Identification of weak signals to prevent emergent system failures in process industries

Mengxi Yu*, Noor Quddus, Sam M. Mannan

Email Address*: yuxxx433@tamu.edu

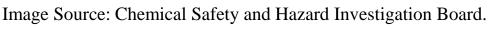
Mary Kay O'Connor Process Safety Center Texas A&M University College Station, Texas 77843-3122, USA

Copyright © 2018 by Mengxi Yu. Permission granted to INCOSE to publish and use.

M ENGINEERING EXPERIMENT STATION

Outline

- Motivation
- A Challenges
- What has been done
- H Objective & Methodology
- Modeling of complex systems
- Conclusions
- References


Motivation

Existence of Weak Signals

BP Texas City Explosion and Fire (2005)

- Delayed maintenance
- Operator overtime shift
- Inadequate staffing and supervision
- Practice of overfilling during start-ups

Challenges to Catch Weak Signals

Nature of Weak Signals

Few studies have been conducted

 to identify weak signals or evaluate effectiveness of weak signal management in organizations

Challenges to Catch Weak Signals

Complex Socio-technical System

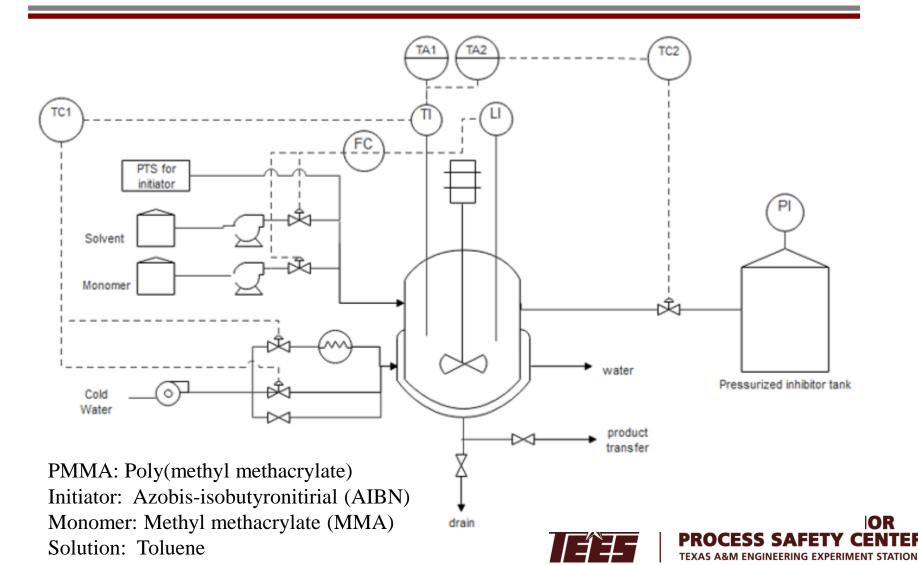
Emergent failures

Traditional Hazard Identification Techniques

- Fault Tree Analysis/Event Tree Analysis
- Hazard and Operability Analysis (HAZOP)
- Failure Modes and Effects Analysis (FMEA)
- Human Reliability Analysis (HRA)

Efforts that Have Been Done

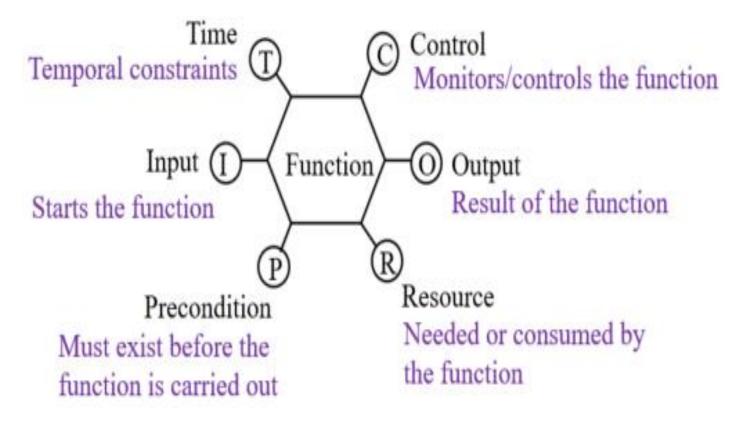
- System-based techniques
 - Acci-Map
 - System-Theoretic Accident Model and Processes (STAMP)
 - Functional Resonance Analysis Method (FRAM)


