located and the loss of
productivity associated or the loss

Table 3. Earned value metric augmentation on story points

Running Average
New Point Value

SMI Point
Value Itemized Point Value Group Point Value Divided

By SMI

1.07 128 Meet with Component Owner and Review Rig
Requirements Project Management 120

1.07 128 Meet with Resource Managers & Receive ROMs Project Management 120

1.33 128 Create Rig Cost Estimate Project Management 96

1.14 128 Create Contract Project Management 112

1.07 128 Create Rig Schedule Project Management 120

1.07 128 Define Rig Scope Project Management 120

1.07 128 Create Mechanical P&ID Mechanical 120

1.23 128 Create Electrical Block Diagram Electrical 104

1.07 128 Create Rough CAD Model Mechanical 120

1.45 128 Create PowerPoint presentation Mechanical, Electrical 88

JU
N

E 2O
23

VOLUM
E 26/ ISSUE 2

61

A
P

P
LIC

A
TIO

N

A
R

TICLE

of productivity during the transit of
work.

3. Waiting/Delays
a)	 These are delays associated with

approvals and reviews. These could
be approval signatures on documents
or drawings.

4. Task Switching
a)	 This is the multi-tasking between sev-

eral different projects. Lean experts
converge on as much as 40% degrada-
tion in productivity during task
switching (Cherry 2012). This could
include resources working multiple
tasks for multiple projects.

5.  Extra Processing of Extra Documenta-

tion
a)	 This includes additional work

that does not provide value to the
customer. These include unused
documents or unnecessary approvals
for several deliverable types such as
drawings, fabrication documents,
procedures, etc.

6. Unneccessary Features
a)	 These are extra pieces of functionality

which, while nice to have, are not
entirely necessary. These can include
gold-plated items that either are not
necessary or were requested by the cus-
tomer that were not formally approved.

7.  Incomplete/Partial Work

a)	 Partial work completed introduces
entropy into the systems engineering
process and does not deliver value.
This includes drawings started that
were never finished due to descoping,
documents that were created but no
longer needed, etc.

The first step is to identify the areas
across the project lifecycle development
where lean can be implemented. The rea-
sons may be as follows and were particu-
larly effective for the GSE team and may be
one or any combination of the following:
•	 internal processes that were developed

to preserve quality or add value that

Figure 3. Typical scrum-style sprint

The Product Owner will organize
the backlog and the Development
Team will organize the sprint
backlog. Here, the team breaks
down Epics into User Stories.

Retrospectives will give the
ScrumMaster and Development
Team to recalibrate, determine
what went well, what didn’t and
evaluate velocity and burndown
rates.

Epic:
Phase1: Kick-Off Meeting

User Story 1: Prepare Project
Management Documents

User Story 2: Prepare Engineering
Documents

Review will be the formal point
whether customer acceptance is
obtained on the Customer Review
Point on Product Owner and
Customer validation.

Demo will give customer a chance
to take a look at the product and
involves the Development Team,
Product Owner, Customer,
ScrumMaster.

The Development Team will
perform the backlog review,
estimate schedule, define sprint
goal, establish definition of done
and plan to deliver the sprint goal.

Sprints generally take 2–4 weeks
but for hardware development
projects, may take longer —
especially with the MAC. These
are where the User Stories are
completed

Backlog Prioritzed Sprint Planning Sprint (4 Weeks)

Sprint Retrospective Sprint Review Sprint Demo

Week 2 Week 3Week 1

Moving Prototype

Story Point: Meet with Component Owner
and Review Rig Requirements
Story Point: Meet with Resource Managers
& Receive ROMs
Story Point: Create Rig Cost Estimate
Story Point: Create Project Contract
Story Point: Create Rig Schedule
Story Point: Define Rig Scope

User Story 1

Story Point: Create Mechanical P&ID
Story Point: Create Electrical Block Diagram
Story Point: Create Rough CAD Model
Story Point: Create PowerPoint presentation

User Story 2

Story Point: Create Rig Cost
Estimate
Story Point: Create Project
Contract

Story Point: Create Mechanical
P&ID
Story Point: Create Electrical
Block Diagram
Story Point: Define Rig Scope

Story Point: Create Rough CAD
Model
Story Point: Create Powerpoint
presentation
Story Point: Create Rig Schedule

ScrumMaster & Dev Team monitor burndown and velocity

Story Point: Meet with Component Owner
and Review Rig Requirements

Story Point: Meet with Resource Managers
& Receive ROMs

GSE Testing Team (SIPPE) ask
1) What did we do yesterday?
2) What are we doing today?
3) What impediments are in
 our way?

