__Honourcode, Inc.__

Systems Engineering Return on Investment

SE-ROI Research Interim Results Aug 09

Eric Honour +1 (850) 479-1985 ehonour@hcode.com

Funding provided by

- Honourcode, Inc.
- CEDISC (Univ of South Australia)

Agenda

Background

- Motivation for the topic
- Quick summary of anecdotal prior works

SE-ROI Project

Goals and methodology

SE-ROI Research Interim Results

- Demographics results
- Interim correlation results

Background

Concepts: Value of SE Prior results

- Boeing Franz data
- IBM Barker data
- Value of SE 2004 data
- EIA SE Effectiveness Study
- SEROI-COCOMO 2008 data

Defence and Systems Institute South Australia

(U)

University of

Heuristic Claim of SE

Better systems engineering leads to

- Better system quality/value
- Lower cost
- Shorter schedule

Not Known: How Much Is Enough?

_Honourcode, Inc.___

Impact of Systems Engineering of Systems Institute Quality and Schedule

- Empirical evidence obtained from three parallel (same time) projects
 - Each developed a complex, robotic Universal Holding Fixture (UHF)
 - Each used a different level of SE
 - Results are compared

Trait	UHF1	UHF2	UHF3
Size	10′ x 40′	8′ x 50′	6′ x 14′
Accuracy	±0.005"	±0.003"	±0.003"
Contact Sensors	None	57	108
Vacuum Sensors	1	70	108
Real-time checks	No	Yes	Yes
Probe contours	No	Yes	Yes
NC interface	No	Yes	Yes

...W. Forrest Frantz<u>, Impact of Systems Engineering on Quality and Schedule –</u> <u>Empirical Evidence</u>, Boeing, INCOSE 1995

__Honourcode, Inc.___

Impacts

Requirements to RFP (weeks)

Overall Development Time (weeks)

Design to Production (weeks)

Use of better SE reduced

- Overall cycle time
- Time to create req's
- Time to design/produce
- Time to test
- ...even in the face of more complex, higher quality systems!

...W. Forrest Frantz, Impact of Systems Engineering on Quality and Schedule – Empirical Evidence, Boeing, INCOSE 1995

_Honourcode, Inc.___

Systems Engineering Effectiveness

- Study of 8 software product development projects during upgrade of SE processes
- Evaluation by cost and schedule against a standard estimating method.

lonourcode. Inc._

Lised With Permission

Costing method applies only to project management, business management, systems engineering, system integration, and delivery into production. Application development costs are not included.

> ...Barker<u>, Determining Systems Engineering Effectiveness</u>, IBM Commercial Products, CSER 2003

Systems Engineering Effectiveness

Significant Findings:

- Impact and complexity provide an effective method to perform parametric costing.
 Early parametric costing works.
- Preliminary data indicates that the use of Systems Engineering will improve project productivity when effectively combined with the Project Management and Test Processes.

Systems engineering improves productivity.

\$/Point Averages

Wit

Wit

rcode. Inc._

		2000	\$1,454/pt
thout SE	\$1,350/pt	2001	\$1,142/pt
th SE	\$944/pt	2002	\$818/pt

...Barker, <u>Determining Systems Engineering Effectiveness</u>, IBM Commercial Products, CSER 2003

Schedule Overrun vs. SE Effort

Cost Overrun vs. SE Effort

Effect of SE Activities on Projects

Gamma relationship to project performance

Honourcode, Inc.____

...Elm<u>, A Survey of Systems Engineering Effectiveness</u>, NDIA, CMU/SEI 2007

COCOMO II: How Much Architecting is Enough?

Defence and

Systems Institute

Project Goals

Research objectives

How Much Is Enough?

