Introduction to Model-Based
Engineering

What does a good model smell like?

Dr. Bruce Powel Douglass, Ph. D.
Principal
A Priori Systems

www.bruce-douglass.com -
A Priori Systems

Real-Time Agile Syst nd Softwa

EE

http://www.bruce-douglass.com/

About the Author

R AL Tive UML
THrp EpITION

ADVANCES IN THE UML FOR
REAL-TIVE SySTEMS

D OING HARD TIME
DEVELOPING REAL-TIME
Systems wirh UML, OBjJECTs,
FRAMEWORKS, AND PATTERNS

BRUCE POWEL DOUGLASS

Fareword by Grady Booch

T !
JELTISIY
auransc

HEAL-TIME DESIGN
PATTERNS

ROBUST SCALABLE ARCHITECTURE
FOR REAL-TIME SYSTEMS

BRUCE POWEL DOUGLASS

REAL-TIME UML

WORKSHOP FOR
EMBEDDED SYSTEMS

Bruce Powel Douglass

A Priori Systems

eal-Time Agile Syste

REAL-TTME AGILITY

DESIGN PATTERNS ror
EMBEDDED SYSTEMSinC

An Embedded Software Engineering Toolkit

AGILE SYSTEMS
ENGINEERING

Limited Edition

Agile Product
Development

Agile Model-Based
Systems Engineering

Bruce Powel Douglass, Ph.D.

Bruce Douglass, Ph.D.

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

Senior Principal Agile Systems Engineer
Systems Engineering Tech Center
The MITRE Corporation
Can be reached at bdouglass@mitre.org
Contributor to UML standard

Contributor to SysML standard
Developer of UML Dependability Profile
Former Cochair RTAD Task Force for the OMG

INCOSE Lunch and Learn Series

Introduction to Modeling

Introduction to Agile and Model-Based Engineering

Engineering Agile Requirements: Epics, Use Cases, and User Stories

Agile Model-Based
Systems Engineering

Improving Requirements with Use Cases

Model-Based Interface Control Documents

A copy of Agile Model-Based
ngtiig‘nsa'a‘a?r;fter:gngng%?‘tfgo“ wil From Systems to Downstream Engineering: The Hand Off]
session. You must be present to win.
If you do not acknowledge your
presence when called, another
attendee will be selected.

‘ MBSE and Safety Analysis]

Model-Based Testing

A Priori Systems © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

Real-Time Agile Systems and Software

Starting Definitions

Model

— Is arepresentation of a system of interest from a particular viewpoint, capturing attributes for a
specific purpose. A model is always an abstraction in that it focuses on properties of interest at the
expense of properties not of interest and at a specified level of precision (detail).

MBE (Model-Based Engineering)

— “An approach to engineering that uses models as an integral part of the technical baseline that
includes the requirements, analysis, design, implementation, and verification of a capability, system,
and/or product throughout the acquisition life cycle.” (Final Report, Model-Based Engineering
Subcommittee, NDIA, Feb. 2011)

MBSE (Model-Based Systems Engineering)

— “The formalized application of modeling to support system requirements, design, analysis,
verification and validation activities beginning in the conceptual design phase and continuing
throughout development and later life cycle phases.” (INCOSE MBSE Report, September 2007)

MDD (Model-Driven Development)
iThe use of models for the specification and design of software-based systems.

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 4

Starting Definitions

DE (Digital Engineering)

— Digital engineering is the ability to perform discipline-specific engineering by collaborating with
other disciplines and by leveraging authoritative system data in digital form from those disciplines
within my tools of choice and in the right format.

DE Platform

— A standard platform for projects which includes pre-installed tools, tool integrations, processes, and
links to training and other knowledge / skill resources with the intent of allows quick start up of
iInternal and sponsor-related projects.

Digital Thread

— A connected set of models of a system in different lifecycle stages, including specification, design,
operation, and maintenance.

Single Source of Truth

— Each important datum is located in a singular, authoritative place and is connected, via navigable
links, to all other relevant data in that or other repositories. Note: this doesn’t mean that all data are
‘in the same repository but the authoritative source for each datum is singular.

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 5

Modeling For
Beginners

Drawing vs Modeling

What’s a model?

Models & Views

A Priori Systems © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

Real-Time Agile Systems and Software

Foundational Concept of Modeling

e Uses a precise
s ~N A model focuses language
A drawing is a picture on system aspects -
with only imagined of interest and Stores
semantics and no \ ignores others underlying
underlying repository semantics in
of information y Kdellrepository)

Drawing % Modelin

Supports h
verification
Once you're done through review,
drawing, then go Generates any needed execution and/or
do the “real work” documentation from formal methods
the model repository -)

Note: it IS possible to use a modeling tool solely for drawing and not modeling,

“.&& but it’s not a good idea!

