
Of Hornets and Hippos
In the 1990s, the United Stated military decided to replace three of its aging fighter aircraft models. The

F-16 Fighting Falcon was a conventional take-off and landing, single

engine fighter jet for the air force. The F-18 Hornet was a fighter for the

navy capable of taking off and landing from air craft carriers. And the

AV-8B Harrier was a marine aircraft

capable of take-off from short

runways and landing vertically, like a

helicopter.

Military leaders opened a

competition, eventually narrowed

to Boeing and Lockheed Martin, to

replace all three aircraft with a single family of one new fighter.

The new plane, dubbed the Joint Strike Fighter, needed to

include an air force configuration with conventional take-off and

landing, but with a Mach-1 top speed and aerial refueling

capability. The navy configuration required carrier take-off and

landings. And the marine variant needed to take-off from a short runway with full fuel and weight, and

also hover and land vertically at low fuel and weight.

Plus, all configurations were to have 80% of their parts in common with one another. The hope was that,

with extensive parts commonality, the plane could be produced less expensively, by employing

economies of scale.

In October 2001, military leaders crowned Lockheed Martin’s plane the winner. Several colleagues of

mine who worked on the program are still convinced that Boeing made the better airplane. But perhaps

an undocumented requirement contributed to Lockheed’s success: the

“cool factor.” Lockheed’s plane looked more like a traditional fighter,

which is to say, it looked like a

bird of prey. Boeing’s plane, with

its unusual air intake below the

cockpit, looked a bit like a

hippopotamus.

Virtually since the competition

award in 2001, the JSF has flown

into problems. Cost overruns,

schedule delays, and quality

issues have degraded the

program’s reputation. A New

York Times Magazine article’s headline declared it “America’s

dysfunctional trillion dollar program.”

But the same article described efforts to improve the program using agile software development. For

acquiring software upgrades to the jet, the author states:

F-16 Fighting Falcon

F-18 Hornet

AV-8B Harrier

Lockheed's JSF entry

Boeing's JSF entry

A trial program staffed with a team of Air Force and Lockheed coders proved that the (agile

software development) method works.

https://www.nytimes.com/2019/08/21/magazine/f35-joint-strike-fighter-program.html

https://www.defensenews.com/smr/defense-news-conference/2017/09/06/f-35-program-office-floats-

new-agile-acquisition-strategy/

As JSF program leaders look to agile methods to improve engineering development, other systems

engineering practitioners are taking notice. This article presents several examples of projects – systems

engineering or otherwise – that have successfully implemented elements of agile software development

in non-software domains.

An Agile Systems Engineering Framework
The life cycle stages of a traditional

systems engineering project as

depicted in the figure resemble a

waterfall. Starting with this

diagram, the Agile Systems and

Systems Engineering working group

within INCOSE has developed

several tools for implementing a

more agile approach to

accomplishing systems engineering

tasks. Employing these tools

enable systems engineers to

accomplish life cycle tasks with

agility, and to produce products

that exhibit agility in a changing environment.

The working group, led by Rick Dove, has also

revised the life cycle stage model to incorporate

the importance of engagement and the focus on

awareness within and between stages. The revised

model is called the Asynchronous / Concurrent

Agile Systems Engineering Life Cycle Model

Framework.

Perhaps the addition of the Engage section in the

new framework is the most crucial. The most

important practices and ceremonies of agile

development have a common factor, which is that

they enable and encourage a high level of

engagement. This engagement includes internal

employee engagement within the development

team, and external engagement between the

development team and customer community. Successful projects require both.

 https://www.sebokwiki.org/wiki/System_Life_Cycle_Process_Models:_Vee

https://www.incose.org/incose-member-resources/working-
groups/transformational/agile-systems-se

https://www.nytimes.com/2019/08/21/magazine/f35-joint-strike-fighter-program.html
https://www.defensenews.com/smr/defense-news-conference/2017/09/06/f-35-program-office-floats-new-agile-acquisition-strategy/
https://www.defensenews.com/smr/defense-news-conference/2017/09/06/f-35-program-office-floats-new-agile-acquisition-strategy/

When considering the adoption of agile development methodology, a fair question to ask is: Can

Systems Engineering be agile? INCOSE Fellow Ron Carson asks just such a

question in his 2014 INCOSE Symposium paper Can Systems Engineering be

Agile? Development Lifecycles for Systems, Hardware, and Software.

https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-

5837.2013.tb03001.x

Ultimately, his answer to this question falls somewhere between “no” and “it

depends.” In tackling this question, Carson also elaborates and appends to

the decision criteria first declared in Boehm and Turner’s book Balancing

Agility and Discipline: A Guide for the Perplexed.

