
4 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

CrossTalk: Who are your most significant influences
both inside and outside of software?

Well, I’ve got quite a few, so I’m sort of going to give this to
you in a historical perspective.

U.S. Navy Rear Admiral Grace Murray Hopper, a fascinat-
ing woman I met some years ago, I still have my nanoseconds
from her1—and readers who know about that will smile gently.
In her lectures, she had this wonderful visual cue she used
when telling people about the amazing things in regards
to the shrinking of machines. She would have, prior to the
lecture, taken telephone wire and cut it into little 11-inch seg-
ments and passed it out to people, saying, “Here’s a nano-
second.” It actually represented the distance that light would
travel within a nanosecond—an amazing visualization. I was
always touched by her grace, her ability to speak power to
truth, and her ability to integrate the technical with the social.

Fred Brooks, of course, has been a tremendous influence
to me. Ed Yourdon and Tom DeMarco on the process side,
and more recently, folks like Kent Beck, Ward Cunningham
and Scott Ambler. I also add to this list Mary Shaw at Carn-
egie Mellon—she has taught me a great deal about architec-
ture, Philippe Kruchten did as well. The late Randy Pausch;2
I had the delightful opportunity to meet with him briefly at
a conference while he was presenting Alice.3 And George
Walther, who was my instructor at the Air Force Academy. He
was the first person who really introduced me to the notion of
discovering beauty in software.

Of course Jim and Ivar were tremendous influences on
me—we could not have produced the UML without the col-
laboration from all three of us. We are three radically different
personalities and, as I have said publicly, it’s amazing that we
accomplished what we did without felonies being committed
along the way. But I’m delighted that we did, and I honor and
respect them and dearly love the time I spent with them. It
was a high point in my career.

Outside the software world, Richard Feynman is my abso-
lute hero. His ability to just be a renaissance man, his interest
in so many wide-ranging fields, his desire to follow his bliss …
he is a role model for me.

CrossTalk: You have written numerous books in
your career. Which one do you believe has had the most
influence on the DoD software community?

Which one do I think has the most effect? The next one I’m
writing. [LAUGHTER]

The next one is titled The Handbook of Software Architec-
ture.4 Again, it goes in my theme of architecture as an artifact
and the important role I believe in delivering complex systems.
My goal here is to basically document the architecture of 100
interesting systems and describe them. My intent is to capture
what we find to be the best practices in architectural patterns
that are out there. This is an effort that has been going on for
seven years—and I hope I will finish it within the next seven
years. It’s hard research, but I’m learning a lot of things, dis-
covering things, and inventing things along the way.

As for past work, probably Object-Oriented Analysis and
Design with Applications5 was the most significant one
because it sort of helped start the effort of unification of the
work Jim, Ivar, and I did. It was influential in terms of notation
as well as process, and, frankly, in making object-oriented
design a household name.

CrossTalk: What is the current impression of the future
of the UML—a language you helped create?

Well this is a very timely question because we [at IBM]
recently submitted to Object Management Group (OMG)
a response to their request for information about the next
generation of the UML.6 I’ll begin by saying where I think the
UML is, and where the trajectory is going.

First, as one of the original officers of the UML, I am flat-
tered, amazed, stunned, and staggered at the reach the UML
has had. It has shown up in places I never, ever anticipated
when Jim [Rumbaugh], Ivar [Jacobson], and I began the jour-
ney unifying our methods.

What delights me and absolutely tickles me is the realiza-
tion that the goals of the UML are still very valid today, and
UML 2.0 continues to help deliver in that regard. I see the
UML being used in places far beyond whatever I anticipated
and that is very exciting and very humbling.

Yet that being said, part of our recommendation back to
the OMG and the biggest thing I pushed is for a return to the
fundamental roots of the UML, which is really two-fold.

First, UML 2.0 is more complex than it needs to be, and I
would like to see the UML become simplified over time. And
that’s not a means of throwing things out and not being back-
ward compatible, it’s just a matter of refactoring the language
so that there is a common underlining core.