A Priori Systems © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

Real-Time Agile Systems and Software

So What IS a Model exactly? Models have scope

. N
Modeling is the development of
a set of system data of relevant Views Models have purpose

systems and their properties

_ J

N

Models have precision

u
: : N
Models have views (e.g. diagrams)] .} Models have accuracy
Diagrams show subsets of eng. data @ Models have fidelity
Diagrams have singular purpose

Models are falsifiable

Diagrams answer questions

Models are verifiable

Models are
Interconnected datal!

Diagrams support specific reasoning

A Priori SYSthS © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

Real-Time Agile Systems and Software

So What IS a Model exactly? Models have scope

4) .
Modeling i
a set of g

@I To beclear,youdo =
Models ha NOT mOdeI in ViSIO Or curacy
Ll PowerPoint; you can E

zm = oOnly draw pictures

Diagrams support Spe :

DOSEe

able

flable

Models are
Interconnected datal!

Uses of Diagrams and Tabular Views

* Data Entry

— Drawing diagrams or entering data into tables/matrices is a way of entering
Information into the model

— When you create an element on the diagram, the model either
o Refers to an existing element, and updates it based on your actions, or
o Creates a new element in the model repository
« Model visualization

— Creating a diagram or tables allows you to create a view of a subset of the model
Information

« Simulation / Execution Debugging & Execution Control

— Some modeling tools provide special diagrams and tools to control execution,
Insert events, change values, set breakpoints, etc.

A Priori Systems
Real-Time Ag ile Systems and Software © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 10

Executable Models
e WHY

To make sure the model isn’t stating “utter nonsense.” >
Models make declarative and imperative statements of truth g @
1“}‘: 4

It is absolutely crucial that we have a means by which we can
verify that the statements of truth made by the model can be
verified or demonstrated to be true

o Such models are said to be “falsifiable”; this means that
there is a way to demonstrate that a false model is indeed
false

The larger the model, the more important this is

The more significant the impact of the model or system, the
more important this is

* Rhapsody, Magic Draw, and Sparx Enterprise Architecture can
build and execute models (with differing levels of fidelity)

A Priori Systems

eeeeeeeeeeeeeeeeeeeeee

nnnnnnnn © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

“Any language rich enough to
say something interesting is
also rich enough to say utter
nonsense that at first glance
sounds reasonable. ”

- Douglass’ Paradox

Declarative statements
identify what you want to
happen; imperative
statements identify how to
make something happen.

11

What do we mean by “verification & validation” of work

products (e.g. models)?

Syntactic
Verification

¢

‘ Semantic: Is the content c

« Compliance in meaning
Performed by engineering personnel

Three basic techniques

+ Semantic review (subject matter expert & peer) —
most common, weakest means

+ Testing — requires executability of work products,
impossible to fully verify

*+ Formal methods — strongest but hard to do and

N subject to invariant violation /

Syntactic: Is it well-formed?

— “Compliance in form” °
Performed by quality assurance personnel
* Audits —work tasks are performed as per plan

and guidelines °

* Syntactic review — work products conform to
standard for organization, structure and format °
-) :

| N

Some common techniques

Valid: Does it solve the right problem?
Validation = “meets the stakeholder need”

Performed by customer + engineering

Review — (subject matter expert & customer) — most
common, weakest

Simulation — show simulated input - outputs
Sandbox — exploratory usage in constrained
environment

Flight test — demonstration of system capabilities

A Priori Systems © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

Real-Time A gile Systems and Software

+ Deployment — early usage of system of partial
capability
L ———— 12

4

Enterprise wide
capabilities

Employing
modeling as an
organizational
standard approach;
managed reusable

INCOSE Organizational Model-Based Capabilities Matrix

DE Platform
infrastructure, tooling,
training, and processes
widely applied across
organization

DE Assets
3 Moderately Wide-scale use of Model integrated with
Program/project wide High modeling other functional
capabilities throughout projects disciplines, digital
threads defined and
digital twin
2 Moderate Standardizing use Integration of modeling
Modeling standards are of modeling into processes,
applied standardized reviews
and quality assurance
1 Low Answer specific Modeling efforts
Limited use of guestions during address specific
modeling development objectives and
guestions
0 None Litlte or no use of models in systems
No MBSE capability engineering efforts; use of document-based,
siloed data.