When considering

criticality, “low

criticality” doesn’t mean

that agile projects are

unimportant. Only that,

as Carson explains,

“Agile methods seek to
minimize time to

market,” whereas

“traditional systems

engineering seeks to

avoid breach of

contract.”

Likewise, SE doesn’t

require “junior developers,” but the rigor and formality of systems engineering better tolerates less-

seasoned developers.

Oft-changing requirements is the wheelhouse characteristic of agile development, and helps explain

why the philosophy took hold most firmly in the software field. As software hopped residences from

mainframe computers, to personal desktops, to laptops, to tablets, to our pocket video recorders/web

portals, software survival requires adaptability to changing requirements, environments and culture.

The benefits of small developer teams will be discussed shortly, but first, the agile manifesto provides an

informative introduction to the philosophy.

What’s so Funny ‘Bout Sprints, Scrums and Iterations
Seventeen thought leaders of the software development discipline co-signed The Agile Manifesto, which

clocks in at just under seventy words (plus twelve appended principles) https://agilemanifesto.org/

Scrum is the most implemented strategy for agile software development, and defines three different

manager roles.

The first manager is called the Product Owner, and she is responsible for the management of the

product. Her focus is acquiring the best product from the development team, as quickly as practical. The

second manager is called the Scrum Master, and he is responsible for the management of the process.

Dr. Ron Carson

https://en.wikipedia.org/wiki/Agile_software_development

https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2013.tb03001.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2013.tb03001.x
https://agilemanifesto.org/

Scrum masters schedule and facilitate the various meetings and ceremonies, remove roadblocks from

the development team’s progress, and make sure the processes are followed so that the team operates

efficiently and effectively.

The third type of manager is the manager of the people. Contrary to belief, scrum is not missing a

people manager. However, this role and its responsibilities are performed by the team itself. Decisions

about whether and how to revise processes, handling conflicts, estimating work, assigning tasks; all are

managed by the team members as a group. Why would a company dare trust its development team to

manage itself?

It turns out that employee engagement is highly correlated with an employee’s sense of control over –

and ability to manage – his own work. This also helps explain why agile development requires senior

developers instead of junior developers. Senior developers are better able to perform tasks with no

“chain of command” oversight. According to Gallup, engaged employees are more productive, and less

likely to leave a company or team. Actively disengaged employees are more likely to be absent, quit,

steal from the company, and degrade team morale. Especially in “work of the mind” vocations like

engineering, employee engagement is critical to project success and company profitability.

https://www.gallup.com/workplace/229424/employee-engagement.aspx

In the Wikipedia entry for scrum software

development, the scrum lifecycle shows the

primary artifacts and activities of scrum. Opinions

vary about the optimal size of a scrum team, but

all experts concur that the team size must be

small. Nine people is a valid upper limit.

Why nine people? This ceiling is again related to

employee engagement. Too many people

providing status in the daily stand-up meeting

make the meeting drag too long. Nine people is

about the upper limit that can fit in a standard conference room. And as the chart demonstrates, the

number of one-to-one relationships in a team

do not increase linearly as the team size

grows. The human mind can only navigate so

many relationships before communication

begins to suffer.

Team size also keeps the scrum task board

small and manageable. With a small team and

a short sprint duration of two weeks, each and

every team member can wrap his mind

around the scope of work for the entire team

and the entire sprint. Rare is the developer

who knows everyone on the program and what everyone is doing. But everyone on a scrum team can

understand the work that everyone on this team does for the entire sprint. This is only possible with a

small team.

https://en.wikipedia.org/wiki/Scrum (software_development)

https://www.toptal.com/product-managers/agile/scrum-team-size

https://www.gallup.com/workplace/229424/employee-engagement.aspx
https://en.wikipedia.org/wiki/Scrum_(software_development)

Along with small teams, scrum works by requiring tasks to be small. When tasks are written and scoped

in such a way that an uninterrupted developer can

accomplish them in less than a day, the tasks flow across

the task board from left to right like so many leaves

blowing in the wind. Each time a developer moves a task

a few inches into a new column, it sparks a tiny sense of

accomplishment in the entire team. This rivulet of

adrenaline and dopamine is enough to – you guessed it –

keep employee engagement high. This degree of visual

status and progress is impossible with a large, thousand-

task and year-long Gantt chart.

