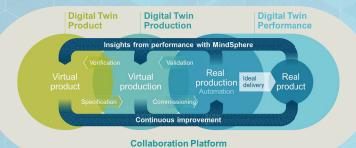
INCOSE Digital Threads in the Energy Industry

Ed Leggott - Bio


MEng in Systems Engineering – Loughborough University 2009

BAE Systems Graduate Program F-35 Program → September 2012

- Flight Systems Engineering
- Weapon Systems Engineering
- Configuration Management

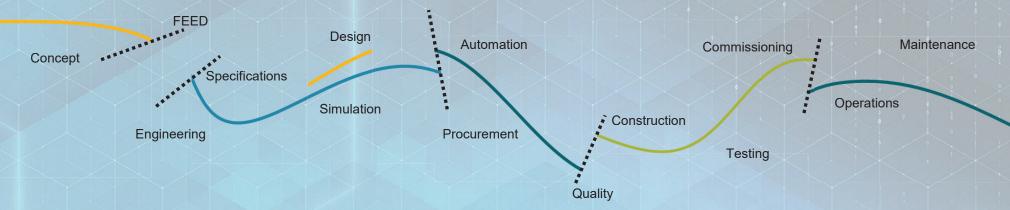
Cameron Subsea (OneSubsea, Schlumberger)

- → May 2019
- · Senior Systems Engineer, Subsea Production Systems
- Engineering Manager, Engineering Digital Lead/Eng Mgmt Office

Siemens Digital Industry Software (DISW)

- Presales Solution Consultant
- Industry TAM (Technical Account Manager)
- → Present

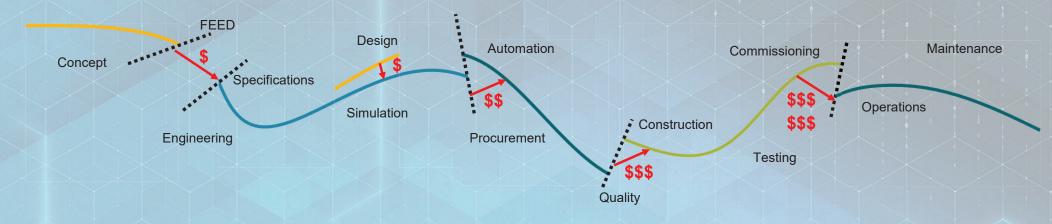
Benchmarking – Energy OEMs/EPCs vs Auto/Aero



_						
	Maturity Model	Concept Phase Activities – Tendering, Pre-FEED, FEED, Requirmnts, Trade Space Study	Technical Execution – Design, Integrated Simulation, Optimization, Engineering	Non-Technical Execution – Project Management, Supplier Collaboration, Quality	Manufacturing Activities – Planning, Execution Operations, Plant Quality, RT Data Mgt	Service Lifecycle Mgt – Maintenance Planning, Spares, Logistics, Support & IOT
	Level 6 AI/ML	Natural language processing and knowledge graph/category theory principles applied to generative concept design	Optimization workflows across domains to aggregate field and manufacturing needs through an automated iterative process	Engineer to engineer collaboration enabled, periphery information available without necessity for other functions	Plant of the future, prognostic robotics and additive manufacturing technology allows plant to self repair.	Rig of the future, unmanned decision making, remote operations, predictive maintenance. Automated tooling
	Level 5 Insight	MBSE controlled system architecture, variation definition, and pareto led design space exploration	Integrated multi-CAD to support true MBE downstream. Optimization tools & machine- driven suggestive design	Real time collaboration at the model level. Sharing of System Models and relational data to drive quality down the chain	Closed ioop feedback from automated systems and sensors accelerate performance. Predictive maintenance models	Prognostic health management, sensor driven feedback (virtual & physical), real time data insight & on-demand simulation
	Level 4 Automation	Parametric requirements and automated concept decision making. High level of reuse of enterprise knowledge	MBD principles from CAD through to Simulation. CTO and ETO automation to accelerate lifecycle	Data centric approach to supply chain relationships and requirements. Consistent data model between companies	3D centric plant simulation identifies opportunity for factory automation to reduce the human footprint, increasing safety	Field data automated with simulation tooling in design to close the loop on design verification and performance
	Level 3 Analytics	Trend data available from historical knowledge capture. Library and standard language/ objects in use	3D centric, integrated PMI principles to drive accuracy Enterprise insight through munidomain reporting & analytics	Business intelligence reporting applied across functions with no manual intervention required	Closed loop feedback to optimize and streamline plant processes. Lead times and cycle times slowly reduce	Field analytics available for consumption upstream to deliver trend and insight for upstream design decisions
	Level 2 Workflow	Multi-functional collaboration and visibility of data available through workflow and revision within single platform	2D/3D centric, business workflows embedded in digital tools. Active collaboration and participation in tasks	Complete non-technical participation in single source; risk, interface, change, schedule, maturity workflows	Plant process driven structures standardized and available for planning & coeting. All functions collaborating via workflow	On demand field apps for technician collaboration and workflow, allows for Customer/Vendor real time interactions
	Level 1 Data Aggregation	Some controlled master documents and data flow between concept stages. Little/no integration of systems & tools	2D centric, uncontrolled models, PDM driven enterprise. Document centric, manually interpreted business practices	Manual change process, procedural based external collaboration. Admin heavy reporting capabilities	Easy accessibility of data from upstream, electronic capture of data and tasks manual, but not connected with enterprise	Centralized database for field twin, maintenance activities, reliability/availability, and performance reporting