Daily Scrum

JU
N

E 2O
23

VOLUM
E 26/ ISSUE 2

62

A
P

P
LIC

A
TIO

N

A
R

TICLE

were deemed to either increase cost or
schedule and do not deliver intended
quality assurance or control, which
may include performing organization
processes on drawing and drafting
review, purchasing of hardware, and
signature approval review timeframes for
documentation.

•	 external processes that are needed
preserve quality or add value that while
are deemed valuable may have processes
or standard operations that may
introduce unnecessary cost or schedule
delays, which may include contractual
agreements on purchasing and quality
assurance or customer suggested
processes that may not delivered the
anticipated value.

•	 waiting periods for external review such

Table 5. Consequence ranking table

CONSEQUENCE RANKING

Category 1 2 3 4 5

Quality Remote loss of quality Minimal loss
of quality

1 standard
deviation away
from quality
standard

2 standard deviations
away from quality
standard

3 standard
deviations away
from quality
standard

Safety Remote risk of injury Minimal risk
of injury Minor injury Severe injury Loss of life

Cost < $50K impact $50k to
$100K impact

$100K to $250K
impact

$250K to $500k
impact > $500K impact

Scope Remote impact to scope
objectives

Minimal
impact
to scope
objectives

Considerable
impact to scope
objectives

Major impact to scope
objectives

Severe impact to
scope objectives

Schedule

Major disruption of
service not involving
client interaction and
resulting in either
associate re-work or
inconvenience to clients

1 to 2 month
impact

3 to 4 month
impact 5 to 6 month impact > 7 month impact

to schedule

Table 6. Likelihood ranking table

LIKELIHOOD RANKING

Score Description Probability Range

1 Very Unlikely < 10 %

2 Unlikely 10% to 30%

3 Possible > 30% to 60%

4 Likely > 60% to 90%

5 Very Likely > 90 %

Table 4. Prompt list example

ID# Area of
Concern

Project
Management

Area(s) Affected

Lean Waste
Catagory

Additional
Information

Average
Wait
Time

Potential
Wait
Time

Potential Corrective Action?

4
Purchasing
& Quality
Assurance

Schedule, Cost

Extra
Processing,
Unnecessary
Features

The GSE team has
had challenges
with delivery on
certain items sent
to the purchasing
department with
contractually imposed
quality codes to GSE
hardware.

X 0.5X

By reducing the quality codes on certain
GSE procurements that increase quality
and safety to a marginal yet acceptable
level, lead times can be diminished. These
include the lead times to find a vendor
that can provide certain documents to
satisfy quality codes and also the lead
time dedicated to the vendor providing
said codes.

JU
N

E 2O
23

VOLUM
E 26/ ISSUE 2

63

A
P

P
LIC

A
TIO

N

A
R

TICLE

as signature review cycles, drafting engi-
neering discipline group review, technical
process specification (TPS), and discrep-
ancy report (DR) review and signature.

The team records these areas in a prompt
list, risk breakdown structure or include di-
rectly in a FMEA spreadsheet. The provided
template is a sample. The next step includes
determining a method by which to qualify
and/or quantify metrics for areas classified
as lean waste. For the majority of lean waste
for the GSE team, the primary recording
method was days. Days could correlate
to either schedule, cost, or both. Many of
these metrics could be derived from project
documents or repositories.

Mean wait times across the project
were found from historical records while
potential wait times were determined either
by the Delphi technique, polling, or by
estimation methods including triangular
or beta distributions. The GSE team
was able to gather metrics for cleaning,
calibration, drafting, procurements,
document signatures (TPSs/DRs/
procedures) strictly from repositories.
Recommendations on time improvements
(elimination of paperwork, reduction in
calibration cycles, reduction in signature
cycle) was performed by inspection, Delphi
method, and beta or triangular distribution
estimation.

A sample, prompt list line item is given.
While several parameters are given notion-
ally, average and potential wait times are
unlisted as the data regarding those is proj-
ect sensitive. For this sample, only one form
of waste is given for one category while the
GSE team found several areas of potential
lean wastes.