https://connect.incose.org/Pages/Product-Details.aspx?ProductCode=MBCM

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

A Priori Systems

Real-Time Agile Systems and Software

https://connect.incose.org/Pages/Product-Details.aspx?ProductCode=MBCM

Project-Oriented Modeling Maturity

A Priori Systems

Level Benefit Focus Technologies
4 High Large-scale breaking DE Platform forms the
Integrated cross platform down with federated core work environment
modeling models; connecting
tools and data
3 Moderately Use of verifiable, Executable state and
Executable High testable models; activity models, model-
based test; use of
guantitative metrics
2 Moderate Wide-spread use of Use of modeling
Standardization modeling within the guidelines and standards,
project; single strong integration into
source of truth engineering process
1 Low Visualizing Reverse engineering,
Visualization engineering data Picture drawing,
“boutique engineering”
0 None Manual, time intensive heroic development with

Textual / code-based/
siloed document-based
development

disconnected, siloed data

Maturity

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

14

SysML
Modeling
Views

Use case diagram

State diagram

etect e Intent

Requirements diagram

Parametric diagram

- = 1 | &« 77 Activity diagram
~~~~~~~~~~~~ : e monitacon =) @
| I ket . ‘-w“m ¢
State F|OV\{
Behavior Behavior
: : Structure
Functionality I\/I O d el
Parametrics .
Interactions _
Structure/Internal Block diagram
- u:IJ:;,u 2l : 3 -'M e

Sequence diagram

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

Timing diagram

15



UML and SysML — The Preeminent Modeling Languages

Sys ML (systems)

/ M L (software)

SysML Pillar

Ve

Parametric

Constraint

Constraint Block

Parametric Diagram
Parametric Constraint

UML4SysML
/" Structural Package Signal Block o A
: . oc Block Definition Diagram
Class Di Class Profile Operation Part :
ass Diagram Object (Instance)|  Stereotype  Port ar Internal Block Diagram
Structure Diagram Jf o Value Property S A
- Attribute Interface : yp
Deployment Diagram Pack Di Units Full port
e , , 2
Functional (declarative) Use case Requirement SIETLITEMIE, D";?ram
Use Case Diagram Requm_ement T‘? €
Allocation Matrix )
] _ ] I
Behavioral (imperative) State Diagram State «continuous»
Communication Diagram Activity Diagram ~ Event «discrete»
Timing Diagram Sequence Diagram éCUO”I o «control»
S Interaction Overview ontrol Flow - «probability» y

A Priori Systems

N

_

At the UML 101/SysML 101 level, they are the same, except some elements are renamed

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

16

7




Architecture Frameworks

Zachman Framework

ENTERPRISE ARCHITECTURE - A FRAMEWORK ™

DATA what | FUNCTION tiow | NETWORK ~ Where | PEOPLE  who ME Whes | MOTIVATION iy
Ut ot Busness
Business. Business Peckorms. 40 e Impertat o e Busisass Sonicant 1 the Dusiness e | (coNTEXTUAL
Gl Process » Class of Node = Maper Busress Mapx Plonmer
Business Thing Locton (T wtOrce Gowrsiiegy
e o0 Busnoss Pan BUSINESS @
MODE!

lues i Fogy . R OMG UNIFIED
e Dl o = e s = g ARCHITECTURE
= 2w e W RAMEWORK®

pcaton (oot 5 3 T & e
2 e - - - csigmer
Dsigwr epdray ey ey pion = Dotver Cyde = ocessing i
@9 Privcal Owa . o - ) 5 Rue TEC Y
L . . MODEL
(PHYSICAL) H ¢ )
y Buitior . s - Fure e s Poccle Time e . Buitder
- V0 - Dua . = Saean e .
0 g Dwa 05 Progam 7] e ) 7] TAILED
N REPRESEN-
TATIONS (TA" S
(OUT-OF-
) c )
Conr e . En s o

FUNCTIONING
ENTERPRISE ENTERPRISE

DoDAF

Definition: An architecture framework is an encapsulation of a minimum set of practices and requirements

. for artifacts that describe a system's architecture.
|

A Priori Systems © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 17

ssssssssssssssssssssssssssssssss




What i1s UML?

.. . UNIFIED
Unified Modeling Language

Diagrams and views M “ |l EI.I N G
Model elements I.ANG“AGE "

4-Tier Metamodel Architecture

A Priori Systems © 2021 BRUCE POWEL DOUGLASS . ALL RIGHTS RESERVED . 18



What 1s UML?

» Unified Modeling Language see hitp://www.omg.org/spec/UML/2.5/PDF/

Comprehensive full life-cycle 3rd Generation modeling language