- Find out how much of what type of SE correlates with project success
 - What SE practices are appropriate under what conditions.
- Leading indicators
 - Used during a project to assess the project's expected future success and risks based on SE practices used.
- Identification of good SE practices
 - Appropriate to generate success under different conditions.
- Schedule
 - '05-'07 Technical structuring and definitions
 - Late '07 Started data gathering
 - Internal reports '08–'09
 - Final reports '10

SE-ROI Project

Interviews

- Just-completed programs
- Key PM/SE/Admin
- Translate program data into project structure
- Program characterization
- Program success data
- SE data (hours, quality, methods)

Desired Results

- 1. Statistical correlation of SE practices with project success
- 2. Leading indicators
- 3. Identification of good SE practices

_Honourcode, Inc.___

Company Participation

- Data gathering minimal impact
 - Select 2 to 4 programs
 - One day of interviews
 - 2-hour sessions with PM+SE of each program
 - Strong protection of proprietary data
- Reports effective program benchmarking
 - Benchmark report within 30 days of session
 - Compares your programs against prior data
 - Quarterly reports from all prior data, all sources
 - Correlations found
 - Leading indicators proven
 - SE practices proven

Current Status – August 2009

t	<u>SE ontology</u> from SE standards – wide-spread, acceptable terminology	Completed Oct 05
t	Develop interest base from possible interview sources (currently ~65)	Completed, Ongoing
t	<u>Create interview data sheets</u> and vet them through sample interviews	Completed Oct 06
•	Start program interviews	Started 3/07
	Gather data from 40+ programs	In process
	Interviews held	34
	Programs ready for interview	7
	Active program contacts	10?
	Other known possibilities	15?
•	<u>Report benchmark results</u> to	In process
	participating organizations	
٠	Public reports on research results	In process

__Honourcode, Inc.__

SE-ROI Research Interim Results

Demographics Continued additions to "Value of SE" results Histograms of SE activities Indications about effectiveness of SE activities

Basic Demographics

Characteristic	ValueSE Data Set	SE-ROI Data Set
Number of organizations	Unknown	12
Number of data points	44	34
Funding method	Unknown	24 contracted, 10 amortized
Program total cost	\$1.1M - \$5.6B Median \$42.5M	\$600K - \$1.8B Median \$12.0M
Cost compliance	(0.8):1 – (3.0):1 Median (1.2):1	(0.6):1 – (10):1 Median (1.0):1
Development schedule	2.8 mo. – 144 mo. Median 43 mo.	2 mo. – 120 mo. Median 32 mo.
Schedule compliance	(0.8):1 – (4.0):1 Median (1.2):1	(0.3):1 – (2.5):1 Median (1.0):1
Percent of program used in systems engineering effort, by cost	0.1% - 27% Median 5.8%	4% - 80% Median 14.8%
Subjective assessment of systems engineering quality (1 poor to 10 world class)	Values of 1 to 10 Median 5	Values of 1 to 9 Median 7

Program "Size"

Program/Team Parameters

_Honourcode, Inc.___

Schedule vs. SE Effort

Cost vs. SE Effort

Breakout by SE Activities

Typical Data: <u>Schedule</u> vs. Tech Lead'ship/Mgmt

Caution: This is interim data, not yet reviewed and not ready for release.

__Honourcode, Inc.___

Typical Data: **Cost vs. Verif/Valid**

Typical Data: Overall Success vs. Reqs Engr

Typical Data: <u>Tech Quality</u>vs. Reqs Engr

Effect of SE Activities

Which activities correlate to better quality?

Activity	Cost	Schedule	Overall	Technical ¹	
Missn Defn ²					
Reqs Engr					
Sys Arch		Dropriatory data in a	art has been removed		
Sys Impl	Proprietary data in chart has been removed. Chart shows that nearly all systems engineering activities lead to better cost				
Tech Anlysis	control, better schedule control, and better overall quality. Technical quality (as defined by KPP compliance) shows little correlation with most SE activities.				
Tech Mgmt					
Scope Mgmt					
Ver & Val					
¹ Projects aim at i	requirements (romnliance rathe	er than goals		

¹ Projects aim at requirements compliance rather than goals
² For most projects, MD was performed in an earlier phase

Caution: This is interim data, not yet reviewed and not ready for release.

_Honourcode, Inc.___

Company Participation

- Data gathering minimal impact
 - Select 2 to 4 programs
 - One day of interviews
 - 2-hour sessions with PM+SE of each program
 - Strong protection of proprietary data
- Reports effective program benchmarking
 - Benchmark report within 30 days of session
 - Compares your programs against prior data
 - Quarterly reports from all prior data, all sources
 - Correlations found
 - Leading indicators proven
 - SE practices proven

___Honourcode, Inc.__

Systems Engineering Return on Investment

Questions?

