Honourcode, Inc.__

Systems of Systems International Trends

Concepts, advances, and business opportunities

Systems Engineering
Training Courses
Process Improvement

Eric Honour +1 (850) 450-0429 ehonour@hcode.com

February 2017

SoS International Trends

Agenda

- Systems of Systems now and future
- Military versus commercial practices
- DoD trends in SoS
- EU trends in SoS
- Successful SoS trends

SoS International Trends

Honourcode, Inc.__

Systems of Systems: Now and Future

Concepts and examples of where system development is going

- Systems of Systems
- Military vs. commercial
- DoD trends in SoS
- EU trends in SoS
- Successful SoS Trends

Most of these assumptions are not valid today!

Traditional SE

Typical SoS Emergency Response SoS

Slide by Tim Lochow, EADS

Dynamicity in the ER SoS

SoS Characteristics

A System is a "System of Systems" if it exhibits significant amounts of:

- Emergent behavior SoS performs functions not achievable by the independent component systems
- Geographic distribution geographic extent forces the elements to exchange information in a remote way
- Evolutionary development functions and purposes are added, removed and modified in an ongoing way
- Operational independence component systems have purpose even if detached
- Managerial independence component systems are developed and managed for their own purposes

- Mark Maier 1998, "Architecting Principles for SoS," Systems Engineering (INCOSE)

Impacts of SoS Characteristics

Types of SoS

Туре	Description	Example	
Directed	 Integrated SoS built and managed to fulfill specific purposes Centrally managed during long-term operation Constituent systems can operate independently, but normally operate within SoS 	 Airport 	
Acknowledged	 Recognized SoS objectives Designated manager and resources for the SoS Constituent systems retain independent ownership, objectives, funding, development, sustainment 	 Military systems 	
Collaborative	 Component systems interact voluntarily to fulfill agreed upon central purposes. Central players collectively decide issues, thereby providing some means of enforcing and maintaining standards. 	 Banking 	
Virtual	 No central management authority No centrally agreed SoS purpose. Large-scale behavior emerges, may be desirable Relies upon relatively invisible mechanisms to maintain it. 	 Supply chains 	
Honourcode, Inc SoS International Trends 9			

Differing Levels of "SoS-ness"

Honourcode, Inc.___

SoS International Trends

10

Traditional SE vs. SoSE

	Traditional SE	SoSE	
Purpose	Meet stakeholder requirements and defined performance	Evolve new capability, leveraging synergies of legacy systems	
System Architecture	Established early in lifecycle, remains relatively stable	Dynamic reconfiguration as needs change; SoA as enabler	
System Interoperability	Define/implement specific interfaces to integrate components	Component systems operate independently of SoS; protocols and standards essential	
System "ilities"	Reliability, maintainability, availability are typical	Added "ilities" such as flexibility, adaptability, composeability	
Acquisition and Management	Centralized acquisition and management	Component systems separately acquired, managed independently	
Anticipation of Needs	Concept phase activity to determine system needs	Intense concept phase analysis; continuous anticipation aided by ongoing experimentation	
T. Saunders, et al. in "United States Air Force Scientific Advisory Board Report on System of			

T. Saunders, et al, in "United States Air Force Scientific Advisory Board Report on System of Systems Engineering for Air Force Capability Development" SAB-TR-05-04, July 2005

_Honourcode, Inc.___

SoS International Trends

Military versus Commercial Practices

Issues of SoS control; how different domains are handling them.

- Systems of Systems
- Military vs. commercial
- DoD trends in SoS
- EU trends in SoS
- Successful SoS Trends

J. Dahmann (MITRE) "An Implementer's View of SE for SoS" INCOSE SoS Webinar Nov'12

US DoD SoSE Wave Model

Initiate SoS:

Plan SoS Update:

Provides foundational information to initiate the SoS

Conduct SoS Analysis:

Provides analysis of the 'as is' SoS and basis for its evolution

Develop SoS Architecture:

Develops/evolves the persistent technical framework for SoS evolution and a migration plan identifying risks and mitigations

_Honourcode, Inc.___

Evaluates SoS priorities, backlog of SoS changes, and options to define plans for the next SoS upgrade cycle

Implement SoS Update:

Oversees system implementations and plans/conducts SoS level testing, resulting in a new SoS product baseline

Continue SoS Analysis:

Ongoing SoS analysis revisits the state of and plans for the SoS as the basis for SoS evolution SoS International Trends 13

Sos Example Joint Track Management

- Navy systems to manage track information
- Long-term evolving SoS includes:
 - Sensors
 - Information systems
 - Displays
 - Filters and simulators
- Series of efforts over decades:
 - AEGIS
 - CEC
 - SIAP
 - JTM
- Systems acquired separately

Honourcode, Inc.___

Sommerer et al., (2012) "Systems of Systems Engineering in Air and Missile Defense," Johns Hopkins APL Technical Digest, vol 31, nbr 1 SoS International Trends 14