— Standardized in 1997 by the Object Management Group (OMG)

— Incorporates state of the art Software and Systems development concepts

Matches the growing complexity of real-time systems

— Large scale systems, Networking, Web enabling, Data management

Extensible and configurable

UML supports but doesn’t require object-oriented development

UML is process agnostic

— By design, the UML is meant to be used with any reasonable development process

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.


http://www.omg.org/spec/UML/2.5/PDF/

UML Features

« UML is a graphical language

Diagrams form the primary means by which models are created and understood

Packages are folders that contain model elements including both diagrams and the elements they
portray.

o This applies to the UML itself but also to the user models (designs) you create

The key is the underlying semantic repository of information about the system you're modeling
A diagram type is defined by the types of things that can be represented and their symbology
A diagram usage is the purpose for a diagram, which subsets the kinds of elements used

Example:
o Aclass diagram is a type of UML diagram
o Uses of class diagrams: class, structure, object, package, task, subsystem, architecture, interface

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.



UML Semantic basis

« UML is constructed using a 4-tier metamodel hierarchy
— M3 — Meta-metamodel (MOF Core language)
— M2 — Metamodel (UML Language)
— M1 - Design model (model)
— MO - Instance model (deployed system)

« The UML definition itself is divided up into packages to
support

— Modularity
— Layering

— Partitioning
— Extensibility
— Reusability

MO: Instance
Operational Systems Layer

M1: Model
User Model (design) layer

M2: Meta model
UML / SysML Layer

M3: Meta-meta model

“It's Meta-Turtles all

E' fA  the way down”
2

A Priori Systems
Real-Time Ag ile Systems and Software © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.



UML Diagrams

Diagram

T

Structure
Diagram

i

| [ :
) Component Object
Class Diagram Diagram Diagram
Composite Denlovment
Structure proym
) Diagram
Diagram

Profile Diagram

A Priori Systems

Real-Time Agile Systems

and Software

Package
Diagram

From UML 2.51 OMG Document Number formal/2017-12-05

Behavior
Diagram
I | !
ﬂtl:t]-'v'it}' Use Case State Machine
Diagram Diagram Diagram
Interaction
Diagram
| |
Interaction
Sequence Overview
Diagram .
Diagram
Communication Timing
Diagram Diagram

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.




What is SysML?

SysML is derived from UML
SysML Timeline

UML vs SysML

A Priori Systems © 2021 BRUCE POWEL DOUGLASS . ALL RIGHTS RESERVED . 23

Real-Time Agile Systems and Software



What is SysML?

« A graphical modeling language in response to the UML for Systems Engineering RFP developed by the Object
Management Group (OMG), International Council on Systems Engineering (INCOSE), and AP233

— a UML Profile that is both a subset and extension to UML 2
« Designed specifically for the Systems Engineering domain with extensions for requirements and analysis

« Supports the specification, analysis, design, verification, and validation of systems that include hardware, software,
data, personnel, procedures, and facilities

« SysML is the most common way to represent systems engineering information in a rigorous, structured way by
storing the information in models. We discuss models in more detail shortly.

« The pervasive application of models for systems engineering is known as Model-Based Systems Engineering
(MBSE)

Important! At a basic level of use, UML and SysML are the same language, with only minor naming differences
between them.

— More advanced uses of SysML will highlight the differences between them.

‘ Like UML, SysML is a language ﬁi‘

- and is process-agnostic.

A Priori Systems
Real-Time Ag ile Systems and Software © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.




1 Bruce Douglass releases Harmony Agile
Sys M L H I Sto ry Model-Based Systems Engineering

Agile Model-Based