Eric Honour +1 (850) 479-1985 ehonour@hcode.com

University of South Australia Defence and Systems Institute __Honourcode, Inc.__

Backup Slides SE-ROI Project

 Samples of SE-ROI interview data sheets
Data security

University of South Australia Defence and Systems Institute

Program Characterization

GRADED QUANTITIES - Enter three specific numeric values for each.

	EASY	NOMINAL	DIFFICULT
Number of system requirements			
Number of system interfaces (external)			
Number of algorithms			
Number of operational scenarios			

OTHER QUANTITIES - Enter a specific numeric value for each.

	NUMBER		NUMBER
Number of unique components* in the system design		Number of developing organizations*	
Number of unique components* designed as part of the programme		Number of customer agencies* actively involved in the programme	
Number of components* integrated per system (multiple instances count)		System production quantity under this programme	
Number of documented trade studies* at the system level		Number of installation locations	
Number of formal tests* at the system level		CMMI level of parent organization (prime developer only)	
Number of formal test locations* at the system			

Subjective Parameters

Mission/purpose understanding	VL	L	N	н	VH	
		ā	ä	ü		
Requirements understanding	VL	L	N	H	VH	
Requirements volatility (changes to requirements)	VL	L	N	н	VH	
Requirements growth (additions to requirements)	VL	L	N	н	VH	
Architecture understanding	VL	L	N	н	VH	
Overall system complexity	VL	L	N	н	VH	
Level of service requirements (environmental, safety, security, reliability,	VL	L	N	н	VH	
maintainability, etc.)						
Migration complexity			N	н	VH	EH
Technology risk	VL	L	Ν	н	VH	
Documentation	VL	L	N	н	VH	
Number and diversity of installations/platforms			Ν	н	VH	EH
Number of recursive levels in the design	VL	L	N	н	VH	
Stakeholder team cohesion	VL	L	N	н	VH	
		<u> </u>				
Personnel/team capability	VL	L	N	Н	VH	
Personnel experience/continuity	VL	L	N	Н	VH	
		<u> </u>				
Lead system engineer experience level	VL	L	N	Н	VH	

SUBJECTIVE PARAMETERS - Evaluate each parameter on the scale given

_Honourcode, Inc.___

Program Success

PROGRAMME SUCCESS MEASURES (COST/SCHEDULE/TECHNICAL)

Original planned cost (\$ Total)	Original planned schedule (Months) Original planned labor (Pe		Person-hrs)			
Current projected cost (\$ Total)	Current projected schedule (Months)		Current projected labor (Person-hrs)			
Current cost expended (\$ at time of interview)	Current schedule e after programme sta		ths	Current s	chedule labor	(Person-hrs)
Key Performance Parameter* (Lis	at the top 4 to 8)	Weight %		hreshold Value*	Goal Value*	Projected Value

STAKEHOLDER SUCCESS MEASURES

Amortized development – developer creates system product for a defined market segment				
Projected return on investment (%)	Projected period of return (Months after programme start)			
Contracted development – customer creates contractual relationship with the developer				
Projected contract profit (% of cost)				

__Honourcode, Inc.___

Systems Engineering

2. REQUIREMENTS ENGINEERING*

METHODS – REQUIREMENTS ENGINEERING					
What methods were used to perform requirements engineering? How well did they succeed?					
what methods were used to perform requirements engineering. How wer did they sub-					
TOOLS – REQUIREMENTS ENGINEERING					
What tools were used to perform requirements engineering? How well did they succeed	d?				
······································					
TOTAL EFFORT (PERSON-HR) TOTAL COSTS (\$)	QUALITY OF EFFORT				
METRICS – REQUIREMENTS ENGINEERING					
List any metrics used to evaluate the requirements engineering. Include the current val	ue of each metric				

One of the eight SE categories used

Secure, Protective Data Layers

Proprietary data agreements with participating companies Public data is statistical in nature, selected to protect sources Honourcode, Inc.___