
Model-Based Systems Engineering

(MBSE) with SysML

Presenter:
Lenny Delligatti, M.S., OCSMP Advanced

Last modified: 19 JUN 2012

An Approach for Reducing Cost and Improving Quality

Presentation Objectives:

1. Provide an overview of the MBSE approach

2. Provide an overview of the Systems Modeling Language

(SysML)

3. Provide evidence of the ROI that MBSE offers over the

traditional document-based approach

Overview of MBSE

Overview of MBSE:

“MBSE is the formalized application of modeling to support

system requirements, design, analysis, verification, and

validation activities beginning in the conceptual design phase

and continuing throughout development and later life cycle

phases.”

-- International Council on Systems Engineering (INCOSE),

Systems Engineering Vision 2020, Sep 2007

Overview of MBSE:

MBSE is not a process; it does not replace our existing

process sets.

MBSE can be adopted by any organization to develop and

maintain systems with higher quality and reduced cost while

fully complying with existing process sets (e.g. ISO, CMMI,

etc.).

Overview of MBSE:

 The 3 Pillars of MBSE

1) Modeling languages

2) Modeling methods

3) Modeling tools

Overview of MBSE:

 Modeling Languages

The Object Management Group (OMG) has adopted many
modeling language specifications (i.e. grammars) that have
become de facto standards for the various engineering domains:

• Unified Profile for DoDAF and MoDAF (UPDM)

• Systems Modeling Language (SysML)

• Unified Modeling Language (UML)

• Modeling and Analysis of Real-Time Embedded systems (MARTE)

• Business Process Modeling Notation (BPMN)

...and many more.

Overview of MBSE:

 Modeling Methods

Examples of well-defined modeling methods:

• INCOSE Object-Oriented Systems Engineering Method (OOSEM)

• JPL State Analysis (SA) method

• Lockheed Martin Model-based Systems Engineering Method (MSEM)

• IBM Telelogic Harmony-SE method

• IBM Rational Unified Process for Systems Engineering (RUP SE)

• Weilkiens’ System Modeling (SYSMOD) method

Caveat: no out-of-the-box method will meet a project’s specific needs
and goals. Planning for a model-based project requires customization of
a method.

Overview of MBSE:

 Modeling Tools

Examples of some widely used commercial-grade modeling tools:

• IBM Rhapsody

• NoMagic MagicDraw

• Atego Artisan Studio

• Altova Umodel

• Sparx Systems Enterprise Architect

Each tool complies with OMG’s language specifications to varying
degrees of fidelity. Some tools offer greater capabilities than others (e.g.
autogeneration of code, reverse engineering of code into a model).
Selecting a tool must be part of the project planning process.

Overview of MBSE:

 The System Model

The output of MBSE activities is a coherent and consistent model

of the system (i.e. system model) expressed in a standard

modeling language (e.g. SysML).

The system model is:

1) a set of elements (which represent the system’s parts, actors,

behaviors, events, requirements, constraints, and test cases),

and

2) the relationships between those elements (e.g. associations,

dependencies, generalizations, flows, etc.).

Overview of MBSE:

 The System Model

The system model is created with a

modeling tool, like Rhapsody, and

stored in a model repository (i.e. a set of

data files outputted from the tool).

A model user can navigate that model

repository in the tool’s model browser.

For example, this is a view of the top-

level set of packages in a system model

as seen in the Rhapsody model

browser.

Overview of MBSE:

 The System Model

A model user can navigate the

model to view a specific element

(e.g. the SysML block

representing the Core layer) and

the relationships that it has with

other model elements (e.g.

connectors, flows, compositions,

etc.)

Overview of MBSE:

 The Model vs. Diagrams of the Model

In the document-based engineering approach, designers create a

set of diagrams that serve as views of the system design. These

diagrams are even casually referred to as “models” of the system.

In the model-based engineering approach, the system model is

itself an engineering artifact that has an existence independent of

any diagrams that a designer may create to provide views of the

model for various stakeholders.

This distinction leads to the Fundamental Precept of MBSE:

A diagram of the model is never the model itself. It is merely

one view of the model.

Overview of MBSE:

 The Model vs. Diagrams of the Model

As an MBSE practitioner builds the system model (in the model
repository), he or she will also create diagrams to present specific
views of the model.

Each diagram is created for a specific purpose to address the
specific concerns of a specific set of stakeholders. Each diagram
presents at best a subset of the features specified in the model.
Features that are not relevant to the stated diagram purpose
should be elided.

This leads to the corollary to the Fundamental Precept of MBSE:

You cannot conclude that a feature doesn’t exist by its
absence on a diagram. It may be shown in another view of the
model…or in no view at all.

