Model-Based Cybertronic Systems Engineering

Challenges, Methodology and Solutions

Ahmed Hamza

Restricted | © Siemens 2024 | Ahmed Hamza

The Cybertronics Challenge

Cybertronics

The engineering discipline of hw/sw functional co-architecture to realize new s/w defined, semiconductor enabled systems.

It requires a new, advanced form of model-based systems engineering that drives cybertronics design automation; MBCSE

Cybertronics Design Automation

MBCSE-driven EDA = Architecture Analysis + Digital Threading + conventional EDA = Cybertronics Design Automation

Cybertronics Engineering Status: Systems Engineering is not Model-Based enough

Restricted | © Siemens 2024 | Ahmed Hamza

Future Status: Cybertronics Systems Engineering Driven EDA

MBCSE-CORE Framework

The MBCSE-CORE enables requirements engineering, system modeling and verification management

SoSS architecture modeling requires explicit abstractions for Functional, Logical and Physical Layers, as well as black box / white box transitions between subsystems

Domain specific tools will interact with the MBCSE-CORE on a fit-for-purpose basis, as optional extensions

System Functional Allocation with Verifiable Requirements is Non-Existent

MBCSE Enables Threading of Functional Allocation and Verifiable Requirements for Systems of Cybertronic Sub-Systems

MBCSE-CORE

Requiremen Parameters Compliance Status VS

Cybertronics

Can be described as the collective methods, Automation technologies, and processes to help study, analyze, and design software-defined electronic systems

- System of system Knowledge capture
- Top-down knowledge traceability
- Reusability
- Parameter/requirement traceability
- Early verification
- Cross-enterprise Collaboration

Why EDA need MBCSE

MBCSE Hardware and Software performance analysis

Restricted | © Siemens 2024 | Ahmed Hamza

Why

System Complexity

Domains, control, power, etc.

End Application Complexity

Algorithm performance, HW/SW, etc.

- Explosion in time-sensitive, heavy compute software loads running on customized and optimized hardware
- Complexity increases and cycle time decreases
- Silo System engineering practice, lose sight of the big picture
- Digitization of paper data within these documents is still static and disconnected

The Current Status of System Engineering

SysML v1 – Cameo vs SysML v2

"We don't have time to change the wheels. Push harder, Harry!"

Restricted | © Siemens 2024 | Ahmed Hamza

The Industry is Failing to Share SE Information Reported at GPDIS Oct'20

GLOBAL PRODUCT DATA INTEROPERABILITY SUMMIT

A&D PLM Action Group- MBSE Project Data Exchange Trials

Phase 1 Results

The Light Switch Example	MBSE Data	Exchange Trials	All participants p Package; All moo into /	prepared OEM SC dels and Trial resu AirCollab project	D & Tecnhical Data ults data uploaded folders		Red= Faliure Grey= Partial Success Green= Success	Red= Faliure Grey= Partial Success Green= Success
OEM Role:	Round 1	OEM Role	OEM Modeling Tools Used	Data Export Standards Used	Supplier Role	Supplier Tools Used	Trial Outcome (System Model)	Trial Outcome (Requirements)
Create a simple model		Boeing			GE	IBM Rhapsody v8.2.1	Failure	Failure
Allocate requirements			MagicDraw v18.1	UML 2.5 XMI ReqIF v1.1		PTC Integrity v8.3.18 & Enterprise Architect,		
Share with Supplier		Boeing			Rolls-Royce	DOORS v9.5	Failure	Partial Success
		Boeing	DOORS v9.6		Airbus	IBM Rhapsody v8.1.4	Failure	Failure
Supplier Role: Open model	Round 2	OEM Role	OEM Modeling Tools Used	Data Export Standards Used	Supplier Role	Supplier Tools Used	Trial Outcome (System Model)	Trial Outcome (Requirements)
Make a simple change		Airbus	IBM Rhapsody		Rolls-Royce	PTC Integrity v8.3.18 DOORS v9.5	Failure	Failure
Resend to OEM		Airbus	v8.1.4 (Reqs Included in	XMI	GE	IBM Rhapsody v8.2.1	Failure	Failure
		Airbus	SysML model)		Boeing	Rhapsody 8.1.5	Failure	Partial Success
		Rolls-Royce	PTC Integrity	YMI	Boeing	Rhapsody 8.1.5	Failure	Failure
		Rolls-Royce	Modeler v8.3.18	AWI	GE	IBM Rhapsody v8.2.1 DOORS NG	Failure	Partial Success
		Rolls-Royce	DOORS v9.5	ReqIF v1.0	Rolls-Royce	PTC Integrity Modeler v8.3.18	Failure	Partial Success
		GE	IBM Rhapsody v8.2.1	UML 2.3 XMI	Boeing	Rhapsody 8.1.5	Failure	Failure
		GE	DOORS NG	ReqIF v1.2	Rolls-Royce	PTC Integrity v8.3.18 DOORS v9.5	Failure	Failure