The preferred progress metric for a scrum team is the

burndown chart. Scoped to a single small team and a

single short sprint, burndown charts – prominently displayed for the entire team to notice – allow all

team members to visually digest and follow everyone’s

progress, as a team. This too optimizes employee

engagement, since every employee’s daily

accomplishments show prominently in the shared

movement of the team’s progress metric.

It’s not just employees that maintain engagement

using scrum. As seen in the scrum lifecycle, the first

artifact is the product backlog. This is a list of small

tasks, maintained by the product owner, and

prioritized by the product owner and customer community in order of business value. This prioritization

of the backlog ensures that the customer receives her most important functionality first, and quickly.

The benefit of the prioritized backlog for customer engagement is that it puts the customer in a good

mood, right away. Since scrum relies on continuous customer feedback and involvement, the advantage

of a customer in a good mood cannot be overstated.

Empirical Examples
Many examples from systems engineering literature demonstrate how agile-inspired practices succeed

in domains outside of software. This section lists several examples,

ordered by SE lifecycle stage. The first example, though, is not from

the engineering field at all. The Exploratory lifecycle stage example

comes from the world of entertainment, specifically public radio.

Eric Nuzum is the former vice president of programming at

National Public Radio. Since NPR provides digital content in the

form of podcasts and radio show streaming, the organization

employs a small software development team, which uses agile

development to plan its work. Nuzum was impressed by the

software team’s productivity, and decided to adopt some of its

agile practices for the task of new radio show production.

A typical scrum task board

Eric Nuzum

The standard way of creating a new NPR radio show is for a creative team or person to conceive an idea

for a radio show, then pitch the idea to an executive. If greenlit, the show gets a budget, talent is hired,

the show gets produced, promoted, and then rolled out to many NPR stations. The process is expensive

and risky.

Nuzum decided to incorporate the agile philosophy of deploying to production quickly and

inexpensively, then iterate often. So he greenlit many small and inexpensive shows, usually either live-

audience shows or shows based on other media. The shows were produced for small runs of six to ten

episodes, and rolled out to only a few stations. The shows would then solicit feedback from listeners and

station managers, and tweak the shows based on that feedback.

https://www.poynter.org/reporting-editing/2012/how-npr-benefits-from-agile-project-development-

you-can-too/

https://www.computerworld.com/article/2505876/npr-adopts-agile-like-method-for-program-

development.html

https://www.niemanlab.org/2012/04/agile-social-cheap-the-new-way-npr-is-trying-to-make-radio/

NPR created several successful radio shows using this method. Among them are the podcast How To Do

Everything https://howtodoeverything.org/, the TED Radio Hour https://www.npr.org/programs/ted-

radio-hour/ based on popular TED talks, and the comedy/trivia show Ask Me Another

https://www.npr.org/programs/ask-me-another.

The Midwest Gateway Chapter’s own Rob Simons shares his experiences with agile implementation for

both systems engineering teams and projects at Boeing. His list of hard-earned lessons, from the

Concept and Development lifecycle stages, is below:

1. An effective SM (Scrum Master) is crucial

2. Start Scrums mid-week and everyone stands during the Daily Scrum (huge timesaver)

3. PO availability (or being reachable) (popping in irregularly slows the team)

4. The SM should NOT be on the Dev Team and no sharing of SM or DevTeam members across

concurrent activities

5. Tools (i.e., JIRA) good for sprint statistics, but better to discuss and/or show periodically at daily

scrum (ex., burndown)

6. Managed our Scrum using backlog scope and scoring to accomplish sprint execution (i.e., story

structure to meet scope)

7. Since SE doesn’t release ‘working code’ like SWE, demo artifacts were ‘stand-alone’ artifacts (e.g.,

analyses, trade study)

8. At Sprint Demo (i.e., show/demo/explain the artifacts) everyone must focus on staying within the

time-box, otherwise the demo takes all day --- in other words, scope to the sprint activity and not the

larger system)

9. Don’t let Sprint Retrospectives become just summaries --- try to capture what works and what

doesn’t

https://www.poynter.org/reporting-editing/2012/how-npr-benefits-from-agile-project-development-you-can-too/
https://www.poynter.org/reporting-editing/2012/how-npr-benefits-from-agile-project-development-you-can-too/
https://www.computerworld.com/article/2505876/npr-adopts-agile-like-method-for-program-development.html
https://www.computerworld.com/article/2505876/npr-adopts-agile-like-method-for-program-development.html
https://www.niemanlab.org/2012/04/agile-social-cheap-the-new-way-npr-is-trying-to-make-radio/
https://howtodoeverything.org/
https://www.npr.org/programs/ted-radio-hour/
https://www.npr.org/programs/ted-radio-hour/
https://www.npr.org/programs/ask-me-another

Another Development stage example comes from the Johns Hopkins University Applied Physics Lab.

http://www.parshift.com/s/140630IS14-AgileSystemsEngineering-Part2.pdf

In this organization, “cubesats,” or tiny

satellites (10cm X 10cm X 30cm) are

developed by the development teams in the

Multi-Mission Bus Demonstration program.