The other thing I would really like to see is return to the roots
of the language not being a visual programming language,
which has fueled a lot of the model-driven development work.
In some domains, it’s quite appropriate … but it’s a modeling

Interview with
Grady Booch

CrossTalk—Nov/Dec 2010 5

ARCHITECTURE TODAy

language … I would like to increase the use in the semantics
of the UML relative to things like reverse engineering and min-
ing and reasoning about things as they unfold over time.

One other thing—in terms of where the UML is headed—is
that I was blown away recently when I discovered an article
called “The Systems Biology Graphical Notation.”7 Apparently
it was inspired by the UML as an attempt to build a standard
for biologists for modeling things within their world—things like
mechanisms within cells and the like. So that’s an example of
where the UML has extended its reach far beyond whatever
I imagined. That’s pretty cool, and it also tells me that the
language does have staying power; it’s going to be around here
for a long, long time. We do need to simplify and refactor it.

CrossTalk: If you were in charge of DoD’s weapon sys-
tems software and infrastructure IT systems, what would
be your top initiatives?

It really used to be, decades ago, that the DoD was leading
the marketplace in the delivery of software-intensive systems.
The harsh reality is that the commercial sector is leading
best practices and really pushing the arc relative to software
engineering and software development. So, in that regard,
the DoD is behind the times. That is not to say that they are
not pushing the limits in some areas. The kind of complex-
ity we see in certain weapons systems far exceeds anything
one would see commercially, but ultimately, there are a lot of
things that the DoD can learn from the commercial world. As
I look across the spectrum of systems that are successful
and try to find the anti-patterns from those that are unsuc-
cessful, there are three that come to mind and appear to have
relevance for success—not necessarily in any order.

There’s the leveraging of open-source principles. I know
that the DoD has Forge.mil, which is evolving those many
ideas of SourceForge, and I very much encourage that notion
because there’s this opportunity for transparency, visibility of
software intensive systems—it has certainly added value in
the commercial space. So I would certainly encourage and
intensify the use of those open-source platforms.

The next initiative I would bring about would be the col-
laboration infrastructures. The reality is that the DoD builds
software-intensive systems with contractors who are spread
across the globe, potentially—and certainly the deployment of
these systems is across the globe as well. I’m not sure that the
DoD has invested enough. And it’s not just the classic Web 2.0
kinds of things like wikis and shared whiteboards and the like.
I would also do some exploration in virtual worlds, the kinds of
things IBM and myself are trying to push in that space.

The third thing—and I’ve had some strong initiatives in this—
is the whole area of architecture. What drives me to this con-
clusion is that as I look at the main complaints and pains that
virtually every organization has in delivering software-intensive
systems, there appears to be a common thread between the
architecture and the artifact. So I would go beyond DoDAF
[Department of Defense Architecture Framework]. I really like
the standard. I think it’s effective for what it’s intended to be
for—really trying to model the enterprise of the warfighter—
but, in my personal opinion, I am less confident that it’s appro-

priate for the architecture of the software-intensive systems.
So I would certainly begin some initiatives to push for the
notion of architecture as an artifact in terms of its representa-
tion and its governance of the social organizations around it.

CrossTalk: What is the next big approach to creating
software-based systems that is going to make a significant
difference?

In terms of the next big approach, I believe it is growth in
our understanding of systems engineering.

Traditionally you begin the design saying, “I’ve got these
pieces and let’s throw in a processor here and there, and then
you software guys go off and do your thing.” The problem is
you can’t, from a systems engineering perspective, treat soft-
ware as something you can put aside. Rather, it is an intrinsic,
essential, universal piece of the system. So I think the biggest
change we will see—or the biggest need—is the move toward
a recognition that systems engineering needs to incorporate
more and more of the practices we know into pure software
systems because, in the warfighter’s case, these are hard-
ware/software systems—and that means we have to ap-
proach them differently than we have in the past.