SysML is not living up to the hype

Four critiques of SysML:

- 1. The learning curve is too steep
- 2. The mechanics are cumbersome
- 3. The barriers to organizational adoption are high
- 4. It is rarely used past the concept stage

(26) Post | LinkedIn

Current Status: Systems Engineering is not yet Model-Based enough

Non-Deterministic database

Deterministic database

Lack of Standard profile

2

All profiles and libraries bundled with CAMEO products are considered standard/system resources, non-modifiable, and essential for the proper performance of the tool.

We highly recommend not to modify our provided standard profiles and libraries as it could cause problems with version updates, plugins, core malfunctions, and model corruptions.

Intentional or unintentional attempt to modify profiles when:Opening profiles as projects.

- •Using profiles in the read-write mode.
- •Importing profiles into a project.
- •Merging projects, and several other occasions.

Agree on a standard notation: In a team environment, it is important that others can understand your diagrams without much explanation. Choosing a standard notation enables others to quickly comprehend your diagrams without ambiguity.

The activity browser provides methodological access to all key activities of AE. It is the main entry point to a model and is both meant for beginners and power users.

SAR - Overview 23	B Doors Management - Overview S
Overview of SAR	Physical Architecture *
Define Stakeholder Needs and Environment Capture and consolidate operational needs from stakeholders	Logical Architecture Physical Architecture EPBS EPBS Transition from Logical Functions ①
Define what the users of the system have to accomplish Identify emitties, actors, roles, capabilities, activities, concepts	Create Transability Hadris
Formalize System Requirements Identify the boundary of the system, consolidate requirements Define what the system has to accomplish for the users Model functional dataflows and dynamic behaviour	Kefne Physical Functions, describe Functional Exchanges
Logical	CCCERI Create a new Functional DataBlow Black data ann

Lack of Methodology

3

SysML V1

Arcadia is a tooled method devoted to systems and architecture engineering, supported by the Architecture Explorer modeling tool.

AE SysML v2

Methodological Guidance

What the users of the system need to accomplish

What the system has to accomplish for the users

How the system will work to fulfill expectations

How the system will be developed and built

Use Abstraction and System to Sub-system Decomposition

4

One of the most effective ways to manage system design complexity is to use abstraction and decomposition.

Abstraction is the process of hiding the details of a system and exposing only the essential characteristics and functionality.

Decomposition is the process of breaking down a system into smaller and simpler components that can be designed, implemented, tested, and maintained independently.

By using abstraction and decomposition, you can reduce the complexity of the system, increase the modularity and reusability of the components, and isolate the impact of changes.

AE SysML v2

Source: https://eclipse.dev/capella/arcadia.html

System Modeling Tools Scale Value Change from a Burden work to a Value work

+++ The tool will tell you something
you don't know (emergent behavior) *
Example language: Verilog AMS, VHDL AMS

++ The tool will analyze a huge amount of data, with all the corner cases - Example: SystemC, network process-based simulation

The tool will confirm what you
 Believe/know by ensuring nothing has
 been overlooked
 Example: Simulink

0 Rehearses what you know; it's almost a waste of effort If a tool requires complete and detailed input.

That the input is just the output in a different format. "It's a pretty printer."

Most of the system design tools SysML v1

 The tool re-enforces incorrect or Incomplete thinking

 The tool instills incorrect or incomplete thinking

* Emergent behavior is **behavior of a system that does not depend on its individual parts, but on their relationships to one another**. Thus, emergent behavior cannot be predicted by examination of a system's individual parts.