DANSE Methodology

Single model to embody the integrating thoughts

- An initiation phase
- Optional creation phase
- Forward movement through the SoS life
- Constant cycling of events/ scenarios
- A "<u>capability learning cycle</u>"
 - <u>Constant improvement!</u>
- Normal Vee-based SE in the constituent systems

Honourcode. Inc._

Alternate starting points:

- SoS is acknowledged among existing systems
- SoS is created by a Lead System Integrator

SoS Example Supply Chain Mgmt

- Component systems
 - Production management systems
 - Inventory systems
 - Transportation tracking systems
 - Internet for connectivity
- Functions
 - Reduce inventory costs
 - Just-in-time inventory production
- Development
 - Each system developed separately
 - Little coordination
 - Systems upgraded separately

Dynamic Optimization of the SoS

- Decisions by each participant cause SoS change
- Conflicting parameters move competitively
- Shared parameters move consistently

DoD Trends in SoS

How is the US Department of Defense treating systems of systems?

- Systems of Systems
- Military vs. commercial
- DoD trends in SoS
- EU trends in SoS
- Successful SoS Trends

US Army Future Combat Systems

FCS Approach and Results

- Technical approach 2003-2009
 - Single contractor to plan, integrate entire SoS
 - Layered, networked architecture
 - Worked to develop SoS Common Operating Environment (SOSCOE) to standardize interfaces
 - Task Integration Networks as a Service-Oriented Architecture
 - Extensive use of DoDAF to manage information
- Program cancelled after six years of work
 - Unable to meet goal of first FCS unit by 2008 (target was moved outward to 2015)
 - Too expensive to continue
 - All component systems growing in cost and complexity

SoS International Trends

Sos Example USCG Integrated Deepwater

- Replace the aging USCG fleet and aircraft
 - New cutters, fixed wing, helicopters, C4ISR
- 20-year contract 2002 \$20B to Integrated Coast Guard Systems LLC
 - Joint venture Lockheed Martin and Northrop Grumman
 - Expanded 2005 25-year \$24B
- Performance problems
 - Fast Response Cutter non-feasible
 - Offshore Patrol Cutter removed
 - 123' Patrol Boat converted from existing 110' cutters, failed
 - UAV effort halted
 - Logistics support cancelled
- 2007 all acquisition and integration efforts returned to USCG offices

_Honourcode, Inc.___

SoS International Trends

Sos Example FAA NextGen Air Traffic Mgmt

- Revise existing ground-based radar systems with satellite-based and GPS systems (years 2012-2025) (\$15-20B)
 - Automatic Dependent Surveillance-Broadcast (ADS-B) GPS self-location with inter-a/c real-time reporting
 - Data Communications replacing some voice comms
 - En Route Automation Modernization (ERAM) new ground display network with smart functionality for controllers
 - Network Enabled Weather real-time weather information
 - NAS Voice Switch upgrade, modernize voice comms
- Coordinated with EU Single European Sky ATM Research (SESAR)
- Moving forward, but issues arising
 - Community noise problems due to new flight paths
 - Cost of upgrades on aircraft
 - ERAM delay impacting other systems
 - Budget reductions

_Honourcode, Inc.___

DoD Approaches to SoS

- Tendency to treat every SoS as "Directed"
 - Traditional SE applied, top-down
 - Central manager

Honourcode, Inc.___

- Hierarchical requirements management
- Gradually learning this method is not effective
- Changing to Acknowledged model
 - Holistic capabilities defined and disseminated
 - SoS capabilities linked to system requirements
 - Motivate constituent system managers through vision, politics, standards, coercion
 - Maintain central management of SoS vision, modeling

Honourcode, Inc.__

EU Trends in SoS

What different approaches are in use within Europe?

- Systems of Systems
- Military vs. commercial
- DoD trends in SoS
- EU trends in SoS
- Successful SoS Trends

Sos Example Single European Sky ATM Research

- SESAR project to upgrade, unify EU Air Traffic Mgmt
 - 2004-2008 definition: ATM master plan (some delays)
 - 2008-2013 development: technology systems (not complete)
 - 2014-2020 implementation
- Elements
 - Network operations planning
 - Integrate airport operations into ATM
 - Trajectory management
 - New aircraft separation modes
 - System-Wide Information Management (SWIM)
 - Humans as decision-makers, aided by automation
- Progressing with some delays
- No major issues

SoS International Trends

_Honourcode, Inc.___

SoS Example Smart Grid

- Upgrade electricity supply grid to be responsive to changes in suppliers and consumers
 - EU: Smart Grid European Technology Platform
 - USA: DoE SmartGrid.gov
- Features of the smart grid
 - Reliability: fault detection, tolerance, self-healing
 - Topology flexibility: bidirectional energy flow
 - Load adjustment/balancing for sudden changes
 - Peak leveling, time of use pricing
 - Variable energy sources
- Created by influence rather than control:
 - Sustainability initiatives
 - Cost initiatives
 - Political marketing
- Concerns over control and security

EU Approaches to SoS

- Tendency toward collaborative management
 - Cultural issue: European Union collaboration
 - SoS management by consortia, central committees
 - Seek agreement among member nations
- SoS control methods
 - Interface and protocol standards
 - Exclusion, marginalization of non-standard systems
 - SoS vision
 - Goals, societal benefits, capabilities
 - Use of defined standards
 - Distributed implementation

Successful SoS Trends

What seems to be working to support SoS development?