d d b h it ’ - (Harmony aMBSE) prOCESS Systems Engineering
UML 1.1 Adopted by the : =
Object Management - TR
Guide o SysML — Work begun on
- Group (OMG) J
| Fu SysML 2.0
o S | . - Bruce Douglass publishes
Initial release of SysML Friedenthal et. al. Agile Mode-Based
; release A Practical Systems Engineering
for adoption Guide to SysML Cookbook

o a8 o O o 8 8 8 o ® o

o 2001 2003 2006 2019 o021
Work begun SysML 1.0 Adopted
SysML 1.6
on SysmL by the OME re%eased

AGILE SYSTEMS
ENGINEERING

Bruce Douglass publishes
Agile Systems

Bruce Douglass and Peter Engineering book

Hoffmann release
Harmony Systems

Engineering (Harmony
‘ SE) process
Click here to learn about the latest release of SysML

|
A Priori Systems © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTs Reservep, LRSS //www.omg.org/spec/SysML/About-SysML/ 25

Real-Time Agile Systems and Software



https://www.omg.org/spec/SysML/About-SysML/

Nine SysML Views

The nine SysML diagrams are categorized as follows:
— Behavioral Diagrams - dynamic change of system behavior over time

— Structural Diagrams - static system structure diagrams

— Requirements Diagram

SysML Diagrams

Y

Behavioral

1

(req)

Requirements

Structural

A

Use Case
Diagram (uc)

State Machine
Diagram (stm)

Sequence
Diagram (sd)

Activity Diagram
(act)

Block Definition
Diagram (bdd)

Internal Block
Diagram (ibd)

Package Diagram
(pkg)

Same as UML 2

Modified from UML 2

D New diagram type

A Priori Systems

Real-Time Agile Systems and Software

A

Requirements
Table

Allocation
Matrix

Parametric
Diagram (par)

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.




Characteristics of Predefined SysML Views

UML2 Analog

Lifecycle usage Essential Dynamic

simulation

Computational Supports Formal

code gen

Requirements Diagram
(req)

Static
Functionality

n/a

Requirements
Specification;
Functional Analysis

Use Case Diagram (uc)

Static
Functionality

Use case diagram

Requirements
Specification;
Functional Analysis

Activity Diagram (act) Dynamic Activity diagram — All
Behavior minor changes
Sequence Diagram (sd) Interaction Sequence Diagram All
Behavior
State Diagram (stm) Dynamic State Diagram All
Behavior
Block Definition Diagram Static Class Diagram Architecture;
(bdd) Structure (moderate change) Design
Internal Block Diagram (ibd) | Static Structure Diagram Architecture;
Structure (moderate change) Design
Parametric Diagram (par) Static n/a All
Functionality
Package Diagram (pkg) Static Package diagram All
Structure
Requirements Table Static Table n/a Requirements
Specification;
Functional Analysis
Allocation Matrix Static Matrix n/a All

l-\ Priori Systems

eal-Time Agile Systems and Software

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

27



Learning SysML: The A Priori Curriculum

“"Modeling in Anger” “Putting it all together”
Introduction to using modeling different Solve a problem from beginning
Requirements subject areas to end in the subject area
Requirements Capstone
Reqsl101 d * Requirements
Workflow
Workshop
N, . - .
. Capstone
Architecture _> P
Workflow Architecture
SysML101 SysML201 SysML202 Workshop
Basic Intermediate Advanced
SysML structure & behavioral
modeling parametrics modeling
Common Core Process Application

A Priori Systems © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 28
Real-Time Agile Systems and Software



Example

A quick look at the Pegasus
Smart Bike Trainer

A Priori Systems

Real-Time Agile Systems and Software

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

' A handlebar height
adjustment

handle bar reach
adjustment

crank arm length
adjustment

———

h
seatreach
adjustment §

—)
des. | seat height

29



Model Overview Diagram

Agile Model-Based
Systems Engineering

y applying proven rec
ing

Bruce Powel Douglass, Ph.D.

Adapted to Cameo Magic Draw
from the Rhapsody models
within the book

A Priori Systems

Real-Time Agile Systems and Software

Content Diagram Model[ 0 Pegasus Model Organization ]J

Pegasus
Smart Bike
Trainer

|

R

Requirements Table

2 RequirementsAnalysisPkg

]

1 ActorPkg

Qs

Actors

.

3 FunctionalAnalysisPkg

