

INCOSE Wasatch Chapter Meeting INCOSE IW Outbrief

Paul White, CSEP

Paul Nelson, CSEP

Wasatch Chapter President KIHOMAC Paul.white@kihomac.com

Chapter Member Wasatch Chapter Secretary

NGIS Paul.nelson@ngc.com **ICBM Systems Directorate** John.mccrea.3@us.af.mil

March 14, 2019

Summary

- IW Overview
- Individual Experiences & Takeaways
 - Paul White
 - Paul Nelson
 - John McCrea
- INCOSE Working Groups
 Status Alive, Growing, Dead

 - Configuration Management WG (Paul Nelson)
 Digital Engineering Information Exchange WG (DEIXWG) (John McCrea)
 Model-Based Enterprise Capabilities Matrix

 - Solicitation for involvement
- Discussion & Next Steps

INCOSE IW Overview

- 4 Days: January 26-29, 2019
- Torrance, California
- 200 sessions
- Up to 5 sessions running concurrently
- Most working groups were present
- 4 Town hall meetings
- Leadership meetings
- Receptions
- Networking

2019 Annual **INCOSE** international workshop **Torrance, CA, USA** January 26 - 29, 2019

Paul White Takeaways

- Saw how big INCOSE really is and what is going on with working groups
- MBSE was 1/3 of the sessions—increasing focus on MBSE
- 50% of working groups were present could see which were active and strong and what they were working on
- How can we improve membership recruitment and retention?
- Certification & Academic Equivalence
- Professional Development Portal
- Americas Sector Regional Model
- Future of Systems Engineering (FuSE) Initiative SE on AI, Internet of Things (IoT), and distributed manufacturing
- SEP Reception
- Training opportunities for us in Utah
- Working Groups & Wasatch collaboration

Paul Nelson Takeaways

- Trends:
 - ~70% of the sessions were focused on the Systems Engineering function/silo and not the broader end to end systems engineering for a system of interest needs (e.g. program, enterprise system, etc.)
 - MBSE has almost a cult following without strong data/business justification; seems to be a
 marketing ploy to funnel more investment towards systems engineering (not necessarily a bad
 thing). Odd that MBSE has an agenda within the IW agenda. About 30-40% of the event is the
 MBSE track.
 - I observed some new attendees and comments about how "intimidating" of a conference INCOSE (lots of PhDs, critical thinkers who mean well, but can be unapproachable)
 - Very A&D heavy attendance (Customers, OEMs, Suppliers, Vendors)
- Takeaways:
 - Great event and a great opportunity to learn and grow from a career development standpoint; great for networking as well (receptions, lunches, etc.).
 - Most beneficial to attend IW if you are involved in the working groups; IS is better for observation
 - FuSE (Future of Systems Engineering) Initiative was interesting to me:
 - <u>https://www.incose.org/docs/default-source/events-documents/iw2019/wis-market-place/fuse</u>

John McCrea Takeaways

- INCOSE is far more international than I realized, but still very US and specifically aerospace/defense focused
- Very different than traditional "conference"
 - best to get involved in 1-3 WGs and stick with those than hopping all over the place
- MBSE runs the world
- INCOSE IS 2020 is in South Africa!
- Challenges precede Working Groups
- Certification opportunities free CSEP exam
- DEIX WG (Digital Engineering Information Exchange)
- Challenge MBSE Enterprise Capabilities Matrix
- LOTAR (Long Term Archival and Retrieval)
- Training internal and external opportunities
- INCOSE members can party!