Once the lean waste and metrics are
populated in the provided templates, those
selected forms of waste will be populated to
the FMEA. The tool works twofold both as
a risk management tool and a FMEA. The
tool contains the following categories for
the first step of the process:
■■ Risk number

•	 What is the risk number associated
with the process?

■■ Name
•	 What is the name of the threat/

opportunity associated with the
process?

■■ Identification numer
•	 What is the associated identification

number of the threat/opportunity?
■■ Description

•	 What the risk associated with the
process?

■■ Itemized from description
•	 How would these threats/opportuni-

ties decompose from the parent risk
listed in the description?

◆◆ Instead of a traditional failure
mode, next level effects and end
effects to the cascading effects are
consolidated into one category for
simplicity while still preserving
and effectively illustrating the
process.

■■ Impact areas
•	 Safety? Schedule? Quality? Cost?

Scope?
■■ Threat or opportunity distinction

•	 One of the hallmarks of this
augmented FMEA which differs
from traditional approaches is that
it is modified to work inversely
when compared to a typical FMEA.
For example, one of the central
purposes of a traditional FMEA is
to reduce risk, which this FMEA
functions as by identifying a risk
with an associated likelihood and
a consequence at the onset. An
updated likelihood and consequence
evaluation are calculated after
actions to correct the current project
posture are proposed. In addition,
the tool also functions as a means
to understand if an opportunity
that can improve schedule, budget,
or scope is sensitive to fluctuations
in reduced quality or higher risks
to safety. If the post likelihood and
consequence are within an acceptable
limit (that is, in the green zone of the
likelihood and consequence matrix),
it could be deemed and a viable
option to exploit the opportunity
while safety and quality are still at
acceptable levels.

After population of the preliminary
information is completed, an assessment
the following categories allows for a risk
posture to be established.

•	 Consequence: How severe is the impact
should the risk manifest?

•	 Likelihood: What is the probability of this
risk manifesting?

Templates for each of the consequence
and likelihood categories are given and are
tailorable for the user. In many cases, the
categories are presented with a general,
non-numerical value so that the user may
modify them to suit their needs.

At the conclusion of the consequence
and likelihood assignment will be the
population of the risk priority number
(RPN). This RPN is given twice: once
before analysis of alternatives and
recommendations and once after analysis
of alternatives or recommendations. The
range is a number between 1 and 25. The
RPN is a product of the two risk categories.

After identification of the primary cat-
egories of potential issues and effects and
assignment of a RPN, the next steps will be
to identify what risk mitigation efforts, if
any, should be implemented:

•	 Action recommended: What are
the possible actions to remedy the
requirement?

•	 Responsible party: Who is responsible for
making sure the actions are completed?

•	 Actions taken: Will the Action Recom-
mended be taken with respect to RPN?

If the user implements corrective
actions in the form of alternatives or
recommendations from the previous
step, the user will update of the RPN
with the intention of reducing the risk
posture. As indicated previously, the
RPN is given twice: once before analysis
of alternatives and recommendations
and once after analysis of alternatives or
recommendations. Current limitations to
this approach across the three iterations
of model tempering include finite number
of subject matter expert participants,
finite risks specific to GSE development,
and iterations limited to project resource
allowance dedicated to the experiment.
While sensitivity across each expert per
each risk was a limitation of the study,
the approach of an FMEA to gather data
from individuals of varying disciplines
allow for normalization and convergence
of an estimate that is merited. The sample
template of the FMEA is shown below for
Item #4 from the prompt list alongside
with a visual matrix representation
of reduced or increased threat and
opportunity, respectfully.

Once a posture on a threat or opportu-
nity is quantified, the data can be used to
inform the following but not limited to:

•	 inform upper management on processes
thay may result in extended schedule and

CONSEQUENCE

LI
K

EL
IH

O
O

D

5

4

3

2

1

54321

Figure 4. Likelihood vs. consequence
matrix

JU
N

E 2O
23

VOLUM
E 26/ ISSUE 2

64

A
P

P
LIC

A
TIO

N

A
R

TICLE

budget that may be reduced or eliminated
while keeping safety and quality secured.

•	 inform the customer of certain threats or
opportunities they may wish to consider
when accepting a certain scope of work.

•	 populate project schedules to contrast
before and after postures of threat and
opportunity forecasting.

