

INCOSE-LA Speaker Meeting

Systems Engineering at the Hello – Systems Engineering in Early
Stage R&D Working Group Update

Dr. Michael DiMario, Ann Hodges, Dr. Gary Mastin

SE in Early Stage R&D Working Group

Charter Overview

- Purpose: To provide an open forum for the development, application, and dissemination of systems engineering principles, best practices, and solutions to scaling systems engineering applications to Early Stage R&D (ESR&D) projects so that the level of systems engineering effort is commensurate with risk and the anticipated ESR&D outcomes are achieved
- Primary Goal: To provide knowledge, guidelines, and frameworks for the application of systems engineering in ESR&D

Charter Overview Cont'd

 Scope: Focus on activities at Technology Readiness Levels (TRLs) 1 – 5

Outcomes:

- An ESR&D SE framework that contains guidelines and processes for the "right" and "right-sized" tailored SE practices and products based on a TRL of 1-5 and other characteristics e.g., organizational culture and philosophies
- Papers, articles, briefings, and tutorials
- Support the development of additions to the INCOSE SE Handbook and standards related to ESR&D

Charter Overview Cont'd - Background

- Early Stage Research and Development (ESR&D) is one of the most crucial phases in the product development process
 - ESR&D is defined in terms of Technology Readiness Levels (TRLs) 1 5
 - Is a critical phase in the product development process
- Many organizations/positions/key stakeholders are unwilling to apply SE in ESR&D due to due to perceptions of SE being process/cost heavy
 - Results in technical issues with solutions, difficulty in transitioning to higher TRLs, higher R&D costs, and extended development timelines
- ESR&D differs from traditional SE in a number of important ways:
 - ESR&D addresses higher risk technologies with multiple opportunities for failure
 - ESR&D accounts for the fact that there is much about the underlying technology and its associated concept of operations that is poorly understood
 - ESR&D is a way to practice SE for organizations without a strong SE culture
 - ESR&D of focused on areas of high "system development risk"
- Lack of a commonly understood and accepted framework inhibits multi-disciplinary collaboration
 - A common framework that can be tailored and sustained for ESR&D, while enabling transition to TRL 5 and higher, is needed

Review WG Products, Initial Concepts

- CORE Team officially formed February 2020
- Charter affirmed March 2020
- INCOSE recognized WG April 2020
- INCOSE Connect Site IT Logistics
- Publications
 - "Implementing Systems Engineering in Early Stage Research and Development (ESR&D) Engineering Projects" IS20 30Th Annual INCOSE International Symposium July 18-23, 2020
 - "Perceived Conflicts of Systems Engineering in Early Stage Research and Development" Draft INCOSE InSight August 2021
- IS21 July 17-22, 2021 Panel Submission and Preparation
- Established suggested SE in ESR&D Frameworks

Initial Framework Concepts

ESR&D Framework for Research and Engineering Transition – Dr. Michael DiMario

- Innovation and research is noted with high failure
 - High risk and low return of investment
 - Projects fail at TRL 5-6 Valley of Death
 - Engineering transition is difficult and high risk
 - Research not appropriate for engineering transition
 - Basic research vs applied research
 - Solving the right problems for engineering transition
- Research and ESR&D is based in principles of expansionism vs reductionism
 - Continuous flow of ideas and experiment
 - Transition requires reductionism
- Framework must accommodate expansionism and reductionism
 - Example: Tailored process, tools and organization structure; Gated research artifacts transition to early engineered artifacts in a continual spiral of expansionism-reductionismexpansionism-reductionism using prescribed and tailored tools and processes; Research oriented engineer responsible for research whereby basic or applied research only performed to solve engineering problems

Framework Based on Risk, Industry Standards and Project Type – Sandia National Laboratories

- Risk-informed graded approach to the application of systems engineering (SE), project/program management (PM), and quality management (QM)
- Identified core set of practices that every project is required to follow from the small best-effort research efforts to large pathfinder operational systems
- Implement differing level of rigor (timing, scope, formality) based on intrinsic project risk
 - Provide research-oriented projects an efficient and solid foundation for growth either for future research efforts or further development of the research results – without stifling creativity and exploration
 - Start early in the project creation phase using a rigor-level determination template, followed by the tailoring of a project and product plan template for the determined level of rigor
- Developing project type category and subcategory templates for the riskinformed graded approach to increase efficiency and effectiveness.

SAND2020-12414C

Another Framework Based on Risk, Standards and Project Type – Los Alamos National Laboratory

- Risk-informed graded approach to the integrated application of systems engineering (SE), project management (PM), and quality management (QM)
 - Called this Mission Assurance
 - Quality standard for basic research is the ANSI standard, transitions to industry standard as TRL increases
- Identified core set of practices that every project is required to follow from basic scientific research to advanced technology development
 - Provided the Mission Assurance Support Tool (MAST) as an implementation aid
- Implemented differing level of rigor (reviews, approvals, required documentation) based on project risk
 - Start early in the project initiation phase using a rigor-level determination template
 - Review risk-level determination throughout the project and adjust as needed

LA-UR-19-25567

9-mai-21

Framework Based on Risk, Industry Standards and Project Type - Pacific Northwest National Laboratory

- Extend risk-informed graded approaches for project/program management (PM) and quality management (QM) to SE
- Define SE "triggers" which drive implementation of SE (informal, semi-formal, formal)
- Define SE risks
 - Across project life cycle (e.g., concept, development, utilization phase)
 - Across project types (e.g., assessments, product development, test and evaluation)
 - By TRL (TRL 3: defines KPPs; TRL 4+: define specification)

Why is ESR&D needed? - Pacific Northwest National Laboratory

- When system development risk is ignored or minimized
- For organizations without a strong SE capability/culture
- For organizations with a wide spectrum or project types, sponsors, and/or TRL levels
- When there is a high risk of technical failure
- When system requirements/ConOps are poorly defined
- Where there is a desire to institutionalize SE processes and procedures (e.g., CMMI level 3)
- ESR&D is a mechanism to transition engineering early out of engineering to iterate between research and engineering

IW21 ESR&D Working Group – 65 participants

Your thoughts? Problems

Thought 1

9-mai-21

Your thoughts? Solutions

Thought 1

9-mai-21

How to Get Involved

- Contact any of the core WG team to volunteer, for questions
 - > Ann Hodges, alhodge@sandia.gov
 - Michael DiMario, mjdimario@outlook.com
 - > Heidi Hahn, drsquirt@outlook.com
 - ➤ Nick Lombardo, <u>nick.lombardo@pnnl.gov</u>
 - > Gary Mastin, gary.a.mastin@gmail.com