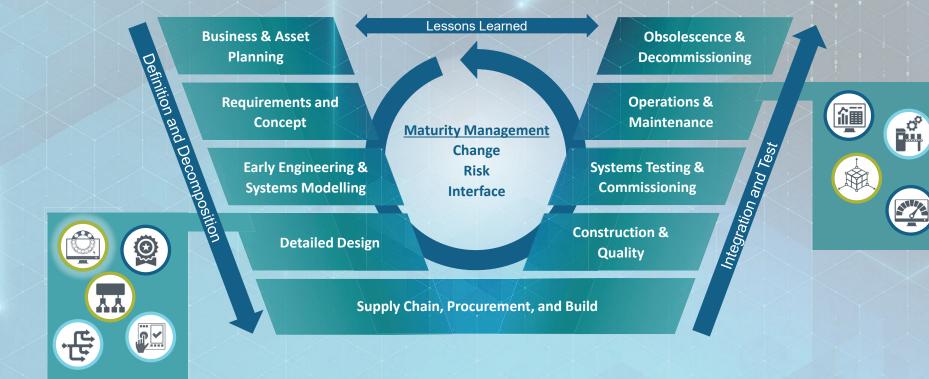
Challenges in the Digital World

Digital Thread concept is supposed to enable cross-domain communication

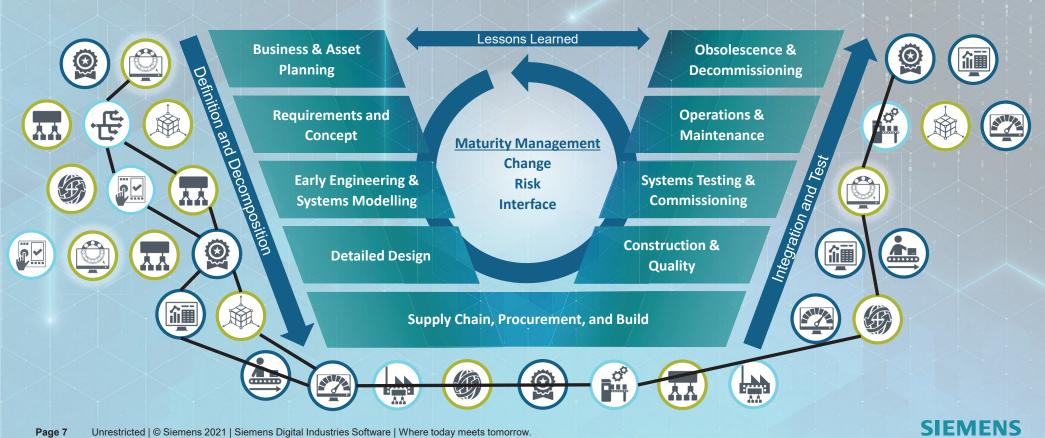


- · Organizational structure tends to break up the lifecycle
- Digital tools usually disconnected, or even absent
- · Communication issues stem from the need to conduct manual handovers between people within a non-standard process
- No trust from the Supply Chain to properly share data during E/P/C stage
- No true "Digital Twin" of the asset is achievable