CONCLUSION
The MAC, a hypothesized approach to

project lifecycle development, examines
various, potentially viable offers for project
lifecycle development. While the intended
use is to exploit areas of alternative lifecycle
approaches holistically, it is possible to
extract possible derivatives of independent

ideas if they may be applicable to
peripheral projects with comparable needs.
Limitations in this study include the scope
of only utilizing GSE developments in the
examination and the inability to fully vet
the hypothesized lifecycle development in
actual project work.  ¡

Table 7. FMEA for lean waste management

4A) RISK: Extended time in finding
vendors: With GSE, purchasing will
spend more time securing a vendor that
can provide the necessary paperwork
(i.e., certifications, traceability, etc.)

4F) OPPORTUNITY: While not all items
need to be procured with the same
pedigree, (i.e., Q-codes, certificates,
traceability), many do not. As such,
safety can still be maintained and still
deliver a sound product.

4E) OPPORTUNITY: While not all items
need to be procured with the same
pedigree, (i.e., Q-codes, certificates,
traceability), many do not. As such,
quality can still be maintained and still
deliver a sound product.

4D) RISK: Higher costs in procuring
as GSE: This is twofold (2/2). Producing
Q-codes increases costs from the vendor.

4C) RISK: Higher costs in procuring as
GSE: This is twofold (1/2). Even if the
vendor is secured, the Q-codes histori–
cally are not guaranteed to be met.
This increases costs to find new vendors.

4B) RISK: Difficulty obtaining quality
codes (Q-code): Even if the vendor is
secured, the Q-codes (quality codes)
historically are not guaranteed to be
met. This delays schedule.

What are the
possible actions to

remedy the
potential risk or

exploit opportunity?

Will the Action
Recommended
be taken with

respect to
RPN?

What is the
risk/opportunity

number
associated with

the process?

What is the name
of the

risk/opportunity
associated with

the process?

What is the
identification?

Safety?
Schedule?
Quality?

Cost? Scope?

How would these
risks/opportunities decompose

from the parent risk listed
in the description?

What is the risk
associated with

the process?

Is this a risk or
opportunity for

the project?

Who is
responsible

for making sure
the actions are

completed?

RP
N

(1
–2

5)
(A

FT
ER

 AN
AL

YS
IS

)

LI
KE

LI
HO

OD
 (1

–5
)

CO
NS

EQ
UE

NC
E

(1
–5

)

RP
N

(1
–2

5)
(B

EF
OR

E A
NA

LY
SI

S)

LI
KE

LI
HO

OD
 (1

–5
)

CO
NS

EQ
UE

NC
E

(1
–5

)

DescriptionNameRisk # ID # Risk/Opportunity Impact
Areas?Itemized from Description Action

Recommended
Responsible

Party
Actions
Taken

Procure as GSE
Non-Critical or

Class III and
Upgrade

Project
Manager,

Design Lead.
Schedule

Schedule

Cost

Cost

Quality

Safety

Project
Manager,

Design Lead.

Project
Manager,

Design Lead.

Project
Manager,

Design Lead.

Project
Manager,

Design Lead.

Project
Manager,

Design Lead.

Procure as GSE
Non-Critical or

Class III and
Upgrade

Procure as GSE
Non-Critical or

Class III and
Upgrade

Procure as GSE
Non-Critical or

Class III and
Upgrade

Procure as GSE
Non-Critical or

Class III and
Upgrade

Procure as GSE
Non-Critical or

Class III and
Upgrade

Yes

Yes

Yes

Yes

Yes

Yes

RISK

RISK

RISK

RISK

OPPORTUNITY

OPPORTUNITY

4A

4B

4C

4D

4F

4F

6

2

6

6

4

4

3

2

3

3

2

2

3

4

5

5

1

1

5

5

3

3

1

1

2

1

2

2

2

2

15

20

15

15

1

1

4

Procurements for
GSE hardware are

prolonged in terms
of schedule and
more expensive

when compared to
their Class III or

Class I-E
counterparts if they
are bought strictly
as GSE. Column D

assumes if
purchased as strict

GSE, Column I
assumes bought as

Class III, Non-Critical
GSE or Upgraded.