So how does that manifest itself in terms of actionable
things? The real news is that there is work to be done. IN-
COSE’s beginning to embrace these ideas in the emergences
of languages like SysML [the Systems Modeling Language] is
helping us move along in that direction. But we don’t know all
the answers, and we’re on a journey along the way—that’s why
I say it’s the next big thing we’ll have to worry about.

CrossTalk: What new advances and changes in
languages and software engineering are on the horizon?

The following is, again, my personal opinion—not that of
anybody living or dead or yet to be born, and I say this be-
cause it is a controversial one. I’ve said it publicly and usually
I get lots of nasty e-mails after I say it, but my observation is
that on the language side we’re really at a plateau.

While I tracked what was happening in the language
research space, I was really excited about what was going on
in aspect-oriented programming. But that seems to have died
out, in the sense that people were still dealing with prob-
lems in the weeds and it really hadn’t risen up to the level of
aspects at a higher level of abstraction. So on the language
side, I think we’re going to see a continuation in most of our
existing languages. Look at C++ and you’ll see that they have
fixed a number of things in the current standards and they’ve
really tried to extend it in some other areas as well—and these
are largely incremental, albeit, important changes.

Where I think the biggest changes will happen will be back
in the software engineering side. But before I attend to that,
let’s talk about what pushes us in that direction: What are the
forces that cause that change?

There’s the presence of legacy and how one addresses
that. We have a crushing burden of legacy upon us—and not
to put this in a negative light—but the reality is there is a sig-
nificant capital investment in legacy and that leads us to not

6 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

throw these things away, but rather trying to figure out how
to interoperate with them. SOA [service-oriented architecture]
certainly plays an important role helping them interoperate,
but then again legacy—the forces around that—are one issue.
Another thing that is pushing up is presence of multi-core.
The frequency-scaling wars are over, so we can only begin
to boost computational resources by boosting frequencies
certain ways. If you have an obviously decomposable parallel
problem, multi-core usually fits, but you have a less than obvi-
ous decomposition. It’s really nasty and hard. Another force I
think we’re driving up is the whole problem with security—and
then the biggest one, perhaps the most dominant to impact
us, is the issue of complexity. We are building systems of
crushing complexity, so we need some help in that regard.

Those things together I think are pushing us. With regards
to what is happening in the software engineering side, the
good news is I think we have a good picture for how high-
ceremony processes and agile processes work well together.
So there’s a lot of good information coming out of that world.
And, although I think it may be self-serving, I see short-term
growth towards the practices around architecture as an
artifact, and then the next thing on the horizon is less-so soft-
ware engineering and more-so systems engineering.

CrossTalk: What are the restraining parameters that
hold software engineering back from more breakthroughs?

First off, I don’t really believe in breakthroughs. The reality
of the progress of science, especially in software, is that
changes come from the confluence of many things, where
you might reach a tipping point that changes things. But
I’m more of one for evolution than revolution. Frankly, I even
consider object-oriented design to be an evolutionary thing as
opposed to a revolutionary thing.

I think I’ve actually talked about the true restraining factors
already: legacy, inoperability, multi-core security. And the last
is complexity. We are dealing with systems that far exceed the
intellectual capacity of any single human. We generally lack
the notations, processes and measurements to help us deal
with that complexity—so that’s what holds us back. It’s a wick-
edly hard problem.

CrossTalk: What are we to do with all the DoD systems
that were implemented in older object-oriented languages
like Ada, Modula, etc., as there are less and less engineers
skilled to enhance and maintain the code?

There are older object-oriented languages being used. In
fact, I’m engaged in a project that is still using Ada, and I’m
excited that they are because it is really well-proven language.

It is a problem, but not one the DoD has alone. I had been
working on a project with the IRS … a system that is central
to their tax processing has about 500,000 lines of assembly

language, a lot of which was written in the ’60s and it still ex-
ists there. I see systems written in COBOL; I’ve seen systems
written in PL/I. So this is a systemic problem that goes to the
heart of the issue of legacy of older systems that I mentioned.