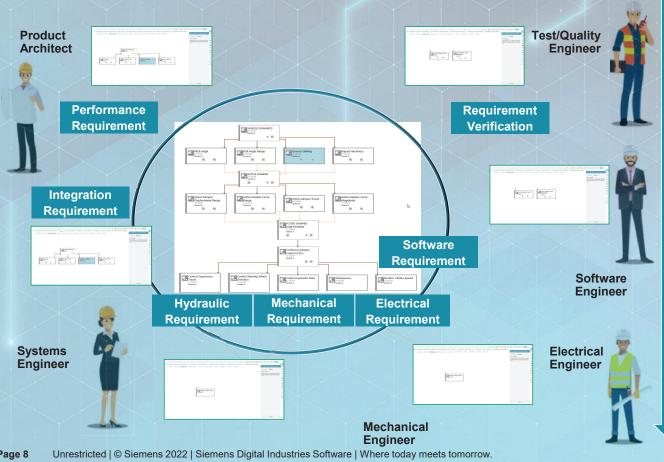
Challenges in the Digital World


Digital Thread concept is supposed to enable cross-domain communication

- Risks of unknown run 10%-15% contingency margin for all parties
- · Schedules have +30% hidden float as standard
- Cost of change exponentially increases the further right you get
- Escalating CYA costs passed down the Supply Chain have moved the industry towards Brown Field instead of Green Field investments



Organization Information Flow vs Solutions



Organization Information Flow vs Solutions

Multi-domain requirements

ACROSS DOMAINS

Integrated Requirement to Domains

Create Engineering Views

Impact Analysis Requirement Change Orchestration

Traceability In Context Requirement Configuration

Integrate Multi-Sources

SIEMENS

Digital Threads tell stories

By Lifecycle (Silo)

- Concept Design, FEED, Upfront Decision Making, Contract Award
- Project Execution Fundamentals: Technical/Non-Technical, Customer/Supplier
- Manufacturing/Construction Planning and Execution
- Operational Excellence, Minimize Downtime, Maximize Performance

By Portfolio (Siemens)

- Digital Lifecycle Excellence
- Advanced Engineering Simulation
- Integrated Design & Configuration
- Operational Excellence

By Industry/Company

- Owner/Operator/Producer
- Utilities
- PEPC/AES
- OEM
- OFS
- Engineering House
- Renewables/Hydrocarbon
- Upstream/Midstream/Downstream
- Commodities

Logic/Decision Making History lost to time

Why did we make this decision?

Let's research it:

- Jim retired last year
- Vendor documentation unclear
- Lessons Learned database not consistent
- No recorded meeting/minutes
- It happened before the re-org

Conclusion: WE DON'T KNOW

Let's make a new decision....

Tension Model

Profitability CMMMMO Growth

Short Term CMMMMO Long Term

Whole Chillin Parts

What is your Strategy??

Typical "Strategies"

- More Revenue
- Higher Margin
- **Increased Safety**
- Lower Risk
- More Automation
- **Digital Twin**
- **Deliver On-Time**
- **Lower NPT**
- More Agile

This is "WHAT" you want to achieve in a marketing/shareholder friendly statement

This is "WHAT" you want to achieve

Start here, admit what they really are. Identify tension, recognize

STRATEGY

This is "HOW" you plan to achieve your **Objectives**

Ask your leaders the "HOW"... uncomfortable gaps are OK, because it presents an opportunity

TACTICS

This is "HOW" you plan to support your Strategy(ies)

Do your research, prove the concept, model the ROI, show the value, configure vs customize etc

ACTIONS

This is "WHAT, WHEN, WHO" you will, do to achieve any of the above

Pull the trigger... Everyone can have a role Everyone can be successful!

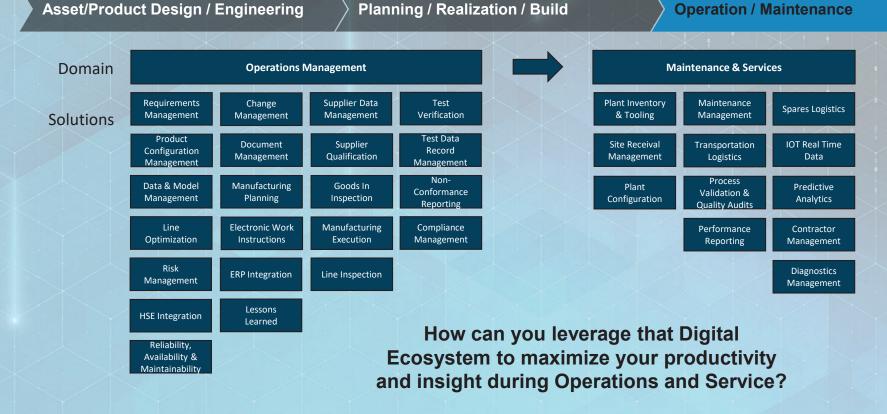
Solution Roadmap

Asset/Product Design / Engineering

Standards

Concept Design & FEED Execution, Construction & Commissioning Domain Data & Model Construction Requirements Change Program Change Mechanical CAD Management Management Management Simulation Management Management Solutions Supplier Data Manufacturing Industry Document Risk Electrical CAD Scheduling Standards Management Management Management Planning Data & Model Manufacturing Plant Document Pre-Process Design **HSE Integration** Management **Planning** Configuration Management Commissioning **Plant Process** Trade Studies/ Requirements Goods In Project QA Inspection Simulation Verification Optimization Inspection Reporting Non-Risk Lessons Lessons Conformance Management Learned Learned Internal How can you create a Digital

Ecosystem across the solutions required to bring your asset online?