GSE Non-
Critical

Hardware
Procurement
Purchased as

Strict GSE

Figure 5. Risk matrix with before and after lean mitigation

CONSEQUENCE

BEFORE

4C
4D

4E
4F

4E
4F

4A 4C
4D

4B

4B

4A

LI
K

EL
IH

O
O

D

5

4

3

2

1

54321
CONSEQUENCE

CONSEQUENCE

O
PP

O
RT

U
N

IT
IE

S
TH

RE
AT

S

CONSEQUENCE

AFTER

LI
K

EL
IH

O
O

D

5

4

3

2

1

54321

LI
K

EL
IH

O
O

D

5

4

3

2

1

54321

LI
K

EL
IH

O
O

D

5

4

3

2

1

54321
Figure 6. Threats and opportunity before and after chart

4A
0

5

10

15

20

25

4B 4C 4D 4E 4F

Threats & Opportunities

Threats & Opportunities

Ri
sk

 P
rio

rit
y N

um
be

r

Before After

JU
N

E 2O
23

VOLUM
E 26/ ISSUE 2

65

A
P

P
LIC

A
TIO

N

A
R

TICLE

REFERENCES
■■ Briatore, S., and A. Golkar. 2021. “Estimating Task Efforts in

Hardware Development Projects in a Scrum Context.” IEEE
Systems Journal, 15(4), pp.5119-5125.

■■ Cherry, K. 2012. Multitasking: The cognitive costs of
multitasking. About, Cognitive Psychology. http://psychology.
about.com/od/cognitivepsychology/a/costs-of-multitasking.htm .

■■ Griffiths, M. 2012. PMI-ACP Exam Prep, 2nd Edition.
Minnesota: RMC Publications, pp.56-58.

■■ Ings, S. 2020. “Boots on The Moon.” New Scientist 246, no.
3284 (2020): 24.

■■ Kupiainen, E., M. V. Mäntylä, and J. Itkonen. 2015. “Using
Metrics in Agile and Lean Software Development–A
Systematic Literature Review of Industrial Studies.”
Information and Software Technology, 62, pp.143-163.

■■ Martin, P. K. 2021. NASA’s Management of Artemis Missions.
Report No. IG-22-003.Pdf. https://oig.nasa.gov/docs/IG-22-003.
pdf (November 15).

■■ Peterson, M., and J. Summers. 2021. “When worlds collide–a
comparative analysis of issues impeding adoption of agile for
hardware.” Proceedings of the Design Society, 1, pp.3451-3460.

■■ Project Management Institute (PMI). 2017. Agile Practice
Guide. First Edition. Newton Square, PA.

■■ Schmidt, T. S., A. Chahin, J. Kößler, and K. Paetzold. 2017.
“Agile development and the constraints of physicality: a
network theory-based cause-and-effect analysis.” In DS 87-4
Proceedings of the 21st International Conference on Engineering
Design (ICED 17) Vol 4: Design Methods and Tools, Vancouver,
Canada, 21-25.08. 2017 (pp. 199-208).

ABOUT THE AUTHORS
Michael A. Cabrera attended Texas Tech and received un-

dergraduate degrees in accounting and mechanical engineering.
He then attended the University of Houston – Clear Lake and
received graduate degrees in physics and engineering manage-
ment. Currently, he is a PhD candidate in systems engineering
at Colorado State University. Professionally, he has experience
as a robotic operations analyst on Shuttle and ISS operations, an
offshore design engineer on an oil rig, a project manager for the
treadmill aboard the ISS, and currently works as a project manag-
er supporting the next generation space suit. He has a passion for
management, team building, teaching, and contining education.

Steve Simske is a professor of systems engineering at Colorado
State University. Steve was at Hewlett Packard (HP) from 1994
to 2018 and was an HP fellow, vice president, and director in
HP Labs. He has authored more than 450 publications and more
than 200 US patents. Steve is an IEEE fellow and an NAI fellow.
He is an IS&T fellow and its immediate past president (2017-
2019). Steve is the steering committee chair for the ACM DocEng
Symposium, which meets annually and benefits from University
of Nottingham CS Professors Brailsford and Bagley being active
leaders. Dr. Simske was a member of the World Economic
Forum Global Agenda Councils from 2010-2016, including
illicit trade, illicit economy, and the future of electronics. In his
20+ years in the industry, Steve directed teams in research on
3D printing, education, life sciences, sensing, authentication,
packaging, analytics, imaging, and manufacturing. His books
Meta-Algorithmics, Meta-Analytics, and Functional Applications
of Text Analytics Systems bring computer science patterns and
principles to address intelligent (AI/ML) systems. At CSU, he
has a cadre of on-campus students in systems, mechanical,
and biomedical engineering, along with a larger contingent of
online/remote graduate students researching in a wide variety of
disciplines.