- Systems of Systems
- Military vs. commercial
- DoD trends in SoS
- EU trends in SoS
- Successful SoS Trends

Architecture Framework

A resource that guides the development or description of an architecture.

Elements

- Standard vocabulary
- Standard views and view descriptions
- Standard data structure to retain and exchange information
- Standard approach to develop architectures

Benefits

- Communications among those who share the framework
- Accurate data interchange among models
- Automated/visual evaluation of architectures
- Assists decision making
- Lower cost, greater assurance
 - Training and processes standardized

Unified Architectural Framework UAF Overview

- DoD Architecture Framework (DoDAF)
- MoD Architecture Framework (MoDAF)
- Unified Profile for DoDAF and MoDAF (UPDM)
- Underlying data model
- Viewpoints representing the needs of different users
- 52 different views (diagrams) that show specific representations into the data model

UAF Views

DIV-2 Logical Data Model (Entity Relationship Diagram)

Exchange Bement» (;

OV EE 1

DIV-2 Logical Data Model [The Untitled1]

- Many diagram styles, each drawing from the same underlying data base
- Drawn from decades of diagram types
- Change diagram -> change data base

DANSE Project

- Develop approaches for SoS engineering (design + manage)
 - <u>Methodology</u> to support evolution, adaptive and iterative SoS lifecycle
 - <u>Contracts</u> as semantically-sound model for SoS interoperations
 - <u>Architecting Approaches</u> for SoS continuous and non-disruptive constituent system integration
 - Supportive tools for SoS analysis, simulation, optimization
- Validation by real-life test cases
 - Emergency Response; Air Traffic Management; Autonomous Ground Transport; Integrated Water Treatment and Supply

E. Honour "DANSE Methodology Training" DANSE Nov'13

DANSE Solution Methods

Example "Use Case" of Methodology

34

D. DeLaurentis (Purdue) "SoS Advances (from a Modeling and Analysis Perspective)" INCOSE SoS Webinar Mar'13

SoS Analytic Workbench

SYSTEMS ENGINEERING Research Center

J. Fitzgerald (Newcastle) "Model-Based Engineering for SoS (COMPASS)" INCOSE SoS Webinar Apr'13

COMPASS: Modelling & Tools

(GEOSS) Global Earth Observation SoS

Solar activity

- Worldwide initiative to pool Earth information from many sensors
- Provide information to researchers quicker and more accurately
- Originated Johannesburg 2002
- Coordinated by Group on Earth Observations (GEO)
 - Intergovernmental group

Honourcode, Inc.___

- 60 nations, EC, 43 organizations
- Executive committee of 12 members chairs (EC, USA, China, S. Africa)

GEOSS Approach and Results

- Technical approach 2003-2015
 - Create distributed/decentralized SoS recognizing charters of individual EO systems
 - Foster interoperability standards in specific technical areas
 - Pilot projects to test the ideas
 - Disaster relief, climate change, water management, weather forecasting, biodiversity, terrain elevations
- Work continues and grows
 - More data is available quicker, used widely through Internet
 - Currently working Architecture Implementation Pilot 6
 - Agricultural initiatives starting
 - Work plan for 2014 has three major areas
 - GEOSS Infrastructure for operability and sustainability
 - Institutions & Development to continue movement
 - Societal Benefits Information

System Opportunities in GEOSS

Constituent Systems

- Satellite sensors
 - Climate observation
 - Forestation
 - Weather, waves
 - Urban observation
 - Land cover
- Earth-based sensors
 - Earthquake
 - Climate change
 - Tracking pollutants
- Communications systems

Management Systems

- Information assessment
 - Climate change correlation
 - Sensor correlation, merge
 - Military intel assessment
- Display/presentation
 - Common infrastructure
 - Data sharing
 - World-wide real-time information display
- Control/tasking
 - Conflict resolution
 - Prioritization

Summary

- Systems of Systems now and future
 - The cutting edge of system development for the next several decades
 - SoS practices
 - Early attempts to apply traditional SE have failed
 - Successes come from iterative, holistic approaches
- Architecture frameworks and MBSE
 - Modeling is key to SoSE approaches
 - Extensive work is active now to improve models
- Business opportunities exist
 - Research and IP development of new methods
 - Constituent systems development, SoS enabled
 - SoS management systems and development

Systems of Systems International Trends

Questions?

• Systems Engineering • Training Courses

- Process Improvement

Eric Honour +1 (850) 450-0429 ehonour@hcode.com

SoS International Trends