Use Case Properties

2

Mission:

«comments

This diagram show s the model
organization w ith important view s.

) |

ReqsPkg

UseCasePkg

2o

System Use Case Diagram

Emulate Basic Gearing Pkg

a

Emulate Bas ic Gearing BDD

.

5 SysteminterfacesPkg

]

B )

B ]

.

Control Resistance Pkg

&

Control Res istance BDD

Measure Performance Metrics Pkg

&

Meas ure Performance Metrics BDD

Emulate Front and Rear Gearing Pkg

&

Emulate Front and Rear Gearing BDD

4 ArchitecturePkg

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

30




Criteria

Requirements Table

Scope (optional): | ReqsPkg Fitter: | v
# ‘ £ Name Text
1 [R] 63 DIReg01 In DI Shifting mode, if the UP button is pressed and the system is already in the highest possible gear, then the system shall audibly beep and keep the current gearing.
2 [R] 64 DIReg02 The system shall provide shifting with a DI Shifting mode that enables the DI shifting buttons and disables the shifting levers.
In DI Shifting mode, the UP button shall shift into the next highest possible gearing from the selected gear set, as measured in gear inches.
3 [R] 65 DIReg03
In DI Shifting mode, the UP button shall shift into the next highest possible gearing from the selected gear set, as measured in gear inches.
4 [R] 66 DIReg04
5 [R] 67 DIReg05 In DI Shifting mode, if the DOWN button is pressed and the system is already in the lowest possible gear, then the system shall audibly beep and keep the current gearing.
6 [R] 638 DIReg06 In DI Shifting mode, when an upshift requires changing the chain ring, the system shall progress to the next largest gearing, as measured by gear inches.
7 [R] 69 DIReg07 In DI Shifting mode, when a downshift requires changing the chain ring, the system shall progress to the next smallest gearing, as measured by gear inches.
8 [R] 70 DIReq10 The system shall enter DI Shifting Mode by selecting that option in the Configuration App.
9 [R] 71 DIReq11 Once DI Shifting mode is selected, this selection shall persist across resets, power resets, and software updates.
10 [R] 72 DIReq12 Mechanical shifting shall be the default on initial start up or after a factory-settings reset.
11 [R] 73 DIReq13 The system shall leave DI Shifting mode when the user selects the Mechanical Shifting option in the Configuration App.
12 [R] 74 efarg01 The system shall notify the rider of the current number of chain rings and cassette rings on start up.
13 [R] 75 efarg02 The system shall accept a rider command to enter a mode to configure the gearing.
14 [R] 76 efarg03 The system shall accept a rider command to set up from 1 to 3 front chain rings, inclusive.
15 [R] 77 efarg04 The default number of chain rings shall be 2.
16 [R] 78 efarg05 The rider shall be able to decrement the cassette ring from a higher (smaller number of teeth) to the next lower (larger number of teeth) gear until the largest cassette ring is reached.
17 [R] 79 efarg06 The system shall accept a rider command to set up from 10-12 cassette rings, inclusive.
18 [R] 80 efarg07 The default number of cassette rings shall be 12.
19 [R] 81 efarg08 The system shall accept a rider command to set any chain ring to have from 20 to 70 teeth.
20 [R] 82 efarg09 The system shall accept a rider command to set up any cassette ring to have from 10 to 50,
21 [R] 83 efarg10 The default number of teeth for 1 chain ring shall be 48.
22 [R] 84 efarg1l The default number of teeth for 2 chain rings shall be 34 and 53.

A Priori Systems

Real-Time Agile Systems and Software

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.



Use Case Diagram

A Priori Systems

Real-Time Agile Systems

and Software

uc [Package] UseCasePkg[ System Use Case Diagram ])

Emulate Basic
Gearing

X

Configuration App

Emulate Front and
Rear Gearing

X

Training App

e

Sufferfest TrainerRoad Zwift

Rider

Measure
Performance
metrics

Control Resistance

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.




Type Context

bdd [Package] Architectural Design Pkg [ System Context Type Architecture ])
«comment»

J «interfaceBlock»
«interfaceBlock» i i
e s tis_App iPegasus_Rider Used stereotypes
