

Just a few days after a very cold New Year’s Day in Washington DC, Brad tweeted, “I

trust nest 2 keep my pipes from freezing @ 2nd home 450 miles from where I live; but

nest is offline-hope my pipes don't burst.” His concern? The stylish, high-tech Nest

thermostat he had installed stopped operating, leaving his distant, unoccupied home

without heat. News sources reported that “a software update had gone wrong, forcing

the thermostat's batteries to drain and rendering it incapable of controlling

temperature.” While any electronic component can experience hardware or software

bugs, the increasingly interconnected nature of things brings both more functionality

and more risk of failure.

The reason? Systems engineers will tell you it is because of these new systems’

inherent complexity. It’s simple math. The more interconnections between independent

components or subsystems within a system, the more complexity and the more chance

for system failures. Metcalfe’s Law reminds us that three interconnected components

result in a maximum of three interconnections, but with four the maximum number of

interconnections rises to six, and with ten components, designers must deal with 45!

Then, consider the millions or billions of interconnected things on the Internet and, well,

the high rate of complexity is clear.

It’s not only the falling prices of sensors, tiny computers and networking that is driving

the expansion of the Internet of Things (IoT)—it’s also the ease of putting a new device

into the IoT. An IBM IoT demonstration enables you to put a smartphone, sensor, ARM

mbed, or Raspberry Pi onto the IoT in minutes (search “IBM Play with our platform

now” to find it). Easy and quick, however, may not be the best way to build a complex,

reliable system. Is the IoT destined to be a morass of loosely connected, unreliable,

buggy, but simple and inexpensive devices?

There’s another challenge as well. It’s one thing for a smartphone app to fail or lose its

connection to the Internet. Users could miss a celebrity tweet or might have to place a

phone call to reserve that rental car, but no one is injured or put in danger. Extend this

connectivity to heaters, door locks, cars, and security systems and there is a new level

of technical risk. Worse, companies developing IoT products and systems may have a

great deal of software development experience, but the engineering of an integrated

network of devices, many of which may not have been designed to work together

originally, could be well outside their comfort or competency zones.

Connected systems and their complexities, however, are nothing new. As the space

program started to get off the ground in the 1950s, so did the profession of systems

engineering, an engineering discipline aimed at ensuring that system elements

integrate, interoperate, and together accomplish the goals of the system. Systems

engineers were instrumental in the space program and have since grown into a

profession that is active in many industries. INCOSE, the International Council on

Systems Engineering has about 10,000 members worldwide but believes there are

several times that many systems engineers, some of whom may claim other titles while

doing the same kind of work.

Systems engineers know that the successful implementation of a connected system,

even one as seemingly simple as an Internet-connected thermostat, must be

engineered not only to work correctly, but also to meet key qualitative goals, such as

system reliability, resiliency, safety, security, and maintainability. Each of these so-

called non-functional requirements areas calls for its own kind of engineering practices,

tools and verification approach. Implementing that smart thermostat takes more than

just making the software embedded in the thermostat work in the lab and in a few test

homes — it takes a comprehensive systems engineering approach to ensure that Brad’s

second home doesn’t risk serious damage from a hacker, communication issue, or

errant software update.

Systems engineering may hold many of the solutions to IoT challenges, but systems

engineering too must evolve. Historical systems engineering processes, intended for

long, careful aerospace development programs may not be a match for rapidly evolving

IoT systems. Development teams may be distributed across locations, time zones, or

even countries. Markets may be unforgiving when developments take too long, and

customers won’t long tolerate difficult or problem-laden installation and operation.

Systems engineers must employ agile, lean techniques which bring rigor without

aerospace-sized overhead.

As well, system verification and validation bring challenges of their own for IoT systems

of systems. As Moshe Cohen, senior offering manager for IBM Watson IoT asks, “How

do you test subsystems in a car that is connected to the Internet while the car is

driving? How do you build a test rig that can simulate all possible scenarios so they can

be fully tested?” Systems engineers must answer these challenges and right-size

proven techniques for IoT needs.

While exciting new IoT platform tools may allow the quick integration of new devices

into a company’s business process, quick and informal may not be the wisest approach

for many IoT applications. IoT devices are becoming not only ubiquitous but also

enmeshed in our homes, cars, and everyday lives. There may be more at risk than the

inconvenience of something that doesn’t work. The rigor of an Apollo mission may not

be needed in every case, but systems engineering is likely to play a critical role in the

ultimate success of the growing Internet of Things.

http://www.ecnmag.com/blog/2016/04/what-internet-things-needs-systems-engineering

http://www.ecnmag.com/blog/2016/04/what-internet-things-needs-systems-engineering