Architect Explorer

MBCSE Hardware and Software performance analysis

Restricted | © Siemens 2024 | Ahmed Hamza

Architect Explorer

- Architect Explorer is a design environment that supports the system requirements, design, analysis, verification, and validation associated with developing complex systems.
- Architect Explorer enables Digital transformation of Systems Engineering from a Document-centric engineering to Digital model-based systems Engineering.
- A digital Model environment will create a Common Standard to capture, analysis, validate, and document the system
- System Thinking is a way to examine the design sub-system part of a larger system and product life cycle

Restricted | © Siemens 2024 | Ahmed Hamza

Manage complexity System to sub-system

Aircraft is a system

AKINETIC Model Kits

F/A-18 "Hornet" gears with wheels

Landing gear is a system

Landing gear control is a system

ENS

Landing gear control sensors is a system

Restricted | © Siemens 2024 | Ahmed Hamza

Compute Enclosure -level system exploration

Restricted | © Siemens 2024 | Ahmed Hamza

Performance analysis model

Creating a performance model based on the Physical or logical architecture

Analysis of parameterized performance simulation with two accelerators

Simulation with HW accelerator for convolution and Dense processes and 1 ARM Cortex A57 core

- Clock frequency: 500 MHz
- Data size between runnable tasks 1
- Interval between inferences: 20ms (target 20ms)
- 1. Convolution process reaches performance target
- 2. Dense processes reach performance target
- 3. CPU0 can handle all SW tasks with safety margin

Architecture 1: Standard processor on PCB can't meet the performance target

	Cybertronics-SoC-Cluster_1: Nucleus	Execution Profile								▲ ▼ X	
	IDLE BUSY BUSY IDLE	IDLE	IDLE	IDLE	IDLE	IDLE	IDLE	IDLE	BUSY	CPU [0]	
	ENABLED ENABLE ENABLED								ENABLED] ISR [0x2] CPU [0]	
	STOP STOPP STOPPED STOPPED	STOPPED	STOPPED	STOPPED	STOPPED	STOPPED	STOPPED	STOPPED	STOPPED] ISR [0x1d] CPU [0]	
	REGISTER REGIST REGISTERED							REGISTERED		ISR [0x3] CPU [0]	
	ENABLE ENABLE								ENABLED] ISR [0x4] CPU [0]	
	ENABLE <mark>D ENABLE ENABLED</mark>								ENABLED] ISR [0x5] CPU [0]	
	ENABLE ENABLE								ENABLED] ISR [0x6] CPU [0]	
	ENABLED ENABLE ENABLED								ENABLED] ISR [0x7] CPU [0]	
	ENABLE ENABLE								ENABLED] ISR [0x8] CPU [0]	
	ENABLE ENABLE								ENABLED] ISR [0x9] CPU [0]	
	NU_S READY NU_SLEEP_SUSPEND							NU_SLEEP_SUSPEND		TASK-Image_d [0x350d8] CPU [0]	
	NU_QUEU							NU_QUEUE_SUSPEND	NU_QUEUE	TASK-Serial_ [0x35408] CPU [0]	
	NU_S NU_SEENU_SLEEP_SUSPEND_EEP_	SUSPEND NU_SLEEP_SUSPE	NU_SLEEP_SUSPEND	NU_SLEEP_SUSPE	ND NU_SLEEP_SUSPEN	D NU_SLEEP_SUSPEN	NU_SLEEP_SUSPEN	NU_SLEEP_SUSPEND	NU_SLEEP_	TASK-Task_Ha [0x356a8] CPU [0]	
	NU_QUEU							NU_QUEUE_SUSPEND		TASK-DevDisc [0x36ea0] CPU [0]	
		ND					NU_V	WORKQ_TASK_SUSPEND		TASK-wqtask [0x444598] CPU [0]	
		ND SK NU_WORKQ_TAS	K NU_WORKQ_TASK	. NU_WORKQ_TASK	NU_WORKQ_TASK	NU_WORKQ_TASK_	NU_WORKQ_NU_V	WORKQ_TASK_SUSPEND	NU_WORK	TASK-wqtask [0x4450b8] CPU [0]	tura
		ND					NU_V	WORKQ_TASK_SUSPEND		TASK-wqtask [0x445bd8] CPU [0]	lure
	NU_PURE NU_PURE_SUSPEND							NU_PURE_SUSPEND			azor
	Cybertronics-SoC-Cluster_2: Nucleus	Execution Profile									
	IDLE BUSY IDLE BUSY							ID	IDLE	an ASIC	; is
	ENABLED ENABLE ENABLED							111			
	C1: 347.03919mi 360.0m	370.0m	380.0m	390.0m	400.0m	410.0m	420.0m			needed	
	C2: 350.36842m (dx = 3.32	923m)i		Time (3)			3: 437	= 90.10312	2m)		
Scanner Recognition T	me										
Model	Requirement	Parameter V	/alue Min Ma	x Certified Co	omment						
Cybertronics Perf Model	2.0-2 The device shall recognize digits in a given time	Recognition time [ms]	<mark>∕ 90.13</mark> 15 20		🖉 Ran performance	analysis based on	using a standard (CPU on the PCB. Mea	asured valu	lue fails to meet budget by a large margin. Suggest creating a custom ASIC 1	or this functio