oA T flow properties
gnrlzi;ﬁettﬁpeogf ::2 ;ypsetem in applied force : force[new ton}{unit = new ton} kstereotype» ustereotype»
context y In pedal position : plane angle[radian]{unit = radian} system actor block
out pedal resistance : force[new ton]{unit = new ton} [Class] [Class]
«interfaceBlock» winterfaceBlock» «interfaceBlock» stereotype»
iPegasis_TrainingApp iPegasus_ConfigurationApp iPegasus_Power Source represents
flow properties [Dependency]
in w all pow er : electric currentfamperel{unt = ampere}
A
RP «proxy»
‘ KProxy» «zgl-:g;’:» pPow er Source : IPegasus_Pow er Source
App - iPegasus_A
| pAPD g A Pegasus
% | %
Traini)r|1\g App Configuragon App ]@
| pRider - iPegasus_Rider
! ciepresentsyt «proxy»
, w ~ 2
| ‘ \ % Power Source
«represents ;| \«represents>: Rider 4\ ________________
«block» A Icrepresents»’
I «actor blocks \ |
! = ! iepresentsy ,
| = \
| «proxy» \ | «proxy» «block»
C «actor block»
pPegasus : ~iPegasus_App \ “proxy» | PRegasus - ~iPegasus_Pow er Source Power Source
L pPegasus : ~iPegasus_Rider
«block» ablock» #blocks
«actor block» Cofiguration App «actor block»
Training App Rider
F F
=) =)
‘pPegasus - ~iPegasus_App ‘pPegasus - ~iPegasus_App
«proxy» «Proxy»
© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

A Priori Systems

Real-Time Agile Systems and Software




Type Composition Architecture

bdd [Package] Architectural Design Pkg [ Pegasus Composition Architecture ])

«blocks
«systerm»

Pegasus

mechanical Frame

ablock»

Mechanical Frame

incline Assembly

pow er Train

«block»
Power Train

comms

rider Interaction

«blocks
Comms

electrical Pow er Delivery

drive Train|, pedal Assembly motor Assembly
«blocks» «block» «block» «block»
Incline Assembly Drive Train Pedal Assembly Motor Assembly

ablock»

Rider Interaction

«block»
Hectrical Power Delivery

gear Control

ablocks
Gear Control

incline Control

ablock»

Incline Control

main Computing Fatfor

«block»
Main Com puting Platform

A Priori Systems

Real-Time Agile Systems and Software

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

34




Connected Architecture

ibd [Block] Pegasus [ Pegasus ] J

b

pMec hanic alFrame

pRiderinteraction - pRiderinteraction

rider Interaction : Rider Interaction
pPow er Source : iPegasus_Pow er Source electrical Pow er Delivery : Electrical Power Delivery pRiderinteraction pElectric Pow erControl - pFow er
|_:| |_:| gear Control : Gear Control
Bl .
4l L |
-,
pWallPow er : iPegasus_Pow er Sourcg pDigitalPow er [*] pDigitalPow er [2] - pGearUl
F incline Control : Incline Control
P L~ oPow er L pRider pRider : iPegasus_Rider
pSmaliMotorPow er pBighMotorPow er pinclineUl [J
pinc lineMotorPow er ]‘_|
mechanical Fram e : Mechanical Frame pMainComputingPlatform : pMainComputingPlatform1 )
pMCP_Incline
pPow er p pMCP_Gearing
comms : Comms
incline Assembly : Incline Assem bly PAPP N pApp : iPegasus_App -
E
MainComputingPlatform — r
{ | pDigitalPow er ) )
. pMainComputingPlatform
pMainComputingPlatform pPow erTrain pMotorPow e';__l I__p|D|grtaIP0w er
=] | ]
pow er Train : Power Train
‘ drive Train : Drive Train ‘
- pComms
pMechanic alFrame ‘ motor Assembly : Motor Assem bly ‘ L
pDigitalPow er ] L2 ] ]
| pRaerResistance | - main Com puting Platform : Main Com puting Platform
[J pRider = ‘ pedal Assembly : Pedal Assem bly ‘ pringControl
pinclineContro|

1=

A Priori Systems

Real-Time Agile Systems and Software

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

35



Motor Selection Trade Study

par [Block] Simplfied trade study [ Generate Resistance Trade Study Simplified ]J

: GR_Worst

} accuracy_worst : Real ‘

} partsCost_worst : US_dollars

| reliability_worst : MTBF_Hours

econstraints l: worst
accuracy curve : Linear Utility Curve
{utilityV alue=inputValue*10/(best-w orst) - 10*w orst/{best-w orst)} I:

utilityValue l: inputValue :GR_Best

best

M\ | accuracy_best : Real ‘

—( parts Cost_best : US dollars ‘

«constraints w orst
parts cost curve : Linear Utility Curve l: h | reliability_best : Real ‘

{utilityV alue=inputV alue*10/(best-w orst) - 10*w orst/{best-w orst)}
l: best

l: inputValue