Part of DEIXWG Team

Working Groups & Status

Working Group	Status	Working Group	Status	Working Group	Status	Working Group	Status	Working Group	Status
Affordability		Digital Engineering Information Exchange (DEIXWG)		<u>Measurement</u>		Product Line Engineering		<u>Systems Engineering Case</u> <u>Study (emerging)</u>	
Agile Systems & SE		Enterprise Systems		<u>Model Based Systems</u> Engineering		Reliability Engineering		<u>Systems Engineering Quality</u> Management (SEQM)	
Anti-Terrorism International		Global Earth Observation System of Systems (GEOSS)		Model-based Conceptual Design		<u>Requirements</u>		Systems of Systems	
<u>Architecture</u>		<u>Healthcare</u>		Motor Sports		Resilient Systems		Systems Science	
Automotive		Human Systems Integration		NAFEMS-INCOSE Systems Modeling & Simulation		Risk Management		Tool Integration and Model Lifecycle Managment	
<u>Competency</u>		Infrastructure		<u>Natural Systems</u>		<u>SE Effectiveness</u>		<u>Training</u>	
Complex Systems		In-Service Systems		Net-centric Operations		<u>SE Tools Database</u>		Transportation	
Configuration Management		Integration, Verification, & Validation (emerging)		Object-Oriented SE Method		Space Systems		<u>VSME</u>	
Cost Engineering		Knowledge Management		<u>Oil and Gas</u>		System and Software Interface			
<u>Critical</u> Infrastructure		Lean Systems Engineering		PM-SE Integration		<u>System Safety</u>			
Decision Analysis		Life Cycle Management		Power & Energy Systems		System Safety Integration			
<u>Defense Systems</u>		MBSE Patterns		Process Improvement		System Security Engineering			

CM WG Purpose

... is to ensure that the <u>state of the art</u> and the <u>body of knowledge</u> in <u>CM</u> be used to enhance the state of the art and the body of knowledge of <u>SE</u>; and vice versa. The CM WG will lead this effort within INCOSE; in liaison with external CM related **experts**, **standardization bodies** and other **organizations** and **communities**, as appropriate.

CM Working Group Work Potential Products

- Identify Software Engineering CM practices and technologies (source code management, package deployment...) that should be carried over into existing engineering standards (CMII, EIA-649, ...)
- Identify scope of CM we want to tackle: release process, version management, variant management (PLE), branch and merge, ...
- Define accountability process for reconciling changes across disciplines integrated by MBSE (CM of CMs)
- Upgrade CM glossary to MBSE scope
- Describe CM vision in a digital thread/twin implementation

DEIX-WG

- Supports the strategic objective to accelerate the Transformation of Systems Engineering to a model based discipline
- Aspires to ensure Digital Artifact are transferable within industries with complex systems
- Successful fulfillment of this mission allows for the free flow of digital artifacts between buyers and suppliers throughout a global supply chain; as well as, enable the collaboration between disciplines within those industries

<u>Thought Areas:</u>

- Topical Encyclopedia for Digital Engineering Information Exchange (DEIXPedia)
- Digital Engineering Information Exchange Model
- Digital Viewpoint Model (DVM)
- DEIX Standards Framework
- <u>http://www.omgwiki.org/MBSE/doku.php?id=mbse:deix</u>

DEIX-WG Continued

- Scope includes the following activities:
 - The WG activities and products span the systems engineering lifecycle as it relates to Digital Engineering information inputs and outputs of ISO 15288 and 15289 digital artifacts.
 - The WG will also addresses the exchange of digital artifacts between various technical disciplines involved in the systems engineering lifecycle.
 - The WG covers the presentation of digital engineering information to classes of technical and non-technical stakeholders across the complex global supply chain.
- 12 week sprint increments
- Weekly meetings Friday Mornings