Architecture 2: SoC with 3 CPUs, and a full S/W implementation

Architecture 3: SoC with 2 CPUs and 1 accelerator is still too slow

Scanner Recognition Time

Model	Requirement	Parameter	Value	Min Max	Certified By	Comment
Cybertronics Module	2.0-2 The device shall recognize digits in a given time	Recognition time [ms]	23.05	15 20		🖉 Using an accelerator for convolution, but timing is still over budget by ~20%. Analysis suggests that we also need to accelerate the dense layer.

Architecture 4: SoC with 1 CPU with 2 accelerators can meet the timing requirement

Scanner Recognit	er Recognition Time														
Model	Requirement	Parameter	Value	Min	Max	Certified By	Comment								
Cybertronics Module	2.0-2 The device shall recognize digits in a given time	Recognition time [ms]	11.43	15	20		With acceleration of the dense layer also, the timing budget can be met. To be within min-max range we will constrain convolution accelerator to 5ms, and the dense layer to 2ms to achieve optimal timing.								

Restricted | © Siemens 2024 | Ahmed Hamza

Experimenting with clock frequency: 100 MHz clock doesn't quite meet the budget

Cybertronics Module-Scanner_SoC GenHW-CpuCluster_1 - Kernel Object Run-Time Distribution per CPU

CPU Execution Run-Time Statistics 0.46% ISR rformance Model 🛛 🗮 Final_Implementation_1 Final_Implementation_100MHz/Cybertronics_Module-Scanner_SoC_GenHW-Generic_Hardware - Cybertronics_Mo... ertronics_Module-... 29.45% IDLE 3.89% System ----ENABLED ENABLED ENABLED ISR [0x9] CPU [0] 66.19% TASK-CPU[0] (70.55% BUSY) NU_SLEEP_SUSPEN TASK-Scale_v [0x37168] CPU [0] NU_SLEEP_SUS... NU SLEEP SUSP READYG Task Execution Statistics -NU QUEUE SUSPENDRUNNING NU_QUEUE_SUSPET NU QUEUE SUS TASK-Create_ [0x37498] CPU [0] Create_ [0x37498] SoftMax [0x37b88] NU_QUEUE_SUSPET NU_QUEUE_SUS U_QUEUE_SUSPEND NU_QUEUE_SUSPEND TASK-Flatten [0x377c8] CPU [0] Scale v [0x37168] Flatten [0x377c8] RUNNING NU QUEUE SUS main [0x44b508] RUNNING NU QUEUE SUSPEND TASK-SoftMax [0x37b88] CPU [0] Serial_ [0x37eb8] wqtask [0x4480f8] TASK-Serial [0x37eb8] CPU [0] NU_QUEUE_.. NU QUEUE SUS HNU QUEUE SUSPEND Task Ha [0x38158] wqtask [0x44c968] NU_SLEEP_SUSPEN NU SLEEP SUSP CPU[0] SUSPEND NU SLEEP SUSPEND NU_SLEEP_SUSPE TASK-Task Ha [0x38158] CPU [0] wqtask [0x44ec88] ISR [0x1d] NU_QUEUE_SUSPET NU QUEUE SUS NU_QUEUE_SUSPEND ISR [0x22] TASK-DevDisc [0x39a10] CPU [0] NU_WORKQ_TASK_NU WORKQ TASK SUSPEND -NU WORKQ TASK SUSPEND TASK-wqtask [0x4475d8] CPU [0] NU_WORKQ_T... RUNNING TASK_SUSPEND NU_WORKQ_TASK_SUSPEND NU_WORKQ_TASK_SUSPEND NU WORKO TASK SUSPENDRKQ_TASI TASK-wqtask [0x4480f8] CPU [0] TACK TO 440 401 CDU TO C1: 769.11350mi 772.0m المتبعم 774.0m 778.0m 768.0m 776.0m 780.0m 782.0m 784.0m 786.0m 788.0m 790.0m 792.0m 794.0m Time (s) C2: 790.18750m (dx = 21.07400m)