These cubesats provide myriad services for

customers in the university, government, and

military communities. But the satellites

piggy-back onto the payload of already

scheduled rocket launches, so the

development team cannot be picky about

payload attachments or container

configurations. This environment

necessitated an agile mindset during

development.

In order to meet this required agility, the MBD program implemented several agile development

strategies. The program manager, called the “Sherriff,” performed the duties of a product owner. Each

of six engineering teams was led by a team lead, or “Deputy.” The engineering teams consisted of

Payload, Electrical, Software, Mechanical, Ground and Navigation Control, and Avionics, and were kept

to a small number of engineers. These teams called themselves “Posses.”

Daily stand-up meetings, or “Round Ups,” focused on daily priorities and issues. One scrum task board

displayed progress for all six development teams, and the teams kept sprints to one day duration.

A Production stage example comes from the Lean Construction Institute, within the Civil and

Environmental Engineering

department of the University of

California, Berkeley. There, Professor

Glenn Ballard teaches the benefits of

the Last Planner system.

In the construction of a building like a

skyscraper, an overall schedule can

include several years of tasks. But the

hard works comes in planning the

current week’s tasks. Ballard calls this

scheduler the Last Planner. Her job is

ensuring that all crews are working,

all materials are present, and all

predecessor tasks are complete.

This is accomplished by limiting the

scope of tasks to just those planned

for up to six weeks in the future. These tasks are exploded into small work packages and enter a task

https://www.baltimoresun.com/health/bs-hs-apl-cube-satellites-
20140110-story.html

The Last Planner system

http://www.parshift.com/s/140630IS14-AgileSystemsEngineering-Part2.pdf

backlog called the “lookahead window.” The lookahed window holds tasks for up to four weeks, where

they are monitored to ensure applicable stakeholders remove any constraints and resolve any

dependencies.

Workable tasks are then put into another backlog, called the “workable backlog.” The workable backlog

keeps at least 2 weeks of work packages at all times.

The Last Planner then populates the current week’s assignments, drawing from the workable backlog.

She also recycles incomplete assignments back into the lookahead window for issue resolution, and

communicates master schedule changes to supervisors.

This process mirrors many scrum practices, such as maintaining prioritized backlogs, sprint planning,

keeping tasks small, and scrum master process ownership.

An example of agile methodology in the

Retirement stage comes from agile consultant

and former Charles Schwab Chief Architect

Mishkin Berteig.

In the referenced 2015 article, Berteig describes

a project in which a company migrated its data

warehouse from Oracle to Teradata. It was

essentially a retirement stage effort performed

in parallel with a deployment effort.

In order to track the work, Berteig advised using

a product backlog with 25,000 data elements comprised of tables, views, and scripts. The product owner

and Berteig devised a calculation to prioritize the data elements based on business value, using

processor speed and disk space as calculation inputs.

http://www.agileadvice.com/2015/03/14/scrumxplean/scrum-data-warehouse-project/

Another backlog tracked the five Oracle licenses to retire, one at a time, throughout the migration

effort. The project employed the agile concepts of prioritized product backlogs, burndown charts, and

small development teams.

Putting It All Together
In summary, the advantages of software development can be realized in disciplines outside of software

– including systems engineering – as long as the underlying philosophy is courted. The key practices all

involve engagement, of both the development team and the customer community. Key practices

include:

 Keep the teams small. A small number of developers on a team provide a variety of employee

engagement benefits, which allow the team members to keep communication effective, work

comprehensible, and progress perceptible.

 Keep the tasks small. Keeping tasks focused, short, and simple allows for common

understanding, and allows tasks to move briskly across the task board. This aids in

understanding and motivation.

Mishkin Berteig

http://www.agileadvice.com/2015/03/14/scrumxplean/scrum-data-warehouse-project/

 Get out of the way. Allowing development teams to managing themselves, and their own work,

keeps employees motivated, engaged, productive, and happy.

The success of agile development in many systems engineering projects shows that – for some projects

meeting certain criteria – agility is not a fluke. Whether building a fighter aircraft or a comedy radio

show, agile development is a tool all systems engineers should keep handy in their toolboxes.