DEIXWG Digital Viewpoint Model (DVM) Sub-Group Concept Model

Tamara Hambrick

DEIX-DVM Lead

Tamara.Hambrick@ngc.com Northrop Grumman Aerospace Systems

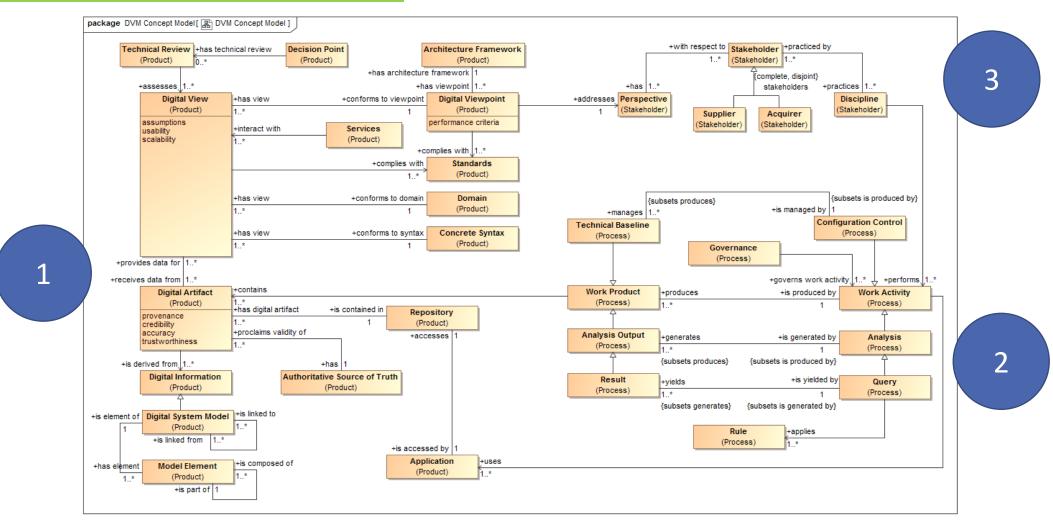
rick Sean McGervey

DEIX- DVM Co-Lead Sean.McGervey@jhuapl.edu JHU/APL

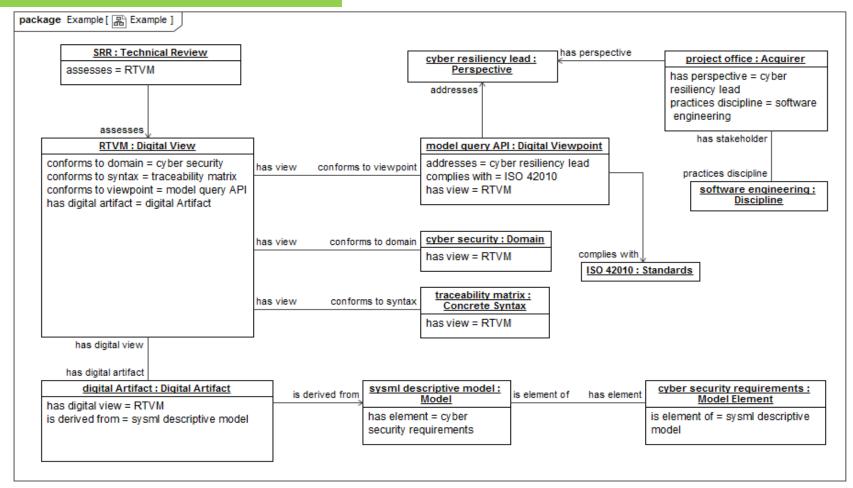
Missy Wallace

DVM Advisor

Melissa.d.Wallace@gmail.com General Atomics - ASI


March 08, 2019

DVM Concept Model divided into 3 different ontologies: (1) Product, (2) Process, (3) Stakeholder



Example instance of the DVM Concept Model for a particular use case (review of cyber requirements for an SRR technical review)

Still have these open questions... Need answers to ensure that this is a valid model of the DVM domain

- How well does this model fit the scope of concepts we're considering?
 - What are other types of Digital Information?
 - What are some forms of Models?
 - Matlab? Excel?
 - Then what constitutes a Model Element?
- What is the definition of "provenance" in the context of a Digital Artifact and how do we capture it?
- How well does this model capture the needs for expressing what a Digital View is and to what it must conform?
 - Example Domains?
 - Example Concrete Syntax?
 - Example Standards?

Model-Based Enterprise Capabilities Matrix

- Excel-based spreadsheet composed of descriptive model-based capability rows and columns that define the capability stage
- Identify a comprehensive set of model-based capabilities, credibly sourced, that can be used by organizations to plan the improvement of their model-based enterprise capabilities
- Users are encouraged to tailor the Matrix
- http://www.omgwiki.org/MBSE/doku.php?id=mbse:mbecm

Matrix Areas

- Workforce/Culture
- SE Processes/Methodology
- Program/Project Processes/Methodology
- Model Based Effectiveness
- IT Infrastructure
- Modeling Tool Construction
- Project Use
- Policy

Matrix Structure

- Rows: Range of Model-Based Engineering factors/attributes, grouped by areas, that directly or indirectly support/enable across the enterprise
 - Workforce/Culture, SE Processes/Methodology, Program and Project Process/Methodology, Model-Based Effectiveness, Tools and IT Infrastructure, Project Use, Policy
- Columns: Increasing Stages of Capability
 - Left-most column reflects non-MBSE/MBE Capabilities (i.e., Doc-centric)
 - Right-most column reflects fully mature MBSE/MBE Capabilities
 - Intervening columns reflect increasing, incremental Stages of Capability for each particular factor/attribute (row)

Attributes	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4
Attr1					
Attr2					
Attr3					
Attr4					
		© 2018 Published an	d used by INCOSE with permissio	n	