Scanner Recognition	Time					
Model	Requirement	Parameter	Value	Min Ma	x Certified By	Comment
Cybertronics Module	2.0-2 The device shall recognize digits in a given time	Recognition time [ms]	21.07	15 20		SoC with CPU plus 2 accelerators, simulated with 100 MHz clock frequency does not meet the requirement. Suggest we increase the frequency.

Restricted | © Siemens 2024 | Ahmed Hamza

Experimenting with clock frequency: 200 MHz easily meets the requirement

Model	Requirement	Parameter	Value	Min Max	Certified By	Comment
Cybertronics Modu	e 2.0-2 The device shall recognize digits in a given time	Recognition time [ms]	15.20	15 20	🖉 Lisa Verifier	SoC with CPU plus 2 accelerators, increased clock frequency to 200 MHz gets us within the budget, close to the minimum.

Performance simulation is successful, we're ready to move to virtual prototyping, and HLS flows!!

MBCSE CORE Verification Threading: Summary

- The MBCSE CORE enabled us to establish a comprehensive digital thread, including:
 - Requirement allocation
 - Parameter usage in models
 - RFLP level transitions
 - Verification activity that captured the main project decision points / phase-gates

VCP	Parameter	Min	Max	Value	Comment	Version	Model	AE_Project	Config
Scanner Recognition Time	Recognition time [ms]	15	20	90.13	Ran performance analysis based on using a standard CPU on the PCB. Measured value fails to meet budget by a large margin. Suggest creating a custom ASIC for this function.	1.0.0	• Cybertronics	Scanner Cybertronics Module_Perf	Cybertronics Module SW Only
Scanner Recognition Time	Recognition time [ms]	15	20	91.14	Simulated an SoC architecture with 3 CPUs, and a full s/w solution, but timing exceeds budget by ~5x. Analysis suggests accelerating convolution function.	1.1.0	包Cybertronics Module	Scanner SoC	SoC_Full_SW_3CPU_500HMz
Scanner Recognition Time	Recognition time [ms]	15	20	23.05	Using an accelerator for convolution, but timing is still over budget by ~20%. Analysis suggests that we also need to accelerate the dense layer.	1.1.1	む Cybertronics Module	Scanner SoC	SoC_1Accel_2CPU_500HMz
✓Scanner Recognition Time	PRecognition time [ms]	15	20	11.43	With acceleration of the dense layer also, the timing budget can be met. To be within min-max range we will constrain convolution accelerator to 5ms, and the dense layer to 2ms to achieve optimal timing.	1.1.2	犯Cybertronics Module	Scanner SoC	𝔥SoC_2Accel_1CPU_500HMz
Scanner Recognition Time	Recognition time [ms]	15	20	21.07	SoC with CPU plus 2 accelerators, simulated with 100 MHz clock frequency does not meet the requirement. Suggest we increase the frequency.	1.2.0	犯Cybertronics Module	Scanner_SoC_GenHW	웹Scanner SoC GenHW 100MHz
Scanner Recognition	Precognition time [ms]	15	20	15.20	SoC with CPU plus 2 accelerators, increased clock frequency to 200 MHz gets us within the budget, close to the minimum.	1.2.1	犯Cybertronics Module	Scanner_SoC_GenHW	월Scanner SoC GenHW 200MHz

Digital Thread and Verification Capture points

MBCSE Hardware and Software performance analysis

Restricted | © Siemens 2024 | Ahmed Hamza

Digital Thread

Tools flow ≠ Digital Thread Tools flow ≠ Digital Twin

MBCSE solution:

- Normalize Threading across domains
- Normalize VCP* across domains
- Intelligent domain-to-domain threading
- Tools agnostic digital thread

The digital thread needs to be engineered.