■■ Scaled Agile Framework c. 2021. ”SAFe 5 for Lean Enterpris-
es.” viewed 8 March 2022. https://www.scaledagileframework.
com

■■ Schindel, W., and R. Dove. 2019. ”Agile Systems Engineering
Life Cycle Model for Mixed Discipline Engineering.” Pro-
ceedings International Symposium. International Council on
Systems Engineering, Orlando, US-FL, 20-25 July.

■■ TecFAR Hub c. 2022. ”TechFAR Handbook.” viewed 20 March
2022 https://techfarhub.cio.gov/handbook .

■■ US Government Accountability Office. 2020. Agile Assessment
Guide: Best Practices for Agile Adoption and Implementation.

Rosser  continued from page 56 ABOUT THE AUTHOR
Larri Ann Rosser has worked in engineering and technology

for four decades as an electrical engineer, software engineer,
systems engineer, and architect. She holds a BS in information
systems and computer science from Charter Oak State college,
and a Master of Science in systems engineering from Worcester
Polytechnic Institute. She holds multiple patents in the man
portable systems domain and is a CAP certified architect, a SAFe
program consultant, and a Raytheon six sigma expert. She is the
co-chair of the INCOSE Agile Systems and Systems Engineering
Working Group, a member of the INCOSE Complex Systems
Working Group, and a member of the NDIA SED Architecture
Committee, and the NDIA ADAPT working group. At Raytheon,
she works with programs and product lines to apply modern
methods to system realization.

https://www.scaledagileframework.com

Systems Engineering: The Journal of The International Council on Systems Engineering

Call for Papers
he Systems Engineering journal is intend ed to be a primary
source of multidisciplinary information for the systems engineer-
ing and management of products and services, and processes of
all types. Systems engi neering activities involve the technologies

and system management approaches needed for
• definition of systems, including identi fication of user

requirements and technological specifications;
• development of systems, including concep tual architectures,

tradeoff of design concepts, configuration management during
system development, integration of new systems with legacy
systems, inte grated product and process development; and

• deployment of systems, including opera tional test and
evaluation, maintenance over an extended life-cycle, and
re-engineering.

Systems Engineering is the archival journal of, and exists to serve the
following objectives of, the International Council on Systems Engineer-
ing (INCOSE):

• To provide a focal point for dissemination of systems
engineering knowledge

• To promote collaboration in systems engineering education
and research

• To encourage and assure establishment of professional
standards for integrity in the practice of systems engineering

• To improve the professional status of all those engaged in the
practice of systems engineering

• To encourage governmental and industrial support for research
and educational programs that will improve the systems
engineering process and its practice

The journal supports these goals by provi ding a continuing, respected
publication of peer-reviewed results from research and development in
the area of systems engineering. Systems engineering is defined broadly
in this context as an interdisciplinary approach and means to enable the
realization of succes s ful systems that are of high quality, cost-effective,
and trust worthy in meeting customer requirements.

The Systems Engineering journal is dedi cated to all aspects of the
engineering of systems: technical, management, economic, and social.
It focuses on the life-cycle processes needed to create trustworthy and
high-quality systems. It will also emphasize the systems management
efforts needed to define, develop, and deploy trustworthy and high
quality processes for the production of systems. Within this, Systems
Engineer ing is especially con cerned with evaluation of the efficiency and
effectiveness of systems management, technical direction, and integra-
tion of systems. Systems Engi neering is also very concerned with the
engineering of systems that support sustainable development. Modern
systems, including both products and services, are often very knowl-
edge-intensive, and are found in both the public and private sectors.
The journal emphasizes strate gic and program management of these,
and the infor mation and knowledge base for knowledge princi ples,
knowledge practices, and knowledge perspectives for the engineering of

systems. Definitive case studies involving systems engineering practice
are especially welcome.

The journal is a primary source of infor mation for the systems engineer-
ing of products and services that are generally large in scale, scope,
and complexity. Systems Engineering will be especially concerned with
process- or product-line–related efforts needed to produce products that
are trustworthy and of high quality, and that are cost effective in meeting
user needs. A major component of this is system cost and operational
effectiveness determination, and the development of processes that
ensure that products are cost effective. This requires the integration of a
number of engi neering disciplines necessary for the definition, devel-
opment, and deployment of complex systems. It also requires attention
to the life cycle process used to produce systems, and the integration
of systems, including legacy systems, at various architectural levels.
In addition, appropriate systems management of information and
knowledge across technologies, organi zations, and environments is also
needed to insure a sustainable world.