Overview of MBSE:

 The Model vs. Diagrams of the Model

A quick metaphor to internalize this idea:

The model is a mountain.

A diagram is a picture of the mountain.

Overview of MBSE:

 The Power of a Single Model Repository

This distinction between model and diagram is the root of the
extraordinary ROI that the model-based approach offers over the
document-based approach.

In the model-based approach: if a requirement changes, the designer
goes to a single location—the model repository—to make the necessary
changes to an element. And the modeling tool automatically updates all
diagrams where that element appears. There is no opportunity for
incorrect data entry. Consistency across all views is ensured.

In the document-based approach, the designer has to know a priori which
diagrams are impacted by the change and where those diagrams are
located. He or she then needs to open each one sequentially, and then
manually make the same change repeatedly in multiple locations—a
process which is time-consuming and error-prone.

Overview of MBSE:

 System Model as Primary Artifact

Some customers—in particular, government agencies—are often
constrained by legislation or regulation to follow a document-based
engineering approach. Documents must be formally reviewed, approved,
and then archived.

In the MBSE approach, the system model serves as the primary artifact
from which all other required engineering artifacts can be autogenerated
via the modeling tool and its accessories:

• Requirements Specs.

• Interface Definition Documents (IDDs)

• System and Software Design Specs.

• Engineering Analysis Specifications and Results

• Test Case Specifications and As-Run Results

Overview of MBSE:

 Language Transformations:

Model to Source Code

The ultimate capability for a model-based engineering organization to achieve
is the automated transformation of a SysML or UML model into production-
quality source code.

This capability allows a design team to use SysML and UML as a higher-level
programming language while simultaneously building and evolving a system
model, which provides system maintainers:

• a visualization of system structure and behavior, allowing for faster
understanding and lower maintenance costs

• a mechanism for performing automated downstream impact analysis when
the customer submits change requests throughout the maintenance stage
of the lifecycle

• automated, consistent updates of all autogenerated artifacts when
changes are made in the model repository

Overview of SysML

Overview of SysML:

 What it is…

SysML is a graphical modeling language for the systems
engineering domain.

The key word is “language.” SysML has a grammar and
vocabulary just like any of the natural languages we speak in
this world (e.g. Hindi, Japanese, English, etc.).

SysML is the language “spoken” by systems engineers to
visualize, communicate, and document ideas about a
system’s requirements, structure, behavior, and constraints.

Overview of SysML:

 What it isn’t…

SysML is not a methodology.

In Survey of Model-Based Systems Engineering (MBSE)
Methodologies, Jeff Estefan defines methodology as:
“a collection of related processes, methods, and tools.”
A process defines what tasks must be performed. A method—
used here as a synonym for procedure—specifies how those tasks
should be performed.

With that in mind, I repeat: SysML is not a methodology. The
language can be used to support many different defined
methodologies.

Overview of SysML:

 The Origin Story

The Unified Modeling Language (UML) was adopted by the Object
Management Group (OMG) in 1997 as a standard modeling
language for the software domain.

In 2001 INCOSE decided to adopt UML as a standard modeling
language for systems engineering…despite the fact that UML’s
constructs did not sufficiently capture all of the language concepts
that are meaningful in the systems domain.

In 2003 the OMG published the UML for Systems Engineering
RFP, jointly drafted by the OMG and INCOSE, detailing the
requirements for a systems modeling language.

Overview of SysML:

 The Origin Story

A SysML development team formed to create the initial draft of the
SysML specification. That team was led by Alan Moore, the
language architect.

The draft specification was adopted by the OMG in April 2006.

The OMG SysML Finalization Task Force (FTF) then refined the
document and published the SysML specification v1.0 in
September 2007 for public use.

Today the OMG SysML Revision Task Force (RTF) is currently
working on SysML v1.4.

Overview of SysML:

 SysML Diagram Taxonomy

Overview of SysML:

 Requirement Diagram

A Requirement Diagram is used to display:

• text-based requirements,

• the relationships between requirements (e.g. containment,
derivation, and copy relationships), and

• the relationships between requirements and other model
elements (e.g. satisfaction, verification, and refinement
relationships).

Overview of SysML:

 A Sample Requirement Diagram

Overview of SysML:

 Package Diagram

A Package Diagram is used to display how a model is organized in
the form of a package containment hierarchy.

A package diagram may also show the model elements that
packages contain and the dependencies between packages and
their contained model elements.

Overview of SysML:

 A Sample Package Diagram

Overview of SysML:

 Block Definition Diagram (BDD)

A Block Definition Diagram (BDD) is used to display the properties
and operations of blocks and the relationships between blocks (i.e.
associations, generalizations, and dependencies).