Objective & Methodology

Develop a framework to identify weak signals to prevent emergent system failures

- Chemical Process
- Equipment
- Human

Process - PMMA Polymerization

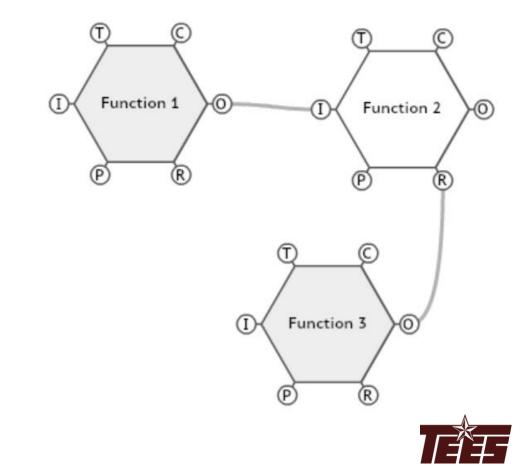


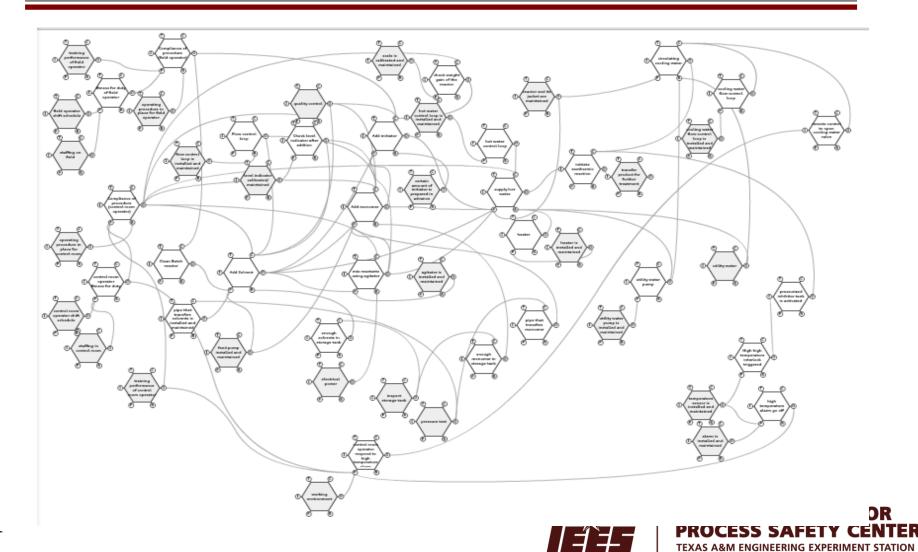
8

Functional Resonance Analysis Method (FRAM)

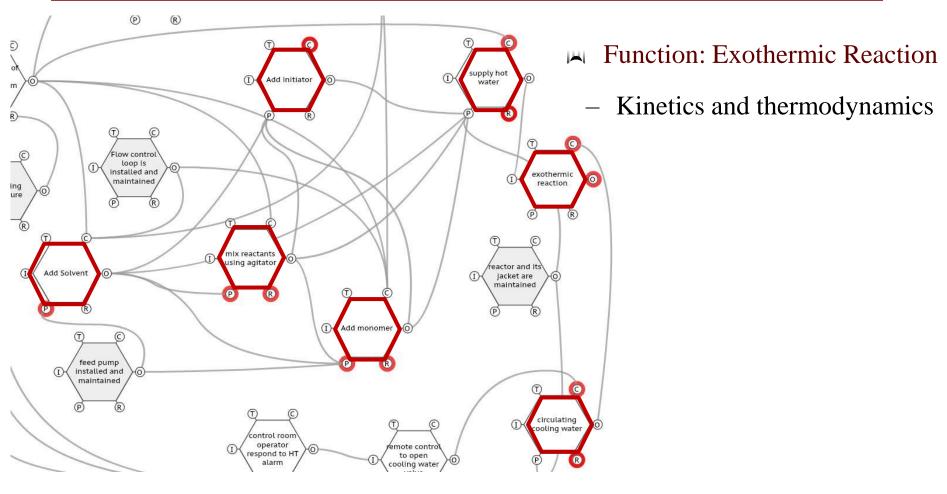
Identify the functions that are involved in a system