The journal will accept and review sub missions in English from any
author, in any global locality, whether or not the author is an INCOSE
member. A body of international peers will review all submissions, and
the reviewers will suggest potential revisions to the author, with the intent
to achieve published papers that

• relate to the field of systems engineering;
• represent new, previously unpublished work;
• advance the state of knowledge of the field; and
• conform to a high standard of scholarly presentation.

Editorial selection of works for publication will be made based on con-
tent, without regard to the stature of the authors. Selections will include
a wide variety of international works, recognizing and supporting the
essential breadth and universality of the field. Final selection of papers
for publication, and the form of publication, shall rest with the editor.

Submission of quality papers for review is strongly encouraged. The
review process is estimated to take three months, occasionally longer for
hard-copy manuscript.

Systems Engineering operates an online submission and peer review
system that allows authors to submit articles online and track their
progress, throughout the peer-review process, via a web interface.
All papers submitted to Systems Engineering, including revisions or
resubmissions of prior manuscripts, must be made through the online
system. Contributions sent through regular mail on paper or emails with
attachments will not be reviewed or acknowledged.

All manuscripts must be submitted online to Systems Engineering at
ScholarOne Manuscripts, located at:
 https://mc.manuscriptcentral.com/SYS
Full instructions and support are available on the site, and a user ID and
password can be obtained on the first visit.

T

https://mc.manuscriptcentral.com/SYS

Series Sponsor

The Future of MBSE
Session sponsor

International Council on Systems Engineering
A better world through a systems approach / www.incose.org

Watch the replays at incose.org/callingallsystems

Dr. Charles Krueger
BigLever Software

Todd Tuthill
Siemens Digital

Industry Software

Brett Hillhouse
IBM Sustainabiltiy

Software

Stephanie Sharo
Chiesi

Stevens Institute of
Technology

Troy Peterson
SSI

Rowland Darbin
INCOSE PLE

Working Group

Brian Pepper
Dassault Systemes

Session sponsor

Product Line Engineering:
Are You Missing a Piece in Your Digital Engineering Puzzle?

Dr. Bobbi Young
Worcester Polytechnic

Institute

Marco Forlingieri
IBM Engineering

https://www.incose.org/callingallsystems

INCOSEINCOSE

AUG
08

Aug
17

SEP
12–16

SEP
14–17

SEP
20–22

OCT
11–14

OCT
12–13

OCT
30–31

NOV
21–22

Aug
21–25

INCOSE Los Angeles August Meeting:  Digital Transformation
& MBSE in a Heterogenous Environment
El Segundo, CA USA

INCOSE SESA: Australian Simulation Congress 2023
Adelaide, AUSTRALIA

SAE and NASA: Energy and Mobility Conference and Expo
Cleveland, OH USA

2023 Annual INCOSE Western States Regional Conference (WSRC)
Richland, CA USA

12th Nordic Systems Engineering Autumn Tour 2023
Linköping • Copenhagen • Hamburg

AOSEC 2023: Digitalization for Engineering Complex Systems
Bangalore, INDIA

2023 INCOSE New England 5th Annual Fall Workshop
Storrs, CT USA

CSD&M (Complex Systems Design & Management) International
Conference
Beijing, CHINA

INCOSE UK Annual Systems Engineering Conference
Liverpool L7 3FA, UNITED KINGDOM

INCOSE Chicagoland: System Engineering Competency
Assessment Guide Overview
Schaumburg, IL USA

®

Future events

Future
events

	Front cover June_vol 26 Issue 2
	From the Editor-In-Chief
	Special Feature
	Setting Current Context for Agility in the Future of Systems Engineering
	Systems Engineering Agility in a Nutshell
	The Supra-System Model
	How Large Scale Agile Can Operate Systems Engineering in the Future
	Model-Based Systems Engineering as an Enabler of Agility
	Agile MBSE: Doing the Same Thing We Have Always Done, but in an Agile Way with Models
	FuSE Agility as a Foundation for Sound MBSE Lifecycle Management
	An Agile Systems Engineering Process for Stakeholder Needs Identification and Solution Concept Design
	Applying Agility for Sustainable Security
	Agile Programs Need Agile Reviews

	ApplicationArticle
	Project Lifecycle Development for a Next Generation Space Suit Project