A digital twin is an orphan unless connected to its digital thread.

* VCP: Verification Capture Points

Restricted | © Siemens 2024 | Ahmed Hamza

Digital Thread

What is the Digital Thread: It is a data communications framework that connects data flows. These data flows can be used to produce an integrated and holistic view of an asset's design data from physical and virtual systems

Threading Requirements & Verification Capture Points with the MBCSE CORE

- The MBCSE CORE allows key system artifacts, starting with parameterized requirements, to be added to a cybertronics digital verification thread
- Requirements from multiple sources such as DOORS, Polarion, Jira or even Excel spreadsheets can be mapped to the MBCSE thread model
- Link automation connects elements of threaded datasets based on defined rules that comprehend the methodology and conventions being used
- System models at any abstraction level can be added to the thread using tool plugins or integrations with code repositories such as gitlab
- As each requirement is verified, the artifacts that uniquely define the verification activity, such as test bench models, configuration files and saved results are captured on the thread
- Thread visualization and export of aggregated data from multi-order queries provide the ability to analyze the state of the project through the cybertronics development phase

Plug and Play digital thread

- Easley, add or remove tools from the digital thread
- Extend the ontology model for system design, system safety,
- Intrinsic system design verification and traceability framework

Eliminating Silos

DV Threader will link all project artifacts in one comprehensive view.

A project can link to different domains, technologies, and standards

Containers:

- Requirements
- Architecture
- Verification
- .
- •
- •
- Etc.

The list of containers is customizable based on technology and needs

Projects
🖌 🧐 MBSE Project
Architecture
Requirements
🚏 Change Management
specification
Verification
Wiring
😽 Miscellaneous
🕨 💽 PCB
Tests
🔠 Analysis

MBCSE CORE: Versatile Digital Thread – Repository Agnostic & Extendable

MBCSE CORE: Threading Verification Capture Points

- Capture requirement verification activity through all stages of the design process
 - including the failures that lead to changes in approach
- Record each instance where the requirement was deemed to be verified
 - and the precise model versions and test configurations

VCP	Parameter	Mir	n Max	(Value	Comment	Version	Model	AE_Project	Config
Scanner Recognition Time	PRecognition time [ms]	15	20	90.13	Ran performance analysis based on using a standard CPU on the PCB. Measured value fails to meet budget by a large margin. Suggest creating a custom ASIC for this function.	1.0.0	纪Cybertronics	Scanner Cybertronics Module_Perf	☑Cybertronics Module SW Only
Scanner Recognition Time	PRecognition time [ms]	15	20	91. 1 4	Simulated an SoC architecture with 3 CPUs, and a full s/w solution, but timing exceeds budget by ~5x. Analysis suggests accelerating convolution function.	1.1.0	吧Cybertronics Module	Scanner SoC	፼ SoC_Full_SW_3CPU_500HMz
Scanner Recognition	PRecognition time [ms]	15	20	23.05	Using an accelerator for convolution, but timing is still over budget by ~20%. Analysis suggests that we also need to accelerate the dense layer.	1.1.1	紀Cybertronics Module	Scanner SoC	SoC_1Accel_2CPU_500HMz
✓Scanner Recognition Time	PRecognition time [ms]	15	20	11.43	With acceleration of the dense layer also, the timing budget can be met. To be within min-max range we will constrain convolution accelerator to 5ms, and the dense layer to 2ms to achieve optimal timing.	1.1.2	叩Cybertronics Module	Scanner SoC	SoC_2Accel_1CPU_500HMz
Scanner Recognition	PRecognition time [ms]	15	20	21.07	SoC with CPU plus 2 accelerators, simulated with 100 MHz clock frequency does not meet the requirement. Suggest we increase the frequency.	1.2.0	吧Cybertronics Module	Scanner_SoC_GenHW	☎Scanner SoC GenHW 100MHz
Scanner Recognition	¹² Recognition time [ms]	15	20	15.20	SoC with CPU plus 2 accelerators, increased clock frequency to 200 MHz gets us within the budget, close to the minimum.	1.2.1	吧Cybertronics Module	Scanner_SoC_GenHW	₿Scanner SoC GenHW 200MHz

View a digital Thread

Contact

Ahmed Hamza

Restricted | © Siemens 2024 | Ahmed Hamza