9



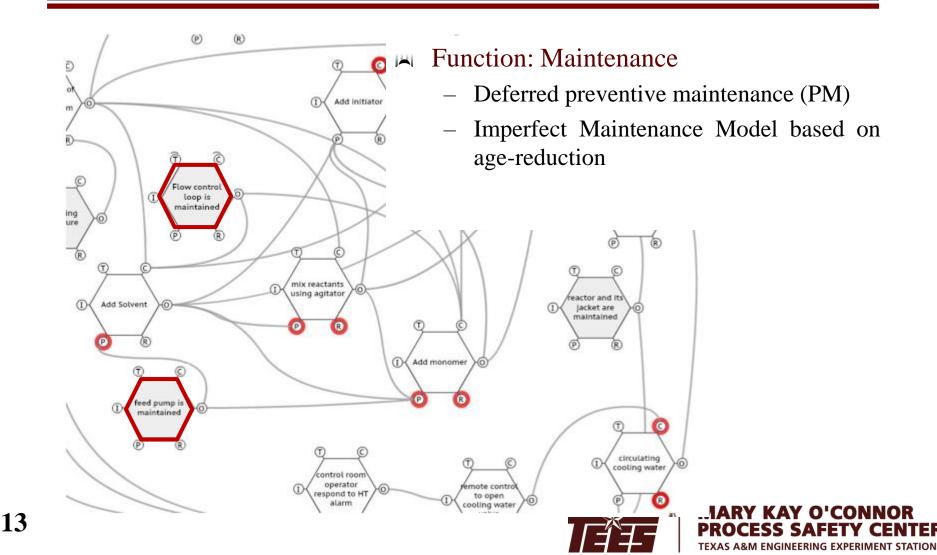

Functional Resonance Analysis Method (FRAM)

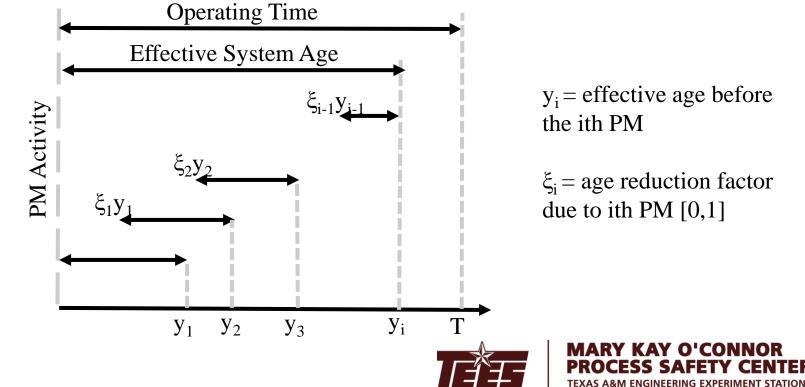
Identify how functions interact



Overview of FRAM

11


Model Interactions-Process Parameters


Model Interactions-Equipment Reliability and Preventive Maintenance (PM)

Imperfect Maintenance Model

Model Assumptions

- PM is scheduled based on a predetermined reliability threshold
- PM reduces the effective age of a system, but not affects the deterioration rate

Imperfect Maintenance Model Cont.

- Cumulative probability of failure after (i-1)th PM:
 - $F^{(i-1)}(t) = function(\alpha, \beta, j, \xi_j, y_j, t)$

$$=1,2,...(i-1)$$

- y_i = effective age before the ith PM
- α , β : parameters of deterioration rate distribution

 ξ_j = age reduction factor due to jth PM [0,1]

Influence of PM on reliability

Model Interactions - Human Function and Human/Organizational Factors

During normal operation

- What is the probability of control room operator to make mistakes?
- What are possible failure modes of operator behavior?

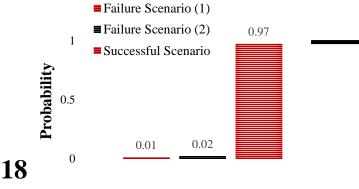
- During abnormal situation
 - How much time will it take for an operator to provide proper response?

Human Reliability Analysis (HRA) Techniques

HRA Techniques

- SLIM-MAUD
- THERP
- JHEDI
- HEART
- SPAR-H
- CREAM
- HCR

Selection Criteria


- Performance Shaping Factor (PSF)
- Flexibility
- PSF Dependency
- Application field

Cognitive Reliability and Error Analysis Method (CREAM)

REAM - during normal conditions

Human	Cognitive	Cognitive	Failure Scenario	Failure Type	Nominal
Action	Activity	Demands			Probability
Check level	Verify	Interpretation	(1) Not check	Delayed	0.01
indicator		/Observation		Interpretation	
after			(2) Check but	Decision Error	0.02
addition			make a wrong		
			decision		
			Comply with procedure		0.97