I’ve actually written and discussed this very topic; what I call
the “Nine Things You Can Do with Old Software.”8 One thing
you can do is harvesting—which is basically taking these older
things and doing the reverse engineering of pieces of them to
extract the algorithms, the data structures, things like that, and
then rewriting them—but that is so very hard. Another—the most
effective thing that I have seen—is the notion of continuous
architectural transformation. It requires considerable process
discipline and it goes back to the heart of architecture and ar-
tifacts. Only a few organizations that I’ve seen have been really
successful. I hold up eBay as a classic example.

CrossTalk: That’s interesting. I didn’t know there was
that much old language out there still being utilized.

Oh yeah, there are gobs of languages. I did a quick calcula-
tion asking how many lines of codes do we produce in the
world on a yearly basis? It was a low number, but if you make
an estimate for the number of software professionals, the
number of people that actually code, the number of lines of
code per average per year, you end up with around 33 billion
lines of code new or modified or produced every year—and I
will be honest in saying that’s conservative and it’s probably
off by an order of magnitude. So if you integrate that over the
years, it means, at the very least, that we probably have over
a trillion lines of code out there—and much of that is still run-
ning in these old systems. So the presence of these legacy
systems is a reality—and it’s not just a problem the DoD has.

CrossTalk: What major changes would you like to see in
the DoD to forward software engineering success?

I think the major change is in education. I don’t mean to
be critical, but in many ways the DoD’s expertise has, frankly,
been outsourced to its contractors. It is not to say that is a
horrible, terrible thing, but a lot of the things that happened
in old warfighting systems came through intrinsic expertise
inside the DoD. I would strongly encourage the increase of
education of the DoD’s intrinsic forces with regards to deci-
sion engineering and software engineering—and draw back
into the DoD more of that intellectual property. Ultimately,
delivering for the warfighters is what the DoD is all about,
and that requires an intensely educated staff to make that
happen. How does one make that manifest? I think there is
work to be done in acquisition policy, in processes for delivery
in the use of things like DoDAF. I think the DoD itself can lead
and should lead this, and it needs to make this change in the
interspatial spaces of its training, in its service academies, and
in its colleges as well.

CrossTalk—Nov/Dec 2010 7

ARCHITECTURE TODAy

CrossTalk: Have you seen anything to suggest that the
DoD has gathered that same point of view and that it might be
starting to change its perspective and train people differently?

Walt J. Okon and I recently had a conversation on that very
topic. I did raise with him the notion of education. I was abso-
lutely ready to dance on the table when he told me that one of
his major initiatives, beyond 2.0 reaching closure, is that whole
issue of education. Beyond what he is doing, I don’t have a lot
of insight, but I am certainly encouraged by his efforts.

CrossTalk: Back to the idea of needed training prior to
getting ensconced in the industry: How do you see the cur-
rent state of software engineering in higher education, and
where do you think it needs to go?

I’ve had the delightful opportunity to engage with a lot of
different schools. I make a yearly jaunt around the universi-
ties—both in the U.S. and other places in the world—to give
lectures and the like. I’ve also had the chance to interact
with people both in the ACM [Association for Computing
Machinery] and in the IEEE on K-12 and undergraduate and
graduate degrees.

What is growing are the interdisciplinary kinds of things like
I’ve seen at CMU, and at USC through Barry Boehm, where
systems engineering is coming together and software is an
important piece of that.

There is this mental model I use that I speak of as “the laws
of software.” So if you imagine that we have a surplus of cog-
nitive resources—in other words, human intelligence or human
imagination is not a limited resource—we come up with these
visions and we have to turn that into “raw running naked”
code. The question for me is what separates us from vision,
to turn that into raw running naked code—and the answer is
there are these things in the laws of software.