Planning / Realization / Build

Operation / Maintenance

Vendor

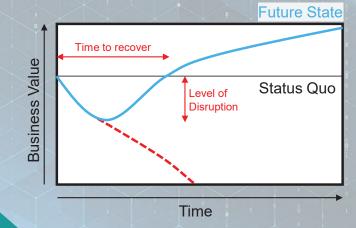
Management

Solution Roadmap

DON'T FORGET! Digital Adoption Strategy

End User successful adoption

Learning and performance support
Content development, mentoring, tools and technology


Communication planning

Effective execution of communication activities

Sponsor/Ambassador identification and management Support plan for ambassadors and high-level audience analysis

Executive Management Team support and communication Involved with all communications at every level affected by the events

"70% of digital transformations fail due to a lack of user adoption and behavioral change"

Adoption is not just Training... It is the Definition of Success

Where are you today? Where do you want to be in the future?

Maturity Model	Concept Phase Activities – Tendering, Pre-FEED, FEED, Requirmnts, Trade Space Study	Technical Execution – Design, Integrated Simulation, Optimization, Engineering	Non-Technical Execution – Project Management, Supplier Collaboration, Quality	Manufacturing Activities – Planning, Execution Operations, Plant Quality, RT Data Mgt	Service Lifecycle Mgt – Maintenance Planning, Spares, Logistics, Support & IOT
Level 6 AI/ML	Natural language processing and knowledge graph/category theory principles applied to generative concept design	Optimization workflows across domains to aggregate field and manufacturing needs through an automated iterative process	Engineer to engineer collaboration enabled, periphery information available without necessity for other functions	Plant of the future, prognostic robotics and additive manufacturing technology allows plant to self repair.	Rig of the future, unmanned decision making, remote operations, predictive maintenance. Automated tooling
Level 5 Insight	MBSE controlled system architecture, variation definition, and pareto led design space exploration	Integrated multi-CAD to support true MBE downstream. Optimization tools & machinedriven suggestive design	Real time collaboration at the model level. Sharing of System Models and relational data to drive quality down the chain	Closed loop feedback from automated systems and sensors accelerate performance. Predictive maintenance models	Prognostic health management, sensor driven feedback (virtual & physical), real time data insight & on-demand simulation
Level 4 Automation	Parametric requirements and automated concept decision making. High level of reuse of enterprise knowledge	MBD principles from CAD through to Simulation. CTO and ETO automation to accelerate lifecycle	Data centric approach to supply chain relationships and requirements. Consistent data model between companies	3D centric plant simulation identifies opportunity for factory automation to reduce the human footprint, increasing safety	Field data automated with simulation tooling in design to close the loop on design verification and performance
Level 3 Analytics	Trend data available from historical knowledge capture. Library and standard language/ objects in use	3D centric, integrated PMI principles to drive accuracy Enterprise insight through multidomain reporting & analytics	Business intelligence reporting applied across functions with no manual intervention required	Closed loop feedback to optimize and streamline plant processes. Lead times and cycle times slowly reduce	Field analytics available for consumption upstream to deliver trend and insight for upstream design decisions
Level 2 Workflow	Multi-functional collaboration and visibility of data available through workflow and revision within single platform	2D/3D centric, business workflows embedded in digital tools. Active collaboration and participation in tasks	Complete non-technical participation in single source; risk, interface, change, schedule, maturity workflows	Plant process driven structures standardized and available for planning & coeting. All functions collaborating via workflow	On demand field apps for technician collaboration and workflow, allows for Customer/ Vendor real time interactions
Level 1 Data Aggregation	Some controlled master documents and data flow between concept stages. Little/no integration of systems & tools	2D centric, uncontrolled models, PDM driven enterprise. Document centric, manually interpreted business practices	Manual change process, procedural based external collaboration. Admin heavy reporting capabilities	Easy accessibility of data from upstream, electronic capture of data and tasks manual, but not connected with enterprise	Centralized database for field twin, maintenance activities, reliability/availability, and performance reporting

Q&A

SIEMENS