Common uses for a BDD include displaying system hierarchy trees
and classification trees.

Overview of SysML:

 A Sample BDD

Overview of SysML:

 Internal Block Diagram (IBD)

An Internal Block Diagram (IBD) is used to capture the internal
structure of a block—specifically its part properties and reference
properties—and the connectors between those properties.

An IBD always represents the internal structure of a single block.

Overview of SysML:

 A Sample IBD

Overview of SysML:

 Parametric Diagram

A Parametric Diagram is used to express how one or more
constraints—expressed as equations and inequalities—are bound
to the value properties of a system.

Parametric diagrams support engineering analyses, to include:
performance, reliability, availability, power, mass, and cost.

Parametric diagrams can also be used to support trade studies of
alternative candidate physical architectures.

Overview of SysML:

 A Sample Parametric Diagram

Overview of SysML:

 Use Case Diagram

A Use Case Diagram is used to convey the use cases that a system
performs and the actors that invoke and participate in those use
cases.

A use case diagram is a black-box view of the services that a
system performs in collaboration with its actors.

Overview of SysML:

 A Sample Use Case Diagram

Overview of SysML:

 Activity Diagram

An Activity Diagram is used to specify a behavior with a focus on
the flow of control and the transformation of inputs into outputs
through a controlled sequence of actions.

Activity diagrams are commonly used as an analysis tool to better
understand the problem space and to express the desired behavior
of the system-under-design (SuD) within that context. It is not
intended to be a precise specification of a behavior.

Overview of SysML:

 A Sample Activity Diagram

Overview of SysML:

 Sequence Diagram

A Sequence Diagram is used to specify a behavior with a focus on
how the parts of a block interact with one another via operation
calls and asynchronous signals.

Sequence diagrams are commonly used as a detailed design tool to
precisely specify a behavior as an input to the development stage
of the lifecycle.

Sequence diagrams are also an excellent mechanism for specifying
test cases.

Overview of SysML:

 A Sample Sequence Diagram

Overview of SysML:

 State Machine Diagram

A State Machine Diagram is used to specify a behavior with a focus
on the set of states of a block and the possible transitions between
those states in response to system events.

A state machine diagram, like a sequence diagram, is a precise
specification of a block’s behavior that can serve as an input to the
development stage of the lifecycle.

Overview of SysML:

 A Sample State Machine Diagram

MBSE

Return on Investment

MBSE Return on Investment:

 A Case Study from LM Aeronautics

The set of slides that follow show the data collected from four real

aerospace and defense programs at Lockheed Martin.

Three of the programs used the traditional document-based engineering

approach. One program used the model-based engineering approach.

The actual names of the programs have been omitted to protect the

integrity of these ongoing programs.

Note: these slides use the acronym “MBSD” (Model-Based Systems

Development). Though the industry has not come to consensus on a set

of acronyms, “MBSD” is meant to convey a set of model-based activities

that span all engineering domains, while “MBSE” is generally used to refer

to model-based activities within the systems engineering domain only.

MBSE Return on Investment:

 Requirements Comparison

This figure compares the number of requirements for these four

aeronautics programs.

The program that used the model-based approach had more than twice as

many requirements as the next largest program.

MBSE Return on Investment:

 KSLOC Comparison

This figure compares KSLOC for these four programs as another metric to

contrast system size.

The program that used the model-based approach developed a

significantly larger system than the other three programs.

MBSE Return on Investment:

 Quality Comparison

This figure compares the

number of defects per

requirement for these four

programs.

Note:

“SPAR” refers to a defect

caught after release.

“Save” refers to a defect

caught before release.

MBSE Return on Investment:

 Quality Comparison

This figure compares the

number of defects per KSLOC

for these four programs.

Though the MBSD-produced

system was significantly

larger than the other three, its

defect density was greatly

reduced.

MBSE Return on Investment:

 Program Cost in Man-Hours

This figure compares the relative cost of these four programs in man-

hours. (Actual values have been omitted for proprietary reasons.)

As expected, the total number of man-hours for the MBSD-produced

system was greater than the other three, correlated to system size.

MBSE Return on Investment:

 Affordability

When normalized for system size, however, the MBSD-produced system

was developed at a significantly reduced cost.

Program C—the next closest in affordability—was 10% more costly than

the MBSD-produced system.

Contact Information

Lenny Delligatti, M.S., OCSMP Advanced

Cell phone: 757-630-2976

Work phone: 281-336-5095

E-mail: lenny.delligatti@lmco.com

 lennydelligatti@gmail.com

mailto:lenny.delligatti@lmco.com
mailto:lennydelligatti@gmail.com