You’ll see that things move from the computer science-y
things, which are very mathematically based and very funda-
mental, into the things that become more human-oriented—
elements like politics and ethics and moral issues. We think we
know how to build certain things … the question is should we?

What makes it most difficult to move from vision to execu-
tion is something that swirls around the problems of design
and the problems of organization. How do I best architect a
system? How do I best architect my organization to deliver
that system? As it turns out, there’s this wonderful, delicious
cusp of the technical and the social, and that’s where the
sweet spot for delivery is in education. How does one attend
to the fiercely technical problems, but at the same time be
cognitive of the social issues as well? I swear there are days
that I go into an organization where I’ll show up as über geek
and other days I have to show up as Dr. Phil, slapping faces
around, saying, “My God, what are you thinking?” So, in terms
of where I think things need to go—well, for people delivering
software-intensive systems, I think our education system has
to attend to that dance between the technical and the social.

CrossTalk: I was recently in a conversation where we
were trying to set up a degree program with a local universi-
ty for UAS [unmanned aerial systems] and the big argument
was hardcore engineers versus interdisciplinary people. I
take it you’re leaning toward interdisciplinary as a strength?

Well, I say it is very much a strength because if you look
at unmanned vehicles, this is a classic systems-engineering
problem. There are some wickedly technical problems to over-
come, but ultimately I’m delivering a system to be used by hu-
mans, to be used in the context of other complex warfighting
systems. These are not islands, so I would want to seek out
the best ideas from a variety of places. So yes, I can’t imagine
one considering this other than interdisciplinary activity.

Through the mixtures of putting smart people together in dif-
ferent domains, innovation comes about in unexpected ways.

The final thing I’d offer is, you know, that this is still an
exciting discipline. The global economy is in a funk, there’s no
doubt about it. I’ve been lecturing recently about the notion of
software abundance in the space of economic scarcity, and
I’m utterly convinced that the delivery of software-intensive
systems is still a major source of innovation and, therefore,
economic growth. So this is still an exciting place to be. I en-
courage people who are thinking about this field to recognize
that there are a lot of wickedly entertaining, exciting and deli-
cious problems to solve. We’re not done yet.

1. To learn more about Rear Admiral Hopper (1906-1992)—including her
 famed nanoseconds—visit <www.chips.navy.mil/links/grace_hopper/
 womn.htm>.
2. Pausch may be known best for his Last Lecture: “Really Achieving Your
 Childhood Dreams.”
3. Alice is a 3-D programming environment.
4. Currently, Booch maintains a blog, <www.handbookofsoftwarearchi
 tecture.com>, for The Handbook of Software Architecture, which
 serves as the repository for ongoing work in an effort that will eventually
 be published in print.
5. First published in 1991, Booch’s book is in its third edition (2007).
6. See < www.uml.org> to learn more about UML, the current status of
 UML 2.0, and the role of the OMG.
7. By Nicolas Le Novère, et al., in the 7 Aug. 2009 edition of Nature
 Biotechnology. The article is available at
 <www.nature.com/nbt/journal/v27/n8/full/nbt.1558.html#a1>.
8. See the Sept./Oct. 2008 edition of IEEE Software or listen to the podcast,
 “Nine Things You Can Do With Old Software,” at <www.computer.org/
 portal/web/computingnow/onarchitecture>.

So this is still an exciting place to be. I en-
courage people who are thinking about this
field to recognize that there are a lot of
wickedly entertaining, exciting and delicious
problems to solve. We’re not done yet.

NOTES

http://www.chips.navy.mil/links/grace_hopper/womn.htm
http://www.chips.navy.mil/links/grace_hopper/womn.htm
http://www.handbookofsoftwarearchitecture.com
http://www.handbookofsoftwarearchitecture.com
http://www.uml.org
http://www.nature.com/nbt/journal/v27/n8/full/nbt.1558.html#a1
http://www.computer.org/portal/web/computingnow/onarchitecture
http://www.computer.org/portal/web/computingnow/onarchitecture