The distribution is adjusted by influencing index of 9 PSFs

Human Cognitive Reliability (HCR) Model

HCR- during abnormal situation

 $= (T_{0.5})_{\text{modified}}$ = $(T_{0.5})_{\text{simulation}}(1+K_1) (1+K_2) (1+K_3)...(1+K_i)$

K_i Coefficient of performance shaping factor i

Conclusions

- Complexity of socio-technical system and tremendous amount of information stored in plants make it difficult to recognize emergent failures
- The study is aimed to develop an integrated framework to identify emergent failures in process industries
- Weak signals of the emergent failures will be further identified
- Model validation by using real plant data is needed in future work

Collaborations with industries are needed

References

[1] Hopkins, A. (2008). *Failure to learn : the BP Texas City refinery disaster. Andrew Hopkins*: Sydney, N.S.W. : CCH Australia, 2008.

[2] Refinery explosion and fire (15 killed, 180 injured) : BP, Texas City, Texas, March 23, 2005 / U.S. Chemical Safety and Hazard Investigation Board.

[3] Brizon, A., & Wybo, J. L. (2009). The life cycle of weak signals related to safety. *International Journal of Emergency Management*, 6(2), 117-135.

[4] Guillaume, E. G. (2011). *Identifying and responding to weak signals to improve learning from experiences in high-risk industry* (Doctoral dissertation, TU Delft, Delft University of Technology).

[5] Körvers, P. P. (2004). Accident precursors: pro-active identification of safety risks in the chemical process industry.

[6] Luyk, J. J. (2011). Towards improving detection of early warning signals within organizations: an approach to the identification and utilization of underlying factors from an organizational perspective (Doctoral dissertation, Technische Universiteit Eindhoven)

[7] Cameron, I., Mannan, S., Németh, E., Park, S., Pasman, H., Rogers, W., & Seligmann, B. (2017). Process hazard analysis, hazard identification and scenario definition: Are the conventional tools sufficient, or should and can we do much better? *Process Safety and Environmental Protection*, *110*, 53-70. doi:10.1016/j.psep.2017.01.025

[8] Altabbakh, H., AlKazimi, M. A., Murray, S., & Grantham, K. (2014). STAMP – Holistic system safety approach or just another risk model? *Journal of Loss Prevention in the Process Industries*, *32*, 109-119.

[9] Rodriguez, M., & Diaz, I. (2016). A systematic and integral hazards analysis technique applied to the process industry. *Journal of Loss Prevention in the Process Industries*, *43*, 721-729. doi:10.1016/j.jlp.2016.06.016

References

[10] Mannan, S. Lees' Loss Prevention in the Process Industries, Volumes 1-3 (3rd Edition). In: Elsevier.

[11]Alvarenga, M. A. B., Frutuoso e Melo, P. F., & Fonseca, R. A. (2014). A critical review of methods and models for evaluating organizational factors in Human Reliability Analysis. *Progress in Nuclear Energy*, 75, 25-41. doi:https://doi.org/10.1016/j.pnucene.2014.04.004

[12] Rodriguez, M., Diaz, I. 2016. A systematic and integral hazards analysis technique applied to the process industry. *Journal of Loss Prevention in the Process Industries, 43*, 721-729. doi:10.1016/j.jlp.2016.06.016

[13] Hollnagel, E. P. (2012). FRAM : The Functional Resonance Analysis Method: Modelling Complex Socio-technical Systems. Farnham, GB: Ashgate.

[14] Patriarca, R., Di Gravio, G., Costantino, F. A Monte Carlo evolution of the Functional Resonance Analysis Method (FRAM) to assess performance variability in complex systems (2017) Safety Science, 91, pp. 49-60.

[15] Lin, Z.-L., Huang, Y.-S., & Fang, C.-C. (2015). Non-periodic preventive maintenance with reliability thresholds for complex repairable systems. *Reliability Engineering & System Safety*, *136*, 145-156.

[16] Hollnagel, E. (1998). CREAM — A Second Generation HRA Method. In Cognitive Reliability and Error Analysis Method (CREAM). Oxford: Elsevier Science Ltd

[17] Yang, M., Gao, J., Zhao, B., Huang, X.,Shen, Z. 1997. Study of operator reliability in nuclear power plants. Chinese Science Bulletin, 42(19), 1585-1590. doi:10.1007/bf02882562

Thanks!

Questions and Comments?

Mengxi Yu yuxxx433@tamu.edu