accuracyMOE |—|
( |_| | utilityValue

econstraints I: partsCostMOE

Res ult : WeightedObjectiveFunction :Generate Resistance Trade Study Simplified

{ObjectiveFunction=accuracyMOE"0.40 + reliabilityMOE*0.25 + partsCostMOE*0.35}

I:reliabil'rtyMOE by — accuracy : Real

M

Objectiv eFunction M |partsCost:US_doIIars ‘
utilityV alue |
[ |_| w orst
econstraints |: ‘ reliability : MTBF_Hours ‘
reliability curve : Linear Utility Curve best

{utilityV alue=inputValue*10/{best-w orst) - 10*w orst/(best-w orst)}

l: inputValue

A Priori Systems © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 36

Real-Time Agile Systems and Software



A N | N t er aCt | on aCR_Rider aCR_TrainingApp Uc_ControlResistance

T T T
| | |
| | |
[ I [
| | |
| | |
I tm("e6") I |
— | I
| | |
— | |
! regSetPedalPosition("pos = 3.141567) !
I T |
! reqSetPedalSpekd("pSpeed = 90°) R
I | =1
! reqSetMeasuredPeﬂalFDrce{"f = 206.181") J
[ I -1
| | |
| | | . -
| | , tm(’5000°)
[ I [
| | —
| reqSetPedalPosition("pos = 3.76967°) .
=
| - . |
. reqSetPedaISp-eledl[ pSpeed = 907) N
: reqSetMeasuredPe:lpalFurce{"F = 193.82") J
=
[ I [ )
I | Iﬂutelnema{]
| | |
[ I [ S—
I | I . ;
| tm("66") | retrieveCurrentIncline()
| | |
| ‘ | P
I I I computeDrag()
| | |__comp g
| | |
[ I e |
| |

A Priori Systems © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

Real-Time Agile Systems and Software




Flow of control behavior

A Priori Systems

Real-Time Agile Systems and Software

Irac:t [Activity] ComputeBikePhysics| E ComputeBikePhysics ]J

Weight

Speed

Incline

_____ e appliedForce
"
|
| - = T T T
l Compute
Resistance to
" compute Inertia | Bike Movement
Speed L
| &
e
| €
-_
| &
"\-\—.J
[ L
| €
—
L
e ... J

k 4

[]

Compute Speed

|
o

Compute Acceleration

speed

A 2

Acceleration

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

38



Some state behavior

stm [State Machineg] statechart_4 [ Uc_EmulateBasicGearing ])

ROOT

/ gear = DEFAULT_GEARING;

BasicG earing

sendaction_5

Idle

chappliedT orgue /
applyResistance();

decrementGear

chappliedTorque /

[appliedTorgue == 0] applyResistance();
{appliedTorque == 0}

[else]

{else}

Torquefpplied

! [else] J&

{else} \/

| applyResistance();

™ [checkGearing(gear-GEAR_INCREMENT)] /
changeGear(-GEAR_INCREMENT);

{checkGearing{gear-GEAR_INCREMENT )}

incrementGear

[else] : \

[checkGearing{gear+ GEAR_INCREMENT)] /
changeGear(GEAR_INCREMENT );

{checkGearing{gear+GEAR_IMCREMENT )}

{else} \/

A Priori Systems

Real-Time Agile Systems and Software

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

39




For more information

%ET%L&MDESIGN Bruce Powel Douglass, Ph.D.

ROBUST SCALABLE ARCHITECTURE
FOR REAL-TIME SYSTEMS

Content Services Public Interest Blog What's New Forum About Comments Site Map Geekosphere Members

REAL-TIME UML

Real-Time Agile Systems and L .
Software Development
come to www.bruce-douglass.com

BRUCE POWEL DOUGLASS

5ici
JATOBSEE
UNERUEH

Wel

P ——

Agile Product
Development

DLXMM I[ES

AGILE SYSTEMS | [Reuren
ENGINEERING -
R

T
JACOSIN
AINBENGH

Agile Model-Based
Systems Engineering

pment by applying proven recipes for
=

T
8

[
You've found yourself on www.bruce-

ot douglass.com, my web site on all things DOING Harp TIME
real-time and embedded. DEVELOPING REAL-TIME

Systems wirh UML, OrjEcts,
FRAMEWORKS, AND PATTERNS
On this site you will find papers,

presentations, models, forums for questions
/ discussions, and links (lots of links) to areas
of interest, such as

Developing Embedded Software
Model-Driven Development for Real-
Time Systems

Model-Based Systems Engineering
Safety Analysis and Design

Agile Methods for Embedded Software
Agile Methods for Systems Engineering
The Harmony agile Model-Based
Systems Engineering process

The Harmony agile Embedded Software
Development process

Bruco Powei Dosglass PhD

Bruce Powel Douglass, Ph.D.

REAL-TIME AGILITY

DESIGN PATTERNS ror

Models and profiles I've developed and EM"?EAE?,ERMS.Y‘.S.ATH?,T.F

List and links to many of my books.

A Priori Systems © 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 40

Real-Time Agile Systems